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Constraint-reduction schemes have been proposed for the solution by means of interior-point methods
of linear programs with many more inequality constraints than variables in the standard dual form. Such
schemes have been shown to be provably convergent and highly efficient in practice. A critical requirement
of these schemes is the availability of an initial dual-feasible point.

In this paper, building on a general framework (which encompasses several previously proposed
approaches) for dual-feasible constraint-reduced interior-point optimization, for which we prove con-
vergence to a single point of the sequence of dual iterates, we propose a framework for ‘infeasible’
constraint-reduced interior-point optimization. Central to this framework is an exact (�1 or �∞) penalty
function scheme endowed with a mechanism for iterative adjustment of the penalty parameter, which aims
at yielding, after a finite number of iterations, a value that guarantees feasibility (for the original problem) of
the minimizers. Finiteness of the sequence of penalty parameter adjustments is proved under mild assump-
tions for all algorithms that fit within the framework, including ‘infeasible’ extensions of a ‘dual’ algorithm
proposed in the early 1990s (Dantzig and Ye, A build-up interior-point method for linear programming:
Affine scaling form, Working paper, Department of Management Science, University of Iowa, 1991) and of
two recently proposed ‘primal–dual’ algorithms (Tits, Absil, and Woessner, Constraint reduction for linear
programs with many inequality constraints, SIAM J. Optim. 17 (2006), pp. 119–146; Winternitz, Nicholls,
Tits, and O’Leary, A constraint-reduced variant of Mehrotra’s predictor–corrector algorithm, Comput.
Optim. Appl. (published on-line as of January 2011), DOI: 10.1007/s10589-010-9389-4). The last one, a
constraint-reduced variant of Mehrotra’s Predictor–Corrector algorithm, is then more specifically consid-
ered: further convergence results are proved, and numerical results are reported that demonstrate that the
approach is of practical interest.

Keywords: constraint reduction; infeasible initial points; interior-point methods; linear programming;
many constraints

AMS Subject Classification: 90C51; 90C05; 90C06; 90C34; 65K05

1. Introduction

Consider a linear program (LP) in standard primal form,

min cTx s.t. Ax = b, x ≥ 0 (P)
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2 M.Y. He and A.L. Tits

and its associated standard dual problem

max bTy s.t. ATy ≤ c, (D)

where matrix A ∈ R
m×n has full row rank. When n � m, i.e. (D) involves many more constraints

than variables, most constraints are inactive at the solution, and hence have no bearing on the
solution. Such situations are detrimental to classical interior-point methods (IPMs), whose com-
putational cost per iteration is typically proportional to n. Starting in the early 1990s, this has
prompted a number of researchers to propose, analyse and test constraint-reduced versions of
these methods. (See, e.g. [5,9,21,23,24]. The term ‘constraint-reduced’ was coined in [21].)

To the best of our knowledge, all existing constraint-reduced IPMs that are supported by analysis
were obtained by grafting a constraint-reduction scheme onto a dual-feasible method. Accord-
ingly, they all require a dual-feasible initial point. This is an important limitation because such
point is often unavailable in practice, or may be available but poorly centred, resulting in slow
progress of the algorithm. Attempts at combining constraint-reduction schemes with infeasible
IPMs were made in [14,21] with Mehrotra’s Predictor–Corrector (MPC) method [13], and in [14]
with an algorithm from [16], with some numerical success; but no supporting analysis was pro-
vided, and indeed, it appears unlikely that these methods do enjoy guaranteed global convergence.
In this paper, we show how the need to allow for infeasible initial points can be addressed by
making use of an �1 or �∞ exact penalty function, with automatic adjustment of the penalty
parameter. In related work on constraint-reduced IPMs for quadratic programming, the algorithm
proposed in [11] does allow for initial infeasible points, handling them by means of an �1 exact
penalty function; a convergence analysis is provided, but it assumes the a priori knowledge of an
appropriate penalty parameter value; it does not include a scheme for determining such value.

Exact �1/�∞ penalty functions have been used in connection with IPMs in nonlinear program-
ming [1,3,22], in particular on problems with complementarity constraints [4,12,19], and in at
least one instance in linear programming [2]. The dearth of instances of use of penalty functions
in linear programming is probably due to the availability of powerful algorithms, both of the
simplex variety and of the interior-point variety, that accommodate infeasible initial points in a
natural fashion, even guaranteeing polynomial complexity in the case of interior point, e.g. [15,16].
Combining such (possibly polynomially convergent) infeasible IPMs with constraint-reduction
schemes has so far proved elusive though, and the use of exact penalty functions is a natural
avenue to consider.

In this paper, as a first step, we consider a general framework (rIPM) for a class of dual-feasible
constraint-reduced IPMs: those for which the dual objective monotonically increases. This frame-
work encompasses, in particular, the algorithms proposed in [5,21,24]. We prove convergence to a
single point of the sequence of dual iterates for all methods that fit within the framework. Second,
as the main contribution of the paper, we expand this framework to allow for dual-infeasible initial
points in the case of primal–dual interior-point methods (PDIPs); we dub the resulting framework
IrPDIP. The expansion features an exact (�1 or �∞) penalty function and includes an iterative
penalty adjustment scheme. The scheme is taken from [22], adapted to the linear-programming
context, and augmented so as to enforce boundedness of the optimization iterates; in [22] (where
no assumption of linearity or even convexity is made), such boundedness was merely assumed.
The scheme used in [2] may be an alternative possibility, though we could not ascertain that
boundedness of the sequence of penalty parameters would then be guaranteed. Under mini-
mal assumptions (strict primal–dual feasibility), it is proved that the penalty parameter value is
increased at most finitely many times, thus guaranteeing that the sequence of such values remains
bounded. The proof departs significantly from that in [22], where strong non-degeneracy assump-
tions are invoked. Finally, we propose iteration IrMPC (infeasible, constraint-reduced, MPC),
obtained by fitting into IrPDIP the dual-feasible constraint-reduced variant rMPC� proposed and
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Optimization Methods & Software 3

analysed in [24]. We prove convergence to an optimal solution, starting from an arbitrary, possibly
infeasible, initial point, and report promising numerical results.

The remainder of the paper is organized as follows. In Section 2, rIPM is laid out and analysed.
In Section 3, rIPM is extended, by incorporating an exact penalty function, to allow for infeasible
initial points in the case of constraint-reduced primal–dual interior point, producing IrPDIP,
which is then analysed. In Section 4, IrPDIP is specialized to the case of algorithm rMPC� of [24]
(a constraint-reduced variant of the MPC algorithm); the resulting algorithm is then analysed.
Numerical results are reported in Section 5 and conclusions are given in Section 6.

The notation used in the paper is mostly standard. Absolute value, comparison and ‘max’ are
meant componentwise. By e, we denote the vector of all ones with size by context. We adopt
the Matlab-inspired notation [v1;v2;· · · ;vp] to denote a (vertical) concatenation of vectors (or
matrices) vi, 1 ≤ i ≤ p. We denote a certain subset of n: ={1, 2, . . . , n} by Q and its complement
by Q̄ := n\Q. Given an n-vector x, xi is its ith element, and xQ is a subvector of x with only those
elements of x that are indexed in set Q. We denote by AQ a submatrix of A with only those columns
of A that are indexed in set Q. Given a diagonal matrix X: = diag(x), we let XQ: = diag(xQ). Except
when specified, the norm ‖ · ‖ is arbitrary. The feasible set of the dual (D) is denoted by F , i.e.

F := {y ∈ R
m : ATy ≤ c}.

The active set for (D) at point y (with y not necessarily in F) is denoted by I(y), i.e.

I (y) := {i : (ai)Ty = ci}.

