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Abstract. In this paper we propose an efficiently preconditioned Newton method for the computation of the
leftmost eigenpairs of large and sparse symmetric positive definite matrices. A sequence of preconditioners based
on the BFGS update formula is proposed, for the Preconditioned Conjugate Gradient solution of the linearized
Newton system to solve Au = q(u)u, q(u) being the Rayleigh Quotient. We give theoretical evidence that the
sequence of preconditioned Jacobians remains close to the identity matrix if the initial preconditioned Jacobian is
so. Numerical results onto matrices arising from various realistic problems with size up to one million unknowns
account for the efficiency of the proposed algorithm which reveals competitive with the Jacobi-Davidson method
on all the test problems.
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1. Introduction. Consider a symmetric positive definite (SPD) matrix A, which is also
assumed to be large and sparse. We will denote as

λ1 < λ2 < . . . < λp < . . . < λn

the eigenvalues of A and

v1,v2, . . . ,vp, . . . ,vn

the corresponding (normalized) eigenvectors.
The computation of the p� n leftmost eigenpairs of A is a common task in many scientific

applications. Typical examples are offered by the vibrational analysis of mechanical structures [2],
the lightwave technology [39], electronic structure calculations [32], and the spectral superposition
approach for the solution of large sets of 1st order linear differential equations [24]. Computation
of a few eigenpairs is also crucial in the approximation of the generalized inverse of the graph
Laplacian [16, 5].

In this paper we propose to use an efficiently preconditioned Newton method for the nonlinear
system of equations:

Au− q(u)u = 0 where q(u) =
u>Au

u>u
(1.1)

is the Rayleigh Quotient. The idea of employing the Newton method for this nonlinear system is
obviously not new: among the others we mention Davidson ([18]) who approximated the Jacobian
of (1.1) with diag(A− q(u)I) and combined this system solution with a Rayleigh-Ritz procedure.

The Newton method in the unit sphere [33, 22] or Newton-Grassman method, constructs a
sequence of vectors {uk} by solving the linear systems

(I − uku
>
k )(A− θkI)(I − uku

>
k )s = −(Auk − θkuk), θk =

u>k Auk

u>k uk
(1.2)
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ensuring that the correction s be orthogonal to uk. Then the next approximation is set as
uk+1 = t‖t‖−1 where t = uk + s. Linear system (1.2) is shown to be better conditioned than the
one with A − θkI. The same linear system represents the correction equation in the well-known
Jacobi-Davidson method [34], which in its turn can be viewed as an accelerated Inexact Newton
method [19]. When A is SPD and the leftmost eigenpairs are being sought, it has been proved in
[29] that the Preconditioned Conjugate Gradient (PCG) method can be employed in the solution
of the correction equation.

There are still a number of drawbacks that advises against using pure Newton method: first,
the choice of an initial vector. In the Jacobi-Davidson algorithm the Rayleigh-Ritz procedure
implements a sort of restart that in part solves this problem. Second, even the projected Jacobian
(I −uku

>
k )(A− θkI)(I −uku

>
k ) in the correction equation is ill-conditioned, or at least more ill-

conditioned than the original matrix A, being its smallest eigenvalue smaller than λj+1−λj when
seeking the j-th eigenpair (see Lemma 3.1). In [37] the problem of finding a “well-conditioned”
Jacobian matrix for the Newton method is considered by the authors, who describe some low-rank
variants of the Jacobian of (1.1) and perform a large set of numerical experiments showing that
the best choice is problem dependent. Many authors have also tried to find a good preconditioner
for matrix A − θkI since it is the key for efficient iterative solution of the correction equation.
This remains an open problem (see for example [26]).

Starting from the findings in [8] and [6], the main contribution of this paper is the development
of a sequence of preconditioners {Pk} for the PCG solution of the Newton correction equation
(1.2), based on the BFGS update of a given initial preconditioner for the coefficient matrix A.
We will theoretically prove that the sequence of the preconditioned Jacobians will remain close to
the identity matrix if the first preconditioned Jacobian is so. A similar approach has been used
in [38] where a rank-two modification of a given preconditioner is used to accelerated MINRES
in the framework of the Inexact Rayleigh Quotient Iteration.

The BFGS formula as used in this paper is one more example of the strict connection between
two overlapping worlds: numerical linear algebra and optimization. Many papers have discussed
this relationship. Among the others we refer to [17] and the references therein. Also the problem
of finding efficient preconditioners for the linearized systems has become a crucial issue for the
efficient implementation of the interior point method in constrained optimization, see e.g. [1, 36,
11, 10]. Often, the coefficient matrices of the linear systems to be solved at each Newton iteration
are very close in structure and this motivates a number of works which study the possibility of
updating a given preconditioner to obtain with small computational effort a new preconditioner
[3, 4].

To overcome the problem of the starting point, we also propose to start the Newton process
after a small number of iterations of a Conjugate Gradient procedure for the minimization of the
Rayleigh Quotient (DACG, [9]) to yield a good initial vector.

The combined DACG-Newton algorithm is used in the approximation of p ∈ [10, 20] eigenpairs
of a number of matrices arising from various realistic applications of size up to 106 and number of
nonzeros up to 4×107. Numerical results show that, in the solution of the correction equation, the
PCG method preconditioned by BFGS displays much faster convergence than the same method
when the preconditioner is kept fixed during the Newton process, in every test case. Moreover,
the proposed approach is shown to be competitive with the Jacobi-Davidson method.

The remaining of the paper proceeds as follows: in Section 2 we introduce the preconditioner;
Section 3 is devoted to the proof of the main theorem which states the closeness of the precon-
ditioned matrix to the identity matrix. In Section 4 we describe implementation details while
Section 5 reports some numerical results of the proposed method for the eigensolution of the
test matrices. Section 6 reports comparisons against the Jacobi-Davidson method and Section 7
draws the conclusions.

