
On the Accuracy of Uniform Polyhedral

Approximations of the Copositive Cone

E. Alper Yıldırım∗

March 11, 2010

Revised on June 17, 2010

Abstract

We consider linear optimization problems over the cone of copositive matrices. Such

conic optimization problems, called copositive programs, arise from the reformulation

of a wide variety of difficult optimization problems. We propose a hierarchy of increas-

ingly better outer polyhedral approximations to the copositive cone. We establish that

the sequence of approximations is exact in the limit. By combining our outer poly-

hedral approximations with the inner polyhedral approximations due to de Klerk and

Pasechnik [SIAM J. Optim, 12 (2002), pp. 875–892], we obtain a sequence of increas-

ingly sharper lower and upper bounds on the optimal value of a copositive program.

Under primal and dual regularity assumptions, we establish that both sequences con-

verge to the optimal value. For standard quadratic optimization problems, we derive

tight bounds on the gap between the upper and lower bounds. We provide closed-form

expressions of the bounds for the maximum stable set problem. Our computational

results shed light on the quality of the bounds on randomly generated instances.

Key words: Copositive cone, completely positive cone, standard quadratic optimization,
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1 Introduction

In this paper, we consider linear optimization problems over the cone of copositive matrices,

which is defined as

C := {X ∈ S : uTXu ≥ 0 for all u ∈ Rn
+}, (1)

where S denotes the set of n×n real symmetric matrices and Rn
+ denotes the nonnegative or-

thant in Rn. Equipping S with the usual trace inner product given by 〈A,B〉 = trace(AB) =∑n
i=1

∑n
j=1 AijBij for all A,B ∈ S, the dual cone of C with respect to this inner product is

the cone of completely positive matrices, which is given by

C∗ = {X ∈ S : X =
k∑
i=1

vi(vi)T , vi ∈ Rn
+, i = 1, . . . , k}. (2)

Both of the cones C and C∗ are closed, convex, pointed, full-dimensional, and nonpoly-

hedral. The interior of C is given by

int(C) = {X ∈ Sn : uTXu > 0 for all u ∈ Rn
+, u 6= 0}. (3)

We refer the reader to [9] for a characterization of int(C∗). Each extreme ray of C∗ is given

by a rank one matrix vvT , where v ∈ Rn
+.

A completely positive program is given by

(CoP) min 〈C,X〉

s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ C∗,

where X ∈ S is the decision variable, and A1, . . . , Am ∈ S, b ∈ Rm, and C ∈ S constitute

the data of the problem. The associated dual problem, called a copositive program, is given

by

(CoD) max bTy

s.t.
∑m

i=1 yiAi + S = C,

S ∈ C,
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where y ∈ Rm and S ∈ S are the decision variables. It follows from the conic duality theory

that weak duality always holds between (CoP) and (CoD) and that strong duality is satisfied

under regularity assumptions such as the Slater’s condition.

Recently, Burer [6] established that every quadratic optimization problem with nonneg-

ative and binary variables, linear equality constraints, and complementarity constraints on

the pairs of variables can be reformulated as an instance of (CoP). The class of optimiza-

tion problems that admits such a reformulation encompasses all binary integer programming

problems, all quadratic programming problems, and specific problems such as the quadratic

assignment problem. Therefore, despite the fact that (CoP) is a convex optimization prob-

lem, it follows from this reformulation that (CoP) is, in general, intractable. In fact, the

problem of deciding whether X 6∈ C is NP-complete [13]. Therefore, the reformulation as a

convex optimization problem by itself does not alter the complexity of the problem. How-

ever, it paves the way for new approximation results by replacing the intractable cone by

various tractable inner or outer approximations.

It is well-known and easy to verify that

S+ +N ⊆ C and C∗ ⊆ S+ ∩N , (4)

where S+ and N denote the cone of positive semidefinite matrices and the cone of nonnega-

tive matrices in S, respectively. Therefore, a tractable relaxation of (CoP) can be obtained

by replacing the cone of completely positive matrices by the intersection of the cones of

semidefinite and nonnegative matrices. In fact, both inclusions (4) are satisfied with equal-

ity for n ≤ 4 whereas they are known to be strict for n ≥ 5 (see, e.g., [1]).

Recently, various hierarchies of tractable approximations of the cone of copositive matri-

ces have been proposed. The main ingredient in most of these hierarchies is the observation

that a matrix M ∈ S is copositive if and only if the polynomial

PM(x) :=
n∑
i=1

n∑
j=1

Mijx
2
ix

2
j

is nonnegative for all x ∈ Rn. Relying on the fact that any polynomial that admits a sum-

of-squares decomposition is necessarily nonnegative, Parrilo [14] was the first to construct a
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hierarchy of convex cones satisfying S+ + N = K0 ⊆ K1 ⊆ . . . ⊆ C and int(C) ⊆ ∪r∈NKr.

Since each cone Kr can be represented using linear matrix inequalities, a linear optimization

problem over Kr can be formulated as a semidefinite programming (SDP) problem.

Similarly, de Klerk and Pasechnik [8] exploited a weaker sufficient condition on the non-

negativity of a polynomial to propose another hierarchy of convex cones satisfying N =

I0 ⊆ I1 ⊆ . . . ⊆ C and int(C) ⊆ ∪r∈N Ir. In contrast to Parrilo’s hierarchy, each cone Ir is

polyhedral. Therefore, a linear optimization problem over Ir is a linear programming (LP)

problem.

More recently, Peña, Vera, and Zuluaga [15] developed yet another sufficient condition on

the nonnegativity of a polynomial, which gave rise to a sequence of convex cones satisfying

Q0 ⊆ Q1 ⊆ . . . ⊆ C. They also established that Ir ⊆ Qr ⊆ Kr for each r ∈ N and that

Qr = Kr for r = 0, 1. Since each Qr can be represented by linear matrix inequalities, linear

optimization over Qr is equivalent to an SDP problem.

As noted in [5], each of these hierarchies provides a uniform inner approximation to the

cone of copositive matrices. By duality, the dual cones in each hierarchy provide a uniform

outer approximation to the cone of completely positive matrices. The sizes of the resulting

tractable problems quickly reach beyond the current computational capabilities. Finally,

with the exception of [3], there usually is not much information about the accuracy of the

resulting approximation.