2. A framework for dual-feasible constraint-reduced IPMs

Many IPMs for the solution of (P)–(D), including the current ‘champion’, MPC [13], make use
of an affine scaling direction �ya, solution of

ADAT�ya = b (1)

for some diagonal positive-definite matrix D, usually updated from iteration to iteration. For such
methods, when n � m, the main computational cost at each iteration resides in forming the matrix

ADAT =
n∑

i=1

diai(ai)T, (2)

where di is the ith diagonal entry of D and ai the ith column of A. Forming ADAT takes up roughly
nm2 multiplications and as many additions. If the sum on the right-hand side of (2) is reduced
by dropping all terms except those associated with a certain small working index set Q, the cost
of forming it reduces from nm2 to roughly |Q|m2. Conceivably, the cardinality |Q| of Q could be
as small as m in nondegenerate situations, leading to a potential computational speedup factor of
n/m. Ideas along these lines are explored in [5,9,21,23,24] where schemes are proposed that enjoy
strong theoretical properties and work well in practice. (Interestingly, in many cases, it has been
observed that using an astutely selected small working set does not significantly increase the total
number of iterations required to solve the problem, and sometimes even reduces it.) Several of
these methods [5,21,24] fit within the following general iteration framework.

Iteration rIPM (constraint-reduced interior-point method)

Parameters: θ ∈ (0, 1) and τ > 0.
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4 M.Y. He and A.L. Tits

Data:y ∈ R
m such that s: = c −ATy > 0; Q ⊆ n such that AQ has full row rank; D ∈ R

|Q|×|Q|,
diagonal and positive definite.
Step 1: Computation of the dual search direction.
(i) Let �ya solve

AQD(AQ)T�ya = b. (3)

(ii) Select �y to satisfy

bT�y ≥ θbT�ya, ‖�y‖ ≤ τ‖�ya‖. (4)

Step 2: Updates
(i) Update the dual variables by choosing a stepsize t ∈ (0, 1] such that

s+ := c − ATy+ > 0,

where

y+ := y + t�y. (5)

(ii) Pick Q+⊆ n such that AQ+ has full row rank.
(iii) Select D+ ∈ R

|Q+|×|Q+|, diagonal and positive definite.

Since AQ has full row rank, the linear system (3) has a unique solution. Hence Iteration rIPM is
well defined and, since s+ > 0, it can be repeated indefinitely to generate infinite sequences. We
attach subscript k to denote the kth iterate. Since sk > 0 for all k, it also follows from (3) that

bT�ya,k > 0, (6)

and further from (4) and (5) that the sequence {bTyk} is increasing.
An important property of Iteration rIPM, established in Proposition 2.2, is that if the dual-

feasible sequence {yk} remains bounded, then it must converge, and if it is unbounded, then
bTyk → +∞. The proof makes use of the following lemma, a direct consequence of results
in [18] (see also [17]).

Lemma 2.1 Let G be a full row rank matrix and b be in the range of G. Then, (i) there exists
φ > 0 (depending only on G and b) such that, given any positive-definite diagonal matrix D, the
solution �y to

GDGT�y = b,

satisfies

‖�y‖ ≤ φbT�y;
and (ii) if a sequence {yk} is such that {bTyk} is bounded and, for some ω > 0, satisfies

‖yk+1 − yk‖ ≤ ωbT(yk+1 − yk) ∀k, (7)

then {yk} converges.
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Optimization Methods & Software 5

Proof The first claim immediately follows from Theorem 5 in [18], noting (as in [17], Section 4)
that, for some ζ > 0, ζ�y solves

max{bTu | uTGDGTu ≤ 1}.

(See also Theorem 7 in [17].) The second claim is proved using the central argument of the proof
of Theorem 9 in [18]:

N−1∑
k=0

‖yk+1 − yk‖ ≤ ω

N−1∑
k=0

bT(yk+1 − yk) = ωbT(yN − y0) ≤ 2ωv ∀N > 0,

where v is a bound on {|bTyk|}, implying that {yk} is Cauchy, and thus converges. (See also
Theorem 9 in [17].) �

Proposition 2.2 Suppose (D) is strictly feasible. Then, if {yk} generated by Iteration rIPM is
bounded, then yk → y∗ for some y∗ ∈ F, and if it is not, then bTyk → ∞.

Proof We first show that {yk} satisfies (7) for some ω > 0. In view of (5), it suffices to show that,
for some ω > 0,1

‖�yk‖ ≤ ωbT�yk ∀k. (8)

Now, since �ya, k solves (3) and since AQk has full row rank, and Qk ⊆ n, a finite set, it follows
from Lemma 2.1 (i) that, for some φ > 0,

‖�ya,k‖ ≤ φbT�ya,k ∀k.

With this in hand, we obtain, using (4),

‖�yk‖ ≤ τ‖�ya,k‖ ≤ τφbT�ya,k ≤ τ
φ

θ
bT�yk ∀k,

so (8) holds with ω: = τφ/θ . Hence (7) holds (with the same ω).
To complete the proof, first suppose that {yk} is bounded. Then so is {bTyk} and, in view of

Lemma 2.1(ii) and of the fact that {yk} is feasible, we have yk → y∗, for some y∗ ∈ F . On the other
hand, if {yk} is unbounded, then {bTyk} is also unbounded (since, in view of Lemma 2.1(ii), having
{bTyk} bounded together with (7) would lead to the contradiction that the unbounded sequence
{yk} converges). Since {bTyk} is nondecreasing, the claim follows. �

The ‘build-up’ algorithm in [5], and algorithms rPDAS in [21] and rMPC� in [24], all fit within
the rIPM framework. In [5], D is diag(sQ)−2, and in rPDAS and rMPC�, D is diag((xi/si)i∈Q). In [5]
and rPDAS, �y is �ya, and in rMPC�, �y satisfies (4) with τ = 1 +ψ , where ψ > 0 is a parameter
of rMPC�. Hence, Proposition 2.2 provides a simpler proof for the convergence of dual sequence
{yk} of [5] than that used in proving Theorem 3 of that paper; it strengthens the convergence result
for rPDAS (Theorem 12 in [21]) by establishing convergence of the dual sequence to a single
optimal point; and it is used in [24]. Proposition 2.2 is also used in the next section, in the analysis
of the expanded framework IrPDIP (see Proposition 3.5).
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6 M.Y. He and A.L. Tits

3. A framework for infeasible constraint-reduced PDIPs

3.1 Basic ideas and algorithm statement

The primal–dual affine-scaling direction for dual-feasible constraint-reduced problem

max bTy

s.t. (AQ)Ty ≤ cQ

is the solution (�xQ, �ya, �sQ) (when it exists) to the linear system

⎡
⎣ 0 (AQ)T I

AQ 0 0
SQ 0 XQ

⎤
⎦

⎡
⎣�xQ

�ya

�sQ

⎤
⎦ =

⎡
⎣ 0

b − AQxQ

−XQsQ

⎤
⎦ , (9)

where S: = diag(s) and X: = diag(x). Gaussian elimination of �xQ and �sQ yields (1) with
D: = (SQ)−1XQ.

Previously proposed constraint-reduced IPMs [5,9,21,23,24,26] require a strictly dual-feasible
initial point. In this section, we show how this limitation can be circumvented with the help of an
�1 or �∞ exact penalty function. Specifically, in the �1 case, we consider relaxing (D) with

max
y,z

bTy − ρeTz

s.t. ATy − z ≤ c, z ≥ 0,

(Dρ)

where ρ > 0 is a scalar penalty parameter, with associated ‘primal’

min
x,u

cTx

s.t. Ax = b, x + u = ρe,

x ≥ 0, u ≥ 0.

