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Abstract

We consider the image denoising problem using total variation (TV) regulariza-
tion. This problem can be computationally challenging to solve due to the non-
differentiability and non-linearity of the regularization term. We propose an alter-
nating direction augmented Lagrangian (ADAL) method, based on a new variable
splitting approach that results in subproblems that can be solved efficiently and ex-
actly. The global convergence of the new algorithm is established for the anisotropic
TV model. For the isotropic TV model, by doing further variable splitting, we are
able to derive an ADAL method that is globally convergent. We compare our meth-
ods with the split Bregman method [16],which is closely related to it, and demon-
strate their competitiveness in computational performance on a set of standard test
images.

1 Introduction

In signal processing, total variation (TV) regularization is a very popular and effective
approach for noise reduction and has a wide array of applications in digital imaging.
The total variation is the integral of the absolute gradient of the signal. Using TV
regularization to remove noise from signals was originally proposed in [30] and is based
on the observation that noisy signals have high total variation. By reducing the to-
tal variation of a noisy signal while keeping the resulting signal close to the original
one removes noise while preserving important details such as sharp edges. Other ex-
isting denoising techniques include median filtering and Tikhonov-like regularization,
‖u‖TIK :=

∑
i(∇xu)2i + (∇yu)2i of the desired solution u, where ∇x and ∇y are defined
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below in (3). It is known that they tend to smooth away important texture details along
with the noise [34, 38].

For a 2-D signal u ∈ Rn×m, such as an image, the total variation ‖u‖TV [30] of u can
be defined anisotropically or isotropically:

‖u‖TV :=

{ ∑
i |(∇xu)i|+ |(∇yu)i|, (Anisotropic);∑
i

√
(∇xu)2i + (∇yu)2i , (Isotropic).

(1)

Concisely, ‖u‖TV can be expressed as
∑nm

i=1 ‖Diu‖p, where Diu ∈ R2 denotes the discrete
gradient of u at pixel i. Hence, ‖u‖TV is isotropic when p = 2 and is anisotropic when
p = 1. TV denoising (also called ROF (Rudin-Osher-Fatemi) denoising) corresponds to
solving the following optimization problem,

min
u
λ
nm∑
i=1

‖Diu‖p +
1

2
‖u− b‖2, (2)

where p = 1 or 2; b ∈ Rn×m is the noisy image, and the solution u is the desired denoised
image. ‖ · ‖ without a subscript denotes the l2-norm. We assume that all 2-D images
are in column-major vectorized form; hence, if one-dimensional index of (i, j) is k and
1 ≤ i ≤ n, 1 ≤ j ≤ m, the elements of ∇u are given by

Dku ≡
(
uk+1 − uk
uk+n − uk

)
= [∇u]ij =

(
∇xu
∇yu

)
ij

. (3)

The anisotropic TV model that we consider in this paper is the four-neighbor form. Al-
gorithms for anisotropic TV denoising for other different sets of neighbors are presented
in [15].

Due to the non-differentiability and non-linearity of the TV term in problem (2),
this problem can be computationally challenging to solve despite its simple form. Hence,
much effort has been devoted to devise efficient algorithms for solving it. A number of
references are provided in Section 1 of [16]. In addition, Chambolle’s algorithm [6] solves
problem (2) with the isotropic TV-norm.

The approach that we develop in this paper for solving problem (2) is based on
variable splitting followed by the application, to the resulting constrained minimization
problem, of an alternating minimization algorithm (specifically, in our case, the alter-
nating direction augmented Lagrangian (ADAL) method). In contrast with previously
proposed variable splitting approaches for solving problem (2), our approach introduces
two sets of auxiliary variables, one to replace the solution image u and one to replace
the vector of gradients (D1u, · · · , Dnmu). When the ADAL method is applied to the
constrained optimization problem that is derived from this variable splitting, the result-
ing subproblems that must be solved at each iteration can be solved easily and exactly.
Moreover, for the anisotropic TV version of problem (2), convergence of our algorithm
can be proved, and for both the anisotropic and isotropic TV models, preliminary numer-
ical experiments indicate that the number of iterations required to obtain an accurate
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solution is quite small. By introducing a third set of auxiliary variables, we are also able
to derive an ADAL method for the isotropic TV model with guaranteed convergence.

Before outlining the organization of the remaining sections of the paper that contain
our main results, let us first review three previously proposed methods that use split-
variable alternating minimization approaches. All of these methods apply to the slightly
more general TV-based denoising/deblurring problem

min
u
λ
∑
i

‖Diu‖p +
1

2
‖Ku− b‖2, (4)

where p is either 1 or 2, and K is a blurring (or convolution) operator.

1.1 Closely Related Methods

In the straightforward variable splitting approach proposed in [1], a vector of auxiliary
variables w is introduced to replace u in the non-differentiable TV term in (4):

min
u,w

λ
∑
i

‖Diw‖p +
1

2
‖Ku− b‖2 (5)

s.t. w = u.

The algorithm SALSA (Split-Augmented Lagrangian Shrinkage Algorithm) in [1] then
obtains a solution to problem (4) by applying the ADAL method to problem (5), in which
the non-differentiable TV term λ‖Φ(w)‖p, where Φi(w) ≡ Diw, has been decoupled from
the quadratic fidelity term R(u) ≡ 1

2‖Ku − b‖
2 in the objective function. For the case

of isotropic TV regularization, SALSA uses five iterations of Chambolle’s algorithm to
compute the corresponding Moreau proximal mapping.

