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Abstract

Recently, many structured tensors are defined and their properties are discussed
in the literature. In this paper, we introduce a new class of structured tensors,
called exceptionally regular tensor, which is relevant to the tensor complementarity
problem. We show that this class of tensors is a wide class of tensors which
includes many important structured tensors as its special cases. By constructing
two examples, we demonstrate that an exceptionally regular tensor can be, but
not always, an R-tensor. We also show that within the class of the semi-positive
tensors, the class of exceptionally regular tensors coincides with the class of R-
tensors. In addition, we consider the tensor complementarity problem with an
exceptionally regular tensor or an R-tensor or a P0+R0-tensor, and show that the
solution sets of these classes of tensor complementarity problems are nonempty
and compact.
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1 Introduction

A real m-order n-dimensional tensor A with m,n being positive integers is an m-way
array, which can be denoted by A = (ai1i2···im) with ai1i2···im ∈ R for all ij ∈ {1, 2, . . . , n}
and j ∈ {1, 2, . . . , m}. Obviously, A is a matrix if m = 2. Throughout this paper, we
assume that m ≥ 3 and n ≥ 2 unless otherwise stated; and use Tm,n to denote the
set of all real m-order n-dimensional tensors. As a generalization of matrix, tensor has
attracted more and more attention in the last ten years.

As the generalization of eigenvalues of matrices, eigenvalues of tensors are initially
introduced and studied by Qi [14] and Lim [12]. They have been applied in many
aspects, including magnetic resonance imaging [5, 16] and hypergraph theory [6, 11].
Several different concepts of eigenvalues of tensors are given in the literature. Two
popular concepts are the H-eigenvalue and the Z-eigenvalue. Recall that for any given
A ∈ Tm,n and x ∈ R

n, Axm−1 denotes a vector in R
n and

(

Axm−1
)

i
:=

n
∑

i2,···,im=1

aii2···imxi2 . . . xim , ∀i ∈ {1, 2, . . . , n}.

If there exist a nonzero vector x ∈ R
n and a scalar λ ∈ R such that

(

Axm−1
)

i
= λxm−1

i , ∀i ∈ {1, 2, . . . , n},

then λ is called an H-eigenvalue of A and x is called an H-eigenvector of A associated
with λ. If there exist a nonzero vector x ∈ R

n and a scalar λ ∈ R such that

(

Axm−1
)

i
= λxi, ∀i ∈ {1, 2, . . . , n} and xTx = 1,

then λ is called a Z-eigenvalue of A and x is called a Z-eigenvector of A associated with
λ.

Recall that for any given A ∈ R
n×n and q ∈ R

n, the linear complementarity problem,
denoted by LCP(q, A), is to find a point x ∈ R

n such that

x ≥ 0, Ax+ q ≥ 0, xT (Ax+ q) = 0.

As a generalization of LCP(q, A), the tensor complementarity problem has been intro-
duced and investigated [13, 17, 18]. For any given A ∈ Tm,n and q ∈ R

n, the tensor
complementarity problem, denoted by TCP(q,A), is to find a point x ∈ R

n such that

x ≥ 0, Axm−1 + q ≥ 0, xT (Axm−1 + q) = 0.

It is well known that properties of various structured matrices play important roles
in theory and methods for LCP(q, A). There is no doubt that properties of various
structured tensors will play important roles in the study of TCP(q,A). Recently, many
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structured tensors are introduced, such as M-tensor [4, 21], P (P0)-tensor [17], B (B0)-
tensor [15, 17], and R (R0)-tensor; and their properties are studied.

Recall that for any given nonlinear function f : Rn → R
n, the nonlinear complemen-

tarity problem, denoted by CP(f), is to find a point x ∈ R
n such that

x ≥ 0, f(x) ≥ 0, xTf(x) = 0.