⎫⎪⎪⎬
⎪⎪⎭ (Pρ)

Strictly feasible initial points for (Dρ) are trivially available, and any of the algorithms just
mentioned can be used to solve this primal–dual pair. It is well known (e.g. Theorem 40 in [6])
that there exists a threshold value ρ∗ such that for any ρ >ρ∗, if (y

ρ∗ , z
ρ∗ ) solves (Dρ), then y

ρ∗
solves (D) and z

ρ∗ = 0. But such ρ∗ is not known a priori.
We propose a scheme inspired from that used in [22] (in a nonlinear optimization con-

text) for iteratively identifying an appropriate value for ρ. While, in contrast with the present
situation, in [22], the penalty scheme is used to eliminate equality constraints, the correspond-
ing transformation does encompass the transformation of (D) into (Dρ): simply consider the
intermediate problem

max
y,z

bTy

s.t. ATy − z ≤ c, z = 0.

A key difference between [22] and the present context however is that, unlike that of [22] (see
Lemma 4.1 and Proposition 4.2 in that paper), our scheme requires no a priori assumption on the
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Optimization Methods & Software 7

boundedness of the sequences of iterates (yk in our case, xk in [22]). As seen from the toy example

max y

s.t. y ≤ 0, 2y ≤ 2,
(10)

when too small a value of ρ is used, such boundedness is not guaranteed. Indeed, the penalized
problem associated to (10) is

max
y,z

y − ρz1 − ρz2

s.t. y − z1 ≤ 0, 2y − z2 ≤ 2, z1 ≥ 0, z2 ≥ 0,

or equivalently,

min{−y + ρ max{0, y} + 2ρ max{0, y − 1}}, (11)

and as seen from Figure 1, when ρ < 1
3 , problem (11) is unbounded, even though problem (10)

is bounded.
In the �1 version of our proposed scheme, the penalty parameter ρ is increased if either

‖z+‖ ≥ γ1
‖z0‖
ρ0

ρ (12)

or

(i) ‖[�ya; �za]‖ ≤ γ2

ρ
, and (ii) x̃Q ≥ −γ3e, and (iii) ũQ �≥ γ4e (13)

is satisfied, where γ i > 0, i = 1, 2, 3, 4 are parameters, z+ is the just computed next value of
z, x̃Q and ũQ (defined in (18) and (19)) are the most recently computed Karush–Kuhn–Tucker
(KKT) multipliers for constraints (AQ)Ty − zQ ≤ cQ and zQ ≥ 0, respectively, and where the factor

Figure 1. The objective function of problem (11) is displayed with different penalty parameter values. When ρ < 1
3 ,

problem (10) is unbounded. When ρ ∈ [ 1
3 , 1), it is bounded but the minimizer y

ρ∗ = 1 is infeasible for (10). When
ρ > ρ∗ = 1, y

ρ∗ = 0 solves (10) as desired.
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8 M.Y. He and A.L. Tits

‖z0‖/ρ0 has been introduced for scaling purposes. Note that these conditions involve both the dual
and primal sets of variables. As we will see though, the resulting algorithm framework IrPDIP is
proved to behave adequately under rather mild restrictions on how primal variables are updated.

Condition (12) is new. It ensures boundedness of {zk} (which is necessary in order for {yk} to be
bounded) whenever {ρk} is bounded; with such condition, the situation just described where {zk}
is unbounded due to {ρk} being too small cannot occur. Condition (13) is adapted from [22] (see
Step 1(ii) in Algorithm A of [22], as well as the discussion preceding the algorithm statement).
Translated to the present context, the intuition is that ρ should be increased if a stationary point2

for (Dρ) is approached (‖[�ya;�za]‖ small) at which not all components of the constraints z ≥ 0
are binding (not all components of ũQ are significantly positive), and no component of x̃Q or ũQ

takes a large negative value, suggesting that the stationary point may not be a dual maximizer.
Two adaptations were in order: first, closeness to a stationary point for (Dρ) is rather related to
the size of ρ‖[�ya;�za]‖; in [22], this makes no difference because the sequence of multiplier
estimates ((x, u) in the present context) is bounded by construction, even when ρ grows without
bound; second, the lower bound on ũQ turns out not to be needed in the present context due to
the special structure of the z ≥ 0 constraints (compared to the general c(x) ≥ 0 in [22]).

Iteration IrPDIP, stated next, amounts to rIPM applied to (Dρ), rather than (D), with ρ updated
as just discussed (Step 2 (iv)), as well as a specific D matrix (primal–dual affine scaling: Step 1(i))
and rather general bounds on how the primal variables x and u should be updated (Step 2 (ii)).

Iteration IrPDIP (infeasible reduced primal–dual interior point)

Parameters: θ ∈ (0, 1), τ > 0, α > 0, χ > 0, σ > 1, γ i > 0, for i = 1, 2, 3, 4.
Data:y ∈ R

m and z ∈ R
n such that z > max{0, ATy − c}; s: = c −ATy + z; x ∈ R

n, u ∈ R
n,

and ρ ∈ R such that x > 0, u > 0, and ρ > 0; Q ⊆ n such that AQ has full row rank.
Step 1: Computation of the search direction.
(i) Let (�xQ, �u, �ya, �za, �sQ) be the primal–dual affine-scaling direction (see (9)) for

problem3

max
y,z

bTy − ρeTz

s.t. (AQ)Ty − zQ ≤ cQ, z ≥ 0.

⎫⎬
⎭ (DQ

ρ )

(ii) Select (�y, �z) to satisfy

bT�y − ρeT�z ≥ θ(bT�ya − ρeT�za), ‖[�y; �z]‖ ≤ τ‖[�ya; �za]‖. (14)

Step 2. Updates.
(i) Update the dual variables by choosing a stepsize t ∈ (0, 1] such that

s+ := c − ATy+ + z+ > 0, z+ > 0, (15)

where

y+ := y + t�y, z+ := z + t�z. (16)

(ii) Select [x+; u+] > 0 to satisfy

‖[x+; u+]‖ ≤ max{‖[x; u]‖, α‖[x̃Q; ũ]‖, χ}, (17)

where

x̃Q := xQ + �xQ, (18)

ũ := u + �u. (19)
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Optimization Methods & Software 9

(iii) Pick Q+ ⊆ n such that AQ+ has full row rank.
(iv) Check the two cases (12) and (13). If either case is satisfied, set

ρ+ := σρ;
otherwise set ρ+: =ρ.

Note that in order to guarantee that direction (�xQ, �u, �ya, �za, �sQ) (see (20)) is well defined,
it is sufficient that AQ have full row rank (see Step 2(iii) in Iteration IrPDIP). Indeed, this makes
[AQ 0; − EQ − I] full row rank, so that the solution (�ya, �za) to (21) is well defined.

3.2 Computational issues

The main computation in Iteration IrPDIP is the calculation of the affine-scaling direction in
Step 1(i). The primal–dual affine-scaling direction (�xQ, �u, �ya, �za, �sQ) for (DQ

ρ ) is obtained
by solving system (derived from (9))⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 (AQ)T −I 0 I

AQ 0 0 0 0 0 0
I I 0 0 0 0 0
0 0 I 0 0 0 0

SQ 0 0 0 0 0 XQ

0 ZQ 0 0 UQ 0 0
0 0 ZQ̄ 0 0 UQ̄ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�xQ

�uQ

�uQ̄

�ya

�zQ
a

�zQ̄
a

�sQ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
b − AQxQ

ρe − xQ − uQ

ρe − uQ̄

−XQsQ

−ZQuQ

−ZQ̄uQ̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where Z: = diag(z) and U: = diag(u). Eliminating (�xQ, �u) and �sQ in system (20), we obtain
the reduced normal system[

AQ 0
−EQ −I

] [
XQ 0
0 U

] [
SQ 0
0 Z

]−1 [
AQ 0

−EQ −I

]T [
�ya

�za

]
=

[
b

−ρe

]
, (21)

�sQ = −(AQ)T�ya + �zQ
a , (22)[

�xQ

�u

]
= −

[
xQ

u

]
−

[
XQ 0
0 U

] [
SQ 0
0 Z

]−1 [
�sQ

�za

]
, (23)

where EQ is a submatrix of the n × n identity matrix consisting of only those columns that are
indexed in set Q. Further eliminating �za, we can reduce (21) to

AQD(Q)(AQ)T�ya = b − AQXQ(SQ)−1(EQ)T(D
(Q)
2 )−1ρe, (24)

D
(Q)
2 �za = −ρe + EQXQ(SQ)−1(AQ)T�ya,

where diagonal positive definite matrices D(Q) and D
(Q)
2 are given by

D(Q) := XQ(SQ)−1 − XQ(SQ)−1(EQ)T(D
(Q)
2 )−1EQXQ(SQ)−1, (25)

D
(Q)
2 := UZ−1 + EQXQ(SQ)−1(EQ)T.