Motivated by these observations, Bundfuss and Dür [5] proposed two hierarchies of poly-

hedral cones that respectively provide inner and outer polyhedral approximations to the

cone of copositive matrices. As such, their approximation scheme concurrently provides up-

per and lower bounds on the optimal value of an instance of (CoD), which leads to the exact

information on the accuracy of the approximation. In contrast to the previously proposed

hierarchies which uniformly approximate the copositive cone, Bundfuss and Dür adaptively

improve their polyhedral approximations using the guidance of the objective function. In

other words, their approximation scheme yields a finer approximation to the feasible region

of (CoD) in the vicinity of the set of optimal solutions but only a coarse approximation
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in the remaining parts. They report very encouraging computational results on randomly

generated standard quadratic optimization problems.

In this paper, we propose another hierarchy of outer polyhedral approximations to the

cone of copositive matrices. We establish that our approximation is exact in the limit.

Combining our hierarchy of outer polyhedral approximations with that of inner polyhedral

approximations due to de Klerk and Pasechnik [8], we obtain a sequence of improving lower

and upper bounds on the optimal value of an instance of (CoP). These bounds precisely

reveal the duality gap arising from the inner and outer approximations. Under primal and

dual regularity assumptions, we establish that the duality gap converges to zero.

For quadratic optimization over the unit simplex (also known as standard quadratic

optimization), we provide tight bounds on the duality gap. For the special case of the stable

set problem, we give closed-form expressions of the lower and upper bounds.

Our work is inspired by and closely related to the recent work of Bundfuss and Dür [5].

Similar to their approach, we also rely on inner and outer polyhedral approximations of

the copositive cone in an attempt to quantify the quality of the resulting lower and upper

bounds. In contrast to their adaptive approximations, we focus on uniform inner and outer

approximations of the copositive cone. As such, our primary objective in this paper is to

investigate and assess the accuracy of uniform approximations to the copositive cone.

This paper is organized as follows. We present a hierarchy of increasingly better outer

polyhedral approximations that converges to the copositive cone in Section 2. By combining

our hierarchy of outer polyhedral approximations with that of inner polyhedral approxima-

tions of [8], we discuss how to obtain sequences of increasingly sharper lower and upper

bounds on the optimal value of an instance of (CoP) in Section 3. We establish that both

sequences converge to the optimal value under primal and dual regularity assumptions. Sec-

tion 4 is devoted to the specialization of our bounds to standard quadratic optimization

problems. In particular, we derive a tight upper bound on the duality gap resulting from the

inner and outer approximations. We also present closed-form expressions of the lower and

upper bounds for the special case of the maximum stable set problem. Section 5 discusses
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the computational results. We conclude the paper in Section 6.

2 Outer Polyhedral Approximations of the Copositive

Cone

In this section, we present a hierarchy of polyhedral cones that provide increasingly better

outer approximations to the copositive cone.

Recall that a matrix X ∈ S is copositive if and only if uTXu ≥ 0 for all u ∈ Rn
+. This

condition is equivalent to

uTXu ≥ 0 for all u ∈ ∆n, (5)

where ∆n denotes the (n− 1)-dimensional unit simplex in Rn given by

∆n := {x ∈ Rn
+ : eTx = 1}, (6)

where e ∈ Rn is the vector of all ones. The main idea behind our approximation scheme is

to discretize the unit simplex and to enforce the condition (5) only on the discretized points

as opposed to every point on the unit simplex.

For r = 0, 1, 2, . . ., let us define the following regular grid of rational points on the unit

simplex (see [3]):

∆(n, r) := {x ∈ ∆n : (r + 2)x ∈ N}. (7)

The factor (r + 2) is chosen for consistency with the corresponding definition of the inner

approximation scheme of [3]. For each r, ∆(n, r) provides a finite discretization of the unit

simplex that consists only of rational points. It is easy to verify that

|∆(n, r)| =
(
n+ r + 1

r + 2

)
, r = 0, 1, 2, . . . . (8)

For r = 0, 1, 2, . . ., let us define

δ(n, r) :=
r⋃

k=0

∆(n, k). (9)
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For n ≥ 2, it follows from (8) that

|δ(n, r)| ≤
r∑

k=0

|∆(n, k)| =
r∑

k=0

(
n+ k + 1

k + 2

)
≤

r∑
k=0

nk+2 = n2

(
nr+1 − 1

n− 1

)
, (10)

which is polynomial in n for a fixed value of r. Let us now define the following convex cones:

Or := {X ∈ Sn : dTXd ≥ 0 for all d ∈ δ(n, r)}, r = 0, 1, 2, . . . . (11)

Since δ(n, 0) ⊆ δ(n, 1) ⊆ . . . ⊆ ∆n, it follows from (11) and (5) that O0 ⊇ O1 ⊇ . . . ⊇ C.

Furthermore, Or is a polyhedral cone for each r since dTXd = 〈X, ddT 〉 ≥ 0 is a linear

inequality constraint in S and there is a finite number of points in δ(n, r). For instance,

O0 = {X ∈ S : Xii ≥ 0, i = 1, . . . , n; Xii +Xjj + 2Xij ≥ 0, 1 ≤ i < j ≤ n},

and

O1 = {X ∈ Sn : Xii ≥ 0, i = 1, . . . , n; Xii +Xjj + 2Xij ≥ 0, 1 ≤ i < j ≤ n;

4Xii +Xjj + 4Xij ≥ 0, 1 ≤ i < j ≤ n; Xii + 4Xjj + 4Xij ≥ 0, 1 ≤ i < j ≤ n;

Xii +Xjj +Xkk + 2Xij + 2Xik + 2Xjk ≥ 0, 1 ≤ i < j < k ≤ n}.

It is easy to verify that each cone Or is pointed and full-dimensional.

The next proposition establishes that the polyhedral cones Or provide a hierarchy of

outer approximations that converges to the cone of copositive matrices.

Theorem 2.1 The polyhedral cones Or satisfy O0 ⊇ O1 ⊇ . . . ⊇ C. Furthermore,

C =
⋂
r∈N

Or. (12)

Proof. Clearly, C ⊆
⋂
r∈NOr since C ⊆ Or for each r ∈ N. For the reverse inclusion,

let M ∈ S\C. Then, there exists x̄ ∈ ∆n such that x̄TMx̄ < 0. By perturbing the zero

components of x̄ (if any) by a sufficiently small positive amount, we may assume that x̄ > 0.

By continuity, there exists an ε̄ > 0 such that xTMx < 0 for all x ∈ Rn satisfying ‖x−x̄‖ < ε̄.