In [38], variable-splitting combined with a penalty function approach is applied to
problem (4) by introducing an auxiliary variable di = Diu ∈ R2 for each pixel, yielding
the following approximation to problem (4)

min
d,u

λ
∑
i

‖di‖1 +
1

2
‖Ku− b‖2 +

1

2µ

∑
i

‖di −Diu‖2. (6)

Problem (6) is then minimized alternatingly with respect to w and u, with a continuation
scheme that drives the penalty parameter 1

µ gradually to a sufficiently large number.
This method is extended in [41, 43] to solve the multi-channel (color) image deblurring
problem. In [43], the TV regularization with 1-norm fidelity (TVL1) model

min
u
λ
∑
i

‖Diu‖p + ‖Ku− b‖1

is considered. The same approach has also been applied to reconstruct signals from
partial Fourier data in the compressed sensing context [44]. These methods take full
advantage of the structures of the convolution operator and the finite difference operator
so that the subproblems can be solved exactly and efficiently, which is important for fast
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convergence. A downside to this quadratic penalty approach is that when 1
µ is very

large, problem (6) becomes ill-conditioned and numerical stability becomes an issue.
Although our algorithm is closely related to the algorithms in [1] and [38] described

above, it is even more closely related to the split Bregman method [16], which is an
application of the variable splitting approach in [38] to the Bregman iterative regular-
ization method [24]. The Bregman iterative regularization method was first introduced
in [24] as a better (iterative) approach to the TV denoising/deblurring problem (4) than
directly applying an iterative solver to it. Subsequently, this method was extended in
[34] to the solution of l1-minimization problems that arise in compressed sensing and in
[22] to nuclear norm minimization problems that are convex relaxations of matrix rank
minimization problems.

The Bregman distance associated with a convex function E(·) between u and v is
defined as

Dp
E(u, v) := E(u)− E(v)− pT (u− v),

where p ∈ ∂E(v) and ∂E(v) denotes the subdifferential of E(·) at the point v. The
Bregman iteration for the unconstrained minimization problem

min
u
E(u) +

1

µ
H(u),

where both functions E(·) and H(·) are convex, is

u(k+1) = arg min
u
Dp
E(u, u(k)) +

1

µ
H(u)

= arg min
u
E(u)− (u− u(k))T p(k) +

1

µ
H(u), (7)

p(k+1) = p(k) −∇H(u(k+1)). (8)

Superscripts denote iteration indices to differentiate between the values of the variables
for the current iteration from those computed at the previous iteration. With the intro-
duction of an auxiliary variable d as in [38], the TV denoising/deblurring problem (4)
can be reformulated as the constrained problem

min
u,d

λ‖d‖1 +R(u) (9)

s.t. d = Φ(u),

where R(u) = 1
2‖Ku− b‖

2, and Φ(u) =

(
∇xu
∇yu

)
. Now, converting problem (9) into an

unconstrained problem (by penalizing ‖d− Φ(u)‖2), we obtain

min
u,d

λ‖d‖1 +R(u) +
1

2µ
‖d− Φ(u)‖2,

(this is the same as problem (5)). Then, applying the general Bregman iteration (7)-(8)
with E(u, d) = λ‖d‖1 +R(u) and H(u, d) = ‖d− Φ(u)‖2, we obtain after simplification
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the following specific Bregman iteration:

(u(k+1), d(k+1)) = min
u,d

λ‖d‖1 +R(u) +
1

2µ
‖d− Φ(u)− r(k)‖2, (10)

r(k+1) = r(k) + (Φ(u(k+1))− d(k+1)), (11)

with r(0) = 0. In [16], an approximate solution to (10) was proposed by alternatingly
minimizing the right-hand-side of (10) with respect to u and d once. This yields the
following Split Bregman algorithm (Algorithm 1.1). 1 For notational conciseness, the
superscripts are suppressed in the main steps. As is well known (e.g., see [42]), the Breg-

Algorithm 1.1 SplitBregman

1: Given u(0), d(0), and r(0).
2: for k = 0, 1, · · · ,K do
3: u← minuR(u) + 1

2µ‖d− Φ(u)− r‖2

4: d← mind λ‖d‖1 + 1
2µ‖d− Φ(u)− r‖2

5: r ← r + (Φ(u)− d)
6: end for
7: return u

man iterative algorithm (10)-(11) is equivalent to applying the augmented Lagrangian
method [20, 25] to solve problem (9). Hence, the split-Bregman algorithm is equivalent
to applying the ADAL method to (9).

1.2 Organization of The Paper

The outline of the rest of the paper is as follows. We first briefly review the ADAL
method and its applications to linearly constrained optimization problems that arise from
variable splitting in Section 2. In Section 3.1, we describe our proposed variable-splitting
alternating direction augmented Lagrangian method for the anisotropic TV-model and
prove its global convergence in Section 3.2. We then discuss in Sections 3.3 and 3.4 the
isotropic case and the difference between our algorithm and the split Bregman method,
respectively. In Section 3.5, we present a globally convergent variable-splitting ADAL
variant for the isotropic TV-model. In Section 4, we compare our algorithms against the
split Bregman method on a set of standard test images and demonstrate the effectiveness
of our methods in terms of denoising speed and quality.