(Since Q is selected in such a way that AQ has full row rank, (24) yields a unique �ya.) By means
of the Sherman–Morrison–Woodbury matrix identity, (25) can be simplified to

D(Q) = (SQ(XQ)−1 + (EQ)TU−1ZEQ)−1 = (SQ(XQ)−1 + ZQ(UQ)−1)−1.

The dominant cost in computing (�xQ, �u, �ya, �za, �sQ) is to solve (21), with cost dominated
by forming the coefficient matrix AQD(Q)(AQ)T of (24). When A is dense, this operation takes
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10 M.Y. He and A.L. Tits

|Q|m2 multiplications. In the case of n � m, this can be much less than nm2. Indeed, the same
speedup factor can be obtained as in the case of the dual-feasible rIPM.

3.3 Convergence analysis

Iteration IrPDIP can be repeated indefinitely, generating an infinite sequence of iterates with the
dual sequence {(yk , zk , sk)} feasible for problem (Dρ). In Section 2, the sole assumption on (P)–(D)
was that A has full row rank. Below, we further selectively assume (strict) feasibility of (P)–(D).

In this section, we show that under mild assumptions the penalty parameter ρ in Iteration
IrPDIP will be increased no more than a finite number of times. First, as a direct application of
(6) transposed to problem (Dρ), and of (14), (�y, �z) is an ascent direction for (Dρ). We state
this as a lemma.

Lemma 3.1 Step 1(i) of IrPDIP is well defined and bT�y −ρeT�z > 0.

In view of (12), a necessary condition for {ρk} to remain bounded is that {zk} be bounded. The
latter does hold, as we show next. A direct consequence is boundedness from above of {bTyk}.

Lemma 3.2 If (P) is feasible, then {zk} is bounded, and {bTyk} is bounded from above.

Proof We first show that {zk} is bounded. If ρk is increased finitely many times to a finite value,
say ρ∗, then condition (12) must fail for k large enough, i.e. ‖zk‖≤γ 1‖z0‖ρ∗/ρ0 for k large
enough, proving the claim. It remains to prove that {zk} is bounded when ρk is increased infinitely
many times, i.e. when ρk → ∞ as k → ∞.

By assumption, (P) has a feasible point, say x0, i.e.

Ax0 = b, x0 ≥ 0. (26)

Since ρk → ∞ as k → ∞, there exists k0 such that

ρk > ‖x0‖∞ ∀k ≥ k0. (27)

Since (yk , zk) is feasible for (Dρ) for all k, we have

ATyk ≤ zk + c ∀k, (28)

zk ≥ 0 ∀k. (29)

Left-multiplying both sides of (28) by (x0)T ≥ 0 and using (26) yields

bTyk ≤ (x0)Tzk + cTx0 ∀k. (30)

Adding ρkeTzk to both sides of (30), we get

(ρke − x0)Tzk ≤ πk + ρke
Tzk ∀k, (31)

where we have defined

πk := cTx0 − bTyk. (32)

In view of (27) and (29), we conclude that zk satisfies

0 ≤ zi
k ≤ πk + ρke

Tzk

ρk − (x0)i
≤ πk + ρke

Tzk

ρk − ‖x0‖∞
=: νk ∀i, ∀k ≥ k0,
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Optimization Methods & Software 11

so that the just introduced sequence {νk} satisfies

‖zk‖∞ ≤ νk ∀k ≥ k0. (33)

Hence, in order to show that {zk} is bounded, it suffices to prove that {νk} is bounded. We show that
νk+1 ≤ νk , ∀k ≥ k0; since in view of (33), νk is nonnegative for all k, this will prove boundedness
of {νk}. To this end, first note that for each k, Lemma 3.1 implies that

bTyk+1 − ρke
Tzk+1 = bTyk − ρke

Tzk + tk(b
T�yk − ρke

T�zk) ≥ bTyk − ρke
Tzk,

where we have used (16). Together with (27), this implies that

νk = πk + ρke
Tzk

ρk − ‖x0‖∞
≥ πk+1 + ρke

Tzk+1

ρk − ‖x0‖∞
∀k ≥ k0. (34)

Since ρk+1 ≥ρk and since

νk+1 = πk+1 + ρk+1e
Tzk+1

ρk+1 − ‖x0‖∞
, (35)

in order to conclude that νk+1 ≤ νk for k ≥ k0, it is sufficient to verify that the function f given by

f (ρ) := πk+1 + ρeTzk+1

ρ − ‖x0‖∞

has a nonpositive derivative f ′(ρ) for all ρ satisfying (27). Now,

πk+1 + ‖x0‖∞eTzk+1 = cTx0 − bTyk+1 + ‖x0‖∞eTzk+1

= (x0)Tc − (x0)TATyk+1 + ‖x0‖∞eTzk+1

≥ −(x0)Tzk+1 + ‖x0‖∞eTzk+1

≥ 0,

where the first equality comes from (32), the second one from (26), the first inequality from (28)
and (26), and the second one from (29). In view of (27), it follows that

f ′(ρ) = −πk+1 + ‖x0‖∞eTzk+1

(ρ − ‖x0‖∞)2
≤ 0.

Hence {zk} is bounded, proving the first claim. It follows immediately from (30) that {bTyk} is
bounded from above, proving the second claim. �

With boundedness of {zk} in hand, the possibility that {ρk} be unbounded will be ruled out by
a contradiction argument. But first, we prove that the primal variables are bounded by a linear
function of ρk .

Lemma 3.3 There exists a constant C > 0 such that

‖[x̃Qk

k ; ũk; xk; uk]‖ ≤ Cρk. (36)
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12 M.Y. He and A.L. Tits

Proof In view of the triangle inequality, it suffices to show that there exist C1 and C2 such that

‖[x̃Qk

k ; ũk]‖ ≤ C1ρk, ‖[xk; uk]‖ ≤ C2ρk. (37)

Substituting (22) into (23), and using (18) and (19), we have

[
x̃

Qk

k

ũk

]
=

[
X

Qk

k (S
Qk

k )−1 0
0 Uk(Zk)

−1

] [
AQk 0

−EQk −I

]T [
�ya,k

�za,k

]
. (38)

Solving (21) for [�ya, k;�za, k] and substituting it into (38) yields[
x̃

Qk

k

ũk

]
= Hk

[
b

−ρke

]
(39)

with

Hk :=
[
X

Qk

k (S
Qk

k )−1 0
0 Uk(Zk)

−1

] [
AQk 0

−EQk −I

]T

×
([

AQk 0
−EQk −I

] [
X

Qk

k (S
Qk

k )−1 0
0 Uk(Zk)

−1

] [
AQk 0

−EQk −I

]T
)−1

.