2. BFGS update of an initial preconditioner. Following the idea described in [6], we
propose a sequence of preconditioners for the Newton systems using the BFGS rank-two update.
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To precondition the initial Newton system J0s0 = −r, where

J0 = (I − u0u
>
0 )(A− θ0I)(I − u0u

>
0 ), r = −(Au0 − θ0u0), θ0 = u>0 Au0

we chose to use a projected incomplete Cholesky preconditioner with partial fill-in [30]:

P0 = (I−u0u
>
0 )P̂0(I−u0u

>
0 ) with P̂0 =

(
LL>

)−1
being L = IC(lfil, τIC , A) an incomplete

triangular Cholesky factor of A, with parameters lfil, maximum fill-in of a row in L, and τIC
the threshold for dropping small elements in the factorization. Then a sequence of projected
preconditioners for the subsequent linear systems Jksk = −rk may be defined by using the
BFGS formula as:

Pk+1 = (I − uk+1u
>
k+1)P̂k+1(I − uk+1u

>
k+1), where

P̂k+1 =
ss>

s>y
+

(
I − sy>

s>y

)
P̂k

(
I − ys>

s>y

)
(2.1)

and s ≡ sk is the solution of the k-th Newton system whereas y ≡ yk = rk+1 − rk.
We propose here a simplification of the preconditioner update formula based on the well-

known cubic convergence of the Newton method which implies that ‖ek+1‖ � ‖ek‖, in a suitable
neighborhood of the solution (i.e. for a suitable δ s.t. ‖ek‖ < δ). As a consequence also the
residual norm satisfies ‖rk+1‖ � ‖rk‖. We can then approximate yk with −rk and write the
preconditioner at level k + 1 as (with r ≡ rk):

P̂k+1 = −ss>

s>r
+

(
I − sr>

s>r

)
P̂k

(
I − rs>

s>r

)
(2.2)

Theorem 3.2 of next Section will prove that the preconditioner defined in (2.2) is SPD if P̂k is so.

3. Theoretical analysis of the preconditioner.

3.1. Finding the smallest eigenpair. The idea of the BFGS preconditioner is taken from
the general analysis in [6, 7] where a sequence of preconditioners is devised in order to precon-
dition the sequence of Newton systems for a general nonlinear problem. One of the “Standard
Assumptions” made in these papers was the nonsingularity of the Jacobian in the solution of
the nonlinear system. Here the situation is different, the Jacobian in the correction equation
J(u) = (I −uu>)(A− q(u)I)(I −uu>) is singular whatever u, in particular it is singular when
u is equal to the exact eigenvector. The theoretical analysis of the goodness of the precondi-
tioner will be therefore completely different, though obtaining similar results, than that proposed
in [6, 7].

We start by recalling some known results about convergence of the Newton method for
eigenproblems. At every step of our Newton method we approximately solve

(I − uku
>
k )(A− θkI)(I − uku

>
k )s = −(Auk − θkuk)

where θk = u>k Auk, in the space orthogonal to uk. Then we set

uk+1 =
uk + s

‖uk + s‖
=

uk + s√
1 + ‖s‖2

=
uk + s

β
, (3.1)

in view of u>k s = 0 and ‖uk‖ = 1, where we have defined β =
√

1 + ‖s‖2.
The above mentioned Newton iteration is shown to converge cubically if the correction equa-

tion is solved exactly. Since this is not the case when it is iteratively solved, we simply assume
convergence, namely that for a suitable δ > 0 such that ‖e0‖ < δ there is a constant r < 1 such
that

‖ek+1‖ < r‖ek‖, k = 0, . . . (3.2)
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Notation.

In the sequel we will indicate as v1 the exact eigenvector corresponding to the smallest exact
eigenvalue λ1. The error vector at step k is denoted by ek = uk − v1, while the error in the
eigenvalue approximation is εk = θk − λ1(> 0). It is easily proved that there is a constant M
independent of k such that

εk ≤M‖ek‖2. (3.3)

With ρ(A) we mean the largest modulus eigenvalue of A while λ(A) refers to a generic eigenvalue
of matrix A. As the matrix norm of a symmetric matrix A we will use the Euclidean norm

‖A‖ ≡ ‖A‖2 = ρ(A) = sup
x∈Rn,x 6=0

x>Ax

x>x
.

Remark 3.1. At first sight the Jacobian matrix in the correction equation is singular, but this
does not matter since the PCG algorithm is run within the subspace of vectors orthogonal to uk

(in fact also r>uk = 0). Thus, notion of positive definiteness, eigenvalue distribution, condition
number, norms, etc, apply as usual but with respect to matrices restricted to this subspace.
The following Lemma will bound the extremal eigenvalues of Jk in the subspace orthogonal to
uk.

Lemma 3.1. There is a positive number δ such that if ‖ek‖ < δ then

Jk = (I − uku
>
k )(A− θkI)(I − uku

>
k )

is SPD in the subspace orthogonal to uk. Moreover the following bounds hold:

λ2 − λ1
2

< z>Jkz < λn

for every unit norm vector z orthogonal to uk.
Proof. From Lemma 3.1 in [29] and the definition of εk, we have that min

z⊥u,‖z‖=1
z>Jkz ≥

λ1 + λ2 − 2θk = λ2 − λ1 − 2εk. Now using (3.3),

λ2 − λ1 − 2εk ≥ λ2 − λ1 − 2M‖ek‖2 ≥ λ2 − λ1 − 2Mδ2 >
λ2 − λ1

2
> 0

(
if δ <

√
λ2 − λ1

4M

)
,

showing that Jk is SPD. The upper bound for the eigenvalues of Jk is straightforward.
The previous Lemma allows us to prove that the preconditioner defined in (2.2) is SPD, as stated
in the following Theorem.

Theorem 3.2. If the correction equation is solved exactly, then any matrix P̂k defined by
(2.2) is SPD and hence Pk is SPD in the subspace orthogonal to uk.

Proof. The proof is carried out by induction. P̂0 is SPD being an incomplete Cholesky
factorization of the SPD matrix A, then from Jks = −r, we can write

P̂k+1 = −ss>

s>r
+

(
I − sr>

s>r

)
P̂k

(
I − rs>

s>r

)
=

ss>

s>Jks
+

(
I − ss>Jk

s>Jks

)
P̂k

(
I − Jkss

>

s>Jks

)
(3.4)

We define F =

(
I − Jkss

>

s>Jks

)
and note that, by previous Lemma, α = s>Jks > 0 since s>uk = 0.