Let ε := min{ε̄,mini=1,...,n x̄i} > 0. By the density of rational numbers in real numbers, there
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exists w̄ ∈ Qn such that ‖w̄ − x̄‖ < ε. By the choice of ε, w̄ > 0. It follows that there exists

r0 ∈ N such that d̄ := (1/(eT w̄))w̄ ∈ δ(n, r) for all r ≥ r0. Since d̄TMd̄ < 0, we have M 6∈ Or

for all r ≥ r0 and hence, M 6∈
⋂
r∈NOr.

The dual cone of Or is given by

(Or)∗ =

 ∑
d∈δ(n,r)

λddd
T : λd ≥ 0 for all d ∈ δ(n, r)

 , r = 0, 1, 2, . . . . (13)

Since C ⊆ Or for each r ∈ N, it follows from duality that the dual cones satisfy (Or)∗ ⊆ C∗,

i.e., each dual cone provides an inner approximation to the cone of completely positive

matrices. The following theorem summarizes the relationships among these dual cones.

Theorem 2.2 The polyhedral dual cones (Or)∗ satisfy (O0)∗ ⊆ (O1)∗ ⊆ . . . ⊆ C∗. Further-

more,

int(C∗) ⊆
⋃
r∈N

(Or)∗ ⊆ C∗, (14)

and therefore

cl

(⋃
r∈N

(Or)∗
)

= C∗. (15)

Proof. Since C∗ is closed, (15) follows from (14). Therefore, it suffices to establish (14).

By contradiction, suppose that there exists M ∈ int(C∗) but M 6∈
⋃
r∈N(Or)∗. This implies

that M 6∈ (Or)∗ for all r ∈ N. Therefore, for each r ∈ N, there exists Xr ∈ Or such that

〈Xr,M〉 < 0. Without loss of generality, we may assume that ‖Xr‖ = 〈Xr, Xr〉1/2 = 1

for each r ∈ N. By passing to a subsequence if necessary, there exists X∗ ∈ S such that

Xr → X∗. By Theorem 2.1, the subsequence {Xr, Xr+1, . . .} ∈ Or for all r ∈ N. Since each

Or is closed, it follows that X∗ ∈ Or for each r ∈ N. Therefore, X∗ ∈
⋂
r∈NOr = C by

Theorem 2.1. Since 〈Xr,M〉 < 0 for each r ∈ N, we have 〈X∗,M〉 ≤ 0, which implies that

〈X∗,M〉 = 0. However, this is a contradiction since M ∈ int(C∗) and 〈X,M〉 > 0 for all

X ∈ C such that X 6= 0. Therefore, M ∈
⋃
r∈N(Or)∗.
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3 Sequences of Improving Lower and Upper Bounds

In this section, we first review the hierarchy of inner polyhedral approximations to the

copositive cone due to de Klerk and Pasechnik [8] (see also [3]). Then, we combine this

hierarchy with our hierarchy of outer polyhedral approximations in order to obtain sequences

of improving lower and upper bounds on the optimal value of an instance of (CoP). We

establish that both sequences converge to the optimal value under primal and dual regularity

assumptions. Furthermore, these bounds correspond to the duality gap and hence provide

exact information on the quality of approximation.

Let us define

Θ(n, r) :=

{
z ∈ Nn :

n∑
i=1

zi = r + 2

}
, r = 0, 1, 2, . . . . (16)

By (7), it is easy to verify that

∆(n, r) = {x ∈ ∆n : (r + 2)x ∈ Θ(n, r)}, (17)

which implies that

|Θ(n, r)| = |∆(n, r)| =
(
n+ r + 1

r + 2

)
, r = 0, 1, 2, . . . . (18)

Consider the following convex cones:

Ir := {X ∈ S : 〈zzT −Diag(z), X〉 ≥ 0 for all z ∈ Θ(n, r)}, r = 0, 1, 2, . . . , (19)

where Diag(z) ∈ S is a diagonal matrix whose diagonal entries are given by z ∈ Rn. By

(18), Ir is a polyhedral cone for each r ∈ N.

In [8], de Klerk and Pasechnik established that

N = I0 ⊆ I1 ⊆ . . . ⊆ C, and int(C) ⊆
⋃
r∈N

Ir ⊆ C. (20)

The dual cone of Ir is given by

(Ir)∗ =

 ∑
z∈Θ(n,r)

βz
(
zzT −Diag(z)

)
: βz ≥ 0 for all z ∈ Θ(n, r)

 , r = 0, 1, 2, . . . . (21)
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By duality, it follows that

C∗ ⊆ . . . ⊆ (I1)∗ ⊆ (I0)∗ = N , and C∗ =
⋂
r∈N

(Ir)∗. (22)

Combining the relations (20) and (22) with Theorems 2.1 and 2.2, we obtain

N = I0 ⊆ I1 ⊆ . . . ⊆ C ⊆ . . . ⊆ O1 ⊆ O0, (23)

and

(O0)∗ ⊆ (O1)∗ ⊆ . . . ⊆ C∗ ⊆ . . . ⊆ (I1)∗ ⊆ (I0)∗ = N . (24)

Therefore, we obtain a hierarchy of inner and outer polyhedral approximations to the

copositive cone (respectively to the completely positive cone). Furthermore, each of these

approximations is exact in the limit. We now discuss how these hierarchies can be used to

obtain sequences of improving lower and upper bounds on the optimal value of an instance

of a copositive programming problem.

Let us consider the following instance of (CoP):

µ∗ := min{〈C,X〉 : 〈Ai, X〉 = bi, i = 1, . . . ,m, X ∈ C∗}, (25)

where A1, . . . , Am ∈ S, b ∈ Rm, and C ∈ S are given and X ∈ S is the decision variable.

Let us define

µrl := min{〈C,X〉 : 〈Ai, X〉 = bi, i = 1, . . . ,m, X ∈ (Ir)∗}, r = 0, 1, . . . , (26)

and

µru := min{〈C,X〉 : 〈Ai, X〉 = bi, i = 1, . . . ,m, X ∈ (Or)∗}, r = 0, 1, . . . . (27)

Since (Ir)∗ and (Or)∗ are polyhedral cones for each r ∈ N, it follows that the computation

of each of µrl and µru amounts to solving a linear programming problem. Furthermore, it

follows from (24) that

µ0
l ≤ µ1

l ≤ . . . ≤ µ∗ ≤ . . . ≤ µ1
u ≤ µ0

u. (28)

Therefore, the sequence {µru − µrl }∞r=0 is nonincreasing and gives precise information about

the accuracy of approximation with respect to the objective function value for each r ∈ N. It
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is worth noticing that the number of constraints that define the inner and outer polyhedral

cones is polynomial for each fixed value of r. However, the dependence on r is exponential,

which implies that the cost of computing µrl and µru rapidly increases as r increases. This

is a common feature of all hierarchies that approximate the copositive cone uniformly. We

refer the reader to [5] for an alternative and more effective approach.

