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In this paper we study approximate optimality conditions for the Canonical DC (CDC) op-
timization problem and their relationships with stopping criteria for a large class of solution
algorithms for the problem. In fact, global optimality conditions for CDC are very often re-
stated in terms of a nonconvex optimization problem, that has to be solved each time the
optimality of a given tentative solution has to be checked. Since this is in principle a costly
task, it makes sense to only solve the problem approximately, leading to an inexact stopping
criteria and therefore to approximate optimality conditions. In this framework, it is important
to study the relationships between the approximation in the stopping criteria and the quality
of the solutions that the corresponding approximated optimality conditions may eventually
accept as optimal, in order to ensure that a small tolerance in the stopping criteria does not
lead to a disproportionally large approximation of the optimal value of the CDC problem. We
develop conditions ensuring that this is the case; these turn out to be closely related with the
well-known concept of reqularity of a CDC problem, actually coinciding with the latter if the
reverse-constraint set is a polyhedron.
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1. Introduction

It is well-known that any DC optimization problem, that is a nonconvex program
where the objective function is the difference of two convex functions and the
constraint can be expressed as the set difference of two convex sets, can be reduced
via standard transformations [13] to the Canonical DC problem

(CDC) min{ dr | € Q\intC }

where Q2 C R™ and C' C R™ are full-dimensional closed convex sets, d € R™ and dz
denotes the scalar product between d and the vector of variables x € R™. Notice that
full-dimensionality here can be assumed without loss of generality: if €2 is not full-
dimensional then the problem can be reformulated in the (affine) space generated
by ©, and if C' is not full-dimensional then int C = () and (CDC) actually reduces
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to a convex program. For the same reason, we assume that the set C provides an
essential constraint, i.e.,

min{de | t€Q} <min{dx | x€Q\intC }.

Relying on the appropriate translation, this assumption can be equivalently stated
through the following two conditions

0€QnintC, (1)
de >0 VreQ\intC. (2)

Due to its status of canonical form for a very large class of difficult optimization
problems, several algorithms have been proposed to solve (CDC) [3, 5, 7, 8, 12-19],
though many of them are actually variants of the cutting plane algorithm proposed
by Tuy in [13]. All these algorithms are based on (approximately) checking the well-
known necessary global optimality condition

D(y")cC 3)
where
D(y)={ze€Q | dr<v}
and ~* is the optimal value of (CDC). To simplify the treatment, in the following
we assume that optimal solutions do indeed exist; this can be easily obtained by
requiring boundedness of D(7) for the feasible values 7, i.e., those values v = dz
for some x € Q \ int C, which is the case in particular if Q itself is bounded. It is

also worth mentioning at this point that (3) is also a sufficient global optimality
condition when problem (C'DC) is regular [17, Proposition 10], i.e.,

min{ dr | € Q\intC } =inf{de | 2€Q\C }. (4)
Therefore, (4) is a crucial condition for all the above mentioned algorithm to con-
verge to a global optimal solution.

In order to deal with the nonconvex constraint = ¢ int C, the set C' has often
been represented as the zero sublevel set of a real-valued convex function, i.e.,

C={zeR"” | h(z) <0}

where h : R"™ — R is a convex function such that ~(0) < 0. This allows to express
the nonconvex constraint as the reverse convex inequality

x ¢int C <= h(z)>0.

Furthermore, this choice provides an “optimization version” of the optimality con-
ditions. In fact, it is easy to check that (3) is equivalent to the condition

max{ h(z) | =€ D(v*) } <O0. (5)

In turn, (5) has been exploited to propose concepts of approzimate optimality, for
instance in [7, 13, 14, 20], and especially to allow solution algorithms to rely on
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approrimate stopping criteria, generally of the form
max{ h(z) | =€ D(y) } <¢, (6)
or, equivalently,
D(y)S{zeR" | h(z) <e},

where £ > 0 is some given “small” tolerance. In this context, it is very important to
ensure that small values of € lead to computing a solution whose value is “not too
far” from the optimal one. While it can be easily shown (cf. Proposition 3.2) that
the limit of (6) for ¢ — 0 actually gives (5) as expected, the exact relationships
between a feasible value ~ satisfying (6), the optimal value v* and the tolerance e
have not been studied in details.

