
FROM SHAPE VARIATION TO TOPOLOGY
CHANGES IN CONSTRAINED MINIMIZATION:

A VELOCITY METHOD BASED CONCEPT

M. HINTERMÜLLER1,2 AND V.A. KOVTUNENKO1,3

Abstract. The ability of velocity methods to describe changes
of topology by creating defects like holes is investigated. For the
shape optimization energy-type objective functions are considered,
which depend on the geometry by means of state variables. The
state system is represented by abstract, quadratic, constrained
minimization problems stated over domains with defects. The ve-
locity method provides the shape derivative of the objective func-
tion due to finite variations of a defect. Sufficient conditions are
derived which allow us to pass the shape derivative to the limit
with respect to diminishing defect, thus, to obtain the “topologi-
cal derivative” of the objective function due to a topology change.
An illustrative example is presented for a circular hole bored at
the tip of a crack.

1. Introduction

A rigorous description of topological changes plays a crucial role in
structure optimization [1, 6, 10, 23, 30]. Our specific interest concerns
the topology changes produced by creating holes, cuts, cracks and alike;
for techniques and applications in the optimization context see [2, 8,
13, 34]. While the engineering and numerical applications are rather
extensive, the difficulty of analysis of state systems when changing their
topological properties is connected with the singular character of the
problem. In order to treat the latter, singular perturbation techniques
are available, however, mostly for linear partial differential equations
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(PDEs) with homogeneous coefficients; see [16, 28]. For semilinear
problems see [15, 32].

On the other hand, velocity based regular perturbations are well
known as a very powerful tool meeting shape optimization goals, which
is well established for variational problems. We refer to [35, 7] for
the foundation of velocity methods, and to [12, 21, 18, 19, 26] for the
specific applications to constrained minimization problems. Moreover,
level-set (implicit surface) methods can be naturally incorporated into
the velocity context as described in [11, 14, 27] and other works. In
the present paper, we discuss concepts adapting the velocity method
to topological sensitivity analysis.

We start with a description of admissible geometries. For this pur-
pose, let Ω ∈ Rd, d ∈ N, be a domain, and x0 a trial point in Ω.
Moreover, we fix a bounded measurable set D in Rd, associated to a
generic defect, of Hausdorff dimension m ∈ N, m ≤ d, such that 0 ∈ D.
For r ∈ R+ we introduce the perturbed set

(D) D(r) := {y ∈ Rd : r−1(y − x0) ∈ D}.

Since x0 ∈ Ω, there exists R > 0 sufficiently small such that D(R) ⊂ Ω.
Therefore, for all r ∈ (0, R] we have D(r) ⊂ Ω, and it is possible to

define the domain with finite defect as Ω(r) := Ω \D(r). Further, we
refer to such r as the “size” of the defect. As r → 0, D(r) reduces to the
point x0. The limit domain Ω(0) = Ω \ {x0} exists (with infinitesimal
defect), and it has a “continuous” topology in comparison with Ω(r)
for r > 0. In this sense we claim that the change of topology occurs
when r → 0.

Since x0 corresponding to r = 0 is excluded from the limit domain
Ω(0), we complete the set of parameters r ∈ (0, R] to [0, R] with the
limit from above r → 0+. In fact, the limit from below r → 0− is not
defined in the geometric model. We take care of these features through
all of our subsequent constructions.

On every fixed domain Ω(r) with defect D(r) of the size r ∈ [0, R]
we look for a state variable (scalar or vector valued) ur(x), x ∈ Ω(r),
associated to a solution of a partial differential equation (PDE). More
generally, we refer to variational solutions of associated minimization
problems. Here, we consider abstract objective functionals

Π : H(Ω(r)) 7→ R, u 7→ Π(u; Ω(r))

and constrained minimization problems of the type
(CMP )

minimize Π(u; Ω(r)) overu ∈ H(Ω(r)) subject tou ∈ K(Ω(r)).



FROM SHAPE VARIATION TO TOPOLOGY CHANGES 3

Constraints are reflected by the admissible sets K(Ω(r)) in vector
spaces H(Ω(r)) for r ∈ [0, R]. If there exists a solution ur ∈ K(Ω(r)) of
(CMP ), the associated optimal value functional is defined by P (r) :=
Π(ur; Ω(r)) with

(DF ) P : [0, R] 7→ R, r 7→ Π(ur; Ω(r)).

We call P in (DF ) a “defect function” since it serves to qualify the
defects. Indeed, while P (r) with r > 0 corresponds to the geome-
tries having finite defects D(r), the reference value of P (0) belongs to
the continuous geometry of Ω, i.e., with the point x0 removed only.
Therefore, the increment ∆P := P (r)−P (0) compares the geometries
pertinent to the two different topological situations. If ∆P ≥ 0, i.e.,
P (0) ≤ P (r), then the optimal objective prefers the continuous geom-
etry; otherwise, if ∆P < 0, then a change of topology by creating a
finite defect at x0 is suggested. For topology optimization of Ω as well
as for the identification of a defect in the domain, one needs to examine
all trial points x0 ∈ Ω.

Generally, ∆P admits a discontinuity or oscillations as r → 0. Thus,
it can be ill-defined. In this paper we restrict ourselves to well posed
cases and look for continuous functions P ∈ C([0, R]) satisfying an
asymptotic expansion
(AE)

P (r)− P (0) = f(r)DP (x0) + o(f(r)), with o(f(r))
f(r)

→ 0 as f(r)→ 0,

written with respect to a strictly monotonically increasing function
f(r) with f(0) = 0. We refer to the first asymptotic term in (AE)
as a “topological derivative”, since DP (x0) describes exactly the sign
of ∆P as r → 0. Moreover, DP (x0) yields a quantitative measure for
creating a defect at x0. The order of f(r) of the asymptotic expansion
(AE) may depend on the underlying application; see, e.g., (67) and
(70) in Section 5 for examples of f(r). Here, based on known results
in mechanics, we consider differentiable functions P implying f(r) = r
only. Hence, we have the first-order asymptotic expansion

(AE1) P (r)− P (0) = rP ′(0) + o(r), o(r)
r
→ 0 as r → 0,

where

(DD) P ′(0) := lim
r→0

1

r

(
P (r)− P (0)

)
is of order r. It yields DP (x0) = P ′(0) in (AE).

The expansion in (AE1) is available for a rather general class of vari-
ational problems related to elliptic PDEs [16, 28]. Note that P ′(0) = 0
in case of u0 ∈ K(Ω(0)) solves (CMP ) at r = 0 and enjoys extra
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smoothness (i.e., exceeding the variational smoothness); see, e.g., [34].
If P ′(0) = 0, then DP (x0) is identified with the next term in the as-
ymptotic expansion (AE1). This results in (AE) with f(r) = o(r).
On the other hand, P ′(0) 6= 0 for solutions u0 in a-priori non-smooth
domains Ω containing cracks and alike; see [3, 19, 20]. Even for smooth
domains Ω, the assumption of extra smoothness of u0 fails when sin-
gular data are involved like point sources, or δ-functions as adopted in
the theory of fundamental solutions. For this reason we generalize the
notion of a topological derivative to the first order asymptotic term in
(AE1) in the spirit of the method of singular perturbations [28, 29].
In this paper we provide a mathematical tool which is suitable for the
calculation of P ′(0) and which allows us to conclude whether P ′(0) = 0
or not.