Let now P̂k be SPD by induction hypothesis, then for every z 6= 0,

z>P̂k+1z =
(z>s)2

α
+ z>F>P̂kFz =

z>P̂kz > 0 (if z>s = 0)

(z>s)2

α
+ (Fz)>P̂k(Fz) ≥ (z>s)2

α
> 0, (if z>s 6= 0)
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which proves that P̂k+1 is SPD. If we now take z ⊥ uk+1, we have

z>Pk+1z = z>(I − uk+1u
>
k+1)P̂k+1(I − uk+1u

>
k+1)z = z>P̂k+1z > 0,

which completes the proof.
Let us define the difference between the preconditioned Jacobian and the identity matrix as

Ek = I − J1/2
k PkJ

1/2
k .

Since by definition we have Jkuk = 0 then uk is the eigenvector of Jk corresponding to the zero

eigenvalue. Hence, since also J
1/2
k uk = 0 the error Ek can also be defined as

Ek = I − J1/2
k PkJ

1/2
k = I − J1/2

k (I − uku
>
k )P̂k(I − uku

>
k )J

1/2
k = I − J1/2

k P̂kJ
1/2
k .

The following technical lemma will bound the norm of P̂k in terms of that of Ek. Being P̂k SPD
we can define its norm in the space orthogonal to uk as

‖P̂k‖ = sup
w⊥uk,w 6=0

w>P̂kw

w>w
.

Lemma 3.3. There is a positive number δ such that if ‖ek‖ < δ then

‖P̂k‖ ≤
2

λ2 − λ1
(1 + ‖Ek‖) .

Proof. Let w ∈ Rn, w>uk = 0, w 6= 0. Then since Jk (and thus J
1/2
k ) is SPD in the

subspace orthogonal to uk the linear system J
1/2
k z = w has a unique solution z such that

z>uk = 0. Therefore

0 <
w>P̂kw

w>w
=

z>J1/2P̂kJ
1/2z

z>Jkz
=

z>(I − Ek)z

z>Jkz
=

z>z

z>Jkz

(
1− z>Ekz

z>z

)
≤ (by Lemma 3.1)

≤ 2

λ2 − λ1

(
1− z>Ekz

z>z

)
≤ 2

λ2 − λ1

(
1 +

∣∣∣∣z>Ekz

z>z

∣∣∣∣) ≤ 2

λ2 − λ1
(1 + ‖Ek‖) .

The next lemma will relate the norms of the difference s and of the norm of the error vector ek:
Lemma 3.4. There exists a positive number δ s.t. if ‖ek‖ < δ then

‖s‖ ≤ 3‖ek‖

Proof. From (3.1) we have

s = βuk+1 − uk = βuk+1 − βv1 + βv1 − v1 + v1 − uk = βek+1 + (β − 1)v1 − ek. (3.5)

Hence, taking norms and using (3.2),

‖s‖ ≤
√

1 + ‖s‖2‖ek+1‖+
√

1 + ‖s‖2 − 1 + ‖ek‖

≤ (1 + ‖s‖)‖ek+1‖+
‖s‖2

2
+ ‖ek‖

≤ (2 + ‖s‖)‖ek‖+
‖s‖2

2
. (3.6)
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The last 2nd order inequality, when solved for ‖s‖ gives

‖s‖ ≤ 1− ‖ek‖ −
√

1− 6‖ek‖+ ‖ek‖2. (3.7)

Choosing δ <
2

15
implies

√
1− 6‖ek‖+ ‖ek‖2 ≥ 1− 4‖ek‖, which, combined with (3.7) provides

the desired result.

Now we need to prove that the distance between two consecutive Jacobians is bounded by a
constant times the error vector:

Lemma 3.5. There exists a positive number δ s.t. if ‖ek‖ < δ then

‖Jk+1 − Jk‖ ≤ c1‖ek‖

for a suitable constant c1.
Proof.

∆k = Jk+1 − Jk =

=
(
I − uk+1u

>
k+1

)
(A− θk+1I)

(
I − uk+1u

>
k+1

)
−
(
I − uku

>
k

)
(A− θkI)

(
I − uku

>
k

)
= (θk − θk+1) I + uku

>
k (A− θkI)− uk+1u

>
k+1(A− θk+1I)

+ (A− θkI)uku
>
k − (A− θk+1I)uk+1u

>
k+1 =

= (θk − θk+1) I +G+G> (3.8)

where we set G = uku
>
k (A−θkI)−uk+1u

>
k+1(A−θk+1I). The first term in (3.8) can be bounded,

using (3.3), as

‖ (θk − θk+1) I‖ = θk − θk+1 = εk − εk+1 ≤ εk ≤M‖ek‖2 ≤ ‖ek‖
(

if δ <
1

M

)
. (3.9)

To bound ‖G‖ recall that uk+1 =
uk + s

β
therefore

uk+1u
>
k+1 =

uk + s

β

u>k + s>

β
=

1

1 + ‖s‖2
(
uku

>
k + uks

> + su>k + ss>
)

=
1

β2
uku

>
k +H

with ‖H‖ ≤ ‖s‖
(

2 +
‖s‖

1 + ‖s‖2

)
≤ 5

2
‖s‖ ≤ 15

2
ek, by Lemma 3.4, then

G = − uku
>
k

1 + ‖s‖2
(A− θk+1I)−H(A− θk+1I) + uku

>
k (A− θkI)

= − uku
>
k

1 + ‖s‖2
(θk − θk+1)I +

‖s‖2

1 + ‖s‖2
(uku

>
k )(A− θkI)−H(A− θk+1I), (3.10)

whence, using (3.9) and again Lemma 3.4,

‖G‖ ≤ ‖ek‖+ 9‖ek‖2λn +
15

2
‖ek‖λn ≤

(
1 + 9δλn +

15

2
λn

)
‖ek‖ = c2‖ek‖. (3.11)

Combining (3.8), (3.9) and (3.11) we have:

‖∆k‖ ≤ ‖ek‖+ 2‖G‖ ≤ (1 + 2c2)‖ek‖.

Setting c1 = 1 + 2c2 completes the proof.

6



Before stating Theorem 3.7 we need to prove as a last preliminary result that also the difference
between the square root of two consecutive Jacobians is bounded in terms of the norm of the
error vector:

Lemma 3.6. Let Sk = J
1/2
k+1 − J

1/2
k . Then there is a positive number δ s.t. if ‖ek‖ < δ then

‖Sk‖ ≤ c3
√
‖ek‖.

for a suitable constant c3.

