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Abstract. In this paper we establish sufficient conditions for the existence of solutions of

equilibrium problems in a metric space that do not involve any convexity assumption neither

for the domain nor for the function. To prove these results a weak notion of semicontinuity

is considered. Furthermore, some existence results for systems of equilibrium problems are

provided.
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1 Introduction

Let D be a subset of a metric space (X, d) and f : D × D → R be a given bifunction. By

equilibrium problem we understand the problem of finding

x̄ ∈ D such that f(x̄, y) ≥ 0 for all y ∈ D. (EP)

Classical examples of equilibrium problems are scalar and vector optimization problems, vari-

ational inequalities, Nash equilibria problems, fixed point problems, and saddle points problems.

Problems like (EP) were initially studied by Ky Fan [9] and by Brezis, Nirenberg, and Stam-

pacchia [7]. After the paper of Blum and Oettli [6], where the term equilibrium problem was used

for the first time, many mathematicians studied in depth equilibrium problems. Convexity and

closure of the set D and generalized convexity and monotonicity, together with some continuity

for f , were the most used conditions in dealing with the existence of the solutions of equilibrium

problems (see [10, 12] and references therein).

In order to avoid any assumption of convexity both for the domain D and for the bifunction f ,

some authors (see for instance [1, 3, 6, 14] and references therein) proposed a different approach

in which the existence of solutions for (EP) is obtained assuming the following triangle inequality

property:

f(x, y) ≤ f(x, z) + f(z, y), ∀ x, y, z ∈ D. (1)

In this paper, we focus on the properties of the class of bifunctions

A = {f : D ×D → R : property (1) holds},
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and we derive new existence theorems for (EP) assuming f ∈ A. Such results extend and

generalize several results recently appeared in the literature. Furthermore, we prove existence of

solutions for systems of equilibrium problems by exploiting the results obtained for (EP).

2 Properties of class A

Some authors recently considered particular classes of bifunctions contained in A, e.g. τ - func-

tions [13], fitting functions [14], and Q-functions [1]. Exploiting the properties of these functions

they established various generalizations of the Ekeland’s variational principle and they deduced

existence results for nonconvex equilibrium problems.

Before to extend such results, we deepen the study of the class A that is obviously not empty

since every distance function belongs to A. But the class A is quite wide as the following results

show.

Proposition 2.1. (i) Let ϕ1, ϕ2 : D → R such that ϕ1(x) + ϕ2(x) ≥ 0 for all x ∈ D, then

f(x, y) = ϕ1(x) + ϕ2(y) belongs to A.

(ii) Let ϕ : D → R be subadditive i.e. ϕ(x+ y) ≤ ϕ(x) + ϕ(y) for all x, y ∈ D, then f(x, y) =

ϕ(x− y) belongs to A.

(iii) If f ∈ A and ϕ : R→ R is nondecreasing and subadditive, then ϕ ◦ f ∈ A.

(iv) Let g : D ×D → R be a bounded bifunction, that is there exist L,U ∈ R such that

L ≤ g(x, y) ≤ U ∀ (x, y) ∈ D ×D,

then f(x, y) = g(x, y) + α belongs to A for all α ≥ U − 2L.

Proof. The proof of the first three statements is straightforward and it is omitted; we prove only

(iv). Fixed x, y, z ∈ D we have

f(x, z) + f(z, y) = g(x, z) + g(z, y) + 2α

≥ g(x, z) + g(z, y)− 2L+ U + α

≥ U + α ≥ g(x, y) + α = f(x, y)

and the proof is completed.

We now show two well-known special cases of equilibrium problems with the bifunction f ∈ A.

It is known that the problem of finding a minimizer of a function ϕ : D → R is equivalent to

(EP) setting f(x, y) = ϕ(y)− ϕ(x). In such a case it is easy to check that f ∈ −A ∩A.

Given a function ψ : D → Rm and a closed convex cone K ⊂ Rm with nonempty interior

int(K), the vector minimization problem defined as

find x̄ ∈ D such that ψ(x̄)− ψ(y) /∈ int(K) for all y ∈ D,

is equivalent to (EP) setting

f(x, y) = max
z∈K+,‖z‖=1

〈z, ψ(y)− ψ(x)〉,
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where K+ is the positive polar cone of K. Also in this case f ∈ A; indeed for any x, y, z ∈ D
there exists z̄ ∈ K+ with ‖z̄‖ = 1 such that

f(x, y) = 〈z̄, ψ(y)− ψ(x)〉 = 〈z̄, ψ(z)− ψ(x)〉+ 〈z̄, ψ(y)− ψ(z)〉 ≤ f(x, z) + f(z, y).