From the point of view of perturbation theory, the principal difficulty
of the sensitivity analysis of the defect function P (r) as r → 0 lies in
the fact that it is related to singular perturbations. In order to explain
the latter, observe that the definition of defects in (D) yields the flow
(with respect to r) y = x0 + r

R
(x − x0) ∈ D(r) for x ∈ D(R), which

solves the dynamical system

(DS)
dy

dr
=
y − x0

r
for r ∈ (0, R], y = x at r = R.

The associated velocity of the defect transport is r−1(y − x0). Obvi-
ously, it becomes singular at r = 0 which corresponds to a change of
topology. We note that homeomorphic maps can be established be-
tween Ω(r) for r > 0 and Ω(0) as r = 0, but diffeomorphic properties
fail. The latter, however, are essential for obtaining sensitivities. This
is the reason why the asymptotic expansion based on singular per-
turbations in the topological context differs from sensitivities coming
from shape variations, which are based on regular perturbations with
smooth velocities.

We note that from r = 0 to r > 0 it is assumed that the topology
of the underlying geometry changes, whence from r > 0 to r + s > 0,
with s 6= 0, only changes of the shape of the geometry do occur. This
structure is utilized to derived (AE1) by the following strategy: Due
to the local character of the geometric singularity at r = 0, we start
with the shape sensitivity analysis at r > 0. From the shape derivative

(SD) P ′(r) := lim
s→0

1

s

(
P (r + s)− P (r)

)
for r > 0,



FROM SHAPE VARIATION TO TOPOLOGY CHANGES 5

under proper assumptions we derive a weak form of (AE1) given by

(AE1′) P (r)− P (0) =

∫ r

0

P ′(τ) dτ.

This results in an alternative representation of (DD) as

(DD′) P ′(0) = lim
r→0

1

r

∫ r

0

P ′(τ) dτ,

which has to be calculated from the shape derivative (SD). This ap-
proach is justified for the specific problem of the kinking of a crack in
[20]. A related concept known in the literature on topological sensitiv-
ity is based on the assertion limr→0 P

′(r) = P ′(0), which is shown in
[31] for smooth optimal value functions.

Motivated by applications in mechanics, in this paper we rely on
quadratic objective functionals Π for (CMP ), which are associated
to the energy. We start in Section 2 with a velocity based kinematic
description of the motion of geometric objects with defects. While
finite movements serve for the sake of shape sensitivities, infinitesimal
movements belong to topological changes. In Section 3 we derive the
shape derivative (SD). In Section 4 we discuss sufficient conditions
allowing us to pass to the limit in (DD′). Finally, in Section 5 we
present an illustrative example of the topology change when a circular
hole occurs at the tip of a crack.

2. Movement of geometries with defects within implicit
surfaces

In this section we derive a kinematic description of the motion of
geometric objects with defects for the further use in sensitivity analysis
of geometry dependent problems.

For “time” (a kinematic parameter) t ∈ R we consider an evolution
of sets Ωt in Rd and refer these sets to an initial set Ω0 at t = 0. The
reference set Ω0 is supposed to contain the finite defect D(R), i.e.,

Ω0 ⊂ Rd \ D(R). The evolving sets are Ωt ⊂ Rd \ D(r). In view of
Section 1 we relate t to the defect size r by the relation

(1) |t| = − ln(r/R) for r ∈ (0, R],

or, more generally, in the sense of relations specified in (35) below. The

notation of Ωt generalizes the geometric construction Ω(r) := Ω \D(r)
in Section 1 when varying the external boundary ∂Ω with t and allowing
multiple defects. Conversely, to specify the geometry, we can identify
Ω0 = Ω(R) and Ωt = Ω(r).
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The substitution of t = − ln(r/R) from (1) into (DS) yields the
dynamic (autonomous) system with respect to t ≥ 0

(2)
dy

dt
= −(y − x0) for t > 0, y = x at t = 0.

The benefit of the substitution (1) is that the corresponding velocity
of the defect transport V(y) = −(y − x0) is non-singular. Note that
we can use similarly the negative parameters t = ln(r/R). In Section 4
we proceed with the limit case of |t| → ∞ which corresponds to r → 0
when the defect D(r) diminishes.

Let a time-independent kinematic velocity

V = (V1, . . . , Vd)
T ∈ W 1,∞

loc (Rd)d(3)

be given. We require that

V (x) = V(x) for x ∈ D(R).

This condition guarantees the transport of defects D(r) subject to (2).
In other words, we consider V as a proper extension of V from D(R)
to Rd. For example, setting V = Vχ with a smooth cut-off function χ
supported in Ω such that χ(x) = 1 for x ∈ D(R) is a proper extension.

In this case, Ω0 = Ω \D(R), and V = Vχ yields Ωt = Ω(r).
Let an open, connected, bounded set (domain) Ω0 be given by the

implicit surface ρ0 ∈ W 1,∞
loc (Rd) as

Ω0 = {x = (x1, . . . , xd)
T ∈ Rd : ρ0(x) > 0},

Rd \ Ω0 = {x ∈ Rd : ρ0(x) < 0}, ∂Ω0 = {x ∈ Rd : ρ0(x) = 0}.
(4)

The sets Ωt evolving with respect to t are represented by implicit sur-
faces:

Ωt = {y = (y1, . . . , yd)
T ∈ Rd : ρ(t, y) > 0},

Rd \ Ωt = {y ∈ Rd : ρ(t, y) < 0}, ∂Ωt = {y ∈ Rd : ρ(t, y) = 0}.
(5)

In order to determine ρ in (5), the velocity method is utilized as spec-
ified below. In fact, for the velocity V given in (3) we require that
ρ(t, y) satisfies the linear transport equation

∂ρ

∂t
+ V T∇ρ = 0 for t 6= 0, ρ = ρ0 at t = 0.(6)

The characteristics y = Φt(x) of (6) imply the autonomous system

d

dt
Φt = V (Φt) for t 6= 0, Φ0 = x.(7)

From the classical results of [7, 35] we infer the following lemma on the
solvability of (6) and (7).



FROM SHAPE VARIATION TO TOPOLOGY CHANGES 7

Lemma 1. For arbitrary finite interval ∆T = (0, T ) as t > 0, or
∆T = (−T, 0) as t < 0 with 0 < T <∞, there exists a unique solution
of (6) given by

ρ(t, y) = ρ0 ◦ Φ−t(y) ∈ W 1,∞
loc (∆T × Rd).(8)

The backward characteristics Φ−t imply a solution of (7) corresponding
to −t:

d

dt
Φ−t = −V (Φ−t) for t 6= 0, Φ0 = y.(9)

The unique solutions of (7) and (9) exist, respectively,

Φt,Φ−t ∈ C1(∆T ;W 1,∞
loc (Rd))d,(10)

and both functions are inverse to each other in the sense that

y = Φt ◦ Φ−t(y), x = Φ−t ◦ Φt(x).(11)

For the detailed derivation of Lemma 1 and its specific application
to cracks see [19, 26, 27].

Note that the additional spatial smoothness Φt,Φ−t ∈ C1(∆T ;W k,∞
loc (Rd))d

in (10) is provided by V ∈ W k,∞
loc (Rd)d for arbitrary k ∈ N.

In our context, Lemma 1 implies a diffeomorphism between the sets
in (4) and (5) for t ∈ ∆T in the sense that

Φt : Ω0 7→ Ωt, x 7→ Φt(x) = y;

Φ−t : Ωt 7→ Ω0, y 7→ Φ−t(y) = x.
(12)

The initial condition at t = 0 can be shifted to τ = 0 due to the
semi-group property:

Φt+τ ◦ Φ−t(y) = Φτ (y) for τ ∈ R.(13)

Indeed, from (7) we infer for every fixed τ that

d

dt
Φt+τ =

d

d(t+ τ)
Φt+τ = V (Φt+τ ), and Φt+τ |τ=0 = Φt.