In the next proposition, we establish that the sequence {µru − µrl }∞r=0 converges to zero

under primal and dual regularity assumptions.

Theorem 3.1 Let X̂ ∈ S be a strictly feasible solution of (CoP) and let (ŷ, Ŝ) ∈ Rm×S be

a strictly feasible solution of (CoD). Let µ∗ denote the common optimal value of (CoP) and

(CoD) and let µrl and µru be defined as in (26) and (27), respectively. Then,

lim
r→∞

µrl = lim
r→∞

µru = µ∗. (29)

Proof. Our argument mimics the proof of [5, Theorem 4.2] but our hypotheses are slightly

different. By the hypothesis, (CoP) has an optimal solution X∗ ∈ S and (CoD) has an

optimal solution (y∗, S∗) ∈ Rm × S. Furthermore, strong duality holds between (CoP) and

(CoD), i.e.,

µ∗ = 〈C,X∗〉 = bTy∗.

First, let us consider the sequence {µru} of upper bounds. By Theorem 2.2, there exists

r0 ∈ N such that X̂ ∈ (Or)∗ for all r ≥ r0. Therefore, X̂ is a feasible solution of the linear

programming problem in (27) and µ∗ ≤ µru ≤ 〈C, X̂〉 for all r ≥ r0. Since X̂ is strictly

feasible, Xλ := λX∗ + (1− λ)X̂ is a strictly feasible solution of (CoP) for all λ ∈ (0, 1). For

each λ ∈ (0, 1), there exists rλ ∈ N such that Xλ ∈ (Or)∗ for all r ≥ rλ by Theorem 2.2.

Therefore, Xλ is a feasible solution of (27) for all r ≥ rλ, which implies that µ∗ ≤ µru ≤

〈C,Xλ〉 = λµ∗+ (1−λ)〈C, X̂〉 for r ≥ rλ. By taking the limit as λ goes to 1, we obtain that

limr→∞ µ
r
u = µ∗.

Let us now focus on the the sequence {µrl } of lower bounds. By linear programming

duality,

µrl = max

{
bTy :

m∑
i=1

yiAi + S = C, S ∈ Ir
}
, r = 0, 1, . . . , (30)
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By (20), there exists r1 ∈ N such that Ŝ ∈ Ir for each r ≥ r1. Therefore, (ŷ, Ŝ) is a

feasible solution of the linear programming problem in (30) for r ≥ r1, which implies that

bT ŷ ≤ µrl ≤ µ∗ for all r ≥ r1. Let us define (yλ, Sλ) := λ(y∗, S∗) + (1 − λ)(ŷ, Ŝ), which is

a strictly feasible solution of (CoD) for each λ ∈ (0, 1). The convergence of the sequence of

lower bounds is established by a similar limiting argument.

Under the assumption that the feasible region of (CoP) (or (CoD)) is bounded and

contains a strictly feasible solution, one can establish that the optimal solutions of (26) and

(27) have an accumulation point and each accumulation point is an optimal solution using

the proof technique of Bundfuss and Dür [5, Theorem 4.2].

Under the assumptions of Theorem 3.1, µrl and µru are finite for all sufficiently large values

of r. Let Xr
u ∈ S denote an optimal solution of (27) and let (yrl , S

r
l ) ∈ Rm × S denote an

optimal solution of (30). By (23) and (24), Xr
u is a feasible solution of (CoP) and (yrl , S

r
l ) is

a feasible solution of (CoD). It follows that the difference

µru − µrl = 〈C,Xr
u〉 − bTyrl (31)

precisely corresponds to the duality gap between these two feasible solutions for all sufficiently

large values of r.

We close this section by discussing the relevance of the assumptions of Theorem 3.1. If

(CoP) does not have a strictly feasible solution, then all the inner approximations given by

(27) may remain infeasible for each r ∈ N. For instance, if the feasible region of (CoP) is

a subset of {λuuT : λ ≥ 0}, where u ∈ Rn
+\Qn

+, then the feasible region is not contained in

(Or)∗ for any r ∈ N (cf. (13)). If (CoP) is infeasible, then all inner approximations will neces-

sarily be infeasible. However, by the previous example, we cannot conclude the infeasibility

of (CoP) unless an outer approximation also happens to be infeasible. If the optimal solu-

tion set of (CoP) is empty (i.e., the optimal value is not attained) or unbounded, it follows

that (CoD) cannot have a strictly feasible solution. Therefore, the inner approximations to

the dual problem may remain infeasible for each r ∈ N as in the previous example. These

discussions reveal that the assumptions of Theorem 3.1 are crucial in order to establish the
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convergence of the two sequences {µrl } and {µru}. Finally, if (CoP) is unbounded but contains

a strictly feasible solution, then each outer approximation is necessarily unbounded. The

inner approximations satisfy

lim
r→∞

µru = −∞,

which is easily proven by constructing a sequence of strictly feasible solutions whose objective

function values tend to −∞ and by using the fact that each such solution is feasible for the

inner approximations for all sufficiently large values of r (see [5, Theorem 4.3]). Analogously,

if (CoD) is unbounded but contains a strictly feasible solution, then

lim
r→∞

µrl =∞.

4 Standard Quadratic Optimization

Let Q ∈ S be an arbitrary matrix. The standard quadratic optimization problem is given

by

µ∗ := min
x∈∆n

xTQx. (32)

This optimization problem arises in many different application areas (see, e.g., [2]) and

contains the maximum stable set problem as a special case (see Section 4.2). Therefore, it

is in general an NP-hard problem.