2 The Alternating Direction Augmented Lagrangian Method

The ADAL method is also known as the alternating direction method of multipliers
(ADMM) and was first proposed in the 1970s [12, 14]. It belongs to the family of the

1The Split Bregman method in its original form in [16] has an inner loop. We consider the simplified
form, which was used to solve TV denoising problems in [16].
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classical augmented Lagrangian (AL) method [25, 29, 20], which iteratively solves the
linearly constrained problem

min
x

F (x) (12)

s.t. Ax = b.

The augmented Lagrangian of problem (12) is L(x, γ) = F (x)+γT (b−Ax)+ 1
2µ‖Ax−b‖

2,
where γ is the Lagrange multiplier and µ is the penalty parameter for the quadratic in-
feasibility term. The AL method minimizes L(x, γ) followed by an update to γ in each
iteration as stated in the following algorithm. We denote by kmax the user-defined maxi-
mum number of iterations or the number of iterations required to satisfy the termination
criteria.

Algorithm 2.1 AL (Augmented Lagrangian method)

1: Choose γ(0).
2: for k = 0, 1, · · · , kmax do
3: x← arg minx L(x, γ)
4: γ ← γ − 1

µ(Ax− b)
5: end for
6: return x

For a structured unconstrained problem

min
x
F (x) ≡ f(x) + g(Ax), (13)

where both functions f(·) and g(·) are convex, we can decouple the two functions by
introducing an auxiliary variable y and transform problem (13) into an equivalent linearly
constrained problem

min
x,y

f(x) + g(y) (14)

s.t. Ax = By,

where for (13), B = I. Henceforth, we consider the more general case of problem (14).
The augmented Lagrangian function for problem (14) is

L(x, y, γ) = f(x) + g(y) + γT (By −Ax) +
1

2µ
‖By −Ax‖2.

Exact joint minimization of L(x, y, γ) with respect to both x and y is usually difficult.
Hence, in practice, an inexact version of the AL method (IAL) is often used, where
L(x, y, γ) is minimized only approximately. Convergence is still guaranteed in this case,
as long as the subproblems are solved with increasing accuracy [29].

ADAL (Algorithm 2.2 below) is a particular case of IAL in that it finds the approx-
imate minimizer of L(x, y, γ) by alternatingly optimizing with respect to x and y once.
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Algorithm 2.2 ADAL (ADMM)

1: Choose γ(0).
2: for k = 0, 1, · · · , kmax do
3: x← arg minx L(x, y, γ)
4: y ← arg miny L(x, y, γ)
5: γ ← γ + 1

µ(By −Ax)
6: end for
7: return x

This is often desirable because joint minimization of L(x, y, γ) even approximately can
be hard.

The convergence of ADAL has been established for the case of two-way splitting as
above. This result, which is a modest extension of results in [9], is given in [10] and
contained in the following theorem.

Theorem 2.1. Consider problem (14), where both f and g are proper, closed, convex
functions, and A ∈ Rn×m and B ∈ Rn×l have full column rank. Then, starting with an
arbitrary µ > 0 and x0 ∈ Rm, y0 ∈ Rl, the sequence {xk, yk, γk} generated by Algorithm
2.2 converges to a primal-dual optimal solution pair

(
(x∗, y∗), γ∗

)
to problem (14), if (14)

has one. If (14) does not have an optimal solution, then at least one of the sequences
{(xk, yk)} and {γk} diverges.

It is known that µ does not have to decrease to a very small value (it can simply
stay constant) in order for the method to converge to the optimal solution of problem
(14) [23, 4]. Inexact versions of ADAL, where one or both of the subproblems are solved
approximately have also been proposed and analyzed [9, 18, 42].

The versatility and simple form of ADAL have attracted much attention from a
wide array of research fields. ADAL has been applied to solve group sparse optimiza-
tion problems in [8], semidefinite programming problems in [39] and matrix completion
problems with nonnegative factors in [40]. In signal processing/reconstruction, ADAL
has been applied to sparse and low-rank recovery, where nuclear norm minimization
is involved [21, 45, 32], and to the l1-regularized problems in compressed sensing [42].
ADAL-based algorithms have also been proposed to solve a number of image processing
tasks, such as image inpainting and deblurring (SALSA and C-SALSA) [1, 2, 3, 36],
motion segmentation and reconstruction [28, 46], in addition to denoising [1, 16, 11, 33].
In machine learning, ADAL and IAL-based methods have been successfully applied to
structured-sparsity estimation problems [26] as well as many others [5].

3 Our Proposed Method

3.1 Application to Anisotropic TV Denoising

We consider the anisotropic TV denoising model (2). The isotropic TV model will
be considered in Section 3.3. As in [16], we introduce auxiliary variables dx and dy
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for the discretized gradient components ∇xu and ∇yu respectively. Under reflective
Neumann boundary conditions, ∇xu = Du, where the discretization matrix D is an
(nm−m)×nm block diagonal matrix, each of whose m diagonal (n−1)×n rectangular
blocks is upper bidiagonal with -1’s on its diagonal and 1’s on its super-diagonal. For
simplicity, henceforth we will assume that n = m. Consequently, ∇yu = Dv, where
v = Pu, and P is a permutation matrix so that v is the row-major vectorized form of
the 2-D image. (Recall that u is in the column-major form.) Hence, problem (2) is
equivalent to the following constrained problem

min
dx,dy ,u,v

λ(‖dx‖1 + ‖dy‖1) +
1

2
‖u− b‖2 (15)

s.t. dx = Du,

dy = Dv,

v = Pu.

