
ar
X

iv
:1

30
6.

68
07

v1
 [

m
at

h.
O

C
]

 2
8

Ju
n

20
13

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software
Vol. 00, No. 00, January 2013, 1–31

RESEARCH ARTICLE

Distributed Solutions for Loosely Coupled Feasibility Problems Using

Proximal Splitting Methods∗

Sina Khoshfetrat Pakazad1, Martin S. Andersen2 and Anders Hansson1

(Received 00 Month 200x; in final form 00 Month 200x)

In this paper, we consider convex feasibility problems where the underlying sets are loosely coupled,
and we propose several algorithms to solve such problems in a distributed manner. These algorithms
are obtained by applying proximal splitting methods to convex minimization reformulations of con-
vex feasibility problems. We also put forth distributed convergence tests which enable us to establish
feasibility or infeasibility of the problem distributedly, and we provide convergence rate results. Un-
der the assumption that the problem is feasible and boundedly linearly regular, these convergence
results are given in terms of the distance of the iterates to the feasible set, which are similar to those
of classical projection methods. In case the feasibility problem is infeasible, we provide convergence
rate results that concern the convergence of certain error-bounds.

Keywords: feasible/infeasible convex feasibility problems; proximal splitting; distributed solution;
flow feasibility problem

AMS Subject Classification: G.1.6; G.1.10; G.2.2; I.1.2

1. Introduction

A convex feasibility problem (CFP), corresponds to the problem of finding an element

in the intersection of, say, N non-empty convex sets (Ci), i.e., x ∈ ⋂N
i=1 Ci. Such prob-

lems appear in many fields of engineering and science, e.g., image reconstruction, best
approximation theory, analysis of networked systems [3, 26, 28], and have been stud-
ied thoroughly in the literature, e.g., see [1–3, 6, 25]. Many of the algorithms designed
for solving CFPs, rely on projections onto the individual sets, and are referred to as
projection methods. The behavior and convergence properties of such algorithms have
been well-studied, [1–3, 6], both when the CFP is feasible or infeasible. For a thorough
survey of such algorithms refer to [3]. In this paper, we focus on CFPs where each con-
straint defining a set Ci in the problem is only dependent on a subset of components of
a variable, x. We also assume that the number of variables that appear jointly in the de-
scriptions of every two constraint sets Ci and Cj (i 6= j) is small. We refer to such CFPs as
loosely coupled, and we intend to develop distributed algorithms for solving these prob-
lems efficiently. Employing classical projection algorithms for solving such CFPs, while
neglecting the underlying structure in the problem, is inefficient and has been shown
to be extremely slow, [28]. In order to boost the performance of these algorithms, the
structure in the CFP needs to be exploited. This can be done by using ideas from [10],
[9] and [29], and it results in a reformulation of the problem as an equivalent feasibility
problem in product space. Similar formulations of CFPs are also proposed in [17, 34].

∗This work has been supported by the Swedish Department of Education within the ELLIIT project.
1 Sina Khoshfetrat Pakazad and Anders Hansson are with the Division of Automatic Control, Department of
Electrical Engineering, Linköping University, Sweden. Email: {sina.kh.pa, hansson}@isy.liu.se.
2Martin S. Andersen is with the Department of Applied Mathematics and Computer Science, Technical University
of Denmark. Email: mskan@dtu.dk.

ISSN: 1055-6788 print/ISSN 1029-4937 online
c© 2013 Taylor & Francis
DOI: 10.1080/1055.6788.YYYY.xxxxxx
http://www.tandfonline.com

http://arxiv.org/abs/1306.6807v1

August 22, 2018 Optimization Methods and Software OMSPaper

2 Taylor & Francis and I.T. Consultant

This product-space formulation can be solved using well-known projection methods,
e.g., von Neumann’s and Dykstra’s alternating projections. Although such algorithms
have been shown to be effective and their convergence properties are well-studied, to the
best knowledge of the authors, rate of convergence of such methods are mainly available
when the CFP is feasible, [6]. Hence, in order to provide convergence rate results for
projection-based methods even when the problem is infeasible, we approach the problem
in another way.
The product-space reformulation of loosely coupled CFPs can also be written as a con-

vex minimization problem, [6, 11, 12, 18]. Authors in [6], define a convex minimization
reformulation of CFPs and consider the use of gradient projection algorithms (GPA)
for solving minimization problem. They then utilize the convergence properties of GPA
to provide convergence results for the resulting algorithm. Furthermore, they show that
in case the problem is infeasible, certain error bounds converge to non-zero values with
O(1/

√
k) rate of convergence. Prior to [6], such approaches have also been used for

similar purposes, using the so-called subgradient methods, [2, 13, 35, 36]. In this paper
we also deal with convex minimization reformulations of CFPs. This in turn allows us
to employ proximal splitting methods (first order methods) for solving minimization
reformulations of CFPs, which result in several distributed projection-based algorithms
for solving loosely coupled CFPs. Some of these algorithms are similar to already ex-
isting well-known projection methods. However, several of the proposed algorithms can
be considered as generalizations of classical projection methods, [12]. Furthermore, if
the minimization formulation of a CFP is well-defined even when it is infeasible, the
convergence properties, and particularly the rate of convergence of the utilized proximal
methods can be used to establish convergence results for the newly generated algorithms.
This allows us to provide rate of convergence results for such algorithms even when the
CFP is infeasible.
The contributions of this paper are as follows. In this paper, we

• propose several distributed algorithms for solving loosely coupled CFPs;

• establish local convergence tests for these algorithms, which enable us to detect arrival
at a feasible solution or infeasibility of the problem in a distributed manner with
minimal communication;

• also provide convergence rate results for the proposed algorithms for the case the CFP
is either feasible or infeasible. For the case the problem is feasible, these results are
given in terms of the distance of the iterates to the feasible set. This enables us to
provide a unified treatment of the convergence rate analysis of these algorithms and
the classic projection methods. In case of an infeasible problem, the result is a bound
of the rate of convergence of a norm of a certain residual to a non-zero constant.

The performance of the proposed algorithms are compared using numerical examples.

Outline

The paper is organized as follows. In Section 2, we provide a formal description of
loosely coupled CFPs and describe different approaches for formulating and solving
such problems. Particularly we discuss minimization reformulations of coupled CFPs in
Section 2.4. A brief description of the most commonly used proximal splitting methods
is given in Section 3. These methods are then applied to convex minimization reformula-
tions of the coupled CFP, and the resulting algorithms are reported in Section 4. In that
section, we also provide insights on how to establish convergence to a feasible solution
or how to deduce infeasibility of the problem in a distributed manner. The convergence
rate results for the proposed algorithms are described in Section 5. We present numerical
results in Section 6, and we conclude the paper in Section 7.

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 3

Notation

We denote the set of real m× n matrices by R
m×n, and Np denotes the set of positive

integers {1, 2, . . . , p}. Given a set J ⊂ {1, 2, . . . , n}, the matrix EJ ∈ R
|J |×n is the 0-1

matrix that is obtained from an identity matrix of order n by deleting the rows indexed
by Nn \ J . Also, |J | denotes the number of elements in set J . This means that EJx is a
vector with the components of x that correspond to the elements in J , and we denote
this vector with xJ . Given a vector x, we denote the ith component of this vector with
xi. The distance from a point x ∈ R

n to a set C ⊆ R
n is denoted as dist(x,C), and it

is defined as

dist(x,C) = inf
y∈C

‖x− y‖ . (1)

where ‖.‖ denotes the 2-norm. Similarly, the distance between two sets C1, C2 ⊆ R
n is

defined as

dist(C1, C2) = inf
y∈C1,x∈C2

‖x− y‖ . (2)

The relative interior of a set C is denoted rel int(C), and D = diag(a1, . . . , an) is a
diagonal matrix of order n with diagonal entries Dii = ai. Given vectors xk for k =
1, . . . , N , the column vector (x1, . . . , xN) is all of the given vectors stacked. We finally
denote the so-called effective domain of a convex function, f , with dom f = {x | f(x) <
∞}.

2. Decomposition and convex feasibility

Given N closed convex sets C1, . . . , CN , a general convex feasibility problem is defined
as

find v (3a)

subject to v ∈ Ci, i = 1, . . . , N, (3b)

where v ∈ R
n. We are particularly interested in the case where the description of each

constraint set Ci is only dependent on a small subset of the variables in the vector v. Let
us denote the ordered set of indices of variables that appear in the description of the ith
constraint by Ji. We also denote the ordered set of indices of constraints for which their
description depend on vi by Ii, i.e., Ii = {k | i ∈ Jk}. We call a CFP loosely coupled
if |Ii| ≪ N for all i = 1, . . . , n. There are different ways of formulating the problem
in (3), which allow us to design several new or use various already existing algorithms
for solving this problem. In order to unify the analysis of such algorithms, we utilize
so-called error bounds, which are the subject of the next subsection.

2.1. Error Bounds and Bounded Linear Regularity

Error bounds quantify the distance to the solution set of a problem and they become
zero only when we arrive at a solution of the problem. The use of error bounds is common
in analysis of iterative algorithms, [32]. For CFPs, authors in [6] and [25] consider the
use of

T (v) = max
i

{dist(v, Ci)} , (4)

August 22, 2018 Optimization Methods and Software OMSPaper

4 Taylor & Francis and I.T. Consultant

as the error bound, when analyzing projection-based algorithms. Note that T (v) = 0

if and only if v ∈ ⋂N
i=1 Ci. Based on this error bound, the closed convex sets, Ci, for

i = 1, . . . , N , are said to be boundedly linearly regular, if for every bounded set B there
exists θB > 0 such that

∀ v ∈ B dist

(

v,

N⋂

i=1

Ci
)

≤ θB max
i

{dist (v, Ci)} . (5)

This allows us to bound the distance to the intersection of these sets, which is very
difficult or expensive to compute, by T (v) which can usually be calculated easily, [6].
It was shown by Bauschke et al. [4] and Beck & Teboulle [6] that Slater’s condition for
a CFP implies bounded linear regularity, i.e., for a general CFP where C1, . . . , Ck are
polyhedral sets and Ck+1, . . . , CN are general closed, convex sets, (5) holds if

(
k⋂

i=1

Ci
)
⋂
(

N⋂

i=k+1

rel int(Ci)
)

6= ∅. (6)

Bounded linear regularity proves to be essential in the analysis of the proposed al-
gorithms in this paper. Next, we investigate some of the approaches for solving the
feasibility problem in (3).