Hence, Φt+τ (x) = Φτ ◦ Φt(x) together with (11) imply (13).
Using (12) and (13), from Lemma 1 we arrive at the following con-

sequence.

Lemma 2. For arbitrarily fixed T > 0 and t ∈ ∆T , the coordinate
transformations

Φτ : Ωt 7→ Ωt+τ , y 7→ Φτ (y) = z;

Φ−τ : Ωt+τ 7→ Ωt, z 7→ Φ−τ (z) = y
(14)

form a diffeomorphism with respect to τ such that t+ τ ∈ ∆T .
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For illustration we present the following example.

Example 1. Let Ω ∈ Rd be a domain with a boundary ∂Ω and ΓD ⊂ ∂Ω
with |ΓD| > 0, where |ΓD| denotes the measure of ΓD. Suppose that
the finite defect D(R) ⊂ Ω introduced in Section 1 is a domain, or,

D(R) is a manifold. We consider the reference domain Ω0 = Ω \D(R)
(= Ω(R)). Further, let a velocity V be given such that it satisfies
(3), the boundary condition V = 0 at ΓD, and V (x) = −(x − x0) for
x ∈ D(R). Then domains Ωt evolving in t > 0 are determined from
(5) by the implicit surface ρ(t, · ) solving the transport equation (6) for
this velocity V . For x ∈ D(R) the characteristics Φt(x) of (6) satisfy
the Cauchy problem

d

dt
Φt = −(Φt − x0) for t > 0, Φ0 = x.

Its solution is given by Φt = x0+(x−x0)e−t. Consequently, from (D) we
infer that the evolving sets Ωt contain defects D(r) of the size r = Re−t

(see (1)). For τ > −t, t > 0, we can rewrite Φt+τ = x0 + (Φt − x0)e−τ

for Φt ∈ D(r) (compare with (13)).

Note that taking the reference domain as Ω0 = Ω \
⋃N
i=1 D(Ri) with

N finite defects D(Ri) ⊂ Ω of the size Ri > 0 given at points xi0 ∈ Ω for
i = 1, . . . , N we arrive at a multi-defect problem, which can be treated
similarly as above.

3. Shape derivative of quadratic geometry-dependent
functionals

In this section, we employ the diffeomorphic maps (14) for shape
sensitivity analysis of abstract constrained minimization problems.

For all t ∈ R, let K(Ωt) be a convex cone in the Hilbert space H(Ωt)
defined over the domain Ωt, and let H(Ωt)

? stand for the dual space.
We invoke the following assumption.

Assumption 1. The mapping (14) is bijective between H(Ωt) and
H(Ωt+τ ), and between K(Ωt) and K(Ωt+τ ) for t ∈ ∆T and τ such
that t+ τ ∈ ∆T in the following sense:

u ∈ H(Ωt) ⇒ u ◦ Φ−τ ∈ H(Ωt+τ ), v ∈ H(Ωt+τ ) ⇒ v ◦ Φτ ∈ H(Ωt);
(15a)

u ∈ K(Ωt) ⇒ u ◦ Φ−τ ∈ K(Ωt+τ ), v ∈ K(Ωt+τ ) ⇒ v ◦ Φτ ∈ K(Ωt).
(15b)
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These assumptions are needed to derive the shape derivative in The-
orem 1 below. While the bijection in (15a) is provided by Lemma 2 and
a sufficient regularity of the involved transformations, the bijection in
(15b) can be limiting in Assumption 1. In this context we note that,
for concrete problems, the shape derivative exists under assumptions
weaker than (15b). In fact, the bijection between primal cones K can
be replaced with the bijection property for dual cones as suggested in
[25]. Alternatively, if from v ∈ K(Ωt+τ ) it follows that v ◦Φτ ∈ Kτ (Ωt)
with Kτ (Ωt) 6= K(Ωt), then the convergence Kτ (Ωt)→ K(Ωt) as τ → 0
in the Mosco sense can be helpful; see the related topic in [33]. When
the bijection between K(Ωt) and K(Ωt+τ ) fails, then an extra term
determined by the type of constraints in K appears in formula (25) in
Theorem 1.

In what follows we confine ourselves to the quadratic functionals
Π : H(Ωt) 7→ R defined by

Π(u; Ωt) :=
〈1

2
Au− F, u

〉
Ωt

for u ∈ H(Ωt)(16)

with the duality pairing 〈 · , · 〉Ωt between H(Ωt)
? and H(Ωt). We as-

sume that A : H(Ωt) 7→ H(Ωt)
? for all t ∈ R is a linear, symmetric,

everywhere defined operator, which is bounded and uniformly positive
definite, i.e.,

c0‖u‖2
H(Ωt) ≤ 〈Au, u〉Ωt ≤ C0‖u‖2

H(Ωt) for u ∈ H(Ωt)

with 0 < c0 ≤ C0 <∞ independent of t. The right-hand side F ∈ L is
given, where the space L satisfies

H(Ωt)
u
↪→ L = L?

u
↪→ H(Ωt)

?,

and
u
↪→ stands for the uniformly continuous embedding with respect to

t ∈ R. Note that according to (16), v 7→ Π(v) is determined also over
H(Ωt+τ ) at the time t+ τ :

Π(v; Ωt+τ ) =
〈1

2
Av − F, v

〉
Ωt+τ

for v ∈ H(Ωt+τ ).(17)

After the application of the coordinate transformation (14) to (17) we
get the functional with transformed operators J(A ◦ Φτ ) and J(F ◦
Φτ ), where J := J(Φτ ) is the Jacobian. The transformed functional is
defined well over v ◦ Φτ ∈ H(Ωt) according to (15a) in Assumption 1,
and we denote it by

[Π ◦ Φτ ](u; Ωt) :=
〈1

2
J
(
A ◦ Φτ

)
u− J

(
F ◦ Φτ

)
, u
〉

Ωt
∈ R(18)

for u ∈ H(Ωt). This construction is illustrated in the example below.
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For the sensitivity analysis of the transformed functional we need
the following assumption.

Assumption 2. The transformed functional (18) admits the following
expansion with respect to small |τ |:
(19a) [Π ◦ Φτ ](u; Ωt) = Π(u; Ωt) + τΠ1(u, u; Ωt) + Resτ (u),

(19b) |Resτ (u)| ≤ a(τ)
(
‖u‖2

H(Ωt) + b
)
, 0 ≤ a(τ) = o(|τ |),

where a( · ) and b ≥ 0 are independent of Ωt. The first asymptotic term
is given by

Π1(u, v; Ωt) :=
〈1

2
A1u− F 1, v

〉
Ωt

for u, v ∈ H(Ωt)(20)

with a linear, symmetric, everywhere defined, bounded operator A1 :
H(Ωt) 7→ H(Ωt)

? for all t ∈ R, and F 1 ∈ L. Note that Π1 in (20) is
not symmetric in u and v in the latter linear term.

We illustrate the construction by means of the scalar-valued Laplace
operator.