Because diagonal matrices X
Qk

k , S
Qk

k , Uk and Zk are positive definite for all k, it follows from
Theorem 1 in [20] that the sequence {Hk} is bounded. Therefore, (39) implies that there exist
C′ > 0 and C1 > 0, both independent of k, such that∥∥∥∥

[
x̃

Qk

k

ũk

]∥∥∥∥ ≤ C ′
∥∥∥∥
[

b

−ρke

]∥∥∥∥ ≤ C1ρk ∀k, (40)

proving the first inequality in (37). Now, without loss of generality, suppose

C1 ≥ max{‖[x0; u0]‖, χ}
αρ0

,

where α is a parameter in Iteration IrPDIP, and let C2 ≥αC1. That ‖[xk; uk]‖≤ C2ρk follows by
induction. Indeed, it clearly holds at k = 0, and if ‖[xk; uk]‖≤ C2ρk at some iterate k, then since
{ρk} is nondecreasing, it follows from (17) and (40) that

‖[xk+1; uk+1]‖ ≤ max{C2ρk, αC1ρk, χ} ≤ C2 max{ρk, ρ0} ≤ C2ρk+1. (41)

�

If (P) is feasible, then Lemma 3.2 rules out the possibility that condition (12) is satisfied on
an infinite sequence. Therefore, if, as we will assume by contradiction, ρk → ∞ as k → ∞,
conditions (13) must be satisfied on an infinite subsequence. The next lemma exploits this. In that
lemma and in Proposition 3.5, Kρ denotes the index sequence on which ρk is updated, i.e.

Kρ = {k : ρk+1 > ρk}.

Lemma 3.4 If ρk → ∞ as k → ∞ and (P) is feasible, then {Zkũk} and {SQk

k x̃
Qk

k } are bounded
on Kρ . If in addition (D) is feasible, then zk → 0 as k → ∞, k ∈ Kρ, and if furthermore (P) is
strictly feasible, then {yk} is bounded on Kρ .
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Optimization Methods & Software 13

Proof Since ρk goes to infinity on Kρ and (P) is feasible, Lemma 3.2 implies that condition (12)
is eventually violated, so conditions (13) must be satisfied for k ∈ Kρ large enough. In particular,
there exists k0 such that for all k ≥ k0, k ∈ Kρ ,

‖[�ya,k; �za,k]‖ ≤ γ2

ρk

, (42)

and

x̃
Qk

k ≥ −γ3e. (43)

Since (first block row of (20))

�s
Qk

k = −(AQk )T�ya,k + �z
Qk

a,k,

it follows from (42) that there exists δ > 0 such that

‖�s
Qk

k ‖ ≤ δ

ρk

, k ≥ k0, k ∈ Kρ. (44)

Using Lemma 3.3, equations (42) and (44) and the last three block rows of (20), we obtain

‖Zkũk‖ = ‖Uk�za,k‖ ≤ Cρk · γ2

ρk

= Cγ2, k ≥ k0, k ∈ Kρ (45)

and

‖SQk

k x̃
Qk

k ‖ = ‖XQk

k �s
Qk

k ‖ ≤ Cρk · δ

ρk

= Cδ, k ≥ k0, k ∈ Kρ, (46)

which proves the first claim. Now, without loss of generality, assume that ρk0 > ‖x0‖∞ with x0 a
feasible point of (P), so that

u0
k := ρke − x0 > 0, ∀k ≥ k0. (47)

Then, by our assumption, in the second claim, that (P)–(D) is feasible, there exist y0 and s0 ≥ 0
which, together with x0, satisfy

AQk(x0)Qk + AQ̄k (x0)Q̄k = Ax0 = b,

x0 + u0
k = ρke,

ATy0 + s0 = c.

On the hand other, from the second, third and fourth block rows of (20), and definitions (18), (19)
and (15), we obtain

AQk x̃
Qk

k = b,

(x̃k + ũk)
Qk = ρke, ũ

Q̄k

k = ρke,

ATyk + sk − zk = c. (48)

These two groups of equations yield

⎡
⎣AQk AQ̄k 0 0

I 0 I 0
0 I 0 I

⎤
⎦

⎡
⎢⎢⎣

(x̃k − x0)Qk

−(x0)Q̄k

(ũk − u0
k)

Qk

(ũk − u0
k)

Q̄k

⎤
⎥⎥⎦ =

⎡
⎣0

0
0

⎤
⎦
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14 M.Y. He and A.L. Tits

and

⎡
⎣AQk AQ̄k 0 0

I 0 I 0
0 I 0 I

⎤
⎦

T ⎡
⎣y0 − yk

z
Qk

k

z
Q̄k

k

⎤
⎦ =

⎡
⎢⎢⎢⎣

(sk − s0)Qk

(sk − s0)Q̄k

z
Qk

k

z
Q̄k

k

⎤
⎥⎥⎥⎦ .

It follows that

[(x̃k − x0)Qk ; −(x0)Q̄k ; (ũk − u0
k)] ⊥ [(sk − s0)Qk ; (sk − s0)Q̄k ; zk],

i.e.

(x̃
Qk

k )T(sk − s0)Qk − (x0)T(sk − s0) + (ũk − u0
k)

Tzk = 0. (49)

Hence, for C′ large enough, we obtain

(u0
k)

Tzk + (x0)Tsk = (x0)Ts0 + (x̃
Qk

k )Ts
Qk

k − (x̃
Qk

k )T(s0)Qk + ũT
k zk

≤ (x0)Ts0 + C ′δ + γ3e
Ts0 + C ′γ2 (50)

where the equality comes from the expansion of (49), and the inequality from (46), (43), and (45).
Since u0

k , zk , x0 and sk are nonnegative for k ≥ k0, we obtain

zi
k ≤ (x0)Ts0 + C ′δ + γ3e

Ts0 + C ′γ2

(u0
k)

i
, ∀i, k ≥ k0, k ∈ Kρ.

Since (see (47)) (u0
k)

i → ∞, i ∈ n as k → ∞ on Kρ , this proves that

lim
k→∞,k∈Kρ

zk = 0,

proving the second claim. Finally, if in addition (P) is strictly feasible, we can select x0 > 0, and
(50) yields

si
k ≤ (x0)Ts0 + C ′δ + γ3e

Ts0 + C ′γ2

(x0)i
, ∀i, k ≥ k0, k ∈ Kρ,

proving that {sk} is bounded on Kρ . Boundednesses of {sk} and {zk}, together with equation (48)
and the full-rank property of A, imply that {yk} is bounded on Kρ . �

We are now ready to prove that ρk is increased at most finitely many times. The proof uses the
fact that if (D) has a strictly feasible point, then for all y ∈ F , {ai:i ∈ I(y)} must be a positively
linearly independent set of vectors.

Proposition 3.5 If (P)–(D) is strictly feasible, then ρk is increased at most finitely many times,
i.e. Kρ is finite. Furthermore, {yk} and {zk} converge to some y∗ and z∗.

Proof If the first claim holds, then after finitely many iterations, IrPDIP reduces to rIPM applied
to (Dρ), so the second claim follows by Proposition 2.2. It remains to prove the first claim.
Proceeding by contradiction, suppose Kρ is infinite. Then there exists an infinite index set K ⊆ Kρ

and some Q ⊆ n such that Qk = Q, for all k ∈ K. In view of Lemma 3.2, since K ⊆ Kρ , there
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Optimization Methods & Software 15

must exist k0 > 0 such that conditions (13) are satisfied for k ≥ k0, k ∈ K ; in particular,

x̃
Q
k ≥ −γ3e, k ≥ k0, k ∈ K, (51)

ũ
Q
k �≥ γ4e, k ≥ k0, k ∈ K. (52)

Since limk→∞ ρk = ∞, it follows from (18), (19), the third block row of (20), and (52) that

λk := ‖x̃Q
k ‖∞ = ‖ρke − ũ

Q
k ‖∞ −→ ∞, as k −→ ∞, k ∈ K. (53)

Hence

‖x̂Q
k ‖∞ = 1, k ≥ k0, k ∈ K, (54)

where we have defined

x̂
Q
k := x̃

Q
k

λk

, k ≥ k0, ∀k ∈ K. (55)

(Without loss of generality, we have assumed that λk �= 0, ∀k ≥ k0, k ∈ K.) Now, in view of
Lemma 3.4, we have for certain constant C > 0 large enough,

‖SQ
k x̃

Q
k ‖ ≤ C, ∀k ∈ K, (56)

‖yk‖ ≤ C, ∀k ∈ K, (57)

lim
k→∞ zk = 0, k ∈ K. (58)

Note that by (57) and (54), {yk} and {x̂Q
k } are bounded on K, so in view of (54) and (58), there

exists an infinite index set K ′ ⊆ K such that

x̂
Q
k −→ x̂Q

∗ �= 0, yk −→ y∗, zk −→ z∗ = 0 as k −→ ∞, k ∈ K ′, (59)

for some x̂
Q∗ and some y∗ ∈ F (since z∗ = 0). Dividing by λk and taking the limit on both sides

of (56), we obtain

S
Q
k x̂

Q
k −→ 0 as k −→ ∞, k ∈ K ′,

which implies that

x̂i
∗ = 0, ∀i ∈ Q\I (y∗). (60)

On the other hand, the second block equation in (20) and equation (18) give

AQx̃
Q
k = b ∀k.

