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ABSTRACT

This short note considers and resolves the apparent contradiction between known worst-

case complexity results for first and second-order methods for solving unconstrained smooth

nonconvex optimization problems and a recent note by Jarre (2011) implying a very large

lower bound on the number of iterations required to reach the solution’s neighbourhood

for a specific problem with variable dimension.
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1 Introduction

The worst-case complexity of algorithms for unconstrained nonconvex smooth optimization

has recently been intensively studied by several authors. In particular, we refer the reader

to Vavasis (1993), Nesterov (2004) and Cartis, Gould and Toint (2010b) for an analysis

of steepest descent, to Gratton, Sartenaer and Toint (2008) and Cartis, Gould and Toint

(2011c) for trust-regions algorithms, to Cartis et al. (2010b) for Newton’s method, to

Nesterov and Polyak (2006), Cartis, Gould and Toint (2010a, 2011b, 2011c) for regularized

variants, or to Vicente (2010) and Cartis, Gould and Toint (2010c) for finite-difference

and/or derivative-free schemes. The common feature of all these contributions is that they

discuss upper (and sometimes lower) bounds on the number of function evaluations that

are necessary for the algorithm under consideration to produce an approximate first-order

critical point, that is an iterate at which the Euclidean norm of the objective function’s

gradient is below some user-prescribed tolerance ǫ. Remarkably, these results show that

such bounds have the form
⌈ κ

ǫα

⌉

(1.1)

where κ is a problem-dependent constant and α is an algorithm-dependent constant ranging

between 3/2 and 2. These bounds are often sharp (Cartis et al., 2010b) and are optimal for

some regularization methods (Cartis et al., 2011b). It is important for our purposes to note

that κ typically depends, possibly exponentially, on problem dimension via the relevant

gradient and perhaps Hessian global Lipschitz constants (which are assumed to exist).

We also note that all the algorithms considered in these results are descent methods, in

the sense that they generate a sequence of iterates with non-increasing objective function

values.

An interesting development occured when F. Jarre recently published a report (Jarre,

2011) where he pointed out that, on a specific problem with variable dimension, any descent

algorithm would require a number of iterations (and hence of function evaluations) which

is exponential in problem dimension to reach the (unique) critical point. Since ǫ and α in

(1.1) are independent of dimension, this behaviour could easily be made compatible with

the results mentioned above if the problem’s Lipschitz constants depended exponentially

on dimension on the domain of interest. However, it turns out that, for the considered

example, both these constants depend at most polynomially on the problem size, implying

that the bound (1.1) is also depending sub-exponentially on the problem dimension, and

could even be independent of problem dimension. It is the purpose of this short note to

resolve this apparent contradiction.
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2 Some details

We first need to elaborate on the details of the context. In what follows, we consider the

problem
minimize f(x)

x ∈ IRn

where f is a twice continuously differentiable possibly nonconvex function from IRn to IR,

which is assumed to be bounded below (by some value flow). To solve this problem, we

may then apply the ARC algorithm, which can be outlined as follows. At iteration k,

a step sk from the current iterate xk is computed, which (approximately) minimizes the

cubic model

m(xk + s) = 〈g(xk), s〉+ 1

2
〈s,H(x)s〉+ 1

6
σk‖s‖2,

where 〈·, ·〉 and ‖ · ‖ are the Euclidean inner product and norm, respectively, g(x)
def
=

∇xf(x), H(x) = ∇xxf(x) and σk ≥ σmin > 0 is an adaptive regularization parameter

whose value is recurred inside the algorithm. The step sk may be successful (if f(xk+sk) ≤
f(xk) + ηm(xk + sk) for some η ∈ (0, 1)), in which case it is accepted as the next iterate,

or unsuccessful, in which case it is rejected and the regularization parameter suitably

increased. Further details of the algoritm are irrelevant here. Crucially for our purposes,

it has been proved (see Nesterov and Polyak, 2006, Cartis et al., 2010a) that, if we assume

that H(x) is Lipshitz continuous (with constant L) on each of the segments [xk, xk + sk]

and if we define an ǫ-approximate critical iterate as an iterate xk such that

‖g(xk)‖ ≤ ǫ, (2.1)

where ǫ ∈ (0, 1) is a user-specified accuracy, then the ARC algorithm started from the

initial point x0 will produce such an iterate in at most
⌈

(f(x0)− flow)
κARC

ǫ3/2

⌉

(2.2)

iterations. The constant κARC only depends (sublinearly) on L and an upper bound on

‖H(x)‖ on the segments [xk, xk + sk], as well as on fixed, dimension independent, algo-

rithmic parameters (such as η and σmin). We will also make use of a property of the ARC

algorithm, namely that, for all k ≥ 0,

‖sk‖ ≤ 3max





‖H(xk)‖
σk

,

√

‖g(xk)‖
σk



 , (2.3)

(see Lemma 1.1 of Cartis, Gould and Toint, 2011a).