It is clear that condition (6) largely depends upon the choice of h. For instance,
though h and ah provide the same set C' for any o > 0, they may obviously lead
to extremely different feasible values satisfying (6) for the same fixed tolerance e.

In this paper we study approximate optimality conditions for (C'DC'), relying on
an alternative equivalent formulation which is based on a polar characterization
of the nonconvex constraint. This formulation allows to express the optimality
conditions in a geometric fashion such that their “optimization version”, which
has already been exploited in the algorithmic schemes of [3, 15, 19], does not
involve any representation of the set C' through a convex function h. In Section 2
we discuss the polar formulation and the corresponding optimality conditions and
we introduce the related approximate version that can be exploited as a stopping
criterion in algorithms. In Section 3 we provide alternative characterizations of the
approximate optimality conditions and we show that the relationship between the
approximation error of the optimal value and the tolerance is linear under some
reasonable (geometric) assumptions on the data of the problem.

2. Polar Formulation and Optimality Conditions

The constraint « ¢ int C' is the source of nonconvexity in problem (CDC) and it is
given just as a set relation. However, relying on the polarity between convex sets,
we can express this nonconvex constraint in a different fashion. Let us recall that

C*={weR" | wx<1l VexeC}

is the polar set of C and it is a closed convex set. Exploiting bipolarity relations
(see, for instance, [11]), it is easy to check that the assumption 0 € int C ensures
that ¢ int C' if and only if wx > 1 for some w € C*. Therefore, problem (CDC')
can be equivalently formulated as

min{de | z€Q, weC", wx>1} (7)

where polar variables w have been introduced and the nonconvexity is given by
the inequality constraint, which asks for some sort of reverse polar condition. Also,
the assumption 0 € int C ensures the compactness of C* (see, for instance, [11,
Corollary 14.5.1]). Again by bipolarity relations, the optimality condition (3) can
be equivalently stated in a polar fashion as

D(v) xC* C{ (z,w) eR" xR" | wz <1} (8)
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while the regularity condition (4) reads

min{ dz |z€Q, weC*, wr>1}=inf{dr|zeQ, weC*, wr>1}. (9)

As an immediate consequence of (8), any optimal solution (z*,w*) to (7) satisfies
both z* € 9C and w*z* = 1, a fact that will be useful in the following.

Inclusion (8) leads to the following alternative “optimization version” of the
optimality conditions:

max{vz—1 | z€ D(y), veC* }. (10)

Obviously, (8) holds if and only if the optimal value of (10), which we will denote
by v(OC,), is nonpositive. While (10) provides a functional alternative to (5), the
two problems are by no means equivalent. In particular, it is easy to see that (10) is
completely independent of the choice of h. As a consequence, the objective function
of (10), while clearly nonconvex, is “simple” and independent of the data of the
instance at hand. On the other hand, (5) is defined on a smaller space. The different
structure of the two problems may motivate different algorithms for their solution;
for instance, a lower bound on v(OC,) may be found by means of alternating
minimization methods, whereby one of the two variables is kept fixed and a linear
maximization problem is solved to optimize on the other, and then the role is
reversed. Iterating this procedure provably leads to a local optima of the problem
[6], and this approach has been experimentally proven to be remarkably effective
in several fields, such as machine learning [4] and image processing [21]; the ability
of efficiently computing good lower bounds may prove useful for some solution
approaches to (CDC) [3]. However, for the purpose of testing optimality conditions
upper bounds on v(OC,) are required; these can be produced by solving suitable
relazations of (10), i.e., by replacing the non-concave objective function vz with
a suitable concave upper approximation. In particular, one may use well-known
results that characterize the concave envelope (lower concave approximation) of
the function, which happens to be polyhedral in this particular case [9]. Upper
and lower bounding techniques can then be combined in ezact algorithms that
can be used to obtain arbitrarily accurate upper bounds, albeit possibly at the
cost of enumerative procedures [1, 2, 10]. Thus, while algorithms exist which can
computationally prove or disprove that the approrimate stopping criterion