Dividing by λk , taking the limit of both sides, and using (60), we obtain∑
i∈I (y∗)∩Q

x̂i
∗a

i = 0. (61)

Now note from (51), (55) and (53) that

x̂Q
∗ = lim

k→∞,k∈K ′
x̃

Q
k

λk

≥ lim
k→∞,k∈K ′

−γ3e

λk

= 0. (62)

Since strict feasibility of (D) implies positive linear independence of vectors {ai : i ∈ I (y∗) ∩
Q, y∗ ∈ F}, it follows from (61) and (62) that

x̂i
∗ = 0, ∀i ∈ I (y∗) ∩ Q.

Together with (60), this implies that

x̂Q
∗ = 0,

which is a contradiction to (59). �
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16 M.Y. He and A.L. Tits

3.4 An �∞ version

Instead of the �1 exact penalty function used in (Pρ)–(Dρ), we can use an �∞ exact penalty function
and consider the problem

max bTy − ρz

s.t. ATy − ze ≤ c, z ≥ 0
(63)

with its associated primal

min cTx

s.t. Ax = b, eTx + u = ρ,

x ≥ 0, u ≥ 0,

where z ∈ R and u ∈ R. Again, strictly feasible points for (63) are readily available. Conditions
akin to (12)–(13) can again be used to iteratively obtain an appropriate value of ρ. Since both z
and u are scalar variables, the scheme can be slightly simplified: Increase ρ if either

z+ ≥ γ1
z0

ρ0
ρ,

or

(i) ‖[�ya; �za]‖ ≤ γ2

ρ
, and (ii) x̃Q ≥ −γ3e, and (iii) ũ < γ4. (64)

An analysis very similar to that of Section 3.3 shows that the resulting �∞ variant of IrPDIP
enjoys the same theoretical properties as the �1 version. Minor changes include substitution of
the �∞-dual norm ‖ · ‖1 for the �1-dual norm ‖ · ‖∞.

4. Infeasible constraint-reduced MPC: IrMPC

As an instance of IrPDIP, we apply rMPC� of [24] to (Pρ)–(Dρ), and we dub the resulting full
algorithm IrMPC. (Indeed the search direction in rMPC� satisfies condition (4) of rIPM and
condition (17) of IrPDIP.) In view of Proposition 3.5, subject to strict feasibility of (P)–(D), after
finitely many iterations, the �1 and �∞ versions of IrMPC reduce to rMPC� applied to problem
(Dρ) and (63), respectively, with ρ equal to a fixed value ρ̄. Thus, we can invoke results from [24]
under appropriate assumptions.

Proposition 4.1 Suppose (P)–(D) is strictly feasible. Then {(yk, zk)} generated by the �1 or �∞
version of IrMPC converges to a stationary point (y∗, z∗) of problem (Dρ) with ρ = ρ̄.

Proof We prove the claim for the �1 version; the �∞ case follows similarly. It follows from
Theorem 3.8 in [24] that {(yk , zk)} converges to a stationary point of problem (Dρ) if and only if
the penalized dual objective function is bounded. To conclude the proof, we now establish that
{bTyk −ρkeTzk} is bounded indeed. Lemma 3.1 implies that {bTyk −ρkeTzk} is increasing for k
large enough that ρk = ρ̄, so it is sufficient to prove that {bTyk −ρkeTzk} is bounded from above.
Since Lemma 3.2 implies that {bTyk} is bounded from above, this claim follows from boundedness
of {zk} and {ρk} (from Lemma 3.2 and Proposition 3.5, respectively). �

Under a non-degeneracy assumption,4 {zk} converges to zero, and thus {yk} converges to an
optimal solution of (D). The proof of the following lemma is routine and hence omitted.
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Optimization Methods & Software 17

Lemma 4.2 The gradients of active constraints of problem (Dρ) are linearly independent for all
(y, z) if and only if {ai:(ai)Ty = ci} is a linearly independent set of vectors for all y ∈ R

m.

Theorem 4.3 Suppose (P)–(D) is strictly feasible, and for all y ∈ R
m, {ai : (ai)Ty = ci} is a

linearly independent set of vectors. Let {(yk, zk)} be generated by the �1 or �∞ version of IrMPC.
Then {(yk, zk)} converges to (y∗, 0), a solution of (Dρ̄), and y∗ solves (D). Further, if the dual
optimal set is a singleton {y∗}, then {(x̃k, ũk)} converges to the unique KKT multiplier (x∗, ρ̄ − x∗)
associated with (y∗, 0) for (Dρ̄), and x∗ is the unique KKT multiplier associated with y∗ for (D).
Moreover, {(xk, uk), (yk, zk)} converges to {(x∗, ρ̄ − x∗), (y∗, 0)} q-quadratically.

Proof Lemma 4.2 implies that the gradients of active constraints of problem (Dρ) are linearly
independent for all feasible (y, z). Applying the latter portion of Theorem 3.8 in [24], we conclude
that (yk , zk) converges to a maximizer (y∗, z∗) of problem (Dρ̄). Next, Proposition 3.9 of [24]
implies that there exists an infinite index set K on which [x̃k; ũk] converges to an optimal solution
[x∗;u∗] of problem (Pρ̄) with u∗ = ρ̄ − x∗ and on which

[�ya,k; �za,k] −→ 0 as k −→ ∞, k ∈ K.

Thus conditions (i) and (ii) of (13) or (64) are satisfied on K. On the other hand, since ρk = ρ̄ for
k ∈ K large enough, one condition in (13) or (64) must fail. In the �1 case, where (13) applies, it
follows that ũ

Qk

k ≥ γ4e for k ∈ K large enough. Since it follows from the fourth block row of (20)

and definition (19) that ũ
Q̄k

k = ρke, we conclude that

ũk ≥ min(γ4, ρ̄)e, k ∈ K large enough.

It follows that

u∗ ≥ min(γ4, ρ̄)e.

In the �∞ case, where (64) applies, it similarly follows that u∗ ≥γ 4. Hence, in both cases, com-
plementary slackness implies that z∗ = 0, and as a consequence, y∗ is an optimal solution of
problem (D). Linear independence of {ai : (ai)Ty = ci} implies uniqueness of the KKT multiplier
x∗, and the remaining claims are consequences of Theorem 4.1 in [24]. �

5. Numerical results

5.1 Implementation

IrMPC was implemented in MATLAB R2009a.5 All tests were run on a laptop machine (Intel
R/1.83G Hz, 1 GB of RAM, Windows XP Professional 2002). To mitigate random errors in
measured CPU time, we report averages over 10 repeated runs.