Notice that each bifunction f ∈ A is nonnegative on the diagonal of D ×D indeed; for each

x, y ∈ D, we have

f(x, y) ≤ f(x, x) + f(x, y) ⇒ f(x, x) ≥ 0.

As immediate consequence we have

f(x, y) + f(y, x) ≥ f(x, x) ≥ 0, ∀ x, y ∈ D;

therefore condition (1) implies the cyclic monotonicity of −f that extends a similar condition

given for variational inequalities: for every x1, x2, . . . , xk ∈ D we have

k∑
i=1

f(xi, xi+1) ≥ 0,

where xk+1 = x1 (see also [3]).

Now we show two results on the algebraic structure of A.

Proposition 2.2. (i) A is a convex cone, i.e. if λ ≥ 0 and f ∈ A, then λf ∈ A, and if

f1, f2 ∈ A then f1 + f2 ∈ A.

(ii) f ∈ −A ∩A if and only if there exists ϕ : D → R such that f(x, y) = ϕ(y)− ϕ(x).

Proof. The proof of the first statement is trivial and we prove the second one only. As mentioned

above, every bifunction f(x, y) = ϕ(y) − ϕ(x), with ϕ : D −→ R, belongs to −A ∩ A. For the

converse, if f ∈ −A ∩A then

f(x, z) = f(x, y) + f(y, z), ∀ x, y, z ∈ D.

Hence, fixed z̄ ∈ D and put ϕ = −f(·, z̄) we have

f(x, y) = f(x, z̄)− f(y, z̄) = ϕ(y)− ϕ(x), ∀ x, y ∈ D,

which concludes the proof.

Remark 2.1. Proposition 2.2 shows that the class of equilibrium problems with f belonging to

the lineality space of A coincides with the class of optimization problems.

Proposition 2.3. If I is a finite set of indices and {fi}i∈I ⊆ A, then f(x, y) = max
i∈I

fi(x, y)

belongs to A.

Proof. Let x, y, z ∈ D be fixed; then there exists i ∈ I such that

f(x, y) = fi(x, y) ≤ fi(x, z) + fi(z, y) ≤ f(x, z) + f(z, y),

and the proof is completed.
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The next result concerns the semicontinuity of the elements of A.

Proposition 2.4. Let f ∈ A be zero on the diagonal of D ×D i.e. f(z, z) = 0 for each z ∈ D.

If f(·, y) is upper semicontinuous at y ∈ D, then f(x, ·) is lower semicontinuous at y for every

x ∈ D.

Proof. Let x, y ∈ D and ε > 0 be fixed. From the upper semicontinuity of the function f(·, y) at

y, we deduce the existence of r > 0 such that

f(z, y) ≤ f(y, y) + ε = ε, ∀ z ∈ B(y, r),

where B(y, r) is the open ball with center y and radius r. Hence, since f belongs to A we achieve

f(x, y) ≤ f(x, z) + f(z, y) ≤ f(x, z) + ε, ∀ z ∈ B(y, r),

that completes the proof.

Remark 2.2. The assumption that f is zero on the diagonal can not be deleted. Indeed, if

we choose two nonnegative upper semicontinuous functions ϕ1 and ϕ2 defined on D, then the

bifunction f(x, y) = ϕ1(x) + ϕ2(y) belongs to A and f(·, y) is upper semicontinuous, but f(x, ·)
is not necessarily lower semicontinuous. Furthermore, we remark that the reverse implication in

Proposition 2.4 is not true. Indeed, let us consider the sequence of functions ϕn : R→ R defined

as

ϕn(x) =


0 if x ≤ 0,

nx if 0 < x < 1/n,

1 if x ≥ 1/n.

Then the bifunction f(x, y) = sup
n∈N

[ϕn(x) − ϕn(y)] belongs to A, it is zero on the diagonal, and

f(x, ·) is continuous for any x. Indeed, if x ≤ 0 then

f(x, y) =


0 if y ≤ 0,

−y if 0 < y < 1,

−1 if y ≥ 1;

if x ∈ [1/(m+ 1), 1/m) for some m ∈ N, then

f(x, y) =


1 if y ≤ 0,

1− (m+ 1) y if 0 < y ≤ 1−mx,

m (x− y) if 1−mx < y < x,

0 if y ≥ x;

finally, if x ≥ 1 then

f(x, y) =


1 if y ≤ 0,

1− y if 0 < y < 1,

0 if y ≥ 1.