v(0Cy) < ¢ (11)

holds for a given € > 0, this may prove exceedingly expensive if € is “very small”.
Thus, one could in principle want a “relatively large” e; the drawback is that a
feasible value  needn’t be optimal when (11) holds, and the convergence of 7 (as
a function of €) to v* may be slow (see Example 3.3 below). The next section is
therefore devoted to the study of the relationships between the “quality” of v and
the tolerance e, with the aim to identifying conditions which ensure that the rate
of convergence is at worst linear.
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3. Approximate Optimality Conditions

The main tool for studying the impact of € on the accuracy of the values v for
which (11) holds is the approximated problem

min{dr | z€Q,weC”, wr>1+¢}, (12)

which is obtained by perturbing the right-hand side of the nonconvex constraint
in (7). Our analysis does not require any regularity assumption on (12) and it is
based on the following quantity

de)=inf{de | 2€Q, welC", wx>1+¢}.

Obviously, ¢(¢) may be greater than the optimal value of (12); anyway, the value
function ¢ provides the right tool to disclose the connections between v, (11) and
(12).

Proposition 3.1: Let € > 0. Then, the following statements are equivalent:

(i) v(0C;) <e;

(i7) D(y) x C* C{ (z,w) eR" xR" | wex <1+¢};
(id) v < o(e).
Proof: The equivalence between (i) and (i7) follows immediately from the defini-
tion of v(OC,). Analogously, (ii) implies (i) by the definition of ¢(e).

Suppose (i7) does not hold: there exist z € D(y) and w € C* such that wz > 1+-¢.
Take any t € (0, 1) large enough to have w(tz) > 1+¢. Since 0 € 2, the convexity of
Q2 implies tx € Q; obviously d(tz) < dx < . Therefore, (tx,w) guarantees ¢(e) < =y
contradicting (477). O

Considering the optimal value of (12) as v in Proposition 3.1, we get that (i7)
is a necessary optimality condition for (12). Furthermore, if the problem is regular
(i.e. ¢(e) is actually the optimal value), it is also sufficient. Choosing ¢ = 0, the
known optimality conditions for (7) follow too. Therefore, inclusion (i7) can be
considered as an approximate optimality condition for (7). It is easy to check that
(17) is equivalent to the inclusion D(y) C (14¢)C: perturbing the right-hand side of
the nonconvex constraint in (7) corresponds to perturbing the reverse constraining
set C' in (CDC). As an immediate consequence of the proposition, we also have

¢(e) =sup{ v | D(y) x C* C{ (z,w) €ER" XR" [ wx<1+e}}
The stopping criterion (i) guarantees approximate optimality and condition (%)

provides the adequate tool to evaluate the quality of the approximation. In fact,
supposing (7) to be regular, i.e., v* = ¢(0), we have that

0<vy—7"<o(e) =7 = ¢le) — ¢(0)

holds for any feasible value v which satisfies (7). The following result guarantees
that the approximation approaches the optimal value as € goes to 0.

Proposition 3.2:  The value function ¢ is right-continuous at 0, i.e.

lim ¢(c) = $(0).

el0
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Proof: Clearly ¢ is nondecreasing, that is ¢(e') > #(¢?) whenever ! > £2 > 0.
As it is also bounded below by ¢(0), there exist ¥ = lim.|o¢(e) and ¥ > ¢(0).
Since 4 < ¢(¢) for any € > 0, Proposition 3.1 implies v(OC5) < € for any € > 0.
Since v(OC%5) does not depend upon €, we get v(OC5) < 0. Therefore, Proposition
3.1 guarantees 7 < ¢(0). O

Although the approximation always converges to the optimal value, the rate of
convergence may be less than linear as the following example shows.