Bomze et al. [4] established that the problem (32) can be reformulated as the following

instance of (CoP):

µ∗ = min
x∈∆n

xTQx = min{〈Q,X〉 : 〈E,X〉 = 1, X ∈ C∗}, (33)

where E = eeT ∈ S is the matrix of all ones. Let A ∈ Rn×n be any nonsingular matrix with

positive entries. Then, the matrix given by (1/‖AT e‖2)AAT is a strictly feasible solution of

the copositive program (see [9]). Therefore,

µ∗ = max{y : yE + S = Q, S ∈ C}. (34)

It is also easy to verify that Ŝ = Q− ŷE ∈ int(C) for all ŷ < µ∗. Therefore, the primal-dual

pair of problems (33) and (34) satisfy the assumptions of Theorem 3.1.
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Let us consider the specialization of the sequence of linear programming problems (26)

and (27) to the copositive programming problem (33). By (21), X ∈ (Ir)∗ if and only if

X =
∑

z∈Θ(n,r)

βz(zz
T −Diag(z)), (35)

where βz ≥ 0 for all z ∈ Θ(n, r) and Θ(n, r) is given by (16). Together with (26), we have

µrl = min

 ∑
z∈Θ(n,r)

βz(z
TQz − zTdiag(Q)) :

∑
z∈Θ(n,r)

βz(z
TEz − zTdiag(E)) = 1

 ,

= min

 ∑
z∈Θ(n,r)

βz(z
TQz − zTdiag(Q)) :

∑
z∈Θ(n,r)

βz =
1

(r + 1)(r + 2)

 ,

=
1

(r + 1)(r + 2)
min

z∈Θ(n,r)
(zTQz − zTdiag(Q)),

=
r + 2

r + 1
min

x∈∆(n,r)
(xTQx− (1/(r + 2))xTdiag(Q)), r = 0, 1, . . . , (36)

where we used zTEz = (eT z)2 = (r+2)2 and zTdiag(E) = eT z = r+2 for each z ∈ Θ(n, r) in

the second line and the relation (17) in the last one. The same characterization also appears

in [3, Theorem 3.1].

Similarly, using the fact that X ∈ (Or)∗ if and only if

X =
∑

d∈δ(n,r)

λddd
T , (37)

where λd ≥ 0 for all d ∈ δ(n, r) and δ(n, r) is given by (9), we obtain

µru = min
d∈δ(n,r)

dTQd, r = 0, 1, . . . . (38)

It follows from (36) and (38) that µrl and µru can simply be computed by evaluating the

corresponding quadratic objective functions on a finite number of grid points and choosing

the best one. Clearly, µrl and µru are finite for each r ∈ N. By Theorem 3.1, both sequences

{µrl } and {µru} converge to µ∗. We next establish explicit upper bounds on the terms of the

sequence {µru − µrl }.

14



Theorem 4.1 Let µ∗ be defined as in (33). Then, µrl and µru given by (36) and (38) satisfy

µru − µrl ≤
1

r + 1

(
max
i=1,...,n

Qii − µ∗
)
≤ 1

r + 1
(µ̄− µ∗), r = 0, 1, . . . , (39)

where µ̄ := maxx∈∆n x
TQx.

Proof. Let us fix r ∈ N and let xr ∈ ∆(n, r) denote the point which achieves the smallest

objective function value in (36). Since ∆(n, r) ⊆ δ(n, r), we have

µru − µrl ≤ (xr)TQxr −
(
r + 2

r + 1

)
(xr)TQxr +

(
1

r + 1

)
(xr)Tdiag(Q),

= −
(

1

r + 1

)
(xr)TQxr +

(
1

r + 1

)
(xr)Tdiag(Q),

≤ 1

r + 1

(
max
i=1,...,n

Qii − µ∗
)
,

where we used xr ∈ ∆n to derive the inequality in the last line. The second inequality in

(39) follows from the fact that µ̄ ≥ maxi=1,...,nQii.

Theorem 4.1 establishes an upper bound on the sequence of duality gaps {µru − µrl }. We

remark that this upper bound can be used to compute the smallest value of r to obtain a

prescribed relative accuracy provided that a lower bound on µ∗ is available (see also [3]).

4.1 Relations to Previous Approximation Results

Bomze and de Klerk [3] study the implications of the sequence of inner polyhedral approxi-

mations to the cone of copositive matrices due to de Klerk and Pasechnik [8] in the context

of standard quadratic optimization. As mentioned in the previous section, they obtain the

same characterization (36) of µrl . They establish that

µ∗ − µrl ≤
1

r + 1

(
max
i=1,...,n

Qii − µ∗
)
≤ 1

r + 1
(µ̄− µ∗), r = 0, 1, . . . , (40)

where µ∗ denotes the optimal value of the standard quadratic optimization problem and µ̄

is defined as in Theorem 4.1. Since µru ≥ µ∗ for each r = 0, 1, . . ., we remark that the upper

bound (40) is already implied by our upper bound (39).
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In an attempt to obtain a sequence of upper bounds on the optimal value µ∗ of a standard

quadratic optimization problem, they propose

µ∆(n,r) := min
d∈∆(n,r)

dTQd, r = 0, 1, 2, . . . , (41)

and establish that µ∆(n,r) satisfies

µ∆(n,r) − µ∗ ≤
1

r + 2

(
max
i=1,...,n

Qii − µ∗
)
≤ 1

r + 2
(µ̄− µ∗), r = 0, 1, . . . . (42)

By (9) and (38), we obtain

µru = min
k=0,1,...,r

µ∆(n,k), r = 0, 1, 2, . . . , (43)

which implies that µru ≤ µ∆(n,r) for each r = 0, 1, . . .. Therefore, we readily obtain

µru − µ∗ ≤
1

r + 2

(
max
i=1,...,n

Qii − µ∗
)
≤ 1

r + 2
(µ̄− µ∗), r = 0, 1, . . . . (44)

Bomze and de Klerk use these bounds to establish polynomial-time approximation schemes

for standard quadratic optimization. Since our upper bounds are at least as good as theirs,

it follows that our bounds yield at least the same approximation guarantees.

We remark that the sequence of the upper bounds {µru} is monotone nonincreasing by

construction (cf. (43)). In contrast, the sequence of upper bounds {µ∆(n,r)} may not be

monotone in general as illustrated by the following simple example. Consider an instance of

(33) with

Q =

 3 −1

−1 1

 .
The unique global minimizer is x∗ = [1/3, 2/3]T with µ∗ = 1/3. It is easy to verify that

µ∆(n,0) = 1/2;µ∆(n,1) = 1/3 = µ∗;µ∆(n,2) = 3/8 > µ∗. Note that µ∆(n,r) > µ∗ as long as r+ 2

is not a multiple of 3. In contrast, µ0
u = 1/2 and µru = µ∗ = 1/3 for each r ≥ 1.