2.2. Projection Algorithms and Convex Feasibility Problems

One of the possible approaches for solving the CFP in (3), is to neglect the coupling
structure among the constraint sets, and use projection algorithms for finding a solution
in the intersection of N convex sets. Among such projection algorithms, cyclic projection
algorithm (CPA), maximum distance projection algorithm (MDPA) and mean projec-
tion algorithm (MPA) are some of the most widely used ones, where only MPA is suitable
for solving (3) in a distributed manner. This follows from the fact that at each iteration
MPA uses

v(k+1) :=

N∑

i=1

α
(k)
i PCi

(v(k)) (7)

for updating the iterates, where
∑N

i=1 α
(k)
i = 1 and α

(k)
1 , . . . , α

(k)
N > 0. Notice that the

updating procedure in (7) is highly parallelizable. That is because the projections can
be performed in parallel and simultaneously. Assuming N computing agents, each agent
i then computes PCi

(v(k)), and communicates with all the other agents to update the
iterate as in (7). Hence this algorithm, requires global communication among all the
agents. In [6], it was shown that in case the sets in (3) are boundedly linearly regular,
the algorithm enjoys a linear rate of convergence, where

dist

(

v(k+1),

N⋂

i=1

Ci
)

≤ γBdist

(

v(k),

N⋂

i=1

Ci
)

, (8)

with

γB =

√

1− mini {α(k)
i }

θ2B
, (9)

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 5

where θB > 0 depends on the starting point x(0). This dependence follows from the fact
that θB should satisfy (5) with B = {v | ‖v − z‖ ≤ ‖v(0) − z‖} for any z ∈ C. Iusem
& De Pierro, [27], have proposed an accelerated variant of this algorithm that takes as
the next iterate a convex combination of the projections of v(k) on only the sets for
which v(k) /∈ Ci. This generally improves the rate of convergence when only a few con-
straints are violated. However, neglecting the structure in (3) can drastically deteriorate
the performance of this algorithm, [28]. Also in case Slater’s condition is not satisfied,
e.g., when the problem is infeasible, (8) does not hold and this algorithm can perform
arbitrarily bad, [6]. In the upcoming subsections, we show how the structure in the
coupling among the constraints in (3) can be exploited, which allows us to reformulate
the problem in other ways.

2.3. Decomposition and Product Space Formulation

Having the structure in the constraints in (3) in mind, we define N lower-dimensional
sets

C̄i = {si ∈ R
|Ji| |ET

Ji
si ∈ Ci}, i = 1, . . . , N, (10)

such that si ∈ C̄i implies ET
Ji
si ∈ Ci. This allows us to rewrite the standard form CFP

in (3) as

find s1, s2, . . . , sN , v (11a)

subject to si ∈ C̄i, i = 1, . . . , N (11b)

si = EJi
v, i = 1, . . . , N (11c)

where the equality constraints are the so-called coupling or global consensus constraints
that ensure that the local variables s1, . . . , sN are consistent with one another. In other
words, if the constraints v ∈ Ci and v ∈ Cj (i 6= j) both involve vk, then the kth
component of ET

Ji
si and ET

Jj
sj must be equal. This formulation decomposes the so-

called global variable v into N coupled local variables s1, . . . , sN . This allows us to
rewrite the problem as a CFP with two sets

find S
subject to S ∈ C, S ∈ D (12)

where

S = (s1, . . . , sl) ∈ R
|J1| × · · · × R

|Jl|

C = C̄1 × · · · × C̄l
D = {Ēv | v ∈ R

n}

Ē =
[
ET

J1
· · · ET

Jl

]T
.

The formulation (12) can be thought of as a “compressed” product space formulation
of a CFP as described in (3), and it is similar to the consensus optimization problems
described in [10, Sec. 7.2], [9, Sec. 3.4]. The problem in (12) can now be solved using
von Neumann’s and Dykstra’s alternating projections (AP) methods, which are methods
for finding solutions in the intersection of two sets.

August 22, 2018 Optimization Methods and Software OMSPaper

6 Taylor & Francis and I.T. Consultant

2.3.1. Von Neumann’s alternating projections

Given the two sets, C and D, and a starting point v(0), von Neumann’s AP method
computes two sequences

S(k+1) = PC
(

V (k)
)

(13a)

V (k+1) = PD
(

S(k+1)
)

. (13b)

where V (k) = Ēv(k). If the CFP in (12) is feasible, i.e., C ∩ D 6= ∅, then both sequences
converge to a point in C ∩D, [1, 6]. The updates in (13), result in the following iterative
algorithm

S(k+1) = PC
(

V (k)
)

(14a)

=
(

PC̄1

(

EJ1
v(k)
)

, . . . , PC̄N

(

EJN
v(k)

))

V (k+1) = Ē
(
ĒT Ē

)−1
ĒTS(k+1)

︸ ︷︷ ︸

v(k+1)

, (14b)

where (14a) and (14b) are projections onto C and onto the column space of Ē, re-
spectively. Note that the projection onto the set C can be computed in parallel by N

computing agents, i.e., agent i computes s
(k)
i = PC̄i

(EJi
v(k)), and the second projection

can be interpreted as a consensus step that can be solved via distributed averaging. The
details of a distributed implementation of (14) are later discussed in Section 4. In case
the sets C and D are boundedly linearly regular, it follows from [6, Cor. 2.1] that

dist

(

S(k+1),

N⋂

i=1

Ci
)

≤ γBdist

(

S(k),

N⋂

i=1

Ci
)

(15)

with

γB =

√

1− 1

θ2B
(16)

where θB > 0 depends on the starting point as is the case for (8) of MPA. It was shown
in [1, 2], that in case the problem in (12) is infeasible

V (k) − S(k), V (k) − S(k+1) → d, ‖d‖ = dist(C,D), (17)

where since C is assumed to be closed, dist(C,D) is attained. Theoretically, this result
provides the possibility to detect infeasibility of (12) by monitoring the sequences in (17).
However, to the best knowledge of the authors, the rates of convergence of the sequences
V (k) − S(k) and V (k) − S(k+1) to d or ‖d‖ to dist(C,D) have not yet been established.

2.3.2. Dykstra’s alternating projections

The CFP in (12) can also be solved using Dykstra’s AP method, where

S(k+1) = PC(V
(k) − λ̄(k)) (18a)

V (k+1) = PD(S
(k)) (18b)

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 7

λ̄(k+1) = λ̄(k) + (S(k+1) − V (k+1)). (18c)

and λ̄ = (λ̄1, . . . , λ̄N). Note that this algorithm is a special case of Dykstra’s AP method
where one of the sets is affine, [2]. Similar to von Neumann’s AP method, in case
C ∩ D 6= ∅ the iterates V (k) and S(k) converge to a point in C ∩ D, [2]. The updates
in (18), result in the following iterative algorithm

S(k+1) = PC(V
(k) − λ̄(k)) (19a)

=
(

PC̄1

(

EJ1
v(k) − λ̄1,(k)

)

, . . . , PC̄N

(

EJN
v(k) − λ̄N,(k)

))

V (k+1) = PD(S
(k)) (19b)

λ̄(k+1) = λ̄(k) + (S(k+1) − V (k+1)). (19c)

As can be seen from (19a), this algorithm is also highly parallelizable. This is discussed
in more detail in Section 4. Unlike von Neumann’s AP method, the iterative algorithm
in (18) does not necessarily converge with a linear rate even when the underlying sets
are boundedly linearly regular. Similar to von Neumann’s AP method, in case the CFP
in (12) is infeasible the sequences V (k) −S(k) and V (k) −S(k+1) converge to d, however,
their rates of convergence are not known, [2].

2.4. Convex Minimization Formulation

The problem in (12), can also be reformulated as a convex minimization problem. Let
IC(S) and ID(S) be the indicator functions for the sets C and D, where an indicator
function for a set, e.g., A, is defined as

IA(x) =
{

∞ x 6∈ A
0 x ∈ A . (20)

and hence dom(IA) = A. The CFP in (12) can then be equivalently rewritten as the
following convex minimization problem

minimize
S

IC(S) + ID(S). (21)

Despite the equivalence between the problems in (12) and (21), the minimization prob-
lem is not defined in case the CFP in (12) is infeasible, since the effective domain of
the cost function would then be empty. This limits our capability to draw conclusions
regarding the infeasibility of the corresponding CFP using this formulation. In order to
circumvent this issue, we define the following unconstrained minimization problems

minimize
S

F1(S) :=
1

2

N∑

i=1

‖si − PC̄i
(si)‖2 + ID(S), (22)

and

minimize
S

F2(S) :=
1

2

N∑

i=1

‖si − PC̄i
(si)‖2 + 1

2
‖S − PD(S)‖2, (23)

August 22, 2018 Optimization Methods and Software OMSPaper

8 Taylor & Francis and I.T. Consultant

which are well-defined even when the CFP in (12) is infeasible. Note that the problems
in (22) and (23) are not equivalent to the CFP in (12). However, these minimization
problems always have at least one solution and admit an optimal solution with zero
objective value if and only if the problem in (12) is feasible. In fact the optimal solu-
tion then constitutes a solution for (12). Similarly, the minimization problems in (22)
and (23), yield a non-zero optimal objective value if and only if the CFP in (12) is infea-
sible. In the upcoming sections, we explain how these minimization problems facilitate
the design of distributed algorithms for solving the CFP in (12).