The augmented Lagrangian for problem (15) is

L(dx, dy, u, v, µ) ≡ 1

2
‖u−b‖2+λ(‖dx‖1+‖dy‖1)+γTx (Du−dx)+γTy (Dv−dy)+γTz (Pu−v)

+
1

2µ1
(‖Du− dx‖2 + ‖Dv − dy‖2) +

1

2µ2
‖Pu− v‖2. (16)

To minimize L with respect to d =

(
dx
dy

)
, we solve the subproblem

min
dx,dy

λ(‖dx‖1+‖dy‖1)+γTx (Du−dx)+γTy (Dv−dy)+
1

2µ1
(‖Du−dx‖2+‖Dv−dy‖2). (17)

Problem (17) is strictly convex and decomposable with respect to dx and dy, so the unique
minimizer can be computed through two independent soft-thresholding operations

d∗x = T (Du+ µ1γx, λµ1),

d∗y = T (Dv + µ1γy, λµ1),

where the soft-thresholding operator T is defined componentwise as

T (x, λ)i := max{|xi| − λ, 0}sign(xi).

To minimize L over u, we solve

min
u

1

2
‖u− b‖2 + γTxDu+

1

2µ1
‖Du− dx‖2 + γTz Pu+

1

2µ2
‖Pu− v‖2, (18)

which simplifies to the linear system(
DTD +

(
µ1
µ2

+ µ1

)
I

)
u = µ1b+DT (dx − µ1γx) + P T

(
µ1
µ2
v − µ1γz

)
. (19)
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It is easy to verify that, since µ1 and µ2 are both positive scalars, the matrix on the
left-hand-side of the above system is positive definite and tridiagonal. Hence, (19) can
be solved efficiently by the Thomas algorithm in 8nm flops [17]. We denote the solution
to the above tridiagonal system by u(dx, v, γx, γz).

Similarly, the sub-problem with respect to v simplifies to the tridiagonal system(
DTD +

µ1
µ2
I

)
v = DT (dy − µ1γy) + µ2γz +

µ1
µ2
Pu. (20)

Its solution is denoted by v(dy, v, γy, γz).
With all the ingredients of the algorithm explained, we formally state this ADAL

method in Algorithm 3.1 below. Note that in line 7, the vectors of Lagrange multipliers
and scaled infeasibilities are combined into the vectors

γ ≡

 γx
γy
γz

 and ∆ ≡


1
µ1

(Du− dx)
1
µ1

(Dv − dy)
1
µ2

(Pu− v)

 .

Algorithm 3.1 ADAL (Anisotropic TV Denoising)

1: Given u(0), v(0), λ, γ(0).
2: for k = 0, 1, · · · ,K do
3: dx ← T (Du+ µ1γx, λµ1)
4: v ← v(dy, u, γy, γz), the solution of (20)
5: dy ← T (Dv + µ1γy, λµ1)
6: u← u(dx, v, γx, γz), the solution of (19)
7: γ ← γ + ∆
8: end for
9: return 1

2(u+ P T v)

3.2 Convergence Analysis

We establish the convergence of Algorithm 3.1 by expressing problem (15) as an instance
of problem (14) and then showing that Algorithm 3.1 is, in fact, an ADAL method for
problem (14), employing two-way updates to the variables.

DefineX :=

(
dx
v

)
, Y :=

(
dy
u

)
, f(X) := λ‖dx‖1, and g(Y ) := λ‖dy‖1+ 1

2‖u−b‖
2.

Then, we can write problem (15) in the form of problem (14) as

min
X,Y

f(X) + g(Y ) (21)

s.t. AX = BY,

where A =

 I 0
0 D
0 I

 ∈ R3mn×2mn, and B =

 0 D
I 0
0 P

 ∈ R3mn×2mn.
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Observe that Lines 3 and 4 of Algorithm 3.1 exactly solve the Lagrangian subproblem
of (21) with respect to X - the subproblem is decomposable with respect to dx and v.
Similarly, Lines 5 and 6 of Algorithm 3.1 solve the Lagrangian subproblem with respect
to Y - the subproblem is decomposable with respect to dy and u. The matrices A and
B obviously have full column rank. Hence, the convergence of Algorithm 3.1 follows as
a result of Theorem 2.1.