Proof. By squaring the equation Sk + J
1/2
k =

√
Jk + ∆k we obtain

S2
k + J

1/2
k Sk + SkJ

1/2
k −∆k = 0. (3.12)

Let now x be a normalized eigenvector of the symmetric matrix S such that Sx = ηx. Premul-
tiplying by x> and postmultiplying by x equation (3.12) yields

η2 + 2(x>J
1/2
k x)η − x>∆kx = 0. (3.13)

This quadratic equation has two solutions:

η12 = −x>J1/2
k x±

√
(x>J

1/2
k x)2 + x>∆kx. (3.14)

The smallest solution is not an eigenvalue of Sk since from the definition of Sk, an eigenvalue η
of Sk would satisfy

η = ηx>x = x>Skx = x>J
1/2
k+1x− x>J

1/2
k x ≥ −x>J1/2

k x.

Then, considering the largest solution of (3.14)

η = −x>J1/2
k x +

√
(x>J

1/2
k x)2 + x>∆kx

=
x>∆kx

x>J
1/2
k x +

√
(x>J

1/2
k x)2 + x>∆kx

≤
√
|x>∆kx|.

Let (η,x) be the eigenpair corresponding to the largest modulus eigenvalue of S. Then

‖Sk‖ = |η| ≤
√∣∣x>∆kx

∣∣ ≤√c1‖ek‖ = c3
√
‖ek‖.

We are finally ready to prove the main results of this Section. The following theorem will state
the so called bounded deterioration [25] of the preconditioner at step k+ 1 with respect to that of
step k, namely that the distance of the preconditioned matrix from the identity matrix at step
k+ 1 is less or equal than that at step k plus a constant that may be small as desired, depending
on the closeness of u0 to the exact solution.

Theorem 3.7. Let δ0 be such that ‖E0‖ < δ0, there is a positive number δ s.t. if ‖e0‖ < δ
then

‖Ek+1‖ ≤ ‖Ek‖+K
√
‖ek‖

for a suitable constant K.
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Proof. The distance of the preconditioned Jacobian from the identity matrix can be written

as follows, where we have defined N = SkP̂k+1J
1/2
k+1 + J

1/2
k+1P̂k+1Sk + SkP̂k+1Sk:

Ek+1 = I − J1/2
k+1P̂k+1J

1/2
k+1 =

= I −
(
J
1/2
k + Sk

)
P̂k+1

(
J
1/2
k + Sk

)
=

= I − J1/2
k P̂k+1J

1/2
k −N =

= I − J1/2
k

ss>

s>Jks
J
1/2
k − J1/2

k

(
I − ss>Jk

s>Jks

)
P̂k

(
I − Jkss

>

s>Jks

)
J
1/2
k −N =

= I −
J
1/2
k ss>J

1/2
k

s>Jks
−

(
I −

J
1/2
k ss>J

1/2
k

s>Jks

)
J
1/2
k P̂kJ

1/2
k

(
I −

J
1/2
k ss>J

1/2
k

s>Jks

)
−N.

(3.15)

Now set w =
J
1/2
k s

‖J1/2
k s‖

and W = I −ww>; W is an orthogonal projector since ‖w‖ = 1. Then

Ek+1 = W −WJ
1/2
k P̂kJ

1/2
k W −N

= W +W (Ek − I)W −N = WEkW −N (3.16)

To bound ‖N‖ we will use Lemma 3.3 and Lemma 3.6:

‖N‖ ≤ 2

λ2 − λ1
(1 + ‖Ek+1‖)

(
2c3
√
‖ek‖

√
λn + c23

√
δ
√
‖ek‖

)
= c4 (1 + ‖Ek+1‖)

√
‖ek‖.

Now taking norms in (3.16) yields

‖Ek+1‖ ≤ ‖Ek‖+ c4 (1 + ‖Ek+1‖)
√
‖ek‖,

which can be rewritten as

‖Ek+1‖
(

1− c4
√
‖ek‖

)
≤ ‖Ek‖+ c4

√
‖ek‖. (3.17)

From (3.17), we derive a bound for ‖Ek‖. If
√
δ <

1

2c4
then

‖Ek‖ ≤ 2‖Ek−1‖+ 1 ≤ . . . ≤ 2k‖E0‖+ 2k − 1 ≤ 2k (δ0 + 1) = c5. (3.18)

Again from (3.17) and using the bound (3.18) we finally have

‖Ek+1‖ ≤
‖Ek‖+ c4

√
‖ek‖

1− c4
√
‖ek‖

≤
(
‖Ek‖+ c4

√
‖ek‖

)
· (1 + 2c4

√
‖ek‖)

≤ ‖Ek‖+ 2c4
√
‖ek‖c5 + c4(1 + 2c4δ)

√
‖ek‖ = ‖Ek‖+ c4 (2c5 + 1 + 2c4δ)

√
‖ek‖.

Setting K = c4 (2c5 + 1 + 2c4δ) completes the proof.

Remark 3.2. It is more usual to evaluate the goodness of a preconditioner by bounding the
extremal eigenvalues of the preconditioned matrix (if SPD) instead of using norms. However, it

is worth observing that the initial preconditioner can be selected so as to give ρ
(
J
1/2
0 P0J

1/2
0

)
< 2.

In such case, in the most common situation we would have

‖Ek‖ = max {|λ(Ek)|} = 1−min
{
λ
(
J
1/2
k PkJ

1/2
k

)}
so that minimizing ‖Ek‖ is the same as maximizing the smallest eigenvalue of the preconditioned
matrix.
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3.2. Computing several eigenpairs. When seeking an eigenvalue different from λ1, say
λj , the Jacobian matrix changes as

Jk = (I −QQ>)(A− θkI)(I −QQ>)

where Q = [v1 v2 . . .vj uk] is the matrix whose first j columns are the previously computed
eigenvectors. Analogously, also the preconditioner must be chosen orthogonal to Q as

Pk+1 = (I −QQ>)P̂k+1(I −QQ>). (3.19)

The theoretical analysis developed in the previous Section applies with small technical variants

also in this case since it is readily proved that J
1/2
k+1Pk+1J

1/2
k+1 = J

1/2
k+1P̂k+1J

1/2
k+1. The most signifi-

cant changes regard the definition of εk = θk−λj , ek = uk−vj and the statement of Lemma 3.1
(and the proof of Lemma 3.5 that uses its results), namely the bound for the smallest eigenvalue
of Jk which in the general case becomes:

z>Jkz >
λj+1 − λj

2

for every unit norm vector z such that Q>z = 0.