3. Proximity Operators and Proximal Splitting

Consider the problem of minimizing a sum of p closed convex functions

minimize F (x) = f1(x) + · · · + fp(x). (24)

Through the use of their so-called proximity operators, [15], proximal splitting algo-
rithms allow us to perform this minimization by considering each of the terms in the
cost function separately. Proximity operators are defined as follows.

Definition 3.1 [15]Given a closed convex function f : Rn → R, then for every x ∈ R
n,

the proximity operator of the function f , proxf : Rn → R
n, is defined as the unique

minimizer of the following optimization problem,

minimize
y

f(y) +
1

2
‖x− y‖2.

Keeping in mind the problems in (22) and (23), we only consider the case where the
cost function consists of two terms, i.e., p = 2. Depending on the characteristics of
the terms in the cost function, we are allowed to employ different proximal splitting
algorithms. Next, we review some of the most widely used of such methods.

3.1. Forward-backward Splitting

The forward-backward proximal splitting algorithm is suitable for cases where at least
one of the two terms in the cost function is differentiable with a Lipschitz continuous
gradient. Assume that f1 and f2 are both closed convex functions and that the problem

minimize
x

f1(x) + f2(x) (25)

has at least one solution. Let f1(x) be differentiable. In this case, the problem can be
solved using Algorithm 1.

Algorithm 1 Forward-backward method [15, 16]

1: Given ε ∈ (0,min(1, 1/L)] and x(1)

2: for k = 1, 2 . . . do
3: γ(k) ∈ [ε, 2/L− ε]
4: λ(k) ∈ [ε, 1]
5: y(k+1) = x(k) − γ(k)∇f1(x

(k))
6: x(k+1) = (1 − λ(k))x(k) + λ(k)proxγ(k)f2

(y(k+1))

7: end for

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 9

In this algorithm γ(k) is the so-called gradient step, λ(k) is a relaxation parameter and
L is the Lipschitz constant of ∇f1. It was shown in [31], [7, Thm. 3.1], that if γ(k) < 2/L
and λ(k) = 1,

F (x(k))− F (x∗) ≤ L‖x(0) − x(k)‖2
2k

, (26)

where x∗ is any optimal solution for the problem in (24). It is also possible to obtain
better rate of convergence of the objective value by combining this algorithm with the
so-called 1-memory accelerated gradient methods, [15]. This comes at the expense of a
more complicated algorithm. Let l(x; y) = f1(y) + 〈∇f1(y), x− y〉+ f2(x) and define

D(x, y) = h(x)− h(y)− 〈∇h(y), x − y〉 ,

where h is a strictly convex function. The general format for 1-memory accelerated
gradient methods can then be presented as in Algorithm 2, [37].

Algorithm 2 1-memory accelerated gradient method [37]

1: Given θ(1) ∈ (0, 1] and x(1), g(1)

2: for k = 1, 2 . . . do
3: y(k+1) = (1− θ(k))x(k) + θ(k)g(k)

4: g(k+1) = arg minx
{
l
(
x; y(k+1)

)
+ θ(k)LD

(
x, g(k)

)}

5: x̂(k+1) = (1 − θ(k))x(k) + θ(k)g(k+1)

6: Choose x(k+1) to be no worse than x̂(k+1) in l(x; y(k+1)) + L/2‖x− y(k+1)‖2
7: Choose 1−θ(k+1)

(θ(k+1))
2 ≤ 1

(θ(k))
2

8: end for

Depending on the choice of function h(·), and how we choose to compute x(k) and
θ(k), we end up in different accelerated gradient methods, [8, 37]. In case we choose
h(x) = 1

2‖x− y‖2 and merge the fifth and sixth steps of Algorithm 2 by choosing

x(k+1) = arg min
x

{l(x;Y (k+1)) +
L

2
‖x− Y (k+1)‖2},

we can summarize the combination of the forward-backward splitting algorithm with
1-memory accelerated gradient method as Algorithm 3.

Algorithm 3 Accelerated forward-backward method

1: Given θ1 ∈ (0, 1] and x(1), g(1)

2: for k = 1, 2 . . . do
3: y(k+1) = (1− θ(k))x(k) + θ(k)g(k)

4: b(k+1) = g(k) − 1
θ(k)L

∇f1(y
(k+1))

5: g(k+1) = prox 1

θ(k)L
f2

(
b(k+1)

)

6: c(k+1) = y(k+1) − 1
L
∇f1(y

(k+1))

7: x(k+1) = prox 1
L
f2

(
c(k+1)

)

8: Choose 1−θ(k+1)

(θ(k+1))
2 ≤ 1

(θ(k))
2

9: end for

There are different convergence results for such algorithms which are dependent on
different choices of θ(k), e.g., see [37, Cor. 1] and [7, Thm. 4.4], where all suggest rates

August 22, 2018 Optimization Methods and Software OMSPaper

10 Taylor & Francis and I.T. Consultant

of convergence of order O(1/k2) of the objective value function. In other words

F (x(k))− F (x∗) ≤ O(
1

k2
). (27)

3.2. Splitting Using Alternating Linearization Methods

The splitting of the problem in (24) for p = 2, can also be performed by introducing
auxiliary constraints as

minimize
x,y

f1(x) + f2(y)

subject to x = y.
(28)

Assume that f1 and f2 are both differentiable with Lipschitz continuous gradients. Such
linear equality constrained optimization problems can then be solved using the so-called
alternating linearization method (ALM), [23]. Let

Qf2
µ (x, y) = f1(x) + f2(y) + 〈∇f2(y), x− y〉+ 1

2µ
‖x− y‖2

= f1(x) + f2(y) +
1

2µ
‖x− (y − µ∇f2(y))‖2 ,

Qf1
µ (y, x) = f2(y) + f1(x) + 〈∇f1(x), y − x〉+ 1

2µ
‖x− y‖2

= f2(y) + f1(x) +
1

2µ
‖x− (y + µ∇f1(x))‖2 ,

and define the following update rules

x(k+1) = arg min
x

Qf2
µ1
(x, y(k))

= proxµ1f1(y
(k) − µ∇f2(y

(k))),

(29)

and

y(k+1) = arg min
y

Qf1
µ2
(y, x(k+1))

= proxµ2f2(x
(k+1) − µ∇f1(x

(k+1))).

(30)

The ALM scheme for solving the problem in (28) can then be written as in Algorithm 4.

Algorithm 4 ALM

1: Given µ1, µ2 > 0 and y(1)

2: for k = 1, 2 . . . do
3: x(k+1) = proxµ1f1

(y(k) − µ∇f2(y
(k)))

4: y(k+1) = proxµ2f2
(x(k+1) − µ∇f1(x

(k+1)))

5: end for

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 11

Goldfarb et al. in [23, Cor. 2.4] showed that in case 0 < µ1 ≤ 1/L1 and 0 < µ2 ≤ 1/L2,
where L1 and L2 are Lipschitz constants for the gradients of f1 and f2 respectively,

F (y(k))− F (x∗) ≤ ‖x(1) − x∗‖2
2(µ1 + µ2)k

, ∀ k > 1. (31)

In the same paper, the authors also propose an accelerated variant of ALM, which is
reported in Algorithm 5.

Algorithm 5 Fast ALM [23]

1: Given µ1, µ2 > 0, t(1) = 1 and z(1) = y(1)

2: for k = 1, 2 . . . do
3: x(k+1) = proxµ1f1

(z(k) − µ1∇f2(z
(k)))

4: y(k+1) = proxµ2f2
(x(k+1) − µ2∇f1(x

(k+1)))

5: t(k+1) =
1+

√
1+t(k)2

2

6: z(k+1) = y(k+1) + t(k)−1
t(k+1) (y

(k+1) − y(k))

7: end for

It was shown in [23, Cor. 3.5], that in case µ1 and µ2 are chosen in the same manner
as for the ALM algorithm,

F (y(k))− F (x∗) ≤ 2‖x(1) − x∗‖2
(µ1 + µ2)k2

, ∀ k > 1 (32)

Notice that Algorithm 5 is similar to Algorithm 3. This can be particularly observed by
comparing the steps 5, 7, 8 and 1 in Algorithm 3 with steps 3, 4, 5 and 6 in Algorithm 5,
respectively.

Remark 1 The alternating linearization method is very similar to the so-called alter-
nating direction method of multipliers (ADMM), [9, 10], and in fact Algorithm 5 is
equivalent to a symmetric variant of ADMM, [23]. We have chosen not to investigate
ADMM or its other variants, since most of their convergence rate results rely on strong
convexity of at least one of the terms in the cost function, [19, 24], which is not the case
for neither of the problems in (22) and (23).

3.3. Douglas-Rachford Splitting

In case ri dom f1 ∩ ri dom f2 6= ∅ and if the problem in (25) has at least one solution, we
can use the so-called Douglas-Rachford splitting algorithm for solving the optimization
problem. Note that unlike forward-backward splitting, this method does not require
any of the objective function terms to be differentiable. The scheme for solving the
optimization problem using this method is described in Algorithm 6.

Algorithm 6 Douglas-Rachford method [14, 15]

1: Given ε ∈ (0, 1), γ > 0 and y(1)

2: for k = 1, 2 . . . do
3: λ(k) ∈ [ε, 2− ε]
4: x(k+1) = proxγf1(y

(k))

5: y(k+1) = y(k) + λ(k)
(
proxγf2(2x

(k+1) − y(k))− x(k+1)
)

6: end for

August 22, 2018 Optimization Methods and Software OMSPaper

12 Taylor & Francis and I.T. Consultant

Remark 2 Douglas-Rachford splitting is one of the principle classes of splitting methods
and includes many splitting methods as special cases. Particularly, it was shown in [21,
22] that ADMM and ALM fall within this class of splitting methods. The convergence
of this splitting method (and its variants) has been studied thoroughly in the literature,
[14, 20, 30]. However, due to its generality, the convergence rate of this splitting method
in its most general format is yet to be established. Hence, although we utilize this
algorithm for solving CFPs, this limits our capability to provide convergence rate results
for the resulting algorithm.