3.3 The Isotropic Case

The isotropic TV denoising model differs from the anisotropic model in the defini-

tion of the TV norm. In this case, we define ‖u‖ISOTV :=
∑

i

√
(∇xu)2i + (∇yu)2i =∑

i ‖([∇xu]i, [∇yu]i)‖, and the optimization problem to solve is

min
u
λ‖u‖ISOTV +

1

2
‖u− b‖2. (22)

Note that ‖u‖ISOTV is the group lasso regularization on (∇xu,∇yu), with each group
consisting of ([∇xu]i, [∇yu]i). We introduce the same auxiliary variables and linear
constraints defining them as in the previous section, except that the constraint coupling
dy and v becomes

dy = P TDv. (23)

This modification is necessary because dx and dy are now coupled by the isotropic TV
norm and the order of their elements have to match, i.e. column-major with respect to
the original image matrix. The subproblem with respect to dx and dy now becomes

min
dx,dy

λ
∑
i

‖([dx]i, [dy]i)‖+γTx (Du−dx)+γTy (P TDv−dy)+
1

2µ1
(‖Du−dx‖2+‖P TDv−dy‖2),

(24)
which is a proximal problem associated with the group l1,2-norm ‖d‖1,2 with dx ≡
∇xu, dy ≡ ∇yu, where the groups are defined as above. The solution to this subproblem

is thus given by a block soft-thresholding operation [37, 27, 7], S(

(
D 0
0 P TD

)(
u
v

)
+

µ1

(
γx
γy

)
, λµ1), where the block soft-thresholding operator is defined blockwise as

S(x, λ)i := max{‖xi‖ − λ, 0}
xi
‖xi‖

,

and xi is the i-th block of x, i.e. ([Du + µ1γx]i, [P
TDv + µ1γy]i) in our case. The

subproblem with respect to u is the same as (19), and that with respect to v is(
DTD +

µ1
µ2
I

)
v = DTP (dy − µ1γy) + µ2γz +

µ1
µ2
Pu. (25)
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Algorithm 3.2 ADAL (Isotropic TV Denoising)

1: Given u(0), v(0), λ, γ(0).
2: for k = 0, 1, · · · , kmax do

3:

(
dx
dy

)
← S

((
Du

P TDv

)
+ µ1

(
γx
γy

)
, λµ1

)
4: v ← v(dy, u, γy, γz), the solution of (25)
5: u← u(dx, v, γx, γz), the solution of (19)
6: γ ← γ + ∆
7: end for
8: return 1

2(u+ P T v)

We state the ADAL method for the isotropic TV denoising in Algorithm 3.2, where

because of (23), ∆ ≡


1
µ1

(Du− dx)
1
µ1

(P TDv − dy)
1
µ2

(Pu− v)

.

Due to the non-decomposability of problem (24) with respect to dx and dy in this case,
Algorithm 3.2 cannot be interpreted as an algorithm that employs alternating updates
to two blocks of variables as in Section 3.1. Hence, the convergence analysis for the
anisotropic case cannot be extended to this case in a straightforward manner. However,
our experimental results in the next section show strong indication of convergence to the
optimal solution.

3.4 Comparison with The Split Bregman Method

Since the split Bregman method (Algorithm 1.1) is equivalent to the ADAL method
(Algorithm 2.2) [35, 10, 31] applied to the constrained problem

min
d,u

λ(‖dx‖1 + ‖dy‖1) +
1

2
‖u− b‖2

s.t. dx = ∇xu,
dy = ∇yu,

it is clear that the main difference between ADAL Algorithms 3.1 and 3.2 and the split
Bregman method comes from the introduction of the additional variable v = Pu in
problem (15). The split Bregman subproblem with respect to u (line 3 in Algorithm 1.1)
can be simplified to the linear system(

µI + (∇Tx∇x +∇Ty∇y)
)
u(k+1) = µb+∇Tx (d(k)x − r(k)x ) +∇Ty (d(k)y − r(k)y ), (26)

whose left-hand-side matrix includes a Laplacian matrix and is strictly diagonally domi-
nant. Solving this linear system exactly in each iteration is relatively expensive. Hence,
one iteration of the Gauss-Seidel method is applied in [16] to solve (26) approximately.
Consequently, the condition for the convergence guarantee is violated in this case.
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In contrast, the subproblems with respect to v and u in ADAL have simpler structures
and thus can be solved exactly in an efficient manner as we saw in Section 3.1. The
splitting of u and v also leads to the establishment of the global convergence of Algorithm
3.1 in the anisotropic case. We surmised that this was a better approach for the TV
denoising problem; the results in the next section confirmed this.

3.5 A Globally Convergent ADAL Method for the Isotropic TV-Model

Let us introduce three sets of variables

(
dx
dy

)
, v, and w as follows:

dx = Du, dy = P TDv, u = w, v = Pw.

The isotropic TV model then has the form of (21) with

X =

 dx
dy
w

 , Y =

(
u
v

)
, A =


I 0 0
0 I 0
0 0 I
0 0 P

 , and B =


D 0
0 P TD
I 0
0 I

 .

When the augmented Lagrangian L(X,Y, γ) ≡ L(dx, dy, w, u, v, γx, γy, γu, γv) is mini-
mized with respect to X, the minimization is separable in terms of (dx, dy) and w.
Similarly, the minimization with respect to Y is separable in terms of u and v.