Example 2. We continue the geometric description of Example 1 and
set

A := −∆, H(Ωt) := W 1,2(Ωt), L := L2
loc(Rd),

K(Ωt) := {u ∈ W 1,2(Ωt) : u = 0 on ΓD, u ≥ 0 on ∂Ωt \ ΓD},
with the functional in (16) given by

Π(u; Ωt) =

∫
Ωt

(1

2
|∇u|2 − Fu

)
dy for u ∈ W 1,2(Ωt).

The notation in the definition of K implies that the traces of u are
well-defined on ∂Ωt. Moreover, we assume that the Poincare–Friedrichs
inequality provides a strict positive definiteness of the Laplace operator
in W 1,2(Ω0), hence in all spaces W 1,2(Ωt). We further assume that
F ∈ L ∩ C1

loc(Rd).
Assumption 1 holds true for this example. In fact, the bijection

property in (15a) is satisfied due to (10). Indeed, the norm ‖u ◦
Φ−τ‖2

W 1,2(Ωt+τ ) after the transformation z = Φτ (y) yields∫
Ωt+τ

{
|u◦Φ−τ |2+|∇(u◦Φ−τ )|2

}
dz =

∫
Ωt

{
|u|2+

∣∣∣(∂Φ−τ
∂y

)T

∇u
∣∣∣2}∣∣∣det

∂Φτ

∂y

∣∣∣ dy.
Hence, the norm estimation ‖u ◦ Φ−τ‖W 1,2(Ωt+τ ) ≤ c‖u‖W 1,2(Ωt) follows,
and similarly ‖v ◦Φτ‖W 1,2(Ωt) ≤ c‖v‖W 1,2(Ωt+τ ) for some c > 0 indepen-
dent of τ . The bijection in (15b) is provided by the condition V = 0 at
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ΓD since the Dirichlet boundary ΓD remains fixed during the evolution
of Ωt with such a velocity V .

Next we justify Assumption 2. Applying the coordinate transforma-
tion z = Φτ (y) to the perturbed functional

Π(v; Ωt+τ ) =

∫
Ωt+τ

(1

2
|∇v|2 − Fv

)
dz for v ∈ W 1,2(Ωt+τ )

we obtain the transformed functional

[Π◦Φτ ](u; Ωt) =

∫
Ωt

{1

2
(∇u)T∂Φ−τ

∂y

(∂Φ−τ
∂y

)T

∇u−
(
F◦Φτ

)
u
}∣∣∣det

∂Φτ

∂y

∣∣∣ dy
with u ∈ W 1,2(Ωt). From (7), (10) in Lemma 1, and for small |τ | we
derive the expansions

Φ±τ (y) = y ± τV (y) + Resτ (y), ‖Resτ (y)‖ = o(|τ |) in W 1,∞
loc (Rd)d,

∂Φ±τ
∂y

= I ± τ ∂V (y)

∂y
+ Resτ (y), ‖Resτ (y)‖ = o(|τ |) in L∞loc(Rd)d×d,

det
∂Φτ

∂y
= 1 + τ div V (y) + Resτ (y), ‖Resτ (y)‖ = o(|τ |) in L∞loc(Rd),

where I stands for the identity matrix. Moreover, the assumed smooth-
ness of F provides the Taylor series F ◦Φτ = F + τ V T∇F +Resτ (∇F )
with |Resτ (∇F )| = o(|τ |). Substituting these expansions into the inte-
gral over Ωt we obtain

[Π ◦ Φτ ](u; Ωt) =

∫
Ωt

{1

2
(∇u)T

(
I − τ ∂V

∂y
− τ ∂V

∂y

T)
∇u

−
(
F + τ V T∇F

)
u
}(

1 + τ div V
)
dy + Resτ (u),

|Resτ (u)| ≤ a(τ)
(
‖u‖2

W 1,2(Ωt)
+ ‖∇F‖2

C(Rd)d

)
, 0 ≤ a(τ) = o(|τ |),

which leads to the asymptotic formula (19), where the first asymptotic
term

Π1(u, v; Ωt) =

∫
Ωt

{1

2
(∇u)T

(
div(V )I − ∂V

∂y
− ∂V

∂y

T)
∇v − div(V F )v

}
dy

for u, v ∈ W 1,2(Ωt)

(21)

is well known, e.g., see [35]. Thus, the assumptions are true for this
example.

We emphasize that this technique is suitable also for vector-valued
problems and elliptic operators A with non-homogeneous coefficients;
see [24, 26].
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Next we investigate constrained minimization problems of the type

minimize Π(u; Ωt) over u ∈ H(Ωt) subject to u ∈ K(Ωt).(22)

Due to the Dirichlet principle and the Lax–Milgram theorem, there
exists a unique solution ut ∈ K(Ωt) of (22). By first order optimality,
(22) is equivalent to the variational inequality:

ut ∈ K(Ωt), 〈Aut − F, u− ut〉Ωt ≥ 0 for all u ∈ K(Ωt).(23)

Our aim is to analyze the optimal value function

t 7→ Π(ut; Ωt) : ∆T 7→ R,(24)

where ut is the unique solution of (22). For fixed 0 < T < ∞, (24)
represents variation of the shape, and further we relate it to topology
changes when T →∞.

Theorem 1. Under Assumption 1 and Assumption 2, the optimal
value function (24) is continuously differentiable with the shape de-
rivative

d

dt
Π(ut; Ωt) := lim

τ→0

Π(ut+τ ; Ωt+τ )− Π(ut; Ωt)

τ
= Π1(ut, ut; Ωt).(25)

Proof. For the proof of the assertion we proceed as follows: For fixed t ∈
∆T , we start with establishing the strong convergence of the solutions
ut+τ ◦ Φτ → ut as τ → 0. Based on the convergence we find the limit
inferior and the limit superior in (25), which occur to be equal, thus
yielding the desired derivative.

We consider the solution ut+τ ∈ K(Ωt+τ ) of the perturbed problem
(22) such that

Π(ut+τ ; Ωt+τ ) ≤ Π(v; Ωt+τ ) for all v ∈ K(Ωt+τ ).(26)

Applying the coordinate transformation z = Φτ (y) to (26), from (15b)
and (18) it follows that ut+τ ◦ Φτ ∈ K(Ωt) satisfies

[Π ◦ Φτ ](u
t+τ ◦ Φτ ; Ωt) ≤ [Π ◦ Φτ ](u; Ωt) for all u ∈ K(Ωt).(27)

Using u = ut in (27) results in the estimate

‖ut+τ ◦ Φτ‖H(Ωt) ≤ c1 + c2‖ut‖H(Ωt) +O(|τ |),

which is uniform for small |τ | ≤ δ. Here we used (19). Hence, there
exists a weakly convergent subsequence of ut+τ ◦Φτ , which converges to
ut as τ → 0 due to the weak lower semi-continuity of convex quadratic
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functionals. In view of (19), estimation of the difference of the solutions
yields

c0

2
‖ut+τ ◦ Φτ − ut‖2

H(Ωt) ≤
1

2

〈
A(ut+τ ◦ Φτ − ut), ut+τ ◦ Φτ − ut

〉
Ωt

≤ Π(ut+τ ◦ Φτ ; Ωt)− Π(ut; Ωt) = [Π ◦ Φτ ](u
t+τ ◦ Φτ ; Ωt)− Π(ut; Ωt) +O(|τ |)

≤ [Π ◦ Φτ ](u
t; Ωt)− Π(ut; Ωt) +O(|τ |) = O(|τ |),

which implies the strong convergence

ut+τ ◦ Φτ → ut in H(Ωt) as τ → 0.(28)

Applying Assumption 2 and using (27) we estimate the numerator in
(25) from above by

Π(ut+τ ; Ωt+τ )− Π(ut; Ωt) = [Π ◦ Φτ ](u
t+τ ◦ Φτ ; Ωt)− Π(ut; Ωt)

≤ [Π ◦ Φτ ](u
t; Ωt)− Π(ut; Ωt) = τΠ1(ut, ut; Ωt) + Resτ (u

t), Resτ (u
t) = o(|τ |).