However, since

f(x, 0) =

{
0 if x ≤ 0,

1 if x > 0,

it follows that f(·, 0) is not upper semicontinuous at 0.
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3 Existence of equilibria

In this section we prove some new existence results for (EP) with the bifunction f belonging to

A. First we recall the following continuity definitions which will be useful in the following.

Definition 3.1. [8, 13] A function ϕ : X → R is said to be

• lower semicontinuous from above at x0 ∈ X if, for any sequence {xn} ⊂ X converging to x0
and satisfying ϕ(xn+1) ≤ ϕ(xn), for all n ∈ N, we have

ϕ(x0) ≤ limn→+∞ ϕ(xn);

• upper semicontinuous from below at x0 ∈ X if, for any sequence {xn} ⊂ X converging to x0
and satisfying ϕ(xn+1) ≥ ϕ(xn), for all n ∈ N, we have

ϕ(x0) ≥ limn→+∞ ϕ(xn).

The function ϕ is said to be lower semicontinuous from above (resp. upper semicontinuous from

below) on X if it is lower semicontinuous from above (resp. upper semicontinuous from below)

at every point of X.

It is clear that the lower (resp. upper) semicontinuity implies the lower semicontinuity from

above (resp. upper semicontinuity from below). The following example shows that the reverse

implications do not hold.

Example 3.1. Let ϕ : R→ R be defined as follows

ϕ(x) =


x− 1 if x < 0,

0 if x = 0,

x+ 1 if x > 0.

Observe that ϕ is lower semicontinuous from above and upper semicontinuous from below at 0,

but it is neither lower nor upper semicontinuous at 0.

We start considering (EP) in which the set D is compact but not necessarily convex. In [8]

the authors showed that the Weierstrass’ Theorem for minimum holds also changing the lower

semicontinuity with the weaker assumption of lower semicontinuity from above. Using this fact

we are able to prove the following result.

Theorem 3.1. Suppose that f ∈ A and D is compact. If there exists z̄ ∈ D such that f(z̄, ·) is

lower semicontinuous from above, then the set of solutions of (EP) is nonempty.

Proof. Fixed z̄ ∈ D, consider the optimization problem

min
y∈D

f(z̄, y). (2)

Since D is compact, the lower semicontinuity from above of f(z̄, ·) guarantees the existence of a

minimum point x̄ ∈ D. Since f ∈ A and x̄ solves (2) then

f(x̄, y) ≥ f(z̄, y)− f(z̄, x̄) ≥ 0, ∀ y ∈ D,

i.e. x̄ is a solution of (EP).
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Remark 3.1. Theorem 3.1 generalizes Theorem 5.1 in [1] in the following ways.

(a) We do not require the completeness of the metric space X.

(b) We do not require f(x, ·) is lower semicontinuous from above and lower bounded for all

x ∈ D.

(c) We do not require the upper semicontinuity of f(·, y) for each fixed y ∈ D. However, it

is easy to prove that this additional assumption guarantees the set of solutions of (EP) is

closed.

In the following result we show that the assumption of lower semicontinuity from above of

f(z̄, ·) can be replaced by the upper semicontinuity from below of f(·, z̄).

Theorem 3.2. Suppose that f ∈ A and D is compact; if there exists z̄ ∈ D such that f(·, z̄) is

upper semicontinuous from below, then the set of solutions of (EP) is nonempty.

Proof. It follows as to the previous one applying Weierstrass’ Theorem to the optimization prob-

lem

max
x∈D

f(x, z̄).

If x̄ ∈ D is an optimal solution, then

f(x̄, y) ≥ f(x̄, z̄)− f(y, z̄) ≥ 0, ∀ y ∈ D,

and the proof is completed.

We now consider the case when D is not compact. If X is a finite dimensional Euclidean

space and D is closed and convex, interesting results were presented in [10]. Instead, in order

to deduce existence results in the infinite dimensional case, we need to restrict our setting and,

in what follows, we suppose that the space X admits a topology τ such that the following two

assumptions are satisfied:

(A1) the closed balls are compact with respect to τ ;

(A2) for every y ∈ X the distance function d(·, y) is lower semicontinuous with respect to τ .

For instance conditions (A1) and (A2) are satisfied if X is a reflexive Banach space and τ is

the weak topology. From now on, all the topological concepts will be considered with respect to

the topology τ .