If we use the same penalty parameter µ2 for both constraints that involve w, then
the subproblems that one obtains for u, v, and w require sovling, respectively,(

DTD +

(
µ1 +

µ1
µ2

)
I

)
u = µ1

(
b− γu −

1

µ2
w

)
+DT (dx − µ1γx), (27)(

DTD +
µ1
µ2
I

)
v = µ1

(
1

µ2
Pw − γv

)
+DTP (dy − µ1γy), (28)

and

w =
1

2

(
u+ P T v + µ2(γu + P Tγv)

)
. (29)

We incorporate these procedures in Algorithm 3.3 below, where now γ ≡


γx
γy
γu
γv

, and

∆ ≡


1
µ1

(Du− dx)
1
µ1

(P TDv − dy)
1
µ2

(w − u)
1
µ2

(Pw − v)

. Note that both Algorithms 3.2 and 3.3 compute u, v, γx,

and γy. In addition, Algorithm 3.3 requires the computation of w, γu, and γv whereas
the isotropic ADAL Algorithm 3.2 only requires computation of γz. Consequently, the
new convergent algorithm has slightly more work at each iteration.
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Algorithm 3.3 ADAL (Isotropic TV Denoising) - Convergent

1: Given u(0), v(0), λ, γ(0).
2: for k = 0, 1, · · · , kmax do

3:

(
dx
dy

)
← S

((
Du

P TDv

)
+ µ1

(
γx
γy

)
, λµ1

)
4: w ← w(u, v, γv, γu, by (29)
5: v ← v(dy, w, γy, γv), the solution of (28)
6: u← u(dx, w, γx, γu), the solution of (27)
7: γ ← γ + ∆
8: end for
9: return 1

3(u+ P T v + w)

3.6 Practical Implementation

It is often beneficial to associate a step-size θ to the Lagrange multiplier updates, i.e.
γ ← γ + θ∆ at line 7 in Algorithms 3.1 and 3.3 and line 6 in Algorithm 3.2. The

convergence of this ADAL variant with θ ∈ (0,
√
5+1
2 ) has been established in [13],[19],

and [39] under various contexts. In our implementation, we set θ = 1.618.
In practice, we can often set µ1 = µ2 = µ. In this case, we can save some scalar-vector

multiplications by maintaining γ̃ = µγ instead of the γ variables themselves. Then, for
example, (27) can be simplified to(

DTD + (µ+ 1) I
)
u = µb− γ̃u − w +DT (dx − γ̃x).

All the steps in the proposed algorithms remain the same with this substitution, except
for the computation of ∆, which no longer involves division by µ.

In addition, if µ is kept constant throughout the algorithms, we can factorize the
constant left-hand-sides of the tri-diagonal linear systems and cache the factors for sub-
sequent iterations. The factors are lower-triangular and are stored in the form of two
vectors representing the diagonal and the sub-diagonal of these factors. Then, we can
solve for u and v quickly through forward and backward substitutions, which require
5mn flops each. In our implementation, we used the LAPACK routines dpttrf (for
factorization) and dpttrs (for forward/backward substitutions).

We also developed a simple updating scheme for µ, which decreases µ by a constant
factor κ after every J iterations, starting from µ̄, bounded below by µ, i.e.

µ(k) = max(µ,
µ̄

κ
k
J

).

Such an updating scheme allows different values of µ to be applied at different stages of
convergence. From our computational experience in the next Section, this often led to
improved convergence speed. We denote this variant by “ADAL-µ” and “ADAL-conv-µ”
corresponding to ADAL (Algorithms 3.1 and 3.2) and Algorithm 3.3 respectively.
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Figure 1: The set of standard test images.

4 Experiments

We implemented our ADAL algorithms (Algorithms 3.1,3.2,and 3.3) in C++ with BLAS
and LAPACK routines. SplitBregman is in C with a Matlab interface. 2 We ran all the
algorithms on a laptop with an Intel Core i5 Duo processor and 6G memory.

4.1 Test Images

We compared our ADAL algorithm with the split Bregman method on a set of six
standard test images: lena, house, cameraman, peppers, blonde, and mandril (see
Figure 1). They present a range of challenges to image denoising algorithms, such as
the reproduction of fine detail and textures, sharp transitions and edges, and uniform
regions. Each image is a 512 × 512 array of grey-scale pixels and is denoted by u0 in
vectorized form.

4.2 Set-up

We constructed noisy images by adding Gaussian noise to the original images, i.e. b =
u0 + ε, where ε ∼ N (0, σ2) and b is the vectorized noisy image. We set σ = 30, which
introduced a considerable amount of noise. The quality of the denoised image in the
k-th iteration, u(k) is measured by the normalized error with respect to a high quality

2Code downloaded from http://www.stanford.edu/ tagoldst/code.html.
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reference solution u∗, i.e. η(k) = ‖u(k)−u∗‖
‖u∗‖ , as well as the peak-signal-to-noise ratio

(PSNR). The PSNR of an image u with respect to the noiseless image u0, in the case
where the maximum pixel magnitude is 255, is defined as

PSNR = 20 log10

(
255
√
nm

‖u− u0‖

)
.

PSNR is monotone decreasing with the ‖u − u0‖, i.e. a higher PSNR indicates better
reconstruction quality.

In practice, the algorithms can be stopped once an acceptable level of optimality
has been reached. For ADAL, we used the maximum of the relative primal and dual
residuals [5], denoted by ε to approximately measure the optimality of the solution.
For each image, we computed a reference solution u∗ and the corresponding PSNR
p∗ by running Algorithm 3.1 for the anisotropic TV model and algorithm 3.3 for the
isotropic TV model until the measure ε fell below 10−12. We then recorded the number
of iterations K required by each of the algorithms to reach a normalized error η(K) less
than 10−5. We also recorded the number of iterations required to reach a PSNR p whose
relative gap to p∗, gap ≡ |p

∗−p|
p∗ , was less than 10−3.