On the other hand, from (22) one finds the following estimate from
below:

[Π ◦ Φτ ](u
t+τ ◦ Φτ ; Ωt)− Π(ut; Ωt) ≥ [Π ◦ Φτ ](u

t+τ ◦ Φτ ; Ωt)− Π(ut+τ ◦ Φτ ; Ωt)

= τΠ1(ut+τ ◦ Φτ , u
t+τ ◦ Φτ ; Ωt) + Resτ (u

t+τ ◦ Φτ ), Resτ (u
t+τ ◦ Φτ ) = o(|τ |).

For τ → 0 due to (28) we arrive at the limit in (25). �

The following corollary addresses the special case of identical trans-
formations which will be useful below.

Corollary 1. If the mapping Φτ in (14) transforms Ωt into itself, i.e.,

Ωt+τ ≡ Ωt for small |τ |,(29)

then under Assumption 1 and Assumption 2 it holds that

Π1(ut, ut; Ωt) = 0.(30)

Proof. Let Ωt ◦Φ±τ = Ωt. Applying the transformation Φτ to (22), due
to Assumption 1 we conclude that ut ◦ Φτ ∈ K(Ωt) satisfies

[Π ◦ Φτ ](u
t ◦ Φτ ; Ωt) ≤ [Π ◦ Φτ ](u; Ωt) for all u ∈ K(Ωt).(31)

Using Assumption 2, in the spirit of the proof of Theorem 1 we derive
that

ut ◦ Φτ → ut strongly in H(Ωt) as τ → 0.(32)
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From (19) and (22) we infer that

Π(ut; Ωt) = [Π ◦ Φτ ](u
t ◦ Φτ ; Ωt)

= Π(ut ◦ Φτ ; Ωt) + τ Π1(ut ◦ Φτ , u
t ◦ Φτ ; Ωt) + o(|τ |)

≥ Π(ut; Ωt) + τ Π1(ut ◦ Φτ , u
t ◦ Φτ ; Ωt) + o(|τ |).

Hence, Π1(ut ◦ Φτ , u
t ◦ Φτ ; Ωt) + o(|τ |)

τ
≤ 0, and, for τ → 0, due to (32)

we obtain Π1(ut, ut; Ωt) ≤ 0. Conversely, using (31) and (19) we get

Π(ut; Ωt) = [Π ◦ Φτ ](u
t ◦ Φτ ; Ωt) ≤ [Π ◦ Φτ ](u

t; Ωt)

= Π(ut; Ωt) + τ Π1(ut, ut; Ωt) + o(|τ |).

Therefore, Π1(ut, ut; Ωt) + o(|τ |)
τ
≥ 0, and the passage τ → 0 yields in

the limit Π1(ut, ut; Ωt) ≥ 0. Hence, (30) follows. �

For a differentiability analysis of optimal value functions for abstract
optimization problems we refer to [5]. It is interesting to note that for-
mula (25) does not include any variation of ut with respect to changing
domains (such as material or shape derivatives; see [35] for the def-
inition of these two concepts). This nice feature is due to the fact
that the functionals in the objective (24) and in the state problem
(22) coincide. In the general case, shape derivatives of objective func-
tions include variations of the state variables with respect to geometry
changes. Further investigations on this theme can be found in [17].
In contrast to the situation above, we will see that expansions of the
solution ut (the state variable) play a crucial role for the topological
changes considered in the next section.

4. Derivative of objective functionals when topology
changes

Our aim is to apply the results of the previous section to describe
topological changes. In particular, we consider diminishing defects in a
continuous domain. These features can be described as the limit case
when t→∞ (we rely on t > 0).

In view of Section 1, the geometric construction of Ωt = Ω(r) with

Ω(r) := Ω \D(r) provides that for t→∞ (equivalently, as r → 0) the
limit domain Ω∞ = Ω \ {x0} exists. Motivated by this construction we
suggest the following generalization.

Assumption 3. There exists a limit domain Ω∞ ⊂ Rd such that

Ω∞ =
∞⋃
t=0

Ωt.(33)
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Dt := Ω∞ \ Ωt, meas(Dt)→ 0 as t→∞.(34)

In the specific case of Ωt = Ω(r) Assumption 3 is satisfied, and we
associate Dt in (34) with the diminishing defect D(r) of the size r due to
relation (1). We consider (1) as a particular case of general connection
between the kinematic parameter t and the defect size r given by

t = ψ(r) : [0, R] 7→ R+ strictly monotonically decreasing,

ψ ∈ C1
loc((0, R]), ψ(R) = 0, ψ(r)→∞ as r → 0.

(35)

Note that ψ′(r) < 0 and ψ′(r)→ −∞ as r → 0 in (35). In this notation
(1) reads ψ(r) = − ln(r/R) and ψ′(r) = −1/r.

Based on Assumption 3 and using notation (35) we can state the
constrained minimization problem (22) in Ωψ(0) = Ω∞:

minimize Π(u; Ωψ(0)) over u ∈ H(Ωψ(0)) subject to u ∈ K(Ωψ(0)).
(36)

Problem (36) admits a unique solution uψ(0) ∈ K(Ωψ(0)) in the Hilbert
space H(Ωψ(0)). Restating the optimal value function (24) in terms of
r given in (35), we get

P : [0, R] 7→ R, r 7→ Π(uψ(r); Ωψ(r)),(37)

where uψ(r) = ut is the solution of (22). After substitution of (35) into
(7) we arrive at the system

d

dr
Φψ(r) = ψ′(r)V (Φψ(r)) for r ∈ (0, R), Φψ(R) = x.(38)

Hence, applying the chain rule to (25) and using the velocity ψ′(r)V
due to (38), from Theorem 1 we conclude the following result.

Theorem 2. The objective function (37) is continuously differentiable
in (0, R] with the derivative

P ′(r) = ψ′(r) Π1(uψ(r), uψ(r); Ωψ(r)) for r > 0.(39)

Formula (39) becomes singular at r = 0 due to the presence of ψ′(r).
Below, however, we shall find that Π1(uψ(r), uψ(r); Ωψ(r)) balances this
singularity of ψ′(r) as r → 0. In Lemma 3 we establish an auxiliary
result concerning the limit value of Π1(uψ(0), uψ(0); Ωψ(0)) as r → 0.
Indeed, for any τ the mapping Φτ transforms Ωψ(0) into itself due to
(33). Therefore, from Theorem 1 and Corollary 1 the next result follows
immediately.
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Lemma 3. If Assumptions 1 and 2 are satisfied in the limit domain
Ωψ(0), i.e.,

(15a): u ∈ H(Ωψ(0)) ⇒ u ◦ Φτ ∈ H(Ωψ(0)),

(15b): u ∈ K(Ωψ(0)) ⇒ u ◦ Φτ ∈ K(Ωψ(0)) for all τ ∈ R;

(19a): [Π ◦ Φτ ](u; Ωψ(0)) = Π(u; Ωψ(0)) + τΠ1(u, u; Ωψ(0)) + Resτ (u),

(19b): |Resτ (u)| ≤ a(τ)
(
‖u‖2

H(Ωψ(0))
+ b
)
, 0 ≤ a(τ) = o(|τ |), b ≥ 0,

then it holds that

Π1(uψ(0), uψ(0); Ωψ(0)) = 0.(40)

Now Theorem 2 and Lemma 3 allow us to use (39) in order to describe
topological changes in Ω∞ = Ωψ(0). Therefore, our aim is to study the
limit

lim
r→0

Π(uψ(r); Ωψ(r))− Π(uψ(0); Ωψ(0))

r
:= P ′(0).(41)

Based on Theorem 2 we represent (41) equivalently as

P ′(0) = lim
r→0

1

r

∫ r

0

P ′(τ) dτ = lim
r→0

1

r

∫ r

0

ψ′(τ) Π1(uψ(τ), uψ(τ); Ωψ(τ)) dτ.