4. Implementation.

4.1. Choosing an initial eigenvector guess. As mentioned in Section 1, another impor-
tant issue in the efficiency of the Newton approach for eigenvalue computation is represented
by the appropriate choice of the initial guess. We propose here to perform some preliminary
iterations of another eigenvalue solver, in order to start the Newton iteration ‘sufficiently’ close
to the exact eigenvector. We chose as the ‘preliminary’ eigenvalue solver DACG [9, 14, 15], which
is based on the preconditioned conjugate gradient (nonlinear) minimization of the Rayleigh Quo-
tient. This method has proven very robust, and not particularly sensitive to the initial vector, in
the computation of a few eigenpairs of large SPD matrices.

4.2. Implementation of the BFGS preconditioner update. In this section we give the
main lines of the implementation of the product of our preconditioner times a vector, which is
needed when using a preconditioned Krylov method. At a certain nonlinear iteration level, k, we
need to compute c = Pkgl, where gl is the residual of the linear system at iteration l. Let us
suppose we compute an initial preconditioner P0. Then, at the initial nonlinear iteration k = 0,
we simply have c = P0zl. At step k + 1 the preconditioner P̂k+1 is defined recursively by (2.2)
while Pk+1 using (3.19) can be written as

Pk+1 = (I −QQ>)P̂k+1(I −QQ>) =

= (I −QQ>)

{(
I − sr>

s>r

)
P̂k

(
I − rs>

s>r

)
− ss>

s>r

}
(I −QQ>). (4.1)

To compute vector c first we observe that gl is orthogonal to Q so there is no need to apply

matrix I −QQ> on the right of (4.1). Application of preconditioner P̂k+1 to the vector gl can be
performed at the price of 2k dot products and 2k daxpys as described in Algorithm 1. The scalar
products αk = s>k rk, which appear at the denominator of P̂k+1, can be computed once and for
all before starting the solution of the (k + 1)-th linear system. Last, the obtained vector c must
be orthogonalized against the columns of Q by a classical Gram-Schimdt procedure.

4.3. PCG solution of the correction equation. As a Krylov subspace solver for the
correction equation we chose the Preconditioned Conjugate gradient (PCG) method since the
Jacobian Jk has been shown to be SPD in the subspace orthogonal to uk. Regarding the imple-
mentation of PCG, we mainly refer to the work [29], where the author shows that it is possible to
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Algorithm 1 Computation of c = Pkgl for the BFGS preconditioner.

Input: Vector gl, scalar products αs = s>s rs, s = 0, . . . , k − 1.

w := gl

for s := k − 1 to 0
1. as := s>s w/αs

2. w := w − asrs
end for

c := P̂0w

for s := 0 to k − 1
1. b := r>s c/αs

2. c := c− (as + b)ss

end for

z := Q>c

c := c−Qz

solve the linear system in the subspace orthogonal to uk and hence the projection step needed in
the application of Jk can be skipped. Moreover, we adopted the exit strategy for the linear system
solution described in the above paper, which allows for stopping the PCG iteration, in addition to
the classical exit test based on a tolerance on the relative residual and on the maximum number
of iterations, whenever the current solution xl satisfies

‖rk,l‖ =

∥∥∥∥Axl −
x>l Axl

x>l xl
xl

∥∥∥∥ < τ
(
x>l Axl

)
(4.2)

or when the decrease of ‖rk,l‖ is slower than the decrease of ‖gl‖, because in this case further
iterating does not improve the accuracy of the eigenvector. Note that this dynamic exit strategy
implicitly defines an Inexact Newton method since the correction equation is not solved “exactly”
i.e. up to machine precision.

We have implemented the PCG method as described in Algorithm 5.1 of [29] with the obvious
difference in the application of the preconditioner which is described here in Algorithm 1.

4.4. Implementation of the DACG-Newton method. The BFGS preconditioner de-
fined in Algorithm 1 suffers from two main drawbacks, namely increasing costs of memory for
storing s and r, and the increasing cost of preconditioner application with the iteration index k.
Note that these drawbacks are common to many iterative schemes, such as for example sparse
(Limited Memory) Broyden implementations [28], GMRES [31] and Arnoldi method for eigen-
value problems [27]. There are different ways to overcome these difficulties, all based on variations
of a restart procedure, that is, the iteration scheme is reset after a fixed number of iterations.
If the number of nonlinear iterations is high (e.g. more than ten iterations), the application of
BFGS preconditioner may be too heavy to be counterbalanced by a reduction in the iteration
number. To this aim we define kmax the maximum number of rank two corrections we allow.
When the nonlinear iteration counter k is larger than kmax, the vectors si, ri, i = k − kmax are
substituted with the last computed sk, rk. Vectors {si, ri} are stored in a matrix V with n rows
and 2× kmax columns.

The implementation of our DACG-Newton method for computing the leftmost eigenpairs of
large SPD matrices is described in Algorithm 2.

The above described implementation is well suited to parallelization provided that an efficient
matrix-vector product routine is available. The bottleneck is represented by the high number of
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Algorithm 2 DACG-Newton Algorithm.

• Input:
1. Matrix A;
2. number of sought eigenpairs neig;
3. tolerance and maximum number of its for the outer iteration: τ , itmax;
4. tolerance for the initial eigenvector guess τDACG;
5. tolerance and maximum number of its for the inner iteration: τPCG, itmaxPCG;
6. parameters for the IC preconditioner:, lfil and τIC ;
7. maximum allowed rank-two updates in the BFGS preconditioner: kmax.

• Q̃ := [ ].

• Compute an incomplete Cholesky factorization of A: P̂0 with parameters lfil and τIC .
• for j := 1 to neig

1. Choose x0 such that Q̃>x0 = 0.

2. Compute u0, an approximation to vj by the DACG procedure with initial vector

x0, preconditioner P̂0 and tolerance τDACG.

3. k := 0, θk := u>k Auk.

4. while ‖Auk − θkuk‖ > τθk and k < Imax do

1. Q := [Q̃ uk].

2. Solve Jksk = −rk for sk ⊥ Q by the PCG method with preconditioner Pk

and tolerance τPCG.

3. uk+1 :=
uk + sk
‖uk + sk‖

, θk+1 = u>k+1Auk+1.