We set all initial values (u(0), v(0), w(0), γ(0)) to zeros. We tuned all the algorithms
under investigation for convergence speed with respect to both u∗ and p∗ to reach the
tolerance levels defined above, and the same set of parameters were used for all six
images. For ADAL, for both the anisotropic and isotropic TV models, we set µ1 = µ2 so
that there was only one parameter to tune. We tried values of µ from the set {0.1δ : δ =
1
2 , 1, 2, 4, 8, 16} and found the value µ = 0.2 to work best; the results reported below used
this value. Figure 2 illustrates this selection using the image house as an example, by

plotting the ratios
Kp(δ)
K∗p

and Ku(δ)
K∗u

as functions of δ for isotropic ADAL, where Ku(δ) is

the number of iterations needed to reduce the normalized error η(K) below the tolerance
10−5 with µ = δ0.1, and K∗u = minδ{Ku(δ)}. Kp(δ) and K∗p are defined similarly with
respect to p. For ADAL-µ and ADAL-conv-µ, we set κ = 1.5, J = 50, µ̄ = 0.5, and
µ = 0.05. For SplitBregman, we set µ = 4

λ , which was the value of µ from the set

{ δλ : δ = 1
2 , 1, 2, 4, 8, 16}, chosen in the same manner as that for ADAL. In general, the

parameters produced fairly consistent performance on the set of different images.

4.3 Convergence Comparisons

We now present experimental results for both the anisotropic and the isotropic TV
models. “ADAL-conv” denotes the convergent ADAL Algorithm 3.3 for the isotropic
model. We also tested a version of SplitBregman, denoted by “SplitBregman2”, where
two cycles of Gauss-Seidel were performed to solve the linear system (26). In Table 1, we
report the number of iterations and the corresponding CPU time required by the three
algorithms to reach the stopping criterion discussed above. Figures 3 and 4 plot the
relative gaps with respect to the reference solution as a function of the iteration number
for all the algorithms.
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Figure 2: Plots of ratios
Kp(δ)
K∗p

and Ku(δ)
K∗u

as functions of δ for isotropic ADAL on the

image house. The optimal point on the frontier is labeled in red.

In general, ADAL required fewer iterations than SplitBregman to reach the pre-
scribed relative gap with respect to the reference solution. The difference was particu-
larly significant at high accuracy levels, about 45% for the anisotropic model and 25% for
the isotropic model. We believe that ADAL benefits from the fact that it is able to solve
its subproblems exactly and efficiently, while the approximation made in the solution to
the linear system in the iterations of SplitBregman slows down the convergence as its
iterates approach the exact solution.

Figures 5 and 6 plot the relative gaps with respect to the reference PSNR as a
function of the iteration number. In terms of denoising speed, ADAL also requried fewer
iterations than SplitBregman to reach the denoising quality of the reference solution for
both TV models.

SplitBregman2 generally required about the same number of iterations as SplitBreg-
man to reach within the gap tolerance with respect to u∗, while requiring half the
number of iterations as SplitBregman to reach the prescribed gap with respect to p∗. It
appeared that the additional cycle of Gauss-Seidel in each iteration helped improve the
convergence speed initially but not in the later stages.

We note that ADAL was faster than ADAL-conv for the isotropic model. This
appears to be due to the need for ADAL-conv to make the norm of the difference between
an additional set of variables and what they are defined to be equal to small enough so
as to obtain high quality images.

We observe that the updating scheme for µ improved the speed of convergence,
especially for the isotropic TV model. ADAL-µ and ADAL-conv-µ reduced the number of
iterations required by ADAL and ADAL-conv, to achieve the same normalized errors on
the six test images by an amount between 40% and 60%, and 60% and 67%, respectivelly.
We show in Figures 7, 9, 8, and 10 the solutions obtained by ADAL-µ and SplitBregman
after the number of iterations specified in the ADAL-µ row in Table 1.

In terms of CPU time, all of the algorithms required more time to reach the prescribed
relative gap with respect to the reference solution for the isotropic model than that for the
anisotropic model because of more iterations required. For the anisotropic model, ADAL
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Figure 3: Convergence plots of normalized errors w.r.t. the reference solution against
iterations for the anisotropic TV model.

Figure 4: Convergence plots of normalized errors w.r.t. the reference solution against
iterations for the isotropic TV model.
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Figure 5: Convergence plots of normalized errors w.r.t. the reference PSNR against
iterations for the anisotropic TV model.