Next, we will apply the proximal splitting algorithms described in this section to the
problems in (22) and (23).

4. Distributed Solution

In this section, we propose several distributed algorithms that can be used to solve the
feasibility problem in (3). In sections 4.1 and 4.2, we describe and discuss the distributed
algorithms, and in Section 4.3, we investigate how the convergence of these methods can
be established in a distributed manner when the problem in (12) is either feasible or
infeasible.

4.1. Proximal splitting and distributed implementation

In order to facilitate providing a distributed solution for the feasibility problem in (3) and
due to the similarity between the problems in (22), (23) and (24), we employ proximal
splitting algorithms. We apply algorithms 1 and 3 for solving the minimization problem
in (22). To be able to use these algorithms, we identify f1(S) as

1
2

∑N
i=1 ‖si − PC̄i

(si)‖2
and f2(S) as ID(h). The proximity operators for these functions are given as

proxf1(S) =
S + PC(S)

2
(33a)

proxf2(S) = PD(S), (33b)

Note that the proximity operator computation of f1(S) is highly parallelizable. Assume
that a network of N computing agents is available. Then proxf1 can be computed in a

distributed manner where each of the N agents calculates
(
si + PC̄i

(si)
)
/2 individually.

Considering the definition of the set D, the proximity operator of f2 is merely a linear
projection and is given as

proxf2(S) = Ē(ĒT Ē)−1ĒTS. (34)

Note that

ĒT Ē = diag(|I1|, . . . , |IN |),

and hence, proxf2 describes the required communication and interaction between the

agents in the network. For instance, define b = (ĒT Ē)−1ĒT , then each of the components
of b can be expressed as

bj =
1

|Ij|
∑

q∈Ij

(

ET
Jq
sq,(k+1)

)

j
. (35)

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 13

As a result in order to compute this quantity, the agents in the set Ij must interact
with one another. In other words, this requires each agent i to communicate with all
the agents in

Ne(i) = {j | Ji ∩ Jj 6= ∅} , (36)

which are referred to as neighbours of agent i. This interpretation of proxf2 is later used
in the description of the proposed algorithms for distributed feasibility analysis. In order
to solve the minimization problem in (23) we use algorithms 4–6, where in this case,
f2(S) is identified as 1

2‖S − PD(S)‖2. The proximity operator for this function is given
as

proxf2(S) =
S + PD(S)

2
, (37)

The proximity operator of f2 for this case, is also dependent on computing projections
onto the consensus set. Hence, similar to the previous case, proxf2 will also describe the
communication and interaction among agents.

4.1.1. Forward-backward algorithm

Considering the description of the functions f1 and f2 in problem (22), f1 is differen-
tiable and

∇f1(S) = S − PC(S),

which is Lipschitz continuous with Lipschitz constant L = 1. Applying the forward-
backward method to this problem results in the following update rules

Y (k+1) = S(k) − γ(k)
(

S(k) − PC(S
(k))
)

= (1− γ(k))S(k) + γ(k)PC(S
(k))

S(k+1) = (1− λ(k))S(k) + λ(k)PD(Y
(k+1))

= (1− λ(k))S(k) + λ(k)Ē(ĒT Ē)−1ĒTY (k+1),

where Y (k+1) = (y1,(k+1), . . . , yN,(k+1)). Note that, if we choose S(1) = Ēv(1) then

Algorithm 7 Forward-backward method

1: Given ε ∈ (0, 1], v(1) and S(1) = Ēv(1)

2: for k = 1, 2 . . . do
3: γ(k) ∈ [ε, 2− ε]
4: λ(k) ∈ [ε, 1]
5: for i = 0, 1 . . . , N do
6: yi,(k+1) = (1 − γ(k))si,(k) + γ(k)PC̄i

(si,(k))
7: Communicate with all agents r belonging to Ne(i)
8: for all j ∈ Ji do

9: v
(k+1)
j = 1

|Ij |

∑

q∈Ij

(

ET
Jq
yq,(k+1)

)

j

10: end for
11: si,(k+1) = (1− λ(k))si,(k) + λ(k)v

(k+1)
Ji

12: end for

13: end for

August 22, 2018 Optimization Methods and Software OMSPaper

14 Taylor & Francis and I.T. Consultant

S(k) ∈ D for all k > 1. The resulting distributed solution based on the forward-backward
algorithm is summarized in Algorithm 7. Notice that, for a constant λ = 1, this algorithm
is equivalent to the two point projection method in [6]. Furthermore if γ(k) = 1, this
algorithm is von Neumann’s AP method.

4.1.2. Accelerated forward-backward algorithm

It is possible to obtain faster convergence rates, by employing the accelerated forward-
backward splitting to solve the problem in (22). Let Y (k) = (y1,(k), . . . , yN,(k)) and G(k),
U (k), Z(k) be defined similarly. By applying this algorithm to the problem in (22), we
arrive at the following update rules

Y (k+1) = (1− θ(k))S(k) + θ(k)G(k) (38a)

U (k+1) = G(k) − 1

θ(k)

(

Y (k+1) − PC(Y
(k+1))

)

(38b)

G(k+1) = PD(U
(k+1)) (38c)

Z(k+1) = PC(Y
(k+1)) (38d)

S(k+1) = PD(Z
(k+1)) (38e)

Note that, similar to the forward-backward algorithm, in case we choose S(1) = G(1) =
Ēv(1), we will have Y (k), G(k), S(k) ∈ D for all k ≥ 1. Substituting (38b) into (38c) and
by using (38a), we can then simplify these update rules as follows

Y (k+1) = (1− θ(k))S(k) + θ(k)G(k)

G(k+1) = Ē(ĒT Ē)−1ĒTU (k+1)

= Ē(ĒT Ē)−1ĒT

(

G(k) − 1

θ(k)

(

Y (k+1) − PC(Y
(k+1))

))

= G(k) − 1

θ(k)
Ē(ĒT Ē)−1ĒT

(

(1− θ(k))S(k) + θ(k)G(k) − PC(Y
(k+1))

)

=
θ(k) − 1

θ(k)
S(k) +

1

θ(k)
Ē(ĒT Ē)−1ĒTPC(Y

(k+1))

S(k+1) = Ē(ĒT Ē)−1ĒTPC(Y
(k+1))

The resulting distributed algorithm can then be summarized as in Algorithm 8.

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 15

Algorithm 8 Accelerated proximal gradient method

1: Given θ(0) ∈ (0, 1], v(0) and G(1) = S(1) = Ēv(0)

2: for k = 1, 2, . . . do
3: for i = 1, 2 . . . , N do
4: yi,(k+1) = (1 − θ(k))si,(k) + θ(k)gi,(k)

5: Communicate with all agents r belonging to Ne(i)
6: for all j ∈ Ji do

7: v
(k+1)
j = 1

|Ij |

∑

q∈Ij

(

ET
Jq
PC̄q

(yq,(k+1))
)

j

8: end for
9: gi,(k+1) = θ(k)−1

θ(k) si,(k) + 1
θ(k) v

(k+1)
Ji

10: si,(k+1) = v
(k+1)
Ji

11: end for
12: Choose θ(k+1) such that 1−θ(k+1)

θ(k+1)2 ≤ 1
θ(k)2

13: end for

4.1.3. ALM

It is also possible to devise a distributed feasibility analysis algorithm by applying
ALM to the formulation in (23). Define ν(k) = (ν1,(k), . . . , νN,(k)) = ∇f1(S

(k)) and
ξ(k) = (ξ1,(k), . . . , ξN,(k)) = ∇f2(Y

(k)). From the optimality conditions for (29) and
(30), we have

∇f1(S
(k+1)) +

1

µ1
(S(k+1) − Y (k)) +∇f2(Y

(k)) = 0

∇f2(Y
(k+1))− 1

µ2
(S(k+1) − Y (k+1)) +∇f1(S

(k+1)) = 0

which results in the following update rules for ν(k) and ξ(k+1)

ν(k+1) = −ξ(k) − 1

µ1
(S(k+1) − Y (k))

ξ(k+1) = −ν(k+1) +
1

µ2
(S(k+1) − Y (k+1))

(39)

Applying Algorithm 4 to the problem in (23) then results in

S(k+1) = proxµ1f1(Y
(k) − µ1ξ

(k))

=
1

µ1 + 1

(

Y (k) − µ1ξ
(k) + µ1PC(Y

(k) − µ1ξ
(k))
)

(40a)

ν(k+1) = −ξ(k) − 1

µ1
(S(k+1) − Y (k)) (40b)

Y (k+1) = proxµ2f2(S
(k+1) − µ2ν

(k+1))

=
1

µ2 + 1

(

S(k+1) − µ2ν
(k+1) + µ2PD(S

(k+1) − µ2ν
(k+1))

)

=
1

µ2 + 1

(

S(k+1) − µ2ν
(k+1) + µ2Ē(ĒT Ē)−1ĒT (S(k+1) − µ2ν

(k+1))
)

(40c)

ξ(k+1) = −ν(k+1) +
1

µ2
(S(k+1) − Y (k+1)), (40d)

August 22, 2018 Optimization Methods and Software OMSPaper

16 Taylor & Francis and I.T. Consultant

which is obtained by combining the update rules in (29), (30) and (39). Since the
Lipschitz constants for both f1 and f2 are equal to 1, we can also choose µ1 = µ2 = 1.
The resulting distributed feasibility algorithm can then be summarized in Algorithm 9.