Example 3.3 Consider (12) with n = 2, d = (—1,2), the convex constraint {2 =
conv {(=2,0),(1,-1),(=2,3)} and C = { z € R? | 22 + 23 < 4 }. It is easy to
check that (12) is regular for any € > 0 and that

(" w") = ((=2,2/(1+)2—1),(-1/2(1 +¢), -2/ (1 +e)2 = 1/(1 +¢)))

is an optimal solution to (12) for ¢ < 1/4. Therefore, we have

pe) =4/ (14+e)2—-1+2

and

Eﬁ)l [6(e) — p(0)] /e = lslﬂ)l 4y/1+2/e = +o00.

Thus, regularity is not enough to achieve a linear rate of convergence. Additional
assumptions on the problem are needed: the existence of an optimal solution with
some particular properties guarantees the Lipschitz behaviour of ¢.

Proposition 3.4:  If there exists an optimal solution (x*,w*) to (7) such that
{z"+Xu | A>0}NQ#0 and w'u>0 (13)

for some direction u € R™, then the value function ¢ is locally Lipschitz at 0, i.e.
there exist L > 0 and &€ > 0 such that

o(e) —¢(0) < Le Vee[0,g].

Proof: Let A > 0 be such that z* + Au € Q; the convexity of Q implies x()\) :=
¥ + M € Q for any A € [0,\]; furthermore, w*(z* + Au) = 1+ \w*u > 1 if
A > 0. Thus, the sequence (x(X), w*) shows that the regularity condition (9) holds.
Therefore, we have ¢(0) = dz*.

Chosen & := (w*u/2)A, let us consider y(¢) := z* + (2¢/w*u)u for any € € (0, ]:
we have y(g) € Q and

wy(e) = w'x* + (2e/wru)w u =142 > 1 +¢,

where the last equality holds since optimality implies w*z* = 1. Therefore,
(y(e), w*) provides an upper bound for ¢(¢), i.e. ¢(¢) < dy(e). Finally, we get

() — d(0) < dy(e) — do* = (2du/w*u)e. O

Though regularity has not been explicitly required for (7), the assumption on the
optimal solution implies it. A geometric view of this assumption can be achieved
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relying on the (Bouligand) tangent cone of C' at x*, namely the set
T(C,x):={uweR" | 3, |0, up, —»u s.t. x+tyu, € C },

and its following characterization.
Lemma 3.5: Let x* € 0C. Then, the following statements are equivalent:

(i) weT(C,x");
(i7) wu <0 for all w € C* such that wx* = 1.

Proof: Take u € T(C, x*): there exist ¢, | 0 and u,, — u such that z*+t,u,, € C.
Therefore, we have w(x* + t,u,) < 1 for any w € C*. If wz* = 1, we get wu,, <0
and taking the limit wu < 0.

Vice versa, suppose u satisfies (i) but u ¢ T(C,z*). Since the tangent cone is
a closed set, there exists € > 0 such that &« = u — ex* ¢ T(C,2z*). Consider any
tn | 0 and w, — @ such that z* + t,u, ¢ C. Therefore, there exist w, € C* such
that wy, (z* + tyuy,) > 1. Assumption (1) implies that C* is compact. Thus, we can
suppose wy, — w for some w € C*. Taking the limit in the above inequality, we get
wz* > 1 and therefore wx™* = 1. Since t,wyu, > 1 —wy,x™ > 0, we also get wa > 0.
The assumption on u guarantees also wu < 0. Therefore, we get the contradiction
0 <wit=w(u—er*) < —e. O

The following characterization allows to formulate the assumption of Proposition
3.4 in a geometric fashion.

Proposition 3.6: Let * € 9C. Then, the following statements are equivalent:

(1) there exist w* € C* and w € R™ such that w*z* =1 and (13) holds;

(i) T(Q,z*) € T(C,z*).