Figure 6: Convergence plots of normalized errors w.r.t. the reference PSNR against
iterations for the isotropic TV model.
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Model Algs
lena cameraman mandril

iters P-iters CPU iters P-iters CPU iters P-iters CPU

Anisotropic
ADAL 334 31 11.1 595 31 18.9 210 38 7.0

ADAL-µ 291 11 9.2 360 14 11.5 232 14 7.4
SplitBregman 584 47 12.5 1070 47 23.6 385 45 8.6
SplitBregman2 595 23 15.7 1093 23 29.0 394 23 10.8

Isotropic
ADAL 1036 33 37.2 1286 33 46.0 701 42 25.2

ADAL-µ 472 14 17.1 531 15 19.3 396 16 14.5
ADAL-conv 1482 62 54.8 1826 62 67.0 1023 66 38.2

ADAL-conv-µ 587 25 22.1 666 26 25.2 482 25 18.3
SplitBregman 1372 48 32.4 1767 49 41.6 983 47 23.2
SplitBregman2 1376 24 41.7 1779 25 53.5 996 23 29.4

Model Algs
blonde house peppers

iters P-iters CPU iters P-iters CPU iters P-iters CPU

Anisotropic
ADAL 370 40 12.0 621 28 20.7 279 28 9.4

ADAL-µ 293 15 9.3 364 14 11.6 262 12 8.4
SplitBregman 617 50 13.6 1126 49 25.6 504 46 11.2
SplitBregman2 619 25 17.2 1128 25 33.1 513 23 14.0

Isotropic
ADAL 929 44 34.1 1308 29 49.4 1043 29 43.4

ADAL-µ 447 18 16.4 537 14 19.5 476 13 18.9
ADAL-conv 1320 68 51.5 1860 58 70.6 1518 57 68.1

ADAL-conv-µ 547 27 20.6 677 26 25.6 595 23 26.5
SplitBregman 1292 50 30.4 1848 50 42.9 1368 47 33.7
SplitBregman2 1298 25 37.8 1856 25 55.6 1375 23 42.5

Table 1: Computational statistics. “iters” denotes the number of iterations to reach
within a gap of 1e-5 w.r.t. the reference solution. “P-iters” denotes number of iterations
to reach within a gap of 1e-3 w.r.t. the reference PSNR. CPU time is in seconds and
corresponds to the “iters” column.
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Figure 7: Comparison of reconstruction quality for lena, cameraman, mandril, and
blonde with the anisotropic TV model. Top left: noisy image. Top right: reference so-
lution obtained by ADAL. Bottom left: ADAL solution obtained after the corresponding
number of iterations indicated in Table 1. Bottom right: SplitBregman solution obtained
after the same number of iterations.
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Figure 8: Comparison of reconstruction quality for house, and peppers with the
anisotropic TV model. Top left: noisy image. Top right: reference solution obtained
by ADAL. Bottom left: ADAL-µ solution obtained after the corresponding number of
iterations indicated in Table 1. Bottom right: SplitBregman solution obtained after the
same number of iterations.
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Figure 9: Comparison of reconstruction quality for lena, cameraman, mandril, and
blonde with the isotropic TV model. Top left: noisy image. Top right: reference solu-
tion obtained by ADAL. Bottom left: ADAL-µ solution obtained after the corresponding
number of iterations indicated in Table 1. Bottom right: SplitBregman solution obtained
after the same number of iterations.
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Figure 10: Comparison of reconstruction quality for house, and peppers with the
isotropic TV model. Top left: noisy image. Top right: reference solution obtained
by ADAL. Bottom left: ADAL solution obtained after the corresponding number of
iterations indicated in Table 1. Bottom right: SplitBregman solution obtained after the
same number of iterations.
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took less time than SplitBregman, and ADAL-µ took the least, with the least number of
iterations. The apparent more per-iteration work for ADAL is due to the computation
for the additional tridiagonal linear system and the Lagrange multiplier, as compared to
one sweep of Gauss-Seidel employed by SplitBregman. SplitBregman2 required longer
time than SplitBregman because of the additional sweep of Gaus-Seidel per iteration
with about the same number of iterations. The approximate total number of flops per
iteration3 (including solving the linear systems, updating the Lagrange multipliers, and
performing the shrinkage operations) is 33 mn, 46 mn, and 44 mn for SplitBregman,
SplitBregman2, and ADAL respectively.

For the isotropic model, ADAL-µ and ADAL-conv-µ required the least amount of
time to reach the same level of accuracy, with about half the number of iterations required
by SplitBregman. On the other hand, ADAL took more time than SplitBregman in this
case, though still requiring less time than SplitBregman2. The driving factor here was the
greater number of iterations required than in the anisotropic case. ADAL-conv required
slightly more per-iteration work than ADAL due to the additional computation for w
and the Lagrange multiplier for the additional constraint introduced. The approximate
total number of flops per iteration is 34 mn, 47 mn, 48 mn, and 57 mn for SplitBregman,
SplitBregman2, ADAL, and ADAL-conv respectively.

5 Conclusion

We have proposed new ADAL algorithms for solving TV denoising problems in image
processing. The key feature of our algorithms is their use of multiple variable splittings
which results in their ability to solve the ADAL subproblems exactly and efficiently. Our
first ADAL algorithm has a global convergence guarantee for the case of anisotropic TV
model, and the experimental results show that its iterates converge significantly faster
than those of SplitBregman. Even though the convergence guarantee of this ADAL
variant cannot be extended easily to the isotropic TV model, empirical results show
that with a simple updating scheme for µ, it still compares favorably to SplitBreg-
man in convergence speed. We also proposed another ADAL variant for the isotropic
TV model that has a global convergence guarantee, with a slightly higher per-iteration
computational cost. Because of the additional variable splitting required to obtain the
convergence guarantee, the method also takes more iterations than the simpler isotropic
ADAL variant.
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