Jarre’s example of slow minimization uses the Chebyshev-Rosenbrock function at-

tributed to Nesterov in Gurbuzbalaban and Overton (2011), which is defined, for some

ρ ≥ 1 and n ≥ 2, by

f(x) = 1

4
(x1 − 1)2 + ρ

n−1
∑

i=1

(xi+1 − 2x2
i + 1)2

def
= 1

4
(x1 − 1)2 + ρ

n−1
∑

i=1

vi(x)
2, (2.4)
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and whose gradient is given by

g1(x) = 1

2
(x1 − 1)− 8ρx1v1(x) (2.5)

gi(x) = 2ρ(vi−1(x)− 4 xi vi(x)), (i = 2, . . . , n− 1), (2.6)

and

gn(x) = 2ρvn−1. (2.7)

The nonzero entries of its Hessian are given (up to symmetry) by

H1,1(x) = 1

2
− 8ρv1(x) + 32ρx2

1, H1,2(x) = −4ρx1, (2.8)

Hi,i(x) = 2ρ(1− 4vi(x) + 16x2
i ), Hi,i+1(x) = −8ρxi, (i = 2, . . . , n− 1) (2.9)

and

Hn,n(x) = 2ρ, (2.10)

while those of its third derivative tensor T (x) are given by

T1,1,1(x) = −32ρx1, T1,1,2(x) = −8ρ, T1,2,1 = −4ρ, (2.11)

Ti,i,i(x) = −16ρxi, Ti,i,i+1(x) = −8ρ, (i = 2, . . . , n− 1). (2.12)

The level contours for this function with ρ = 400 are shown in Figure 2.1, the leftmost

graph showing the levels in the (x1, x2) plane and the rightmost the levels in the (xi, xi+1)

plane, for any i between 2 and n− 1. The unique first- (and second-)order critical point is

x∗ = (1, 1, . . . , 1)T , which is marked on the upper right of each graph.
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Figure 2.1: Contours of f(x) with ρ = 400 in the (x1, x2) plane (left) and in the (xi, xi+1)

plane (for any 2 ≤ i ≤ n− 1) (right).

The unconstrained minimization of this function is started from x0 = (−1, 1, 1, . . . , 1)T

(also marked in the upper left part of the graphs of Figure 2.1) at which f(x0) = 1 and

‖g(x0)‖ = 1. Let

L0
def
= {x ∈ IRn | f(x) ≤ f(x0)},
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and note that all iterates of any descent algorithm will remain in this level set. It follows

from (2.4) and f(x0) = 1 that any x = (x1, . . . , xn) ∈ L0 satisfies

1

2
|x1 − 1| ≤ 1 and

√
ρ|xi+1 − 2x2

i + 1| ≤ 1, (i = 1, . . . , n− 1), (2.13)

and so, as ρ ≥ 1,

−1 ≤ x1 ≤ 3

−1− 1√
ρ
≤ xi+1 ≤ 2x2

i , (i = 1, . . . , n− 1). (2.14)

Thus x ∈ L0 is uniformly bounded below independently of n, but may grow (doubly)

exponentially as n increases. Indeed, the double-exponential upper bound in (2.14) is

essentially tight since fixing x̃1 ∈ (1, 3] and letting x̃i+1 = 2x̃2
i − 1 for i = 1, . . . , n − 1,

yields x̃ ∈ L0 with x̃n growing doubly-exponentially with n. In fact, the dependence or

otherwise on n of xn for x ∈ L0 entirely determines the amount of growth allowed in the

remaining components of x since (2.13) and ρ ≥ 1 imply that

xi ≤
√

1

2
xi+1 + 1, (i = 1, . . . , n− 1), (2.15)

and furthermore, inductively, x1 = O
(

x
1/(2n)
n

)

. (Since x1 ∈ [−1, 3], xn can depend on

n at most doubly-exponentially.) In particular, due to (2.15), if xn is bounded above

independently of n, so are all the other components xi of x ∈ L0. These considerations

lead to the following two possible cases, relevant when employing the ARC algorithm.

1. The component [xk]n of all ARC iterates xk, k ≥ 0, is uniformly bounded above

by a constant depending at most sub-exponentially on n. (This includes the case

when [xk]n is independent of n.) Then all ARC iterates will remain in [−α, α]n, for

some α > 0 depending at most sub-exponentially on n. We may therefore derive from

(2.5)-(2.7) and the sparse nature of (2.8)-(2.10) that there exist constants κg > 0 and

κH > 0 dependent at most sub-exponentially on n such that, for iterates generated

by the ARC algorithm,

‖g(xk)‖ ≤ κg and ‖H(xk)‖ ≤ κH (2.16)

for all k ≥ 0. Moreover, (2.3) then implies that steps generated by the ARC algorithm

satisfy the inequality

‖sk‖ ≤ 3max

[

κH

σmin

,

√

κg

σmin

]

def
= κs.