Algorithm 9 Alternating linearization method

1: Given Y (1) and ξ(1) = Y (1) − PD(Y (1))
2: for k = 1, 2, . . . do

3: for i = 1, 2 . . . , N do

4: si,(k+1) = 1
2

(

yi,(k) − ξi,(k) + PC̄i
(yi,(k) − ξi,(k))

)

5: νi,(k+1) = −ξi,(k) − (si,(k+1) − yi,(k))
6: Communicate with all agents r belonging to Ne(i)
7: for all j ∈ Ji do

8: v
(k+1)
j

= 1
|Ij |

∑

q∈Ij

(

ET
Jq

(sq,(k+1) − νq,(k+1))
)

j

9: end for

10: yi,(k+1) = 1
2

(

si,(k+1) − νi,(k+1) + v
(k+1)
Ji

)

11: ξi,(k+1) = −νi,(k+1) + (si,(k+1) − yi,(k+1))
12: end for

13: end for

Remark 3 The authors in [23], propose another variant of Algorithm 4 that allows for
non-smooth terms in the cost function, with similar convergence results. This enables us
to use ALM for solving the formulation in (23) of the CFP. However, doing so recovers
von Neumann’s AP method.

4.1.4. Fast ALM

Following the ideas from the derivation of Algorithm 9, we can also apply fast ALM to
the problem in (23) as follows. Define ν(k) = ∇f1(S

(k)), ξ(k) = ∇f2(Y
(k)) and similarly

β(k) = ∇f2(Z
(k)). From the optimality conditions of the 3rd and 4th steps of Algorithm

5, we have

∇f1(S
(k+1)) +

1

µ1
(S(k+1) − Z(k)) +∇f2(Z

(k)) = 0

∇f2(Y
(k+1))− 1

µ2
(S(k+1) − Y (k+1)) +∇f1(S

(k+1)) = 0.

Also recall that ∇f2(Z
(k)) = Z(k) −PD(Z(k)) = Z(k) − Ē(ĒT Ē)−1ĒTZ(k) is linear with

respect to the input argument, and hence, by the 6th step of Algorithm 5, we arrive at
the following update rules

ν(k+1) = −β(k) − 1

µ1
(S(k+1) − Z(k))

ξ(k+1) = −ν(k+1) +
1

µ2
(S(k+1) − Y (k+1))

β(k+1) = ξ(k+1) +
t(k) − 1

t(k+1)
(ξ(k+1) − ξ(k))

(41)

Combining these with the resulting update rules obtained from applying Algorithm 5
to the problem in (23), yields

S(k+1) = proxµ1f1(Z
(k) − µ1β

(k))

=
1

µ1 + 1

(

Z(k) − µ1β
(k) + µ1PC(Z

(k) − µ1β
(k))
)

(42a)

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 17

ν(k+1) = −β(k) − 1

µ1
(S(k+1) − Z(k)) (42b)

Y (k+1) = proxµ2f2(S
(k+1) − µ2ν

(k+1))

=
1

µ2 + 1

(

S(k+1) − µ2ν
(k+1) + µ2PD(S

(k+1) − µ2ν
(k+1))

)

=
1

µ2 + 1

(

S(k+1) − µ2ν
(k+1) + µ2Ē(ĒT Ē)−1ĒT (S(k+1) − µ2ν

(k+1))
)

(42c)

ξ(k+1) = −ν(k+1) +
1

µ2
(S(k+1) − Y (k+1)), (42d)

t(k+1) =
1 +

√

1 + t(k)2

2
(42e)

Z(k+1) = Y (k+1) +
t(k) − 1

t(k+1)
(Y (k+1) − Y (k)) (42f)

β(k+1) = ξ(k+1) +
t(k) − 1

t(k+1)
(ξ(k+1) − ξ(k)), (42g)

where similar to the previous algorithm, we can choose µ1 = µ2 = 1. This algorithm is
summarized in Algorithm 10.

Algorithm 10 Fast alternating linearization method

1: Given Z(1) = Y (1), β(1) = Z(1) − PD(Z(1)) and t(1) = 1
2: for k = 1, 2, . . . do
3: for i = 1, 2 . . . , N do

4: si,(k+1) = 1
2

(

zi,(k) − βi,(k) + PC̄i
(zi,(k) − βi,(k))

)

5: νi,(k+1) = −βi,(k) − (si,(k+1) − zi,(k))
6: Communicate with all agents r belonging to Ne(i)
7: for all j ∈ Ji do

8: v
(k+1)
j = 1

|Ij |

∑

q∈Ij

(

ET
Jq

(sq,(k+1) − νq,(k+1))
)

j

9: end for

10: yi,(k+1) = 1
2

(

si,(k+1) − νi,(k+1) + v
(k+1)
Ji

)

11: ξi,(k+1) = −νi,(k+1) + (si,(k+1) − yi,(k+1))

12: t(k+1) = 1+
√

1+t(k)2

2

13: zi,(k+1) = yi,(k+1) + t(k)−1

t(k+1) (y
i,(k+1) − yi,(k))

14: βi,(k+1) = ξi,(k+1) + t(k)−1

t(k+1) (ξ
i,(k+1) − ξi,(k))

15: end for

16: end for

Remark 4 In [23], another variant of Algorithm 5 is suggested that can handle non-
differentiable terms in the cost function and can deliver similar convergence rate results.
This variant of the algorithm includes a skipping step which does not allow an efficient
distributed implementation and requires global communication of iterates among all
agents.

4.1.5. Douglas-Rachford algorithm

We now apply the Douglas-Rachford algorithm to the minimization problem in (23).
This results in the following update rules,

S(k+1) =
1

γ + 1

(

Y (k) + γPC(Y
(k))
)

August 22, 2018 Optimization Methods and Software OMSPaper

18 Taylor & Francis and I.T. Consultant

Y (k+1) = Y (k) + λ(k)
(

proxγf2(2S
(k+1) − Y (k))− S(k+1)

)

= Y (k) + λ(k)

(
1

γ + 1

(

2S(k+1) − Y (k) + γPD(2S
(k+1) − Y (k))

)

− S(k+1)

)

= Y (k) + λ(k)

(
2

γ + 1
S(k+1) − 1

γ + 1
Y (k) +

γ

γ + 1
PD(2S

(k+1) − Y (k))− S(k+1)

)

= Y (k) + λ(k)

(
1− γ

γ + 1
S(k+1) − 1

γ + 1
Y (k) +

γ

γ + 1
PD(2S

(k+1) − Y (k))

)

The resulting iterative algorithm is reported in Algorithm 11.

Algorithm 11 Douglas-Rachford method

1: Given ε ∈ (0, 1), γ > 0 and Y (1)

2: for k = 1, 2, . . . do

3: λ(k) ∈ [ε, 2− ε]
4: for i = 1, 2 . . . , N do

5: si,(k+1) = 1
γ+1

(

yi,(k) + γPC̄i
(yi,(k))

)

6: zi,(k+1) = 2si,(k+1) − yi,(k)

7: Communicate with all agents r belonging to Ne(i)
8: for all j ∈ Ji do

9: v
(k+1)
j = 1

|Ij |

∑

q∈Ij

(

ET
Jq

zq,(k+1)
)

j

10: end for

11: yi,(k+1) = yi,(k) + λ(k)
(

1−γ
γ+1

si,(k+1) − 1
γ+1

yi,(k) + γ
γ+1

v
(k+1)
Ji

)

12: end for

13: end for

Note that this algorithm is similar to the method proposed method in [33] for large-
scale distributed learning.

4.2. Distributed Implementation of von Neumann’s and Dykstra’s AP

method

Similar to the algorithms presented in sections 4.1.1–4.1.5, it is also possible to im-
plement von Neumann’s and Dykstra’s AP methods in a distributed manner. The dis-
tributed version of these algorithms are presented in algorithms 12 and 13.

Algorithm 12 Von Neumann’s AP method

1: Given x(1)

2: for k = 1, 2, . . . do
3: for i = 1, 2, . . . ,N do

4: si,(k+1) = PC̄i

(

v
(k)
Ji

)

.

5: Communicate with all agents r belonging to Ne(i)
6: for all j ∈ Ji do

7: v
(k+1)
j = 1

|Ij |

∑

q∈Ij

(

ET
Jq
sq,(k+1)

)

j

8: end for
9: end for

10: end for

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 19

Algorithm 13 Dykstra’s AP method

1: Given x(1) and λ̄(1) = 0
2: for k = 1, 2, . . . do
3: for i = 1, 2, . . . ,N do

4: si,(k+1) = PC̄i

(

v
(k)
Ji

− λ̄i,(k)
)

5: Communicate with all agents r belonging to Ne(i)
6: for all j ∈ Ji do

7: v
(k+1)
j = 1

|Ij |

∑

q∈Ij

(

ET
Jq
sq,(k+1)

)

j

8: end for

9: λ̄i,(k+1) = λ̄
(k)
i +

(

si,(k+1) − v
(k+1)
Ji

)

10: end for

11: end for

4.3. Local convergence tests

In case (12) is feasible, algorithms 7–13 converge to a feasible solution of the problem.
Local convergence tests check the convergence of the iterates to a feasible solution or de-
tect infeasibility of the problem in a distributed manner with minimal communication.
Unlike the so-called global tests, which require transmission of the local variables to a
central unit, local methods only demand each agent to merely declare its local variables
feasibility or convergence status with respect to its local constraints and/or objective
value. Recall that for feasible problems applying the proposed algorithms to the formu-
lations in (22) and (23) will generate sequences that converge to an optimal solution,
[5, 14–16, 37], which yield zero objective value. Also for the case (12) is infeasible, all
the proposed algorithms converge to a solution of the problems in (22) and (23), how-
ever, this solution does not result in zero objective value. Based on the aforementioned
observation, we propose an approach for establishing convergence to a feasible solution
or infeasibility of the problem. This approach is based on monitoring the convergence
of the objective function value and the satisfaction of local constraints.