The study of the existence of solutions of the equilibrium problems on noncompact domains D

usually involves some coercivity conditions. In [5] some coercivity conditions were introduced to

prove existence results for (EP) under generalized monotonicity properties of f and the weakest

condition was used in [3, 4] in order to deduce existence results. We recall this definition:

there exist x0 ∈ X and a compact set C ⊆ D such that

∀ x ∈ D \ C, ∃ y ∈ D such that d(y, x0) < d(x, x0) and f(x, y) ≤ 0.
(3)

We now show the existence of solutions of (EP) under coercivity condition (3) exploiting

Theorem 3.1.
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Theorem 3.3. Suppose that f ∈ A and D is closed. If coercivity condition (3) holds and f(x, ·)
is lower semicontinuous from above for all x ∈ C, then the set of solutions of (EP) is nonempty.

Proof. Applying Theorem 3.1 to the equilibrium problem with domain C we deduce that there

exists a point x̄ ∈ C such that

f(x̄, y) ≥ 0, ∀ y ∈ C. (4)

We now prove that x̄ is a solution of (EP). Let us consider any fixed x ∈ D \ C and define the

set

L = {y ∈ D : d(y, x0) ≤ d(x, x0)}.

The set L is compact by Assumption (A1), thus the set

M = arg min
y∈L

f(x̄, y)

is nonempty and compact since f(x̄, ·) is lower semicontinuous from above. From Assumption

(A2) it follows that there exists ȳ ∈M solving the optization problem

min
y∈M

d(y, x0). (5)

We now prove that ȳ ∈ C. Suppose, by contradiction, that ȳ ∈ D \ C. Then coercivity

condition (3) guarantees that there exists z ∈ D such that d(z, x0) < d(ȳ, x0) and f(ȳ, z) ≤ 0.

Therefore we obtain that z ∈ L and

f(x̄, z) ≤ f(x̄, ȳ) + f(ȳ, z) ≤ f(x̄, ȳ) ≤ f(x̄, y) ∀ y ∈ L.

Thus z ∈ M and d(z, x0) < d(ȳ, x0), but this is impossible because ȳ solves (5). Hence ȳ ∈ C.

Finally, since x ∈ L, ȳ ∈M , and x̄ satisfies (4), we obtain

f(x̄, x) ≥ f(x̄, ȳ) ≥ 0,

and the proof is complete.

Remark 3.2. When X = RN assumptions (A1) and (A2) are trivially satisfied from a metric

topology and coercivity condition (3) assumes the following form:

∃ r > 0 : ∀ x ∈ D with ‖x‖ > r, ∃ y ∈ D with ‖y‖ < ‖x‖ : f(x, y) ≤ 0. (6)

In this setting, we note that Theorem 3.3 generalizes Theorem 4.1 in [3] in the following directions.

(a) We do not need the assumption that f is zero on the diagonal of D ×D.

(b) We assume that f(x, ·) is lower semicontinuous from above (instead of lower semicontinu-

ous) for any x ∈ C (instead of for any x ∈ D).

(c) We do not require f(x, ·) is lower bounded.

(d) The upper semicontinuity of f(·, y) is not required. As observed in the previous remark,

this assumption guarantees the set of solutions of (EP) is closed.

Furthermore, it is easy to check that if we strengthen coercivity condition (3) replacing f(x, y) ≤ 0

with f(x, y) < 0, then the set of solutions of (EP) turns out to be bounded as well.
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4 Existence of solutions for systems of equilibrium prob-

lems

Systems of equilibrium problems were introduced in [2]. Later, existence results for systems of

equilibrium problems in Euclidean spaces were obtained in [3]. In this section we show new

existence results for systems of equilibrium problems in Euclidean spaces as consequence of the

results for (EP) proved in Section 3.

Given a finite set I = {1, . . . ,m}, by a system of equilibrium problems we understand the

problem of finding

x̄ = (x̄1, . . . , x̄m) ∈ D such that fi(x̄, yi) ≥ 0 for all i ∈ I and yi ∈ Di, (SEP)

where fi : D×Di → R, D =
∏

i∈I Di, Di ⊂ Rni , and N = n1 + · · ·+ nm. We shall consider the

space RN endowed with the Chebyshev norm, i.e. ‖x‖ = maxi∈I ‖xi‖ for any x = (x1, . . . , xm) ∈
RN .

The following result is crucial to relate (SEP) with (EP).

Lemma 4.1. Consider the bifunction f : D ×D → R defined as

f(x, y) =
∑
i∈I

fi(x, yi).

Then the following hold:

(i) If fi(x, xi) = 0 for every i ∈ I and x ∈ D, then x̄ solves (SEP) if and only if x̄ solves (EP).

(ii) If for every i ∈ I we have

fi(x, yi) ≤ fi(x, zi) + fi(z, yi), ∀ x, y, z ∈ D, (7)

then f ∈ A.