It is obvious that TCP(q,A) is a special class of CP(f) with f(x) = Axm−1 + q. It
is well known that the concept of exceptional family of elements is a powerful tool for
investigating CP(f), and many good theoretical results for CP(f) are obtained by using
such a tool [7–10, 22–24]. In [24], Zhao and Isac introduced the notion of exceptionally
regular function, and based on this notion, they established an existence theorem for
CP(f) with f being a positively homogeneous function.

Inspired by these works, we will introduce a new class of structured tensors with the
help of exceptionally regular function, which is called exceptionally regular tensor; and
study related properties of this class of tensors.

The rest of this paper is organized as follows. In the next section, we review several
important classes of structured tensors and some known related properties. We also
discuss some properties of Z-eigenvalues of the weak P -tensor, recently defined by Ding,
Luo, and Qi [3]. In Section 3, we define a new class of structured tensors, exceptionally
regular tensor, and discuss some of its properties. We show that a weak P -tensor must
be an exceptionally regular tensor, but the converse does not hold. We also show that
ER-tensors and R-tensors are two different classes of tensors although their intersection
is nonempty. In Section 4, we consider the tensor complementarity problem with an
exceptionally regular tensor, and show that its solution set is nonempty and compact,
which is an extension of the results obtained by [2, Theorem 4.5] and [3, Theorem 6.2].
We also show that the solution set of the tensor complementarity problem, with an R-
tensor or a P0 + R0-tensor, is nonempty and compact. The final conclusions are given
in Section 5.

Throughout this paper, for any positive integer n, we denote [n] := {1, 2, . . . , n} and
R

n
+ := {x ∈ R

n : x ≥ 0}.

2 Preliminaries

In this section, we review definitions and properties of several structured tensors,
which are useful for our sequential discussions. We also discuss the properties of eigen-
values of two classes of tensors.

Definition 2.1 A tensor A ∈ Tm,n is said to be
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(i) semi-positive [18] iff for each x ∈ R
n
+ \ {0}, there exists an index i ∈ [n] such

that
xi > 0 and (Axm−1)i ≥ 0;

(ii) strictly semi-positive [18] iff for each x ∈ R
n
+ \{0}, there exists an index i ∈ [n]

such that
xi > 0 and (Axm−1)i > 0;

(iii) a P0-tensor [17] iff for each x ∈ R
n \ {0}, there exists an index i ∈ [n] such that

xi 6= 0 and xi(Axm−1)i ≥ 0;

(iv) a P -tensor [17] iff for each x ∈ R
n \ {0}, there exists an index i ∈ [n] such that

xi(Axm−1)i > 0;

(vi) strictly copositive [19] iff Axm > 0 for all x ∈ R
n
+ \ {0};

(vii) positive define [19] iff Axm > 0 for all x ∈ R
n \ {0};

(viii) a Q-tensor [18] iff for any q ∈ R
n, TCP(q,A) has a solution.

Clearly, every strictly semi-positive tensor is a semi-positive tensor, and every P0-
tensor is certainly semi-positive.

About the Z-eigenvalue and the H-eigenvalue of a (strictly) semi-positive tensor, we
have the following observation.

Theorem 2.1 If A ∈ Tm,n is (strictly) semi-positive, then the Z-eigenvalue associated
with a nonnegative Z-eigenvector of A is nonnegative (positive); and the H-eigenvalue
associated with a nonnegative H-eigenvector of A is nonnegative (positive).

Proof. We first show the result for the Z-eigenvalue holds. Suppose that λ is a Z-
eigenvalue of A associated with a nonnegative Z-eigenvector x̂, i.e., Ax̂m−1 = λx̂. Since
A is (strictly) semi-positive and x̂ ≥ 0 with x̂ 6= 0, there exists an index i0 ∈ [n] such
that x̂i0 > 0 and λx̂i0 = (Ax̂m−1)i0 ≥ 0(> 0). So, we get λ ≥ 0(> 0).