We remark that the idea of taking the unions δ(n, r) is the key that allows us to construct

the hierarchy of outer polyhedral approximations to the copositive cone and consequently to

obtain the sequence of monotone nonincreasing upper bounds. In a more recent paper by de

Klerk, Laurent, and Parrilo [7], the authors employ the same idea of using the rational grid
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∆(n, r) to construct polynomial-time approximation schemes for the more general problem of

minimizing a polynomial of fixed degree over the unit simplex, of which standard quadratic

optimization is a special case. It follows from our discussion that using the “union grid”

δ(n, r) will yield a hierarchy of polynomially computable bounds that are at least as sharp

as µ∆(n,r). This observation may lead to new insights for polynomial optimization.

4.2 The Stable Set Problem

Let G = (V,E) be a simple, undirected graph, where V = {1, 2, . . . , n} denotes the set

of vertices and E denotes the set of edges. A set S ⊆ V is called a stable set if no two

vertices in S are connected by an edge in E. The maximum stable set problem is that

of finding the stable set with the largest cardinality in G. The size of the largest stable

set, denoted by α(G), is called the stability number of G. The stability number cannot be

approximated within a factor of n1/2 − ε for any ε > 0 unless P = NP [10, Theorem 5.3],

and within a factor of n1−ε unless any problem in NP admits a probabilistic polynomial-time

algorithm [10, Theorem 5.2].

Motzkin and Straus [12] established that the stability number satisfies

1

α(G)
= min

x∈∆n

xT (I + AG)x, (45)

where AG ∈ S denotes the vertex adjacency matrix of G. In addition, for any maximum

stable set S∗ ⊆ V , x∗ := (1/|S∗|)χS∗ ∈ Rn is an optimal solution of (45), where χS
∗

is the

incidence vector of S∗. By (33),

µ∗ :=
1

α(G)
= min {〈(I + AG), X〉 : 〈E,X〉 = 1, X ∈ C∗} . (46)

The reader is also referred to [8] for a derivation of a different but equivalent copositive

programming reformulation of the stability number.

As in Section 4, let us define

µrl = − 1

r + 1
+
r + 2

r + 1
min

x∈∆(n,r)
xT (I + AG)x, r = 0, 1, . . . , (47)
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where we used the fact that xTdiag(I + AG) = eTx = 1, and

µru = min
d∈δ(n,r)

dT (I + AG)d, r = 0, 1, . . . . (48)

The next proposition establishes closed-form solutions of µrl and µru for each r ∈ N.

Theorem 4.2 Let G = (V,E) be a graph and let µrl and µru be as defined in (47) and (48),

respectively. Then µrl = 0 if r ≤ α(G)− 2. If r > α(G)− 2, then

µrl =

(
s
2

)
α(G) + st(
r+2

2

) , (49)

where s ∈ N and t ∈ N satisfy r + 2 = sα(G) + t and 0 ≤ t < α(G) (i.e., s is the quotient

and t is the remainder obtained by dividing r + 2 to α(G)) with the convention that
(
s
2

)
= 0

if s < 2. Similarly, µru satisfies

µru =

 1
r+2

if r ≤ α(G)− 2,

1
α(G)

otherwise,
(50)

Proof. Let us define (see [8, 15])

ζr(G) := min{λ : λ(I + AG)− E ∈ Ir}, r = 0, 1, . . . . (51)

This definition was introduced by de Klerk and Pasechnik [8], who proved that ζ0(G) ≥

ζ1(G) ≥ . . . ≥ α(G). Peña et al. [15, Theorem 1] established that

ζr(G) =

(
r+2

2

)(
s
2

)
α(G) + st

, r = 0, 1, . . . , (52)

where s and t are nonnegative integers satisfying r + 2 = sα(G) + t and 0 ≤ t < α(G), with

the conventions that a/0 = +∞ for a > 0 and
(
a
2

)
= 0 for a = 0 and a = 1.

We establish (49) by showing that µru = 1/ζr(G). Let us replace the decision variable λ

in (51) by y = 1/λ. Then,

ζr(G) = min{(1/y) : (1/y)(I + AG)− E ∈ Ir},

= min{(1/y) : I + AG − yE ∈ Ir},

= min{(1/y) : yE + S = I + AG, S ∈ Ir},
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which implies that

1

ζr(G)
= max{y : yE + S = I + AG, S ∈ Ir} = µrl ,

where the second equality follows from the dual formulation (cf. (30)). This establishes our

claim.

By [15, Corollary 3], ζr(G) = ∞ if and only if r ≤ α(G) − 2. Therefore, µrl = 0 if and

only if r ≤ α(G)− 2. For r > α(G)− 2, the relation (49) follows from (52).

Let us now focus on µru. If r ≤ α(G)− 2, then there exists a stable set S ⊆ V such that

|S| = r + 2. Note that d̄ := (1/(r + 2))χS ∈ δ(n, r), where χS ∈ Rn denotes the incidence

vector of S. Therefore,

µru ≤
1

(r + 2)2
(χS)T (I + AG)χS =

1

r + 2
.

In order to establish the reverse inequality, consider any d ∈ δ(n, r). Let P := {i ∈

{1, . . . , n} : di > 0}. Clearly, |P | ≤ r + 2 ≤ α(G) ≤ n. Let dP ∈ R|P | denote the restriction

of d to its positive entries and let G(P ) denote the subgraph of G induced by P ⊆ V . We

have

1

r + 2
≤ 1

|P |
≤ 1

α(G(P ))
= min

u∈∆|P |
uT (I+AG(P ))u ≤ (dP )T (I+AG(P ))dP = dT (I+AG)d, (53)

where the third inequality follows from the fact that dP ∈ ∆|P |. Therefore,

µru ≥
1

r + 2
,

which, together with the previous inequality, implies that µru = 1/(r + 2).

Finally, if r > α(G) − 2, then d̄ := (1/α(G))χS
∗ ∈ δ(n, r), where S∗ ⊆ V is a stable set

with the maximum cardinality. It follows that µru ≤ 1/α(G). Since µru ≥ µ∗ = 1/α(G), we

obtain µru = 1/α(G), which establishes (50).