(42)

As we observe from Lemma 3, the formal passage to the limit in (42)
is indefinite because of Π1(uψ(r), uψ(r); Ωψ(r)) → 0 and ψ′(r) → −∞ as
r → 0. To clarify this indefiniteness, an expansion of the state variable
uψ(r) with respect to r → 0 is needed. Moreover, a local expansion
is sufficient when the shape derivative is determined locally in Ωψ(r).
Such a localization of shape derivatives on subsets was established in
the structure theorems in [9, 35]. As another example, we mention
the well-known path-independent Cherepanov–Rice integral of energy
representing the shape derivative due to crack propagation; see (55)
in the example below. These considerations motivate the following
assumption.

Assumption 4. For all r ∈ (0, R] there exist subdomains Or ⊂ Ωψ(r)

such that

Π1(uψ(r), uψ(r); Ωψ(r)) = Π1(uψ(r), uψ(r);Or),(43a)

Π1(uψ(0), uψ(0); Ωψ(0)) = Π1(uψ(0), uψ(0);Or).(43b)

Based on Assumption 4, in the following proposition we state suffi-
cient conditions on the solution to obtain the limit in (42).
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Proposition 1. If the conditions

(i) ‖uψ(r) − uψ(0)‖H(Ωψ(r)) → 0 as r → 0,(44a)

(ii) 0 ≤ −ψ′(r)‖uψ(r) − uψ(0)‖H(Or) ≤ const(44b)

hold, then the mapping r 7→ P (r) in (37) obeys the expansion:

P (r) = P (0) +Q(r) +O
(
−
∫ r

0

dτ

ψ′(τ)

)
, where −

∫ r

0

dτ

ψ′(τ)
= o(r),

(45a)

Q(r) :=

∫ r

0

Π1
(
2uψ(0), ψ′(τ)(uψ(τ) − uψ(0));Oτ

)
dτ = O(r).(45b)

If the mapping r 7→ P ′(r) defined in (39) is monotone, then the limit
in (42) exists and it is given by

P ′(0) = lim
r→0

r−1Q(r).(46)

Proof. The relations (39) and (43a) imply that

P (r + s) = P (r) +

∫ r+s

r

ψ′(τ)Π1(uψ(τ), uψ(τ);Oτ ) dτ.(47)

We represent uψ(τ) = uψ(0) + (uψ(τ)−uψ(0)) in (47). Applying Lemma 3
and (43b) yields the following decomposition for small τ

ψ′(τ)Π1(uψ(τ), uψ(τ);Oτ ) = Π1
(
2uψ(0), ψ′(τ)(uψ(τ) − uψ(0));Oτ

)
+ Π1

(
uψ(τ) − uψ(0), ψ′(τ)(uψ(τ) − uψ(0));Oτ

)
,

(48a)

Π1
(
uψ(τ) − uψ(0), ψ′(τ)(uψ(τ) − uψ(0));Oτ

)
= O

(
−(ψ′(τ))−1

)
,

where − (ψ′(τ))−1 → 0 as τ → 0.
(48b)

Here the estimate (48b) is provided by (20) and (44b). Using (48),
from (47) we obtain the expansion

P (r + s) = P (r) +

∫ r+s

r

Π1
(
2uψ(0), ψ′(τ)(uψ(τ) − uψ(0));Or

)
dτ

+O
(
−
∫ s

0

dτ

ψ′(τ)

)
.

(49)

The convergence P (r) → P (0) as r → 0 in (49) is ensured by the
condition (44a). From (28) with t + τ = ψ(r + s) and t = ψ(s), thus
τ = rψ′(s) + o(r), we infer

P (r + s) = Π(uψ(r+s); Ωψ(r+s)) = [Π ◦ Φτ ](u
ψ(r+s) ◦ Φτ ; Ωψ(s))

= Π(uψ(r+s) ◦ Φτ ; Ωψ(s)) +O(r)→ Π(uψ(s); Ωψ(s)) = P (s) as r → 0.
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Therefore, passing r → 0 in (49), applying the Lebesgue dominated
convergence theorem and changing the notation of s to r yields (45).

The existence of the unique limit in (46) is not guaranteed when
the sequence P ′(r) admits oscillations as r → 0. Indeed, the uniform
bound in (44b) implies that particular limits {Q} = limrn→0 P

′(rn),
|Q| < ∞, exist on subsequences rn only. Nevertheless, if r 7→ P ′(r) is
monotone, then limr→0 P

′(r) = P ′(0) is unique, and it coincides with
the limit in (46) with Q from (45). �

We conclude Proposition 1 with remarks on the conditions in (44).
Note that (44a) yields the necessary and sufficient condition for exis-
tence of P ′(0). The convergence in (44a) can be justified by variational
methods. In contrast, to obtain the sufficient condition (44b) in the
subdomain Or one needs asymptotics of the solution. In practical ap-
plications, the asymptotic analysis usually utilizes Fourier series. Its
justification in varying domains, however, needs a Saint–Venant prin-
ciple; see the related topic in [4, 22]. In the next section we give an
example illustrating the expansion of the solution which provides P ′(0)
in Proposition 1.

5. Example: circular hole at the tip of a crack

We present an example of a topological change produced by the
creation of a circular hole in a reference domain, which is non-smooth
due to the presence of a crack inside. Our consideration follows the
structure of Sections 2–4.

5.1. Kinematic description. We start with a kinematic description.
In view of Section 1, let the reference domain Ω in R2 contain a rec-
tilinear crack ΓC of length l > 0 with one end tip located at the trial
point x0. For convenience of notation, we set the origin 0 at x0 and
associate a Cartesian coordinate system (x1, x2) such that ΓC = {x :
x1 ∈ [−l, 0], x2 = 0}. Let the boundary ∂Ω of Ω consist of a simple
contour Γ (referred to as the external boundary) and the two crack
faces Γ+

C and Γ−C . We assume that Γ is a Lipschitz curve.
We take the generic defect D in the form of a unit disk. For further

use we denote by Br the open disk of radius r > 0 centered at 0 (the
trial point). There exists R ∈ (0, l) sufficiently small such that, for all
r ∈ (0, R), the disks Br represent defects D(r) of the size r in Ω. Then

the evolving domains Ω(r) = Ω \ B(r) are well-defined. Further we
denote by n the unit normal vector at the boundary ∂Ω(r) consisting
of Γ, ∂Br, and Γ±C \Br.
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We choose the defect velocity V(x) = −x, for x ∈ BR, and the
kinematic velocity V (y) := −yχ(y) with a smooth cut-off function χ,
with χ : R2 7→ [0, 1] such that χ(y) = 1 for y ∈ BR/2, and χ(y) = 0
for y ∈ R2 \ BR. Introducing the kinematic parameter t ∈ [0,∞] by
t = ψ(r) with ψ(r) := − ln(r/R) yields the kinematic description of
Section 2 of the evolving domains Ωt = Ωψ(r) = Ω(r). In this section we
rely on the unified notation Ωψ(r) for the domain with the fixed crack
ΓC and the diminishing defect (disk Br) of size r ∈ [0, R] at the crack
tip.