4.3.1. Convergence of the objective value

One of the ways to establish convergence of the proposed algorithms is through moni-
toring the so-called relative change of objective value (they intend to minimize), at each
iteration. In case this quantity falls below a certain threshold, we can deduce conver-
gence of the algorithm to a solution. Particularly, given a sequence {d(k)}, the relative
change of this sequence at iteration k + 1 can be defined as

R(k+1) =

∥
∥d(k+1) − d(k)

∥
∥

∥
∥d(k)

∥
∥

. (43)

For algorithms 7 and 8 that concern the problem in (22), we then monitor the following
quantity

R
(k+1)
1 =

∣
∣
∣

∥
∥S(k+1) − PC

(
S(k+1)

)∥
∥
2 −

∥
∥S(k) − PC

(
S(k)

)∥
∥
2
∣
∣
∣

∥
∥S(k) − PC

(
S(k)

)∥
∥2

. (44)

This is because S(k) ∈ D, ∀ k ≥ 1, for both algorithms. Monitoring this quantity locally,
however, requires that all agents communicate their iterates to all other agents in the
network. In order to alleviate this issue, we instead consider monitoring an upper bound

August 22, 2018 Optimization Methods and Software OMSPaper

20 Taylor & Francis and I.T. Consultant

for R
(k+1)
1 . Notice that

R
(k+1)
1 ≤

∑N
i=1

∣
∣
∣

∥
∥si,(k+1) − PC̄i

(
si,(k+1)

)∥
∥
2 −

∥
∥si,(k) − PC̄i

(
si,(k)

)∥
∥
2
∣
∣
∣

∥
∥S(k) − PC

(
S(k)

)∥
∥2

≤
N∑

i=1

∣
∣
∣

∥
∥si,(k+1) − PC̄i

(
si,(k+1)

)∥
∥
2 −

∥
∥si,(k) − PC̄i

(
si,(k)

)∥
∥
2
∣
∣
∣

∥
∥si,(k) − PC̄i

(
si,(k)

)∥
∥2

=:

N∑

i=1

R
i,(k+1)
1 .

(45)

As can be seen from (45), this upper bound can now be monitored in a distributed man-

ner. Then if all the local relative changes, i.e., R
i,(k+1)
1 , fall below a certain threshold, we

can infer convergence of the algorithm to a solution. Hence, we can deduce convergence
with little communication.
For algorithms 9–11, which concern the problem in (23), the monitored relative change

takes the following form

R
(k+1)
2 =

∣
∣F2

(
Y (k+1)

)
− F2

(
Y (k)

)∣
∣

F2

(
Y (k)

) (46)

where F2(·) is defined as in (23). The relative change R
(k+1)
2 can also be bounded in a

similar manner as (45) as follows

R
(k+1)
2 ≤

N∑

i=1

∣
∣‖yi,(k+1) − PC̄i

(
yi,(k+1)

)
‖2 − ‖yi,(k) − PC̄i

(
yi,(k)

)
‖2
∣
∣

‖yi,(k) − PC̄i

(
yi,(k)

)
‖2 + ‖yi,(k) −EJi

C(k)‖2

+

∣
∣‖yi,(k+1) − EJi

C(k+1)‖2 − ‖yi,(k) − EJi
C(k)‖2

∣
∣

‖yi,(k) − PC̄i

(
yi,(k)

)
‖2 + ‖yi,(k) −EJi

C(k)‖2

=:

N∑

i=1

R
i,(k+1)
2 .

(47)

where C(k) = (ETE)−1ETY (k). As a result the convergence of algorithms 9–11 can also
be established distributedly and with little communication. However, notice that for

each agent to compute its local relative change at each iteration, i.e., R
i,(k+1)
2 , additional

communication among agents is required. This additional communication is required for
computation of C(k).

4.3.2. Feasibility of local constraints

In case the CFP is feasible, all the proposed algorithms converge to a feasible solution.
We can detect arrival at a feasible solution distributedly, by checking the feasibility of
local constraints. If at a certain iteration, the local iterates of all agents satisfy their
corresponding local constraints and if furthermore we have global consensus over the
network, i.e., (11c) is satisfied, we can infer that we have converged to a feasible solution.
For algorithms 7 and 8, the iterate S(k) already satisfy the global consensus con-

straints. Hence, the feasibility detection at each iteration (for these algorithms) requires

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 21

each agent i to check whether si,(k) ∈ C̄i. In case this is satisfied for all i = 1, . . . , N , we
can then infer arrival at a feasible solution. For algorithms 9–11, however, this test is
slightly more complicated. This is because the iterate Y (k) does not necessarily satisfy
the global consensus constraints. Consequently, when yi,(k) ∈ C̄i for all i = 1, . . . , N , the
agents would still need to communicate with their neighbors to check whether global
consensus is reached or not. Then, in case local constraints for all agents and global
consensus constraints are both satisfied, we can infer arrival at a feasible solution.
By combining the two methods for detecting convergence of the objective value and ar-

rival at a feasible solution, we can now describe a distributed framework for establishing
convergence to a solution as follows. At each iteration, each agent should

(1) check the feasibility of its local iterates with respect to their corresponding local
constraints. If all agents are locally feasible, communicate with neighbors to
check the satisfaction of the global consensus constraint (this only applies to
algorithms 9–11);

(2) check whether the local relative change has fallen below the predefined threshold.

Then,

• if condition (1) is satisfied for all agents, the algorithm has converged to a feasible
solution;

• if condition (2) is satisfied for all agents, the algorithm has converged and in case
there exists an agent with non-zero local objective value, the CFP is infeasible.

Remark 5 The convergence of algorithms 12 and 13, can also be established in a sim-
ilar manner. We refer to [28], for details of the corresponding convergence detection
framework.

5. Convergence Rate

In this section, we investigate the convergence results for the algorithms presented in
Section 4. We are particularly interested in the possibility of unifying the convergence
rate results for proximal methods with the existing results for projection methods, which
were discussed in Section 2. The convergence rate results for projection methods, see (8)
and (15), are based on the distance of the iterates to the feasible set and are proven under
the assumption that the underlying sets are boundedly linearly regular, (or that Slater’s
conditions are satisfied). In order to unify these results with convergence rate results
for proximal splitting methods, we study the convergence of the algorithms presented
in Section 4 by investigating the feasible and infeasible cases separately.

5.1. Feasible problem

Throughout this section we assume that the CFP in (12) is feasible and its underlying
constraint sets are boundedly linearly regular, i.e., they satisfy (5).

5.1.1. Forward-backward splitting

In this subsection we focus on algorithms 7 and 8, which are obtained by applying
forward-backward splitting to (22). As was mentioned in sections 4.1.1 and 4.1.2, in
these algorithms, the iterate S(k) ∈ D for all k ≥ 1. Hence, dist(S(k),D) = 0 and

F (S(k)) =
1

2

∥
∥
∥S(k) − PC(S

(k))
∥
∥
∥

2
+ ID(S(k)) (48)

=
1

2

∥
∥
∥S(k) − PC(S

(k))
∥
∥
∥

2
. (49)

August 22, 2018 Optimization Methods and Software OMSPaper

22 Taylor & Francis and I.T. Consultant

Assuming bounded linear regularity of the problem in (12), we then have

dist
(

S(k), C ∩ D
)

≤ θB max
{

dist
(

S(k), C
)

, dist
(

S(k),D
)}

= θBdist
(

S(k), C
)

Consequently and by (48), for algorithms 7 and 8 we have that

dist
(

S(k), C ∩ D
)

≤ O(
1√
k
), (50)

and

dist
(

S(k), C ∩ D
)

≤ O(
1

k
), (51)

respectively.

5.1.2. ALM splitting

Recall that algorithms 9 and 10 are obtained by applying ALM and fast ALM to the
problem in (23). Assuming bounded linear regularity of the CFP, we then arrive at

dist2
(

Y (k), C ∩ D
)

≤ θ2B max
{

dist2
(

Y (k), C
)

, dist2
(

Y (k),D
)}

≤
∥
∥
∥Y (k) − PC(Y

(k))
∥
∥
∥

2

+
∥
∥
∥Y (k) − PD(Y

(k))
∥
∥
∥

2

= 2F (Y (k)).

Note that in case the problem in (12) is feasible F (S∗) = 0 and hence by (31) and (32),
we have convergence rate results

dist
(

Y (k), C ∩ D
)

≤ O(
1√
k
), (52)

and

dist
(

Y (k), C ∩ D
)

≤ O(
1

k
), (53)

for algorithms 9 and 10, respectively.

5.2. Infeasible problem

The convergence results for algorithms 7–10, are not affected by the feasibility or infea-
sibility of the CFP in (12). Hence, we can consider the cost function of the problems
in (22) and (23), as a measure for detecting infeasibility. This is similar to the measures
used for detecting infeasibility for von Neumann’s and Dykstra’s AP methods, where
the sequences ‖V (k) − S(k)‖ and ‖V (k) − S(k+1)‖ converge to dist(C,G). However, recall
that the rate of convergence of the mentioned sequences is not established. This is in
contrast to algorithms 7–10, where we can use the existing results on convergence rate of
the objective value of algorithms 1–5, to provide convergence results on certain residuals
that can assist us in detecting infeasibilty of the problem.

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 23

5.2.1. Forward-backward splitting

Since for algorithms 7 and 8, the iterate S(k) ∈ D for all k ≥ 1, even when C ∩D = ∅,
we have

F (S(k)) =
1

2

∥
∥
∥S(k) − PC(S

(k))
∥
∥
∥

2
.

Recall that if the problem in (12) is infeasible, the optimal objective value for the
problem in (22) will be nonzero. Hence we can establish the infeasibility of the problem,

by monitoring the residual
∥
∥S(k) − PC(S(k))

∥
∥
2
, which will converge to dist2 (S∗, C) =

dist2 (C,D). By the convergence results in (26) and (27), we know that for algorithms 7
and 8, the rates of convergence of this residual are of O(1/k) and O(1/k2), respectively.

5.2.2. ALM splitting

For algorithms 9 and 10, we can also draw similar conclusions. Recall that in case
the problem in (12) is infeasible, the optimal objective value for the problem in (23)
will be nonzero. Hence, we can deduce infeasibility of the problem by monitoring the
convergence of the objective value of the problem in (23), i.e.,

∥
∥
∥Y (k) − PC(Y

(k))
∥
∥
∥

2
+
∥
∥
∥Y (k) − PD(Y

(k))
∥
∥
∥

2
,

which, by (31) and (32), is known to converge with O(1/k) and O(1/k2) convergence
rates, respectively.