4. k1 = k mod kmax; V (∗, 2k1 + 1) := sk, V (∗, 2k1 + 2) := rk,

5. k := k + 1

6. end while

7. Assume vj = uk and λj = θk. Set Q̃ := [Q̃ vj ]
• end for

scalar products which may worsen the parallel efficiency when a very large number of processor
is employed. Preliminary numerical results are encouraging as documented in [12].

5. Numerical Results. In this Section we provide numerical results which compare the
performance of the DACG-Newton algorithm for various kmax values. We tested the proposed
algorithm in the computation of the 20 smallest eigenpairs of a number of small to very large
matrices arising from various realistic applications.

The list of the selected problems together with their size n, and nonzero number nz is reported
in Table 5, where (M)FE stands for (Mixed) Finite Elements.

Table 5.1
Main characteristics of the matrices used in the tests.

Matrix where it comes from n nz
trino 3D-FE elasticity problem 4560 604030
hyb2d 2D-MFE groundwater flow 28600 142204
monte-carlo 2D-MFE stochastic PDE 77120 384320
emilia-923 3D-FE elasticity problem 923136 41 005206
dblp network connected graph 928498 8 628378

In most of the runs, unless differently specified, we selected the values of the parameters as
reported in Table 5.
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Table 5.2
Default values of parameters.

Number of eigenpairs to compute neig = 20
Parameters for the outer iteration τ = 10−8, itmax = 100
Tolerance for the initial eigenvector guess τDACG = 10−2

Parameters for the PCG iteration τPCG = 10−2, itmaxPCG = 20
Parameters for the initial preconditioner lfil = 30, τIC = 10−2.

We will also compute the fill-in σ of the initial preconditioner defined as

σ =
nonzeros of L

nonzeros of lower triangular part of A

The CPU times (in seconds) refer to running a Fortran 90 code on an IBM Power6 at 4.7 GHz
and with up to 64 Gb of RAM.

5.1. Condition number of the preconditioned matrix. We consider first the small

trino problem, for which we were able to compute all the eigenvalues of J̃k = J
1/2
k PkJ

1/2
k . In

Table 5.1 we report for each eigenvalue level j, the smallest eigenvalue of J̃0 and of J̃5, together

with the ratio between condition numbers
κ(J̃0)

κ(J̃5)
where

κ(J̃k) =
max{λ(J̃k)}

min{λ(J̃k) > 0}
,

and the reciprocal of the relative separation between consecutive eigenvalues, ξj =
λj

λj+1 − λj
which is indicative of the ill-conditioning of J̃0 [9, 13].

Table 5.3
Smallest eigenvalue of the preconditioned Jacobians: J̃0 and J̃5, condition number ratio and reciprocal of the

relative separation ξj , for j = 1, . . . , 20. Matrix trino.

j λmin(J̃0) λmin(J̃5)
κ(J̃0)

κ(J̃5)
ξj j λmin(J̃0) λmin(J̃5)

κ(J̃0)

κ(J̃5)
ξj

1 .0211 .0542 2.57 1.57 11 .0039 .0192 4.89 27.99
2 .0093 .0432 4.64 7.55 12 .0058 .0151 2.59 31.45
3 .0154 .0403 2.62 3.79 13 .0031 .0127 4.15 34.85
4 .0051 .0256 5.01 13.69 14 .0045 .0285 6.29 36.78
5 .0168 .0417 2.48 5.91 15 .0050 .0284 5.68 24.74
6 .0028 .0316 11.13 37.25 16 .0085 .0234 2.75 30.27
7 .0024 .0349 14.64 51.94 17 .0027 .0197 7.33 81.48
8 .0199 .0329 1.65 5.13 18 .0017 .0307 18.49 51.52
9 .0075 .0149 1.99 22.62 19 .0137 .0378 2.76 11.28

10 .0065 .0196 2.99 19.11 20 .0074 .0296 3.99 22.98

It is found that there is a constant grow of the smallest eigenvalue from k = 0 to k = 5.
Moreover the condition number of the preconditioned matrix reduces by a factor varying from
1.65 (j = 8) to 18.49 (j = 18), the reduction of the condition number being more important when
ξj is large, i.e. when the initial Jacobian is ill-conditioned. Referring now to Theorem 3.7 we

may observe that, being in this test case λmax(J̃k) ≈ 1.5 for every eigenpair,

‖Ek‖ = ‖I − J̃k‖ = max{λmax(J̃k)− 1, 1− λmin(J̃k)} = 1− λmin(J̃k).
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From Table 5.1 we then could also easily compute ‖Ek‖, for k = 0, 5. For instance for j = 18 we
find ‖E0‖ = .9983 and ‖E5‖ = .9693 showing that even a small reduction of ‖Ek‖ may lead to

an important reduction in the condition number of J̃k.
In Figure 5.1 we plot the condition number of the preconditioned Jacobian for two selected

eigenpairs (j = 7, 18), vs outer iteration index using kmax = 0, i.e. using P0 as the preconditioner
for all the Newton systems, or kmax = 10, i.e. using the BFGS preconditioner with no restart.
From the figure we notice that the condition number of J̃k remains roughly constant through the
nonlinear iterations with Pk = P0 while it decreases significantly if the BFGS preconditioner is
employed.

Fig. 5.1. Condition number of the preconditioned matrices J
1/2
k PkJ

1/2
k vs outer iteration number, in solving

the trino problem for kmax = 0, 10 and two different eigenpair levels (j = 7 and j = 18).
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5.2. Influence of parameter kmax. We now report the results of our DACG-Newton
method in the computation of the 20 leftmost eigenpairs of matrices hyb2d and monte-carlo.
The overall results are summarized in Tables 5.4 and 5.5 where we include CPU times and number
of matrix vector products (MVP) for both the DACG initial phase and the Newton iteration.
The overall outer Newton iterations (outer its) are also given. From the tables we notice that
whatever the value of kmax there is an improvement in the total number of MVP and CPU time
compared with keeping the initial preconditioner fixed throughout the nonlinear process. The
improvement is also irrespective of the maximum number of PCG iterations ImaxPCG. Observe
that increasing kmax also the outer iteration number decreases, meaning that the proposed pre-
conditioner, together with accelerating the correction equation solution, also speeds up nonlinear
convergence to the desired eigenvector. The CPU time values account for the fact that the over-
head introduced by the application of Pk+1 for high kmax values is not important. To this end
it is worth emphasizing that in most cases 5 outer iterations are enough to allow convergence of
the Newton method and this also explains why setting kmax ≥ 5 the results do not substantially
change.