The parameters for rMPC� (in Step 1(ii) and Step 2(i)–(iii) of IrMPC) were set to the same values
as in Section 5 (Numerical Experiments) of [24].As for the adaptive scheme (12)–(13), parameters
were set to σ : = 10, γ 1: = 10, γ 2: = 1, γ 3: = 100, γ 4: = 100, and the Euclidean norm was used in
(12) and (13). We chose Q according to the most active rule (Rule 2.1 in [24] with ε = ∞), which
selects the constraints that have smallest slacks s. Analogously to [24], we terminated when

max

{‖[b − Ax; ρe − x − u]‖
1 + ‖[x; u]‖ ,

cTx − bTy + ρeTz

1 + |bTy − ρeTz|
}

< tol,

where we used tol = 10−8 and where, again, the Euclidean norm was used.
We applied algorithm IrMPC on two types of examples: randomly generated problems and a

problem in model predictive control.
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18 M.Y. He and A.L. Tits

5.2 Randomly generated problems

We generated standard-form LPs of size m = 100 and n = 20,000. Entries of matrix A and vector
b were normally distributed according to N (0, 1). We set vector c: =ATy + s with a normally
distributed vector y ∼ N (0, 1) and with a uniformly distributed vector s ∼ U[0, 1], guaranteeing
that the generated dual (D) is strictly feasible. We adopted (typically infeasible for (D)) initial
conditions (x0, y0, s0) from [13] for (P)–(D). Namely, we first computed

ỹ := (AAT)−1Ac, s̃ := c − ATỹ, x̃ := AT(AAT)−1b,

δx := max{−1.5 min(x̃), 0}, δs := max{−1.5 min(s̃), 0},

δ̃x := δx + 0.5
(x̃ + δxe)

T(s̃ + δse)∑n
i=1(x̃

i + δx)
, δ̃s := δs + 0.5

(x̃ + δxe)
T(s̃ + δse)∑n

i=1(s̃
i + δs)

and selected (x0, y0, s0) to be

x0 := x̃ + δ̃xe, y0 := ỹ, s0 := s̃ + δ̃se. (65)

Hence s0 > c −ATy0. A strictly feasible initial point for the penalized problem (Dρ) was then
generated by setting z0 to

z0 := ATy0 − c + s0 > 0,

and to promote centrality, initial point u0 was computed as

ui
0 := μ0

zi
0

, i ∈ n,

where μ0: = (x0)Ts0/n. The penalty parameter was initialized with ρ0 := ‖x0 + u0‖∞ for the
version with the �1 exact penalty function, and with ρ0: = eTx0 + u0 for the �∞ version.

We generated 10 different random problems. The average CPU time and iteration count for
solving those 10 problems for various values of |Q|/n (10 runs for each problem, hence 100 runs
for each value of |Q|/n) are shown in Figures 2 and 3 for the �1 and �∞ versions, respectively.
Point y0 initialized as in (65) was infeasible for (D) for all generated problems. The fraction
|Q|/n of kept constraints is showed in the horizontal axis with a logarithmic scale. The rightmost
point, with |Q|= n, corresponds to no constraint reduction. As seen from both Figures 2 and 3,
the CPU time decreases as |Q|/n decreases, down to as little as 1% of the constraints. As was
already observed in [21,24], the number of iterations remains approximately constant for a large
range of fractions |Q|/n. Note that with no, or moderate, constraint reduction, the �∞ version
takes fewer iterations and less time to solve the problems than the �1 version, but the respective
performances are similar with more aggressive constraint reduction. We have no explanation for
this phenomenon.

Interestingly, even with no constraint reduction, the �∞ version of IrMPC performs better than
the original MPC in our experiments (we used the version from [25] on these problems): see
dashed magenta lines on Figures 2 and 3.

5.3 Model-predictive control

Model-predictive control (RHC)6 is a paradigm for controlling a physical dynamical system, by
which the state of the system is measured at every (discrete) time t and, during time interval
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Optimization Methods & Software 19

Figure 2. CPU time and iterations in solving the randomly generated problem by IrMPC with a varying fraction of kept
constraints for the �1 exact penalty function; see (blue) circles and (red) stars. The time and iteration count for the original
MPC are indicated by the dashed (magenta) lines.

Figure 3. Same as Figure 2, but with the �∞ version of IrMPC.

(t − 1, t), an optimization problem such as the following is solved:

min
w,θ

M−1∑
k=0

‖Rwk‖∞ +
N∑

k=1

‖Pθk‖∞ (66)

s.t. θk+1 = Asθk + Bswk for k = 0, . . . , N − 1, (67)

θ0 = θ(t − 1), (68)
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20 M.Y. He and A.L. Tits

θmin ≤ θk ≤ θmax for k = 1, . . . , N, (69)

wmin ≤ wk ≤ wmax for k = 0, . . . , M − 1, (70)

δwmin ≤ wk − wk−1 ≤ δwmax for k = 0, . . . , M − 1, (71)

wk = 0 for k = M, . . . , N − 1, (72)

with R ∈ R
r×r , P ∈ R

p×p, As ∈ R
p×p and Bs ∈ R

p×r . Vectors θk ∈ R
p and wk ∈ R

r , respec-
tively denote the estimated state and the control input k time steps ahead of the current time, and
positive integers M and N are the control and prediction horizons, respectively; (67) is a model
of the physical system being controlled; θ (t − 1) is the state of the physical system measured
(sensed) at time t − 1; parameters θmin, θmax, wmin, wmax, δwmin and δwmax are prescribed bounds;
and constraints (71) restrict the rate of change of w. The optimization variables are the control
sequence and state sequence, respectively denoted by

w = [w0; · · · ; wM−1] ∈ R
Mr, θ = [θ1; · · · ; θN ] ∈ R

Np.

After problem (66)–(72) is solved, yielding the optimal control sequence [w∗
0; · · · ; w∗

M−1], only
the first step w∗

0 =: w(t − 1) of the sequence is applied as control input to the physical system
(at time t). The main computational task is to solve (66)–(72). (See, e.g. [8] for background on
model-predictive control.)

Problem (66)–(72) can be converted to a standard-form dual LP. First, introduce additional
nonnegative optimization variables [εw0 , . . . , εwM−1 , εθ1 , . . . , εθN

]T ∈ R
M+N required to satisfy

Rwk − εwk
e ≤ 0, −Rwk − εwk

e ≤ 0, k = 0, . . . , M − 1, (73)

Pθk − εθk
e ≤ 0, −Pθk − εθk

e ≤ 0, k = 1, . . . , N. (74)

Minimizing the objective function of (66) is then equivalent to minimizing εw0 +· · · + εwM−1 + εθ1

+· · · + εθN with additional constraints (73)–(74). Second, states θ k can be expressed explicitly
in terms of wk by eliminating constraints (67)–(68),

θk = Ak
s θ0 +

k−1∑
i=0

Ai
sBswk−1−i , k = 1, . . . , N,

or equivalently in matrix form,

θ = �w + �θ0, (75)

where

� :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bs 0 · · · 0 0
AsBs Bs · · · 0 0

...
...

. . .
...

...

AM−1
s Bs AM−2

s Bs · · · AsBs Bs

AM
s Bs AM−1

s Bs · · · A2
sBs AsBs

...
...

. . .
...

...

AN−1
s Bs AN−2

s Bs · · · · · · AN−M
s Bs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, � :=

⎡
⎢⎢⎣

As

A2
s

· · ·
AN

s

⎤
⎥⎥⎦ .

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
M

ar
yl

an
d]

, [
A

nd
re

 T
its

] 
at

 1
5:

41
 1

4 
Se

pt
em

be
r 

20
11

 



Optimization Methods & Software 21

Hence, problem (66)–(72) can be rewritten into the standard-form dual LP

min
w,εw,εθ

εw0 + · · · + εwM−1 + εθ1 + · · · + εθN
(76)

s.t. wmine ≤ w ≤ wmaxe, (77)

θmine − �θ0 ≤ �w ≤ θmaxe − �θ0, (78)

δwmin ≤ wk − wk−1 ≤ δwmax for k = 0, . . . , M − 1, (79)

Rw − εw ≤ 0, (80)

Rw + εw ≥ 0, (81)

P�w − εθ ≤ −P�θ0, (82)

P�w + εθ ≥ −P�θ0, (83)

where

εw := [εw0e; · · · ; εwM−1e] ∈ R
Mr, εθ := [εθ1e; · · · ; εθN

e] ∈ R
Np

and

R := diag{R, R, . . . , R} ∈ R
Mr×Mr, P := diag{P, P, . . . , P } ∈ R

Np×Np.