5.2. Problem formulation. We consider the following boundary value
problem stated in Ωψ(r): For all r ∈ [0, R] find uψ(r) satisfying

(50a) −∆uψ(r) = F in Ωψ(r),

(50b) uψ(r) = 0 on Γ,

(50c)
∂uψ(r)

∂n
= 0 on ∂Br ∪ (Γ±C \Br).

Here, F ∈ C1(Ω) is given, and we assume F = 0 in BR/2. For r = 0
(50) turns into the following problem stated in the reference domain
Ωψ(0): Find uψ(0) satisfying

(51a) −∆uψ(0) = F in Ωψ(0),

(51b) uψ(0) = 0 on Γ,

(51c)
∂uψ(0)

∂n
= 0 on Γ±C .

For the feasible set

K(Ωψ(r)) := {u ∈ W 1,2(Ωψ(r)) : u = 0 on Γ},

the weak solution uψ(r) ∈ K(Ωψ(r)) of (50) is guaranteed to exist
uniquely as the minimizer of the energy functional

(52) Π(u; Ωψ(r)) :=

∫
Ωψ(r)

(1

2
|∇u|2 − Fu

)
dy

over u ∈ W 1,2(Ωψ(r)) subject to u ∈ K(Ωψ(r)).
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5.3. Shape derivative and its structure. The optimal value (de-
fect) function is given by

P : [0, R] 7→ R, r 7→ Π(uψ(r); Ωψ(r)) =

∫
Ωψ(r)

(1

2
|∇uψ(r)|2−Fuψ(r)

)
dy.

From Theorems 1 and Theorems 2, for r ∈ (0, R) the existence of the
limit

lim
τ→0

Π(uψ(r+τ); Ωψ(r+τ))− Π(uψ(r); Ωψ(r))

τ

= −1

r
Π1(uψ(r), uψ(r); Ωψ(r)) =: P ′(r)

(53)

with −1/r = ψ′(r) follows. Using the calculation of Example 2, from
(21) we infer that

Π1(u, v; Ωψ(r))

=

∫
Ωψ(r)

{1

2
(∇u)T

(
div(V )I − ∂V

∂y
− ∂V

∂y

T)
∇v − div(V F )v

}
dy.

(54)

Note that V (y) = −y for y ∈ Bρ, ρ ∈ (0, R/2), in view of our con-

struction of the velocity. This yields div(V )I − ∂V
∂y
− ∂V

∂y

T
= 0 in Bρ.

Moreover, F = 0 in Bρ, and V = 0 in Ω \ BR. Hence, the domain of
integration in (54) reduces to the annulus Or := (BR \ Br) \ ΓC , and
Assumption 4 of the structure of the shape derivative holds true in this
example. Thus, we obtain

Π1(uψ(r), uψ(r);Or) =

∫
Or

{1

2
(∇uψ(r))T

(
div(V )I − ∂V

∂y
− ∂V

∂y

T)
∇uψ(r)

− div(V F )uψ(r)
}
dy.

The solution of (50) enjoys extra W 2,2-smoothness away from the crack
tips. Therefore, integration by parts yields

Π1(uψ(r), uψ(r);Or) =

∫
Or

(
∆uψ(r) + F

)(
V T∇uψ(r)

)
dy

+

∫
∂Br

{1

2
(V Tn)|∇uψ(r)|2 −

(
V T∇uψ(r)

)(
nT∇uψ(r)

)}
dSy.

Using equation (50a), n = −y/|y|, V = −y and |y| = r at ∂Br, we
obtain

Π1(uψ(r), uψ(r);Or) = r

∫
∂Br

{1

2
|∇uψ(r)|2 −

(∂uψ(r)

∂n

)2}
dSy.(55)
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In fracture mechanics, (55) is well known as the Cherepanov–Rice in-
tegral. We note that the latter term in (55) is zero due to (50c).

5.4. Expansion of solutions. To calculate the integral in (55) we
construct a local representation of the solution uψ(r) in Or. For this
aim we follow the method of matched asymptotic expansions of [16, 28].

We introduce a polar coordinate system ρ = |y|, θ ∈ (−π, π) at 0
such that the crack faces Γ±C correspond to θ = ±π. For the solution
uψ(0) of the reference problem (51), its local asymptotic expansion is
known, and it is given by the Fourier series in BR \ ΓC as

uψ(0)(y) = uψ(0)(0) + c1ρ
1
2 sin

θ

2
+ a1ρ cos θ + b1ρ sin θ + U, U = O(ρ

3
2 ).

(56)

The unique coefficients c1, a1, b1 ∈ R in (56) can be calculated using
the weight functions of the respective order. For fixed r ∈ (0, R/2), let
us denote the difference of solutions by wr := uψ(r)−uψ(0). Due to (50)
and (51), the function wr ∈ K(Ωψ(r)) satisfies the following equations:

(57a) −∆wr(y) = 0 for y ∈ Ωψ(r),

(57b) wr(y) = 0 for y ∈ Γ,
∂wr

∂n
(y) = 0 for y ∈ Γ±C ,

(57c)
∂wr

∂n
(y) = −∂u

ψ(0)

∂n
(y) for y ∈ ∂Br.

Rewriting (57) in the stretched variable ξ := y/r and passing |ξ| → ∞
we arrive at the second limit problem in the exterior domain: Find W r

satisfying

(58a) −∆W r(ξ) = 0 for ξ ∈ (R2 \B1) \ Γ∞,

(58b)
∂W r

∂n
(ξ) = 0 for ξ ∈ (R2 \B1) ∩ Γ±∞,

(58c)
∂W r

∂n
(ξ) = −r∂u

ψ(0)

∂n
(rξ) for ξ ∈ ∂B1,

with the semi-infinite crack Γ∞ := {(ξ1, ξ2) ∈ R2 : ξ1 ≤ 0, ξ2 = 0}.
From (56) we have

∫
∂B1

∂uψ(0)/∂n dSξ = 0 which implies the solvabil-

ity condition of the exterior Neumann problem (58) in the weighted
Sobolev space

X := {µv,∇v ∈ L2((R2 \B1) \ Γ∞)}, µ ∼
(
|ξ| ln |ξ|

)−1
as |ξ| → ∞.
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The weight µ is due to the Poincaré inequality in exterior domains.
Excluding constant values, there exists the unique solution W r ∈ X \R
to (58) yielding the Fourier series in (R2 \B1) \ Γ∞ as

W r(ξ) = cr1|ξ|−
1
2 sin

θ

2
+
ar1
|ξ|

cos θ +
br1
|ξ|

sin θ + V (ξ), V = O(|ξ|−
3
2 ).

(59)

Substituting expansions (56) and (59) into (58c) we determine the un-
known coefficients cr1, a

r
1, b

r
1 from the orthogonal decomposition

∂W r

∂n
(ξ)
∣∣∣
|ξ|=1

=
cr1
2

sin
θ

2
+ ar1 cos θ + br1 sin θ +

∂V

∂n
(ξ)
∣∣∣
|ξ|=1

= −r∂u
ψ(0)

∂n
(rξ)

∣∣∣
|ξ|=1

=
c1

2
r

1
2 sin

θ

2
+ a1 cos θ + b1 sin θ − r∂U

∂n
(rξ)

∣∣∣
|ξ|=1

.