Remark 6 Among algorithms 7–11, the ones based on the accelerated forward-backward
and fast ALM, i.e., algorithms 8 and 10, have better convergence properties. However,
Algorithm 8 has a practical advantage over the other. This is because, in order to detect
convergence and arrival at a feasible solution, Algorithm 10 requires more communica-
tion with neighbors and also a more sophisticated approach to do so. Hence, and purely
based on the discussions in sections 4.3 and 5, we expect Algorithm 8 to outperform the
rest of the described methods.

6. Numerical Results

In this section, we apply algorithms 7–13 to a class of flow feasibility problems, and
compare their performance when solving these problems. In section 6.1, we first describe
the considered flow feasibility problem and we then apply the algorithms to feasible and
infeasible flow problems in sections 6.2 and 6.3, respectively.

6.1. Flow Feasibility Problem

Let G(V, E) be a directed graph, where V = {1, . . . , N} is the set of its vertices and
E ⊆ V × V is the set of its edges. Two nodes i and j are adjacent if (i, j) ∈ E , and the
set of the ith node’s adjacent nodes are denoted as adj(i). Also let the nodes u, o ∈ V be
the so-called source and sink nodes of the graph, respectively. Assume that we inject a
flow U to the source node. The flow feasibility problem then corresponds to the problem
of assessing whether it is possible to relay U from the source node to the sink node, by
assigning flows to different edges in the graph and without violating flow constraints.
These constraints mainly describe how different nodes in the network are allowed to
relay the input flow from the source node to the sink node, by assigning flows to their

August 22, 2018 Optimization Methods and Software OMSPaper

24 Taylor & Francis and I.T. Consultant

edges. Let f i
j denote the flow assigned to the edge (i, j) ∈ E . Notice that since f i

j and

f j
i correspond to the flow within the same edge, we have

f i
j = f j

i , ∀ (i, j) ∈ E . (54)

The constraints in the flow feasibility problem can then be expressed as follows.

(1) The flow within each edge should be nonnegative and should not exceed its
maximum capacity, i.e.,

0 ≤ f i
j ≤ cij , ∀ (i, j) ∈ E ,

where cij denotes the maximum capacity of the (i, j) edge, and naturally cij =
cji.

(2) All nodes should satisfy the conservation of flow at all time. In other words, the
sum of flows entering a node should be equal to the sum of flows leaving a node,
i.e., for all nodes i ∈ V \ {u, o}

∑

j∈adj(i)\O(i)

f i
j =

∑

j∈O(i)

f i
j ,

where O(i) denotes the set of ith nodes’ adjacent nodes that receive flow from
this node. For the nodes u and o, this entails

∑

j∈adj(u)\O(u)

fu
j + U =

∑

j∈O(u)

fu
j ,

and

∑

j∈adj(o)\O(o)

f o
j =

∑

j∈O(o)

f o
j + U,

respectively.
(3) The sum of flows leaving a node should not exceed an internal nodal capacity

(which could be private to the node), i.e., for all nodes i ∈ V \ {o},
∑

j∈O(i)

f i
j ≤ ni,

where ni is the ith node nodal capacity, and for the node o, this entails

∑

j∈O(o)

f o
j + U ≤ no.

Having described the constraints of the flow feasibility problem, for i ∈ V \{u, o}, define

C̄i =

si
∣
∣
∣
∣

∑

j∈adj(i)\O(i)

f i
j =

∑

j∈O(i)

f i
j

∑

j∈O(i)

f i
j ≤ ni

0 ≤ f i
j ≤ cij ∀j ∈ adj(i)

. (55)

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 25

0

5

10

N
o.

 te
st

s

0

5

10

N
o.

 te
st

s

0

5

10

N
o.

 te
st

s

0

5

10

N
o.

 te
st

s

20 40 60 80 100 120 140 160 180 200
0

5

10

Number of iterations

N
o.

 te
st

s

0

5

10

N
o.

 te
st

s

0

5

10

N
o.

 te
st

s

Algorithm 7

Algorithm 8

Algorithm 9

Algorithm 10

Algorithm 11

Algorithm 12

Algorithm 13

Figure 1. Number of required iterations for each algorithm to converge to a feasible solution. The figure illustrates
the results achieved for all the 15 randomly generated examples.

Similarly for i ∈ {u, o}, define

C̄u =

su
∣
∣
∣
∣

∑

j∈adj(u)\O(u)

fu
j + U =

∑

j∈O(u)

fu
j

∑

j∈O(u)

fu
j ≤ nu

0 ≤ fu
j ≤ cuj ∀j ∈ adj(u)

, (56)

and

C̄o =

so
∣
∣
∣
∣

∑

j∈adj(o)\O(o)

f o
j =

∑

j∈O(o)

f o
j + U

∑

j∈O(o)

f o
j + U ≤ no

0 ≤ f o
j ≤ coj ∀j ∈ adj(o)

, (57)

where for each i ∈ V, si is the vector of flows of all the edges that are connected to the
ith node. Notice that the sets C̄i, for i = 1, . . . , N , are decoupled, and (54) describes
the coupling among these constraints. In other words, (54) defines the global consensus
constraints. With this definition of sis and C̄is, the flow feasibility problem has the same
format as the problem in (12), where D is given by (54). Next, we apply algorithms 7–13,
to this class of flow feasibility problems.

6.2. Feasible Flow Problem

In this section, we will study and compare the performance of algorithms 7–13, when
they are applied to a set of flow feasibility problems. To this end, we pose flow feasibility
problems over 15 connected directed graphs with 60 nodes. The source and sink nodes

August 22, 2018 Optimization Methods and Software OMSPaper

26 Taylor & Francis and I.T. Consultant

0 20 40 60 80 100 120
10

−15

10
−10

10
−5

10
0

Number of iterations

C
os

t f
un

ct
io

n Algorithm 7

Algorithm 8

Algorithm 10
Algorithm 9

Algorithm 11

Figure 2. The evolution of the cost function being minimized for algorithms 7–11.

of each of these graphs have been chosen to be the nodes with the most number of
outgoing and ingoing edges, respectively. These graphs have been generated using the
algorithm presented in Appendix A. The number of variables in the feasibility problems
that correspond to the generated flow problems, i.e., the number of local and global
variables, varies within the range of [936, 1146]. Also for the sake of simplicity, we have
chosen the edge capacities to be equal for all edges and also we have chosen the nodal
capacities to be a proportional to the number of outgoing edges from each node, i.e.,
given a graph G(V, E), cij = c̄ for all (i, j) ∈ E , and ni = |O(i)|n̄ for all i ∈ V. In order
to assure feasibility of the generated problems, we have chosen the input flow to the
source node, edge capacities and nodal capacities such that the network is capable of
relaying the input flow to the sink node. Particularly, for the examples considered in
this section, we have used the following procedure for finding suitable input flow, edge
and nodal capacities. We first set the initial values for the input flow and the capacities
as U = 100, c̄ = 10 and ni = |O(i)|c̄/2 for all i = 1, . . . , N . If the resulting flow problem
is feasible, then the initial values are deemed to be suitable. Otherwise, we

(1) set U := U/2.
(2) then check if the resulting flow problem is feasible; in which case we consider

the current values of c̄, nis and U as the chosen ones. In case the problem was
still infeasible, we

• set c̄ := 2c̄.
• set ni := |O(i)|c̄/2 for all i = 1, . . . , N .

• again check whether the resulting flow problem is feasible or not. In case the
problem is feasible we have found the suitable values for U , c̄ and n̄. Otherwise,
we continue by going back to step (1) of the scheme.

For algorithms 8–10 that do not have any tuning parameters (except for θ0 in Al-
gorithm 8 which is chosen to be 1) we have applied the algorithms as they are. For
algorithms 7 and 11 that do contain tuning parameters, these parameters are chosen
such that the algorithms achieve their best performance for each specific example. How-
ever, we have not considered time varying parameters in these algorithms. Figure 1
illustrates the obtained results from this experiment. The figure shows the number of
required iterations for each algorithm to converge to a feasible solution. In order to detect
convergence to a feasible solution, we have utilized the proposed approach in Section 4.3,

August 22, 2018 Optimization Methods and Software OMSPaper

Optimization Methods and Software 27

0 10 20 30 40 50 60 70
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of iterations

m
ax

im
um

 o
f l

oc
al

 r
el

at
iv

e
ch

an
ge

s

Algorithm 7

Algorithm 8

Algorithm 9

Algorithm 10

Algorithm 11

Figure 3. The maximum of local relative changes over the network for algorithms 7–11 when the flow feasibility
problem is infeasible.

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

10
4

Number of iterations

C
os

t f
un

ct
io

n

Algorithm 7

Algorithm 8

Algorithm 11

Algorithm 9

Algorithm 10

Figure 4. The evolution of the cost function being minimized for algorithms 7–11 when the flow feasibility
problem is infeasible.

where the threshold for convergence detection based on local relative changes was set to
10−4. However, for all examples, the convergence to feasible solutions was established
using the condition concerning the feasibility of local constraints. This was because this
condition was satisfied prior to the convergence of the objective value. As can be seen
from Figure 1, Algorithm 8 clearly outperforms the rest of the algorithms, followed by
algorithms 13 and 10. Figure 2, illustrates the performance of algorithms 7–11 in min-
imizing their corresponding cost functions, for one specific example. As was expected,
algorithms 8 and 10, outperform the rest of the algorithms.