Similarly, we can show that the H-eigenvalue associated with a nonnegative H-
eigenvector of a (strictly) semi-positive tensor A is nonnegative (positive). ✷

Definition 2.2 [18] A tensor A ∈ Tm,n is called an R-tensor, if there exists no (x, t) ∈
(Rn

+ \ {0})× R+ such that
{

(Axm−1)i + t = 0, if xi > 0,
(Axm−1)i + t ≥ 0, if xi = 0.

(2.1)

4



A tensor A ∈ Tm,n is called an R0-tensor, if the system (2.1) has no nonzero solution
when t = 0, i.e., there exists no x ∈ R

n
+ \ {0} such that

{

(Axm−1)i = 0, if xi > 0,
(Axm−1)i ≥ 0, if xi = 0.

(2.2)

It is obvious that every R-tensor is an R0-tensor, but the converse does not hold. An
example is given in [18]. Moreover, it is also demonstrated that if an R0-tensor is also
semi-positive, then this tensor is an R-tensor [18, Theorem 3.4].

The following definition and theorem can be found in [9].

Definition 2.3 A set of points {xk} ⊂ R
n
+ is an exceptional family of elements for the

continuous function f if ‖xk‖ → ∞ as k → ∞ and, for each k > 0, there exists a scalar
µk > 0 such that

{

fi(x
k) = −µkx

k
i , if xk

i > 0,
fi(x

k) ≥ 0, if xk
i = 0.

(2.3)

Theorem 2.2 For any continuous function f : Rn
+ → R

n, there exists either a solution
to CP(f) or an exceptional family of elements for f .

More recently, Ding, Luo and Qi [3] defined a new class of P -type tensors:

Definition 2.4 A ∈ Tm,n is called a weak P -tensor, if for each nonzero x ∈ R
n, there

exists an index i ∈ [n] such that xm−1
i (Axm−1)i > 0.

It is easy to see that when m is even, the weak P -tensor defined by Definition 2.4
is consistent with the P -tensor defined by Definition 2.1. It has been known that when
m is odd, the P -tensor does not exist [20]. So, the weak P -tensor is an extension of the
P -tensor. In [3], Ding, Luo and Qi also called the weak P -tensor as the P -tensor. In
order to distinguish these two classes of different P -tensors, we call the P -tensor defined
by Ding, Luo and Qi [3] as the weak P -tensor (wP -tensor for short) in this paper.

In [3], many nice properties of wP -tensors were studied, including the properties of
the H-eigenvalue. In the following, we consider the Z-eigenvalue of a wP -tensor.

Theorem 2.3 Let A ∈ Tm,n be a wP -tensor. When m is even, all of its Z-eigenvalues
are all positive; and when m is odd, every of its Z-eigenvalues associated with a nonneg-
ative (nonpositive) Z-eigenvector is positive (negative).
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Proof. When m is even, since the wP -tensor is just the P -tensor, the first result holds
from [17, Theorem 3.2]. In the following, we assume that m is odd and show the second
result. Suppose that λ and x̂ are a Z-eigenvalue and a corresponding Z-eigenvector of
A, respectively, i.e., Ax̂m−1 = λx̂. Since A is a wP -tensor and x̂ 6= 0, there exists an
index i0 ∈ [n] such that

x̂m−1
i0

(Ax̂m−1)i0 > 0.

So, it follows that x̂i0 6= 0.

• If x̂ ≥ 0, then x̂m−1
i0

> 0, and hence, (Ax̂m−1)i0 > 0. Furthermore, we get that
λx̂i0 = (Ax̂m−1)i0 > 0. So, λ > 0.

• If x̂ ≤ 0, then x̂i0 < 0, and hence, x̂m−1
i0

> 0 since m is odd. Thus, (Ax̂m−1)i0 > 0.
Furthermore, we get that λx̂i0 > 0. So, λ < 0.

The proof is complete. ✷

3 Exceptionally regular tensor

In this section, we introduce the exceptionally regular tensor and discuss its properties.

The following concept can be found in [24].