Proof. (i) If x̄ solves (SEP) then it is trivial to prove that x̄ solves (EP). Vice versa, assume

that x̄ solves (EP). If i ∈ I and yi ∈ Di are fixed, then the vector z ∈ D defined as

zj =

{
yi if j = i,

x̄j otherwise,

is such that 0 ≤ f(x̄, z) = fi(x̄, yi), thus x̄ solves (SEP).

(ii) For all x, y, z ∈ D we have

f(x, y) =
∑
i∈I

fi(x, yi) ≤
∑
i∈I

fi(x, zi) +
∑
i∈I

fi(z, yi) = f(x, z) + f(z, y),

i.e. f ∈ A.

From Lemma 4.1 and existence theorems for (EP) proved in section 3, we can derive the

following results for the existence of solutions of (SEP) on both compact and noncompact sets.

First, we consider the case in which the sets Di are compact but not necessarily convex.
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Theorem 4.1. Suppose that for every i ∈ I the set Di is compact, the bifunction fi satisfies (7),

and fi(x, xi) = 0 for every x ∈ D. If there exists z̄ ∈ D such that fi(z̄, ·) is lower semicontinuous

for every i ∈ I, then the set of solutions of (SEP) is nonempty.

Proof. It is a direct consequence of Lemma 4.1 and Theorem 3.1.

Remark 4.1. Theorem 4.1 generalizes Proposition 3.3 in [3] in the following directions.

(a) We do not require that fi(x, ·) is lower semicontinuous for every i ∈ I and x ∈ D.

(b) We do not require that fi(·, yi) is upper semicontinuous for every i ∈ I and yi ∈ Di. Note

that, adding this assumption in Theorem 4.1, the set of solutions of (SEP) turns out to be

closed, as well.

(c) Note that, in order to exploit Theorem 3.1, we assume that fi(z̄, ·) is lower semicontinuous

instead of lower semicontinuous from above, since the sum of lower semicontinuous from

above functions is not necessarily lower semicontinuous from above. Indeed, the functions

f1(x) =


x− 1 if x < 0

1/2 if x = 0

x+ 1 if x > 0

f2(x) =


−x+ 1 if x < 0

1/2 if x = 0

−x− 1 if x > 0

are lower semicontinuous from above at 0, but f1 + f2 is not.

Theorem 4.2. Suppose that for every i ∈ I the set Di is compact, the bifunction fi satisfies (7),

and fi(x, xi) = 0 for every x ∈ D. If there exists z̄ ∈ D such that fi(·, z̄i) is upper semicontinuous

for every i ∈ I, then the set of solutions of (SEP) is nonempty.

Proof. It is a direct consequence of Lemma 4.1 and Theorem 3.2.

When the sets Di are not necessarily compact, we consider the following coercivity condition

introduced in [3]:

∃ r > 0 : ∀ x ∈ D such that ‖xi‖ > r for some i ∈ I,

∃ yi ∈ Di such that ‖yi‖ < ‖xi‖ and fi(x, yi) ≤ 0.
(8)

Theorem 4.3. Suppose that for every i ∈ I the set Di is closed, the bifunction fi satisfies (7),

fi(x, xi) = 0 for every x ∈ D, and fi(x, ·) is lower semicontinuous for every x ∈ D with ‖x‖ ≤ r.
If coercivity condition (8) holds, then the set of solutions of (SEP) is nonempty.

Proof. The result follows from Lemma 4.1 and Theorem 3.3, because coercivity condition (8)

implies coercivity condition (3) in the form (6). Indeed, if x ∈ D and ‖x‖ > r, then the vector

z ∈ D defined as

zi =

{
yi given by (8) if ‖xi‖ > r,

xi otherwise,

is such that ‖z‖ < ‖x‖ and f(x, z) =
∑

i: ‖xi‖>r

fi(x, yi) ≤ 0.

Remark 4.2. Theorem 4.3 generalizes Theorem 4.2 in [3] in the following directions.
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(a) For every i ∈ I we assume the lower semicontinuity of fi(x, ·) only for every x ∈ D with

‖x‖ ≤ r.

(b) We do not require fi(x, ·) is lower bounded.

(c) We do not require the upper semicontinuity of fi(·, yi) for every i ∈ I and yi ∈ Di. As

mentioned above, adding this assumption in Theorem 4.3 the set of solutions of (SEP)

turns out to be closed, as well.

Finally, if we strengthen coercivity condition (8) replacing fi(x, y) ≤ 0 with fi(x, y) < 0, then

the set of solutions of (SEP) turns out to be bounded, as well.
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