We remark that Bomze and de Klerk [3] established that b1/µrl c = α(G) if and only

if r ≥ α2(G) − 1. Similarly, Peña et al. [15] showed that bζr(G)c = α(G) if and only if

r ≥ α2(G) − 1. These two results are equivalent since ζr(G) = 1/µrl . In addition, the
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exact characterization (52) implies that 1/µrl = ζr(G) > α(G) for each r ∈ N if α(G) > 1

(see [15, Corollary 1]). In contrast, Theorem 4.2 implies that b1/µruc = 1/µru = r + 2 for

each r < α(G)− 2 and b1/µruc = 1/µru = α(G) for all r ≥ α(G)− 2.

We close this section by the following immediate corollary.

Corollary 4.1 Let G = (V,E) be a graph and let µrl and µru be as defined in (47) and (48),

respectively. We have

µru − µrl =


1
r+2

, if r ≤ α(G)− 2,

1
α(G)
− (s

2)α(G)+st

(r+2
2 )

, otherwise,
(54)

where s and t are integers satisfying r + 2 = sα(G) + t and 0 ≤ t < α(G).

When specialized to the stable set problem, the first inequality in (39) in Proposition 4.1

is given by

µru − µrl ≤
1

r + 1

(
1− 1

α(G)

)
=

α(G)− 1

(r + 1)α(G)
. (55)

By Corollary 4.1, if r > α(G)− 2 and α(G) divides r + 2, then s = (r + 2)/α(G) and t = 0.

Therefore,

µru − µrl =
1

α(G)
− s(s− 1)α(G)

(r + 2)(r + 1)
=

1

α(G)
− r + 2− α(G)

(r + 1)α(G)
=

α(G)− 1

(r + 1)α(G)
.

It follows from (55) that the upper bound (39) is tight and cannot, in general, be improved.

4.3 Error Bounds for Other Classes of Problems

We discuss the extensions of the error bound of Theorem 4.1 to other classes of optimization

problems that can be reformulated as an instance of (CoP) or (CoD).

Consider the following general quadratic optimization problem over the unit simplex:

(QP1) min
x∈∆n

xTQx+ 2cTx,

whereQ ∈ Sn and c ∈ Rn are given and x ∈ Rn constitutes the decision variables. Despite the

fact that (QP1) seems to be a more general problem than the standard quadratic optimization
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problem, it turns out that (QP1) can be reformulated as the following instance of (32) (see,

e.g., [4]):

(SQP1) min
x∈∆n

xT Q̃x,

where Q̃ := Q+ ecT + ceT ∈ S and e ∈ Rn denotes the vector of all ones. It is easy to verify

that the objective function values of (QP1) and (SQP1) coincide on the unit simplex. It

follows from this reformulation that the error bound of Theorem 4.1 applies to any quadratic

optimization problem over the unit simplex.

Let us now consider the more general problem of quadratic optimization over a polytope.

Such a problem can be formulated as

(QP2) min{xTQx+ 2cTx : x ∈ conv({v1, v2, . . . , vk})},

where Q ∈ Sn and c ∈ Rn are given, x ∈ Rn constitutes the decision variables, v1, v2, . . . , vk ∈

Rn denote the vertices of the feasible region and conv(·) denotes the convex hull. Since every

feasible solution can be represented as a convex combination of the vertices v1, v2, . . . , vk,

(QP2) can be reformulated as the following instance of quadratic optimization over the unit

simplex:

(QP3) min{uTV TQV u+ 2cTV u : eTu = 1, u ≥ 0},

where V = [v1, v2, . . . , vk] ∈ Rn×k and u ∈ Rk corresponds to the weights used in the convex

combination. By using the aforementioned transformation, (QP3) can be reformulated as

an instance of the standard quadratic optimization problem. Therefore, the error bound of

Theorem 4.1 encompasses all quadratic optimization problems over a polytope.

We remark that quadratic optimization over a polytope subsumes several classes of well-

known optimization problems such as the box-constrained quadratic optimization. However,

the transformation of (QP2) into (QP3) requires the explicit information about each vertex

of the feasible region. For box-constrained quadratic optimization, there are 2n vertices,

which implies that there is an exponential number of variables in (QP3). Therefore, despite

the theoretical equivalence, the aforementioned transformation may not be useful in practice

if there is a large number of vertices.
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It is an interesting open problem whether similar error bounds can be constructed for

other classes of optimization problems that can be cast as an instance of (CoP) or (CoD).

We leave this as a future research problem.

5 Computational Results

In this section, we present and discuss our computational results. We set up and solved

the linear programming formulations arising from the inner and outer approximations in

MATLAB using the YALMIP [11] interface and the MATLAB Optimization Toolbox with

MATLAB’s linear programming solver linprog. The computational tests were conducted

using MATLAB version 2008b on an AMD Athlon 64 X2 6000+ Dual Core Processor with

2 GB of RAM running under Linux.

We first report our computational results on several instances of standard quadratic

optimization (33) taken from the literature. Let us consider the following examples from [3]:

Q1 =



1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

1 1 0 1 0

0 1 1 0 1


, and Q2 =



1 0 0 0 0 0 1 1 1 1 1 1

0 1 0 0 1 1 0 0 1 1 1 1

0 0 1 1 0 1 0 1 0 1 1 1

0 0 1 1 1 0 1 0 1 0 1 1

0 1 0 1 1 0 1 1 0 1 0 1

0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 1 1 1 0 0 1 1 0

1 0 1 0 1 1 0 1 1 0 1 0

1 1 0 1 0 1 0 1 1 1 0 0

1 1 1 0 1 0 1 0 1 1 0 0

1 1 1 1 0 0 1 1 0 0 1 0

1 1 1 1 1 1 0 0 0 0 0 1



.

The problem (33) corresponds to the computation of the stability number in a pentagon

for Q = Q1 and in the complement of an icosahedron for Q = Q2. For the first example,
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µ∗ = 1/2. We obtain µ0
l = 0, µ1

l = 1/3, µ2
l = 1/3, and µ3

l = 2/5 as the first few lower bounds.

For the upper bound, we have µ0
u = 1/2, which is already exact. For the second example,

µ∗ = 1/3. Our computations reveal that the lower bounds are given by µ0
l = µ1

l = 0, µ2
l =

1/6, µ3
l = 1/5 while the upper bounds are µ0

u = 1/2 and µ1
u = µ∗ = 1/3. Observe that

the upper bounds quickly match the stability number since α(G) is small for both examples

(cf. Theorem 4.2).