6.3. Infeasible Flow Problem

In this experiment, we consider the case when the flow feasibility problem is infeasible,
where we also use a similar setup as in Section 6.2. Particularly, we randomly generate
a connected directed graph with 60 nodes, however, we design the problem such that
the resulting flow problem is infeasible. To be more specific, we reduce the capacity of
the edges and increase the input flow to the network, up to a point that we exceed the

August 22, 2018 Optimization Methods and Software OMSPaper

28 Taylor & Francis and I.T. Consultant

relaying capabilities of the network. The procedure that we used for finding suitable val-
ues for U , c̄ and nis for this purpose, is similar to the approach discussed in Section 6.2.
In fact, the only difference is in the steps when we change the values for U and c̄, where
we instead set these values as U := 2U and c̄ := c̄/2.
Note that, since the flow feasibility problem is infeasible, the convergence can only be

established through monitoring the local relative changes. Figure 3 depicts the maximum
of local relative changes across the network, for algorithms 7–11. The dashed line in
the figure, illustrates the threshold for convergence detection. As can be seen from the
figure, Algorithm 8 outperforms the other algorithms and converges within 22 iterations.
This is followed by algorithms 10 and 11 which converged within 38 and 39 iterations,
respectively. It is worth mentioning that, Dykstra’s AP method also converged to a
solution in 39 iterations, however, von Neumann’s AP method required 892 iterations to
converge. Figure 4 depicts the behavior of algorithms 7–11 when applied to an infeasible
problem. Unlike the behavior that was observed in Figure 2, the cost function sequence,
now, converges to a nonzero constant.

7. Conclusions

In this paper, we presented several algorithms for solving loosely coupled convex feasibil-
ity problems distributedly and efficiently. These algorithms were the result of application
of proximal splitting methods to convex minimization reformulations of product-space
formulation of such CFPs. We also proposed a distributed feasibility/infeasibility detec-
tion scheme that require little communication among the agents. Furthermore, through
the use of convergence rate results for proximal splitting methods, we provided a unified
treatment of the convergence rate analysis of the proposed algorithms and of classical
projection methods. We also studied the performance of the proposed algorithms using
numerical experiments which illustrated that Algorithm 8 outperforms the rest of the
algorithms.
A possible shortcoming of the presented algorithms can be in handling infeasible prob-

lems where dist(C,D) is extremely small. In such cases and due to sub-linear convergence
properties of these algorithms, they can require many iteration to converge (though, this
was not observed in any of the 15 examples). As future research direction, we intend
to further investigate this problem and devise possible remedies, e.g., by using more
advanced (primal-dual) splitting methods.

Appendix A. An Algorithm for Random Generation of Connected Directed

Graphs

In this appendix, we present an algorithm for generating connected and directed graphs,
G(V, E), with N vertices and with adjacency matrix A ∈ R

N×N given by

Aij =

0 (i, j) /∈ E
1 (i, j) ∈ E the edge is leaving the ith node

−1 (i, j) ∈ E the edge is entering the ith node

. (A1)

Notice that, by this definition, A is skew-symmetric. Next, we describe an algorithm,
that allows us to randomly generate the adjacency matrix of connected and directed
graphs.

August 22, 2018 Optimization Methods and Software OMSPaper

REFERENCES 29

Algorithm A1 Random Generation of Connected Directed Graphs
1: Given N , F1 = 1, Iterm = 1000 and A a N ×N zero matrix
2: for i = 1 : Iterm do

3: for i = N − 1 : −1 : 1 do
4: Set F2 = 1 and F3 = 1
5: while F2 == 1 do

6: Generate a random 1× i 0-1 vector, x.
7: if Number of nonzero elements in

[

A(N − i, 1 : N − i) x
]

is larger than 2 then

8: Set F2 = 0
9: end if

10: end while
11: while F3 == 1 do

12: Randomly assign a sign to nonzero elements in x.
13: if There exists both positive and negative elements in

[

A(N − i, 1 : N − i) x
]

then
14: Set F3 = 0
15: A(N − i,N − i+ 1 : N) = x
16: A(N − i+ 1 : N,N − i) = xT

17: end if
18: end while

19: end for

20: if There exists both positive and negative elements in A(N, 1 : N) then
21: break
22: end if

23: end for

Note that this algorithm can fail to generate a suitable adjacency matrix at each run,
and one must continue on running the algorithm until it satisfies the conditions in the
algorithm. The proposed algorithm is not an efficient method for generating connected
directed graphs, and it is merely a simple methodology that we used in Section 6 for
generating such graphs.

References

[1] H.H. Bauschke and J.M. Borwein, On the convergence of von Neumann’s alternating projection
algorithm for two sets, Set-Valued Analysis 1 (1993), pp. 185–212.

[2] H.H. Bauschke and J.M. Borwein, Dykstra’s alternating projection algorithm for two sets, Journal
of Approximation Theory 79 (1994), pp. 418–443.

[3] H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility problems,
SIAM Rev. 38 (1996), pp. 367–426.

[4] H.H. Bauschke, J.M. Borwein, and W. Li, Strong conical hull intersection property, bounded linear
regularity, jameson’s property (g), and error bounds in convex optimization, Mathematical Pro-
gramming 86 (1999), pp. 135–160.

[5] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, Springer, 2011.

[6] A. Beck and M. Teboulle, Convergence rate analysis and error bounds for projection algorithms in
convex feasibility problems, Optimization Methods and Software 18 (2003), pp. 377–394.

[7] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems, SIAM J. Img. Sci. 2 (2009), pp. 183–202.

[8] S.R. Becker, E.J. Candes, and M.C. Grant, Templates for convex cone problems with applications
to sparse signal recovery, Mathematical Programming Computation 3 (2011), pp. 165–218.

[9] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,
Athena Scientific, 1997.

[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers, Foundations and Trends in Machine
Learning 3 (2011), pp. 1–122.

[11] D. Butnariu, A.N. Iusem, and R.S. Burachik, Iterative methods of solving stochastic convex fea-
sibility problems and applications, Computational Optimization and Applications 15 (2000), pp.
269–307.

[12] Y. Censor and T. Elfving, A multiprojection algorithm using bregman projections in a product space,
Numerical Algorithms 8 (1994), pp. 221–239.

[13] Y. Censor and A. Lent, Cyclic subgradient projections, Mathematical Programming 24 (1982), pp.
233–235.

August 22, 2018 Optimization Methods and Software OMSPaper

30 REFERENCES

[14] P. Combettes and J.C. Pesquet, A Douglas-Rachford splitting approach to nonsmooth convex varia-
tional signal recovery, IEEE Journal of Selected Topics in Signal Processing 1 (2007), pp. 564–574.

[15] P.L. Combettes and J.C. Pesquet, Proximal splitting methods in signal processing, in Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Ap-
plications, Vol. 49, Springer New York, 2011, pp. 185–212.

[16] P.L. Combettes and V.R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale
Modeling and Simulation 4 (2005), pp. 1168–1200.

[17] A.R. De Pierro, From parallel to sequential projection methods and vice versa in convex feasibility:
Results and conjectures, in Inherently Parallel Algorithms in Feasibility and Optimization and their
Applications, D. Butnariu, Y. Censor, and S. Reich, eds., Studies in Computational Mathematics,
Vol. 8, Elsevier, 2001, pp. 187– 201.

[18] A.R. De Pierro and A.N. Iusem, A parallel projection method for finding a common point of a
family of convex sets, Pesquisa Operacional 5 (1985), pp. 1–20.

[19] W. Deng and W. Yin, On the global and linear convergence of the generalized alternating direction
method of multipliers, Tech. Rep. technical report 12-14, Rice University, CAAM, 2012.

[20] J. Eckstein and D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators, Mathematical Programming 55 (1992), pp. 293–318.

[21] D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented La-
grangian Methods: Applications to the Solution of Boundary-Value Problems, M. Fortin and R.
Glowinski, eds., North-Holland, 1983.

[22] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear
Mechanics, Society for Industrial and Applied Mathematics, 1989.

[23] D. Goldfarb, S. Ma, and K. Scheinberg, Fast alternating linearization methods for minimizing the
sum of two convex functions, Mathematical Programming (2012), pp. 1–34.

[24] T. Goldstein, B. ODonoghue, and S. Setzer, Fast alternating direction optimization methods, Tech.
Rep., Stanford university, 2012.

[25] L.C. Gubin, B.T. Polyak, and E.V. Raik, The method of projections for finding the common point
of convex sets, USSR Computational Math. Math. Phys. 7 (1967), pp. 1–24.

[26] G. Herman, Image reconstruction from projections, Real-Time Imaging 1 (1995), pp. 3–18.
[27] A.N. Iusem and A.R. De Pierro, Convergence results for an accelerated nonlinear Cimmino algo-

rithm, Numerische Mathematik 49 (1986), pp. 367–378.
[28] S. Khoshfetrat Pakazad, M.S. Andersen, A. Hansson, and A. Rantzer, Decomposition and Projection

Methods for Distributed Robustness Analysis of Interconnected Uncertain Systems, in Proceedings
of the 13th IFAC Symposium on Large Scale Complex Systems: Theory and Applications, 2013.

[29] K. Kiwiel, C. Rosa, and A. Ruszczynski, Proximal decomposition via alternating linearization,
SIAM Journal on Optimization 9 (1999), pp. 668–689.

[30] J. Lawrence and J. Spingarn, On fixed points of non-expansive piecewise isometric mappings, in
Proceedings of the London Mathematical Society, Vol. 55, 1987, pp. 605–624.

[31] E. Levitin and B. Polyak, Constrained minimization methods, Zhurnal Vychislitel’noi Matematiki
i Matematicheskoi Fiziki 6 (1966), pp. 787–823.

[32] J. Pang, Error bounds in mathematical programming, Math. Program. 79 (1997), pp. 299–332.
[33] N. Parikh and S. Boyd, Block splitting for large-scale distributed learning, in Neural Information

Processing Systems (NIPS), Workshop on Big Learning, 2011.
[34] G. Pierra, Decomposition through formalization in a product space, Mathematical Programming 28

(1984), pp. 96–115.
[35] B. Polyak, Minimization of unsmooth functionals, USSR Computational Mathematics and Mathe-

matical Physics 9 (1969), pp. 14–29.
[36] L.T.D. Santos, A parallel subgradient projections method for the convex feasibility problem, Journal

of Computational and Applied Mathematics 18 (1987), pp. 307–320.
[37] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, Submitted to

SIAM Journal on Optimization (2008).