Definition 3.1 [24] The function g(x) = f(x) − f(0) is exceptionally regular if there
exists no (x, α) ∈ R

n
+ × R+ with ‖x‖2 = 1 such that

{

gi(x)/xi = −α, if xi > 0,
gi(x) ≥ 0, if xi = 0.

(3.1)

Motivated by the concept of exceptionally regular function, we define a new class of
structured tensors, which is called exceptionally regular tensor (ER-tensor for short).

Definition 3.2 A ∈ Tm,n is called an ER-tensor, if there exists no (x, t) ∈ (Rn
+ \{0})×

R+ such that
{

(Axm−1)i + txi = 0, if xi > 0,
(Axm−1)i ≥ 0, if xi = 0.

(3.2)

When m = 2, an ER-tensor reduces to a matrix, and we call it an ER-matrix. Thus,
by Definition 3.2, we actually introduce a class of structured matrices, which is new to
the best of our knowledge.
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We first discuss the relationship between ER-tensor and related tensors.

From the definition of strictly semi-positive tensor, we can get that the class of strictly
semi-positive tensors is a subset of the class of ER-tensors.

Proposition 3.1 If A ∈ Tm,n is a strictly semi-positive tensor, then A is an ER-tensor.

Proof. Since A ∈ Tm,n is strictly semi-positive, it follows that for any x ∈ R
n
+ \ {0},

there exists an index i0 ∈ [n] such that xi0 > 0 and (Axm−1)i0 > 0. That is to say, for
any x ∈ R

n
+ \ {0}, the system (3.2) has no solution. So, A is an ER-tensor. ✷

Remark 3.1 If A ∈ Tm,n is a positive definite tensor, then for any x ∈ R
n \ {0},

xT (Axm−1) > 0. So, there exists at least one index i ∈ [n] such that xi(Axm−1)i > 0.
Therefore, A is a P -tensor. It is easy to see from Definition 2.1(ii)(iv) that a P -tensor is
a strictly semi-positive tensor. And so is a positive tensor (all elements are positive). It
is easy to see from Definition 2.1(i)(vi) that a strictly copositive tensor is also a strictly
semi-positive tensor. Thus, it follows from Proposition 3.1 that the tensors mentioned
above are all ER-tensors.

Theorem 3.1 If A is a wP -tensor defined by Definition 2.4, then A is an ER-tensor.

Proof. Since A is a wP -tensor, it follows from Definition 2.4 that for any x ∈ R
n \ {0},

there exists an index i ∈ [n] such that xm−1
i (Axm−1)i > 0. In particular, for any

x ∈ R
n
+ \ {0}, there exists an index i0 such that

xm−1
i0

(Axm−1)i0 > 0.

So, xi0 6= 0, and then xi0 > 0. Furthermore, we get (Axm−1)i0 > 0. That is to say, for
any x ∈ R

n
+ \ {0}, there exists an index i0 such that xi0 > 0 and (Axm−1)i0 > 0, which

implies that the system (3.2) has no solution. So, A is an ER-tensor. ✷

Remark 3.2 Recall that the wP -tensor is defined by Definition 2.4, and many classes of
important structured tensors are the subclasses of wP -tensors, including positive definite
tensors [3, Proposition 3.1], strongly completely positive tensors [3, Proposition 3.4],
nonsingular H-tensors with all positive diagonal entries [3, Proposition 4.1], strictly
diagonally dominant tensors with positive diagonal entries [3, Corollary 4.2], Cauchy
tensors with mutually distinct entries of generating vector [3, Corollary 4.4], addition
tensors of wP -tensors and completely positive tensors [3, Theorem 4.5], odd-order B-
tensors or symmetric even-order B-tensors [3, Corollary 4.6], and so on. Thus, from
Theorem 3.1, the classes of tensors mentioned above are all ER-tensors.

7



Therefore, ER-tensors are a wide class of tensors which includes many important
tensors as its special cases.

From Definitions 2.2 and 3.2, it seems that the definitions of ER-tensor and R-tensor
have some similarities. In the following, we discuss the relationship between these two
classes of tensors.