When all states and control inputs are constrained by bounds, problem (76)–(83) has
Mr + M + N variables and 6Mr + 4Np constraints. Because usually p > r and N > M, the num-
ber of constraints is much larger than that of variables. Hence, constraint reduction is likely to be
beneficial.

For this class of problems, IrMPC has two advantages over dual-feasible constraint reduction.
First, while warm starts are readily available from the solution of the problem at the previous
time step, they may be infeasible (due to the receding horizon as well as to modelling errors
and perturbations affecting the dynamical system). Second, even when the warm start is strictly
feasible, it is usually close to the boundary of the feasible set. In this situation, feasible IPMs
(e.g. [24]) need to take many small steps to get away from that boundary, making it slow to
converge. Problem (Dρ) allows initial points to move outside the feasible set, avoiding both
problems.

The warm starts were set as follows: Given a partitioned vector v = [v1;· · · ;vn], define v̄ :=
[v2; · · · ; vn; vn] where the first block-component has been clipped and the last one repeated.
Now, suppose that for time interval (t − 1, t), the solution for problem (76)–(83) is

[w; εw; εθ] := [w0
∗; · · · ; wM−1

∗ ; εw0∗ ; · · · ; εwM−1∗ ; εθ1∗ ; · · · ; εθN∗ ];
then the initial point we used for the problem (76)–(83) solved during interval (t, t + 1) is

[w̄; ε̄w + 0.01; ε̄θ + 0.01]
with initial penalty parameter ρ equal to 2‖xt∗‖∞, where xt∗ is the solution for the dual of problem
(76)–(83) for interval (t − 1, t). As for the next state θ (t), we generated it using the dynamics

θ(t) = Asθ(t − 1) + Bsw(t − 1),

i.e. we assumed for simplicity that the model used in the optimization is exact, and that there are
no perturbations.

The data we tested are from a rotorcraft hover control problem. We ran the controlled system
starting at t = 1 (t − 1 = 0) with θ (0) = [0; 0; 0; 0; 0; 0; 0; −40 ft] (40 feet initial downward devia-

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
M

ar
yl

an
d]

, [
A

nd
re

 T
its

] 
at

 1
5:

41
 1

4 
Se

pt
em

be
r 

20
11

 



22 M.Y. He and A.L. Tits

tion from desired altitude), and with the model (i.e. As and Bs) and parameters (such as matrices R
and P, integers M and N, and constraint bounds) as in [10], where quadratic programming-based
RHC is considered instead. (This model is originally from [7].) The LP to be solved during each
time interval has 160 variables and 1180 inequality constraints. We used the �1 version of IrMPC.
Results with the �∞ version were similar and hence are not reported.

Figure 4 shows the CPU times used by the optimization runs during each of the 1000 time
intervals in a 10 s (real-time) simulation with sample time T s=0.01 s. (The first interval starts at
0 s (t−1=0) and the last one at 9.99 s (t−1=999).) In order to keep the figure readable, only every

Figure 4. CPU time in seconds by IrMPC to solve the 10 s RHC process with |Q| ≈ 300 and |Q| = n = 1180 (corre-
sponding to the case with unreduced constraints). For the former, in 58 cases, |Q| was increased slightly above 300 due
to AQ losing rank, as per Step 2 (iii) of Iteration IrPDIP.

Figure 5. CPU time and iteration of solving the problem at 5 s by IrMPC with varying number |Q| of kept constraints;
see (blue) circles and (red) stars. MPC takes much longer to solve this problem; see the dashed (magenta) line.
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Optimization Methods & Software 23

Table 1. Number of problems with certain properties.

NFIPs FIPs SIPPs IrMPC < rMPC∗

516 484 5 461 out of 484

10th time step is shown. Note that solving every LP with constraint reduction ((red) circles) takes
close to or less than half of the time it takes without constraint reduction ((magenta) triangles).
Because not all constraints of (77)–(83) are dense, constraint reduction did not afford a full
fourfold ( 1180

300 ) speedup.
Figure 5 shows the effect of constraint reduction on the single LP at time 5.00 s (t−1=499),

which is a typical case. The CPU time needed to completely solve this problem decreases as the
number |Q| of constraints kept decreases, from 1180 constraints down to as little as 200, i.e. down
to approximately 17% of all constraints. For this LP, MPC takes much more time and iterations
than IrMPC.

Table 1 shows that 516 of the 1000 LPs begin with warm starts that are infeasible points (NFIPs),
the remaining 484 with strictly feasible initial points (FIPs). Because we used a warm start for
the initial penalty parameter, only five problems started with too small initial penalty parameters
(SIPPs), and we observed an increase of the penalty parameter for those five problems only. For
those 484 problems with strictly feasible initial points, rMPC� in [24] can be used instead of
IrMPC, and we compared the respective times. For 95% (461 out of 484) of the instances, IrMPC
took less time than rMPC�, presumably due to the better ability of IrMPC to handle initial points
close to the constraint boundaries.

6. Conclusions

We have outlined a general framework (rIPM) for a class of constraint-reduced, dual-feasible IPMs
that encompasses several previously proposed algorithms, and proved that for all methods in that
class, the dual sequence converges to a single point. In order to accommodate important classes
of problems for which an initial dual-feasible point is not readily available, we then proposed
an �1/�∞ penalty-based extension (IrPDIP) of this framework for infeasible constraint-reduced
primal–dual interior point. We showed that the penalty adjustment scheme in IrPDIP has the
property that, under the sole assumption that the primal–dual pair is strictly feasible, the penalty
parameter remains bounded.

An infeasible constraint-reduced variant of MPC (specifically, an infeasible variant of rMPC�

from [24]), dubbed IrMPC, was then considered, as an instance of IrPDIP. IrMPC was analyzed,
and tested on randomly generated problems and on a sequence of problems arising in an instance of
model-predictive control. The results show promise for handling both infeasible initial points and
nearly infeasible warm starts. Indeed, on the model-predictive control problem, IrMPC performed
significantly better than (a version of) the original MPC, even when constraint reduction was
turned off.
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24 M.Y. He and A.L. Tits

Notes

1. Inequality (8) is an angle condition: existence of ω>0 means that the angle between b and �y is bounded away
from 90 degrees. This condition, which is weaker than (4), is sufficient for Proposition 2.2 to hold.

2. Following [24], we term ‘stationary point’ for (Dρ ) a point (y, z) that is feasible for (Dρ ) and, for some (x, u) such
that Ax=b and x+u=ρe, satisfies x(c−Ay+z)=0 and uz=0. (If (y, z) is stationary for (Dρ ) and the associated (x, u)
satisfies x≥0 and u≥0, (y, z) is optimal for (Dρ ).)

3. Constraints z≥0 are not ‘constraint-reduced’ in (DQ
ρ ). The reason is that they are known to be active at the solution,

and that furthermore their contribution to normal matrix (2) is computed at no cost.
4. The question of whether Theorem 3.8 and Proposition 3.9 in [24] hold without assuming linear independence of

gradients of active constraints is open. If the answer is positive, then global convergence of (yk , zk) as established
in our Theorem 1 will hold under the sole assumption that (P)–(D) is strictly feasible (and A has full row rank).

5. The code is available from the authors.
6. Model-predictive control (MPC) is also known as receding-horizon control (RHC). In this paper, we refer to it by

the acronym RHC, and reserve ‘MPC’ for Mehrotra’s Predictor-Corrector optimization algorithm.
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