Considering for example the case ImaxPCG = 20, matrix monte-carlo, the number of MV
products in the Newton phase reduces from an initial 5295 to a final value of 2121 obtained with
kmax ≥ 5. We finally observe that the DACG-Newton algorithm is always superior to “pure”
DACG method (run up to a relative residual smaller than τDACG = 10−8) in terms of MV
products and CPU time as reported in the last row of both tables.

We also present two pictures (Figures 5.2 and 5.3), where the relative residual norm ‖rk,l‖,
computed by (4.2) is plotted vs Newton cumulative linear iteration index for two selected eigen-
value levels. The problem is monte-carlo with ImaxPCG = 20. Again we let vary kmax ∈ [0, 10].
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Table 5.4
Total number of iterations, number of MV products and CPU times for DACG-Newton algorithm with various

kmax values and two different values of ImaxPCG. Matrix hyb2d. The initial preconditioner fill-in is σ = 2.19.

DACG Newton TOT
ImaxPCG kmax its CPU outer its MVP CPU MVP CPU

10 0 944 3.03 261 2730 7.85 3674 10.88
1 944 2.98 160 1647 4.93 2591 7.91
5 944 2.97 110 1134 3.50 2078 6.47

20 0 944 2.99 118 1879 5.15 2823 8.14
5 944 2.99 87 1297 3.77 2241 6.76

DACG 4033 11.67 4033 11.67

Table 5.5
Total number of iterations, number of MV products and CPU times for DACG-Newton algorithm with various

kmax values and three different values of ImaxPCG. Matrix monte-carlo. The initial preconditioner fill-in is
σ = 2.10.

DACG Newton TOT
ImaxPCG kmax its CPU outer its MVP CPU MVP CPU

30 0 1921 15.98 148 3969 30.10 4890 46.08
1 1921 15.94 120 2799 22.06 4720 38.00
3 1921 15.81 102 2264 18.13 4185 33.94

10 1921 15.87 103 2242 18.22 4163 34.09
20 0 1921 15.85 267 5295 39.88 7216 55.73

1 1921 15.84 155 2998 23.88 4919 39.72
2 1921 16.00 133 2615 21.23 4536 37.23
3 1921 15.86 126 2337 19.16 4258 35.02
5 1921 15.78 114 2121 17.58 4042 33.36

10 1921 15.96 114 2121 17.67 4042 33.63
10 0 1921 15.85 1078 11783 92.04 13704 107.85

3 1921 15.79 259 2740 23.71 4661 39.50
5 1921 15.93 230 2434 21.89 4355 37.82

10 1921 16.01 193 2042 18.84 3963 34.85
DACG 7307 57.31 7307 57.31

The Figures confirm the acceleration of convergence provided by the proposed preconditioner:
there is a factor 3 ÷ 4 gain in the total number of iterations, when passing from kmax = 0 to
kmax = 10.

5.3. Role of the initial preconditioner. We report in this section results of the behavior
of our preconditioner depending on the sparsity of P̂0. We selected two different sets of parameters
for the IC preconditioner than those employed in Section 5.2, namely lfil = 10, τIC = 0.1 (test
case # 1, sparser preconditioner), and lfil = 50, τIC = 10−4 (test case # 2, preconditioner more
filled-in). For test case # 1 we obtained σ = 1.00 and used ImaxPCG = 30 while for test case #
2 we obtained σ = 9.04 and used ImaxPCG = 10. The results are summarized in Table 5.6 for
the computation of the 20 smallest eigenvalues of the monte-carlo matrix. We report only the
results regarding the Newton phase, mentioning that in this case we chose τDACG = 0.1.

The improvement in MV products/CPU time provided by the BFGS preconditioner is im-
pressive with the sparser initial preconditioner, while in test case # 2 the optimal number of
iterations is reached with kmax = 3.
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Fig. 5.2. Convergence profile of the relative residual norm vs cumulative inner iterations for eigenvalue #
12, matrix monte-carlo.
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Fig. 5.3. Convergence profile of the relative residual norm vs cumulative inner iterations for eigenvalue #
15, matrix monte-carlo.
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5.4. Eigensolution of the largest matrices. We report the results obtained in evaluating
neig = 10 eigenpairs of emilia-923 which arises from the regional geomechanical model of a deep
hydrocarbon reservoir. This matrix is obtained discretizing the structural problem with tetrahe-
dral Finite Elements. Due to the complex geometry of the geological formation it was not possible
to obtain a computational grid characterized by regularly shaped elements. This matrix is publicly
available in the University of Florida Sparse Matrix Collection at http://www.cise.ufl.edu/

research/sparse/matrices. To obtain an efficient initial preconditioner we selected lfil = 50
and τIC = 10−5 as the IC parameters which gave raise to a sparsity ratio σ = 2.14. DACG was
run until a very high tolerance τDACG = 0.2 was reached.

In Table 5.7 we report the MVP number and CPU time together with the CPU time taken
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Table 5.6
Total number of iterations, number of MV products and CPU times for DACG-Newton algorithm with various

kmax. Matrix monte-carlo with two different initial preconditioners.

test case # 1 test case # 2
kmax outer its MVP CPU kmax outer its MVP CPU

0 952 28097 174.62 0 86 709 24.54
1 340 10032 64.09 1 82 614 20.79
3 241 7008 47.94 3 77 554 19.49
5 214 6097 42.64 5 77 554 20.69

10 193 5419 38.69 10 77 554 20.69

by the preconditioner construction, which is, in this case, a not negligible part of the overall
computing time. The DACG-Newton method is shown to take great advantage from the BFGS
preconditioner even for kmax = 1, displaying a halving of the MV products and CPU time with
respect to reusing the same initial preconditioner. Note that in this case a very low DACG
accuracy (τDACG = 0.2) is sufficient to provide a good initial vector for the subsequent Newton
phase.

Table 5.7
Total number of iterations, number of MV products and CPU times for DACG-Newton algorithm with various

kmax values for problem Emilia-923.