As a consequence, we obtain that, for all k ≥ 0,

[xk, xk + sk] ⊂ [−α − κs, α + κs]
n def
= L

and therefore, using the mean-value theorem, that H(x) is Lipschitz continuous in

L with constant maxx∈L ‖T (x)‖, which is itself depending at most sub-exponentially
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on n, because of the sparsity of T (see (2.11)-(2.12)). As a consequence, the value

of κARC in (2.2) depends on n at most sub-exponentially, and, because we may

obviously choose flow = 0 since f(x) is the sum of squared terms, the upper bound

on the maximum number of iterations necessary to achieve (2.1) starting from x0 is

either fixed or depending at most subexponentially on n, for given ǫ.

On the other hand, Jarre’s observation is that when ρ ≥ 400, any descent algorithm

(including ARC) must take

at least 1.44× 1.618n iterations (2.17)

to move from x0 to x∗, at which f(x∗) = 0 = flow. Moreover, at least half that

number of iterations is required to obtain an iterate with [xk]1 ≥ 0, which ensures

that (2.2) cannot be interpreted as an upper bound on the number of iterations

needed to reach an ǫ-dependent neighbouhood of x∗. The next section elucidates

this apparent contradiction between (2.2) and (2.17).

2. Some ARC iterates depend (at least) exponentially on n, which is allowed by (2.13).

Then (2.16) holds with κg and κH now depending (at least) exponentially on n;

similarly, the Lipschitz constant of the Hessian depends (at least) exponentially on

n on the path of the iterates. Thus, in this case, the upper bound (2.2) depends

(at least) exponentially on n, and so it is in agreement with the lower bound (2.17).

(Note that even if ARC is initialized with a starting point that depends doubly-

exponentially on n, (2.17) remains consistent with (2.2).)

Our numerical experiments with ARC applied to function (2.4) with ρ ≥ 400 and

x0 = (−1, 1, . . . , 1) invariably generated iterates with [xk]n ≤ 1. Thus numerically, we

can guarantee that we are in Case 1 above, specifically, when (2.2) is independent of n.

However, we have not been able to show analytically that the ARC iterates do not reach

the “bad”, exponentially dimension-dependent, part of the level set L0 for the second-order

models that we use.

3 Resolving the apparent contradiction

Assume that we are in Case 1 above. We first notice that (2.2) and (2.17) are obviously

compatible if

ǫ ≤
(

κARC

1.44× 1.618n

)2/3
def
= θ(n), (3.1)

as in this case the accuracy requirement is tight enough to allow for the number of steps

indicated by Jarre’s bound. But what happens if (3.1) is violated is not clear. Using the

famous Sherlock Holmes adage that ”When you have eliminated the impossible, whatever

remains, however improbable, must be the truth” (Conan Doyle, 1890), we must conclude

in this case that, if an ǫ-approximate first-order critical point can be reached in a number
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of iterations that is either dimension-independent or depending subexponentially on n, but

that this point cannot be x∗, then it must be that f(x) admits other approximate critical

points in L0 within a fixed or polynomial distance from x0. And indeed this happens to

be the case. The leftmost graph of Figure 3.1 shows (as a continuous line) the evolution

with n of

τ(n) = min
x∈{x1,...,x50}

‖g(x)‖,

where the xk are the iterates generated by the ARC algorithm applied to minimize f(x)

(with dimension n), starting from x0. The dashed line in the same graph corresponds to

the parallel evolution of θ(n), the right-hand side of (3.1). The distance

δ(n) =

∥

∥

∥

∥

x0 − arg min
x∈{x1,...,x50}

‖g(x)‖
∥

∥

∥

∥

is shown in the rightmost graph.
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Figure 3.1: Evalution of τ(n) and θ(n) (dashed) (left, in log10 scale) and δ(n) (right) as

functions of n.

We may conclude from this figure that, for ǫ above the threshold given by (3.1), suitable

approximate first-order critical points of f(x) exist close to x0 (and can be found relatively

easily by standard optimization methods). A further investigation of these approximate

critical points is possible, using the analytical expression of f(x). Without entering into

too much detail, we may simply say that the gradient norm at such points is dominated

by the magnitude of gn, which is proportional to |vn−1| because of (2.7). As it turns out,

(2.6) and the fact that all gi (i = 2, . . . , n − 1) must also be small impose that the |vi|
decrease as an approximate geometric progression. The freedom left for each |gi| to be

small (of the order of |gn|) is enough to counterbalance the effect of x1 in g1 given by (2.5).

However, this explanation remains problem specific, which considerably limits its interest

and applicability.

Note that a similar apparent contradiction is encountered when trust-region methods

are applied to (2.4). Namely, their associated worst-case complexity of O (ǫ−2) iterations

depends at most polynomially on problem size, in apparent contrast to the exponential
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lower bound (2.17). However, trust-region methods also generate an approximate local

minimizer within 10 iterations.

It remains remarkable that our analysis shows the existence of (potentially many) ap-

proximate first-order critical points for a dimension-dependent family of smooth functions

for which the gradient and Hessian Lipschitz constants are either dimension independent

or depending polynomially on dimension, at a level of approximation which improves expo-

nentially with problem size. It is the authors’ view that the implications of this observation

(for instance on the geometry of smooth infinite dimensional maps) deserves more study.
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