Proof: Suppose (i7) does not hold and take any w* € C* and u € R™ such
that w*z* = 1 and 2* + \u € Q for some A > 0. The convexity of Q implies
Q C o* +T(Q,z*) and therefore \u € T(Q,z*) C T(C,z*). By Lemma 3.5 we get
w*u < 0: hence (i) does not hold.

Vice versa, take any u € T'(2,2*)\T(C, z*). Lemma 3.5 implies that there exists
w* € C* such that w*z* = 1 and w*u > 0. As u € T(Q,x*), there exist ¢, | 0
and u, — wu such that x* + t,u, € Q; if n is large enough, we also have w*u, > 0.
Thus, w* and w,, satisfy (13). O

It is worth to note that (i7) depends upon x* only. Indeed, the original formulation
of the canonical DC problem does not have polar variables. Anyway, x* is an
optimal solution to (CDC) if and only if (z*,w*) is an optimal solution to (7) for
any w* € C* such that w*z* = 1. As a consequence, Propositions 3.4 and 3.6 lead
to the main result of the section.

Theorem 3.7: If there exists an optimal solution (x*,w*) to (7) such that
T(Q,2*) € T(C,z*), then ¢ is locally Lipschitz at 0.

An illustration of Theorem 3.7 is provided in Figure 3.3, which depicts the prob-
lem of Example 3.3: ¢ is not locally Lipschitz, in fact 7'(Q2,2*) C T(C, z*).

The assumption on the tangent cones can be considered as a strong regularity
condition. In fact, it implies regularity but they are not equivalent, as the problem
of Example 3.3 shows for e = 0. Anyway, when C' is a polyhedron, strong regularity
collapses to regularity.

Theorem 3.8: If C is a polyhedron, then (7) is reqular if and only if there exists
an optimal solution (z*,w*) to (7) such that T(Q,2*) € T(C,z*).
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x* .

Figure 1. Optimal solution and corresponding tangent cones in Example 3.3

Proof: Suppose (7) is regular: there exists a sequence {(z*,w*)} C Q x C* such
that w¥z* > 1 and dz* | 4*. Since D(dz') is compact by assumption and (1)
implies the compactness of C*, the sequence {(z*,w*)} admits at least one cluster
point (z*,w*). Since w¥z* > 1, we have 2¥ ¢ C and therefore 2* € cl (Q2\ C). Since
Q and C* are closed, we have z* € ) and w* € C*. We also have w*z* > 1: this
means that (z*, w*) is feasible for (7) and hence optimal as dz* = v*. Optimality
guarantees x* € OC and therefore z* ¢ Q\ C. As a consequence, we have z* €
bd (©2\ C). Now, suppose also T'(2,z*) C T(C,x*). Since C is a polyhedron, there
exists € > 0 such that

[z* +T(C,z*)] N B(z*,e) = C N B(z",e).
Since the convexity of € implies Q C z* + T'(Q, 2*), we have
QN B(z*,e) CCNB(z*e)

in contradiction with z* € bd (2\ C).
The if part follows from Proposition 3.6 and the proof of Proposition 3.4. O

Corollary 3.9: Suppose C is a polyhedron. If (7) is regular, then ¢ is locally
Lipschitz at 0.

The corollary shows that for the large class of (CDC) problems where C' is a
polyhedron, the regularity condition (4), which is needed for algorithms to converge
to a global optimal solution, is also sufficient to ensure that ¢ is locally Lipschitz.

4. Conclusions

The results of this paper show that a relatively simple geometric condition, strongly
related with that of regularity of a canonical DC program and coinciding with the
latter if the reverse convex constraint is polyhedral, guarantees a linear relationship
between the approximation € in the optimality conditions and that of the attained
feasible value. This opens the interesting question about how to algorithmically
compute an estimate of the Lipschitz constant for the value function ¢, a funda-
mental step for being able to actually tune € in numerical algorithm as a function
of the desired final accuracy. We intend to pursue this subject in future research.
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