IC DACG Newton TOT
ImaxPCG kmax CPU its CPU outer its MVP CPU MVP CPU

20 0 219.1 565 780.2 147 2657 3788.9 3232 4788.2
1 219.1 565 780.2 75 1273 1781.0 1838 2780.3
5 219.1 565 780.2 63 922 1299.0 1487 2299.5

DACG 219.1 7512 10313.9 7512 10533.0

Matrix dblp represents the Laplacian of a graph describing collaboration network of com-
puter scientists. Nodes are authors and edges are collaborations in published papers, the edge
weight is the number of publications shared by the authors [21]. It is well-known that the smallest
eigenvalue is zero (with multiplicity one) corresponding to an eigenvector with all unity compo-
nents. We are therefore interested in the 20 smallest strictly positive eigenvalues. This matrix is
also characterized by a high clustering of the eigenvalues, which makes the problem difficult to
solve due to the consequent ill-conditioning of the Jacobian matrices. In our runs, we used default
parameters listed in Table 5 with the exception of τDACG = 0.1. The preconditioner density was
in this case σ = 1.84.

The results are reported in Table 5.8. DACG with τDACG = 10−8 could not converge to
the desired eigenpairs, namely for j = 12 it reached the maximum number of iterations (5000)
which produced stagnation in the convergence to the subsequent eigenpairs. Also DACG-Newton
with kmax = 0 reached the maximum number of outer iterations already at level j = 2. Setting
kmax = 1 was instead sufficient to lead DACG-Newton to convergence. Also in this case higher
values of kmax provided faster convergence.

6. Comparison with Jacobi-Davidson. The algorithm presented and analyzed in the
previous sections is here compared with the well-known Jacobi-Davidson (JD) method. For the
details of this method we refer to the original paper [34], as well as to successive works [35, 20, 29]
which analyze both theoretically and experimentally a number of variants of this method. In this
paper, we followed the implementation suggested in the previously cited work [29], i.e. we made
use of the PCG method as the inner solver, with the same initial preconditioner as that used in
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Table 5.8
Total number of iterations, number of MV products and CPU times for DACG-Newton algorithm with various

kmax values for problem dblp. Symbol ‡ stands for no convergence.

DACG Newton TOT
ImaxPCG kmax its CPU outer its MVP CPU MVP CPU

20 0 620 376.7 ‡ ‡ ‡ – –
1 620 376.7 172 3015 1696.8 3625 2073.5
3 620 376.7 153 2157 1239.7 2777 1616.4
5 620 376.7 191 2126 1189.0 2746 1565.7

10 620 376.7 156 1964 1147.7 2580 1524.4
DACG ‡ ‡ – –

the DACG-Newton method. Also the exit tests used in the two methods are identical for both the
outer iteration and the inner PCG solver. In the JD implementation two parameters are crucial
for its efficiency namely mmin and mmax, the smallest and the largest dimension of the subspace
where the Rayleigh Ritz projection takes place. After some attempts, we found that mmin = 5
and mmax = 10 were on the average the optimal values of such parameters. In all the examples
and both solvers we set ImaxPCG = 20.

The results of the comparison are summarized in Table 6.1 where we also specify the tolerance
τDACG selected for each problem. It is found that the two methods behave very similarly, being
Jacobi-Davidson slightly more performing on all the problems with the exception of matrix dblp.

Table 6.1
Comparison between DACG-Newton and Jacobi-Davidson.

problem neig DACG-Newton Jacobi-Davidson
τDACG MVP outer its CPU MVP outer its CPU

hyb2d 20 0.01 2241 87 6.76 1543 150 5.95
monte-carlo 20 0.01 4042 114 33.36 2833 178 28.53
dblp 20 0.1 2580 156 1524.40 2916 187 1698.00
emilia-923 10 0.2 1487 63 2299.50 1472 95 2242.40

Regarding problem emilia-923 we provide in Figure 6.1 the plot of the relative residual norm
vs cumulative linear iteration as per equation (4.2) for both DACG-Newton method (Newton
phase only) and JD, corresponding to levels j = 1, 2 and 8. We can appreciate the very similar
convergence profiles of these two methods. The DACG-Newton algorithm is faster for lower j-
values while the opposite holds for high values of j where the Rayleigh-Ritz projection seems to
win against the BFGS acceleration.

7. Concluding remarks. We have developed and theoretically analyzed a sequence of pre-
conditioners aiming at accelerating the PCG method in the solution of the correction equation.
This equation is to be solved at each Newton iteration to approximate a few eigenpairs of an
SPD matrix. Both theoretical analysis and experimental results onto a heterogeneous set of test
matrices reveal that the BFGS sequence of preconditioners greatly improves the PCG efficiency as
compared to using an initially evaluated fixed preconditioner. The DACG-Newton method with
the aforementioned preconditioner proves a robust and efficient algorithm for the partial eigen-
solution of SPD matrices and makes “pure” Newton method competitive with Jacobi-Davidson
without making use of any Rayleigh-Ritz projection. On the average the latter method proves
a little bit more performing than the one proposed in this work, and this is mainly due to the
excessive DACG preprocessing time to devise a good initial vector for the subsequent Newton
phase. However, we wonder whether the preconditioning technique studied in this work may be
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Fig. 6.1. Convergence profile of the relative residual norm vs cumulative inner iterations for DACG-Newton
and JD methods. Matrix emilia-923. Eigenvalues j = 1 (top figure), j = 2 (middle figure) and j = 8 (bottom
figure).
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seen as an alternative to Jacobi-Davidson or, rather, a possible improvement of it. At present we
have neither theoretical nor experimental evidence in favor of this second option. We therefore let
as future work the attempt to insert our preconditioner in the framework of the Jacobi-Davidson
method. We will also compare the proposed algorithm with the recent implementations of Inexact
Arnoldi’s (Lanczos’) method [23] where the inner linear system is solved with a variable accuracy
depending on the closeness to the wanted eigenvector.

The sequence of linear systems (1.2), the correction equation, has in common with the normal
equations to be solved at each interior point iteration the fact that the matrices involved get ill-
conditioned as the iteration proceeds. The BFGS sequence of preconditioners developed in this
paper is expected to perform well also for preconditioning the normal equations since:

1. The bounded deterioration property, proved in Theorem 3.7, is expected to mitigate the
ill-conditioning of the linear systems toward the interior point solution.

2. The approach described in the previous sections allows to perform only a (either complete
or inexact) factorization of the initial Jacobian, thus saving on the cost of subsequent
factorizations which is know to represent the main computational burden [11] of the
whole interior point method for large and sparse constrained optimization problems.
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