The third example taken from [3] arises from a problem in population genetics:

Q3 =



−14 −15 −16 0 0

−15 −14 −12.5 −22.5 −15

−16 −12.5 −10 −26.5 −16

0 −22.5 −26.5 0 0

0 −15 −16 0 −14


.

The optimal value is given by µ∗ = −161
3
. The lower bounds are given by µ0

l = −26.5, µ1
l =

−21, µ2
l = −191

3
, and µ3

l = −18.9 while the upper bounds are µ0
u = −15.75 and µ1

u = −161
3

=

µ∗, which is already exact.

The next example, also taken from [3] (see also [5]), corresponds to a portfolio optimiza-

tion problem:

Q4 =



0.9044 0.1054 0.5140 0.3322 0

0.1054 0.8715 0.7385 0.5866 0.9751

0.5140 0.7385 0.6936 0.5368 0.8086

0.3322 0.5866 0.5368 0.5633 0.7478

0 0.9751 0.8086 0.7478 1.2932


.

For this example, µ∗ = 0.4839. The lower bounds are given by µ0
l = 0, µ1

l = 0.3015, µ2
l =

0.3484, and µ3
l = 0.4005. The upper bounds are µ0

u = 0.4967, µ1
u = 0.4875, µ2

u = 0.4875, and

µ3
u = 0.4867.

Each of these examples illustrates that the upper bounds µru provide an accurate approx-

imation of the optimal value µ∗ already for small values of r.

By (18) and (19), the number of inequality constraints that define Ir is given by
(
n+r+1
r+2

)
.

Similarly, an upper bound on the number of constraints that define Or is given by (10). The
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exact numbers of constraints for r = 0, 1, 2, 3, respectively, are given by
(
n
2

)
, n(n2 +6n−1)/6,

n(n+ 5)(n2 + 5n− 2)/24, and n(n4 + 15n3 + 85n2 + 165n− 146)/120. Therefore, the number

of constraints quickly increases with r.

In an attempt to assess the accuracy of the bounds, we generated random instances of

the quadratic optimization problem for different values of n. We used n = 25 and n = 50

in our experiments. For each choice of n, we generated 100 instances in which each entry of

Q ∈ S was generated uniformly in [0, 1]. For each instance, we computed µrl and µru and the

approximation ratio µrl /µ
r
u for the first few choices of r. Note that we have 0 ≤ µrl ≤ µ∗ ≤ µru

for each r = 0, 1, . . .. Therefore, the ratio µrl /µ
r
u is nondecreasing as r increases.
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Figure 1: Distribution of µrl /µ
r
u for r = 0, 1, 2, 3

Figure 1 illustrates the distribution of the approximation ratios µrl /µ
r
u over 100 instances

for r = 0, 1, 2, 3 using n = 25. The horizontal axis denotes the interval [0,1] divided into ten
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equal subintervals and the vertical axis indicates the number of instances whose approxima-

tion ratio falls into the corresponding interval. Note that the weight shifts towards larger

ratios as r increases. It is worth noticing that the number of instances whose approxima-

tion ratio is equal to 1 is 10, 34, 39, and 39 for r = 0, 1, 2, 3, respectively. Therefore, the

polyhedral approximations yield the exact solution on these instances.

Distribution of Approximation Ratios (n = 50)
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Figure 2: Distribution of µrl /µ
r
u for r = 0, 1

In Figure 2, which is organized similarly to Figure 1, we present the distribution of

approximation ratios µrl /µ
r
u over 100 instances using n = 50 for r = 0, 1. For larger values

of r, we ran into memory problems. Similarly, the number of instances shifts towards the

larger ratios as r increases from 0 to 1. The approximation was exact on 4 and 34 instances

for r = 0 and r = 1, respectively.

Next, we present some statistics in an attempt to shed light onto the average behavior
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of the approximation ratios. In Table 1, we report the average approximation ratios for all

combinations of n and r. As expected, the approximation ratios improve as r increases. The

average ratios indicate the quality of approximation. It is worth noting that the solutions

returned by the polyhedral approximations are already within 15% of the optimal solution

for n = 25 and r = 3 on the average.

µrl /µ
r
u

r = 0 r = 1 r = 2 r = 3

n = 25 0.2238 0.6754 0.7966 0.8497

n = 50 0.1255 0.7095 - -

Table 1: Average approximation ratios µrl /µ
r
u

Finally, we report the average computation times in CPU seconds for all combinations

of n and r in Table 2. Observe that the cost of computing the bounds quickly increases as n

and r increase. We briefly discuss how the computation times can be improved in Section 6.

We ran into memory problems for instances with n > 50 and r > 1. We therefore did

not include computational experiments for larger instances. We remark, however, that the

computational efficiency can potentially be improved by using a state-of-the-art solver such

as CPLEX. An efficient way of computing the bounds for larger values of r even for small

values of n still remains a challenge.

µ0
l µ0

u µ1
l µ1

u µ2
l µ2

u µ3
l µ3

u

n = 25 0.66 0.74 1.99 2.31 34.42 52.03 1098.3 1760.4

n = 50 30.75 31.25 68.53 79.71 - - - -

Table 2: Average computation times in CPU seconds

Our computational results reveal that the polyhedral bounds are fairly accurate even for

small values of r on randomly generated standard quadratic optimization problems. However,

the cost of computing the bounds increases drastically as the value of r increases.
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6 Concluding Remarks

In this paper, we proposed a hierarchy of increasingly better outer polyhedral approxima-

tions of the copositive cone that is exact in the limit. By combining our hierarchy with

a previously proposed hierarchy of inner polyhedral approximations, we obtained two se-

quences of improving upper and lower bounds on the optimal value of a copositive program.

We established that both of these sequences converge to the optimal value under primal and

dual regularity. For standard quadratic optimization problems, we derived tight bounds on

the duality gap resulting from these sequences. We provided closed-form solutions for the

upper and lower bounds for the stable set problem. Our computational experiments revealed

the quality of the bounds on randomly generated standard quadratic optimization problems.

In our experiments, we included all of the constraints that define the polyhedral cones

(Ir)∗ and (Or)∗. Similar to the approach of Bundfuss and Dür [5], the inner and outer

approximations can be adaptively guided using the objective function. For instance, rather

than adding all the inequalities that define the inner and polyhedral cones, one may include

only (a subset of) the violated constraints as in a cutting plane scheme. We believe that

such an approach may considerably increase the value of r for which the bounds µrl and µru

can be computed. We intend to pursue this direction in the near future.
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