Henceforth, cr1 = r
1
2 c1, ar1 = ra1, br1 = rb1. Using the inverse substitu-

tion y = rξ in (59) we get in (R2 \Br) \ Γ∞ the Fourier series

W r
(y
r

)
= rc1ρ

− 1
2 sin

θ

2
+ r2a1ρ

−1 cos θ + r2b1ρ
−1 sin θ + V 1

with V 1(y) := V (y/r) = O
(
r3ρ−

3
2

)
.

(60)

The asymptotic formulas yield the expansion uψ(r) = uψ(0) + W r + Q
in Or, where W r = O(r

1
2 ) in Ωψ(r) due to W r = O(r

1
2 ) at ∂Br. The

residual Q := wr(y)−W r(y/r) ∈ H(Ωψ(r)) satisfies the equations

(61a) −∆Q(y) = 0 for y ∈ Ωψ(r),

(61b) Q(y) = −W r
(y
r

)
for y ∈ Γ,

∂Q

∂n
(y) = 0 for y ∈ Γ±C ,

(61c)
∂Q

∂n
(y) = 0 for y ∈ ∂Br.

Since W r(y/r) = O(|c1|r + r2) at Γ, from (61) we can estimate Q =
O(|c1|r + r2) in Ωψ(r). Thus, (60) results in the local asymptotic ex-

pansion of the solution uψ(r) of (50) in Or given by the expression

uψ(r) = uψ(0) + rc1ρ
− 1

2 sin
θ

2
+ r2a1ρ

−1 cos θ + r2b1ρ
−1 sin θ +Q+ V 1.

(62)

We note that the residual Q + V 1 does not impact the formulas of
topological derivatives derived in the following section.
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5.5. Topological derivatives. Now we are in a position to calculate
the integral in (55), which we rewrite in polar coordinates as

Π1(uψ(r), uψ(r);Or) =
1

2

∫ π

−π

{(∂uψ(r)

∂θ

)2

− r2
(∂uψ(r)

∂ρ

)2}∣∣∣
ρ=r

dθ.(63)

We remind that ∂uψ(r)/∂ρ = 0 at ρ = r according to (50c). Inserting
the expansions (56) and (62) in (63), some technical calculations lead
to

Π1(uψ(r), uψ(r);Or) =
π

2
c2

1r + 2π(a2
1 + b2

1)r2 +O
(
|c1|(r

3
2 + r2) + r3

)
,

(64)

with the terms of order O
(
|c1|(r

3
2 + r2)

)
due to Q in (62). By using

(64), from (53) we obtain the expansion of the shape derivative

(65) P ′(r) = −π
2
c2

1 − 2π(a2
1 + b2

1)r +O
(
|c1|(r

1
2 + r) + r2

)
.

Passing with r → 0 in (65) yields the existence of the topological
derivative

(66) P ′(0) = −π
2
c2

1.

The coefficient c1 in (66) is uniquely defined. It characterizes the lead-
ing singularity of the reference solution uψ(0) near the trial point 0, and
it is called the stress intensity factor in fracture mechanics.

Now we justify the assertion of Proposition 1. Indeed, similar to (63)
some manipulations yield

Π1(2uψ(0), ψ′(r)wr;Or) = −1

r

∫ π

−π

{∂uψ(0)

∂θ

∂wr

∂θ
− r2 ∂u

ψ(0)

∂ρ

∂wr

∂ρ

}∣∣∣
ρ=r

dθ

= −π
2
c2

1 − 8πc1b1r
1
2 − 2π(a2

1 + b2
1)r +O

(
|c1|(r

1
2 + r) + r2

)
with ψ′(r) = −1/r. Therefore, in the notation of (45), we have Q(r) =

−π
2
c2

1r + O(r
3
2 ), and P ′(0) = limr→0Q(r)/r coincides with (66). We

conclude that Proposition 1 becomes useful when an exact analytic
expansion of shape derivatives like (64) is not available directly.

The knowledge of the exact analytic expansion (64) provides us with
the following results. Using P (r)− P (0) =

∫ r
0
P ′(τ) dτ , from (65) one

finds the asymptotic expansion of the defect function P with respect
to r → 0 as

(67) P (r) = P (0)− π

2
c2

1r − π(a2
1 + b2

1)r2 +O
(
|c1|(r

3
2 + r2) + r3

)
.

Finally, we consider the specific case when the solution of the refer-
ence problem (51) enjoys extra smoothness. Let uψ(0) ∈ W 2,2(BR\ΓC),
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which exceeds the variational W 1,2-smoothness of the solution justified
by the minimization problem. In this case, c1 = 0 in (56) and one
obtains

uψ(0)(y) = uψ(0)(0) + a1ρ cos θ + b1ρ sin θ +O(ρ
3
2 ) in BR \ ΓC .

Differentiating this equality and then passing with ρ→ 0 ensures that
(a1, b1)T = ∇uψ(0)(0). Therefore, (56) turns into

uψ(0)(y) = uψ(0)(0) + y>∇uψ(0)(0) +O(|y|
3
2 ) in BR \ ΓC ,(68)

and, similarly, (62) reads

uψ(r)(y) = uψ(0)(y) +
r2

|y|2
(
y>∇uψ(0)(0)

)
+O

(
r3|y|−

3
2

)
in Or.(69)

If c1 = 0, from (67) we infer the second order expansion

(70) P (r) = P (0)− πr2|∇uψ(0)(0)|2 +O(r3).

The term −πr2|∇uψ(0)(0)|2 in (70) implies the topological derivative
presented in [31, 34].

Conclusion

Based on these findings we conclude the following. While the “topo-
logical derivative” is suitable for the description of changes of topology
restricted to smooth data, our generalization of the concept within sin-
gular perturbations has a rather broad scope of generally non-smooth
data subject to topological changes.

Acknowledgments

The research results were obtained with the support of the Aus-
trian Science Fund (FWF) in the framework of the research project
P21411-N13, the START-program Y305 ”Interfaces and Free Bound-
aries” and the SFB F32 ”Mathematical Optimization and Applica-
tions in Biomedical Sciences”; the DGF-Research Center MATHEON
in Berlin (subproject C28) and DFG SPP 1253 ”Optimization with
PDE constraints”; the Russian Foundation for Basic Research (project
10-01-00054) and the Siberian Branch of the Russian Academy of Sci-
ences (project N 90).



FROM SHAPE VARIATION TO TOPOLOGY CHANGES 25

References

[1] G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity
analysis and a level-set method, J. Comput. Phys. 194 (2004), pp. 363–393.

[2] S. Amstutz, I. Horchani and M. Masmoudi, Crack detection by the topological
gradient method, Control Cybernet. 34 (2005), pp. 81–101.

[3] I.I. Argatov, V.A. Kovtunenko A kinking crack: generalization of the concept
of the topological derivative, Bulletin Australian Inst. High Energetic Materials
1 (2010), 124–130.

[4] C. Barbarosie and A.-M. Toader, Saint-Venant’s principle and its connections
to shape and topology optimization, Z. Angew. Math. Mech. 88 (2008), pp. 23–
32.

[5] J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,
Springer, New York, 2000.
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