We have known that a strictly semi-positive tensor is an R-tensor [18]. This and
Proposition 3.1 imply that the intersection of the class of ER-tensors and the class of
R-tensors is nonempty. In the following, we construct two examples, which show that
the class of ER-tensors is different from the class of R-tensors.

Example 3.1 Let A = (aijk) ∈ T3,2, where a111 = −16, a122 = 1, a211 = −17, a222 = 1
and all other elements of A are zeros, then A is an R-tensor, but not an ER-tensor.

It is obvious that for any x ∈ R
2
+,

Ax2 =

(

−16x2
1 + x2

2

−17x2
1 + x2

2

)

.

In the following, we show that the results given in Example 3.1 hold.

First, we show that A is an R-tensor. In fact,

• if x1 > 0, then (Ax2)1 + t = −16x2
1 + x2

2 + t = 0, i.e., x2
2 = 16x2

1 − t, but
(Ax2)2 + t = −17x2

1 + x2
2 + t = −x2

1 < 0;

• and if x2 > 0, then (Ax2)2 + t = −17x2
1 + x2

2 + t = 0, i.e., 17x2
1 = x2

2 + t > 0, but
(Ax2)1 + t = −16x2

1 + x2
2 + t = −16x2

1 + 17x2
1 − t+ t = x2

1 > 0.

Therefore, A is an R-tensor.

Second, we show that A is not an ER-tensor. We consider

x1 > 0, (Ax2)1 + tx1 = −16x2
1 + x2

2 + tx1 = 0; (3.3)

x2 > 0, (Ax2)2 + tx2 = −17x2
1 + x2

2 + tx2 = 0. (3.4)

From (3.3) it follows that x2
2 = x1(16x1 − t) and 16x1 ≥ t. These and (3.4) imply that

(Ax2)2 + tx2 = −17x2
1 + x2

2 + tx2 = −x2
1 − tx1 + t

√

16x2
1 − tx1 = 0.

So, by using x1 > 0, we further get

x3
1 + 2tx2

1 − 15t2x1 + t3 = 0. (3.5)

8



Without lose of generality, we set t = 1 and try to show that the equation

f(z) := z3 + 2z2 − 15z + 1 = 0 (3.6)

has a root on the interval ( 1
16
,+∞). It is obvious that f(z) → +∞ as z → +∞. Let the

derivation of f(z) equal to zero, i.e.,

3z2 + 4z − 15 = 0,

we get z = 5
3
> 1

16
and f(5

3
) = −373

27
< 0. So, the equation (3.6) has a root z∗ ∈

(5
3
,+∞) ⊂ ( 1

16
,+∞). Thus, (x1, t) := (z∗, 1) solves the equation (3.5). Furthermore,

take x2 =
√

16(z∗)2 − z∗, then (x̄, t̄) ∈ (R2
+ \ {0})× R+, with x̄ = (z∗,

√

16(z∗)2 − z∗)T

and t̄ = 1, solves the system (3.2). Therefore, A is not an ER-tensor. ✷

Example 3.2 Let A = (aijk) ∈ T3,2, where a111 = 1, a122 = −1, a211 = 2, a222 = −1 and
all other elements of A are zeros, then A is an ER-tensor, but not an R-tensor.

It is obvious that for any x ∈ R
2
+,

Ax2 =

(

x2
1 − x2

2

2x2
1 − x2

2

)

.

In the following, we show that the results given in Example 3.2 hold.

First, we show that A is an ER-tensor. We consider the following two cases.

(C1) If x1 > 0, (Ax2)1 + tx1 = x2
1 − x2

2 + tx1 = 0. Then

x2
2 = x2

1 + tx1 > 0 and x2 − x1 =
tx1

x2 + x1

.

Thus, x2 > 0. We need to show that the equation

(Ax2)2 + tx2 = 2x2
1 − x2

2 + tx2 = x2
1 + t(x2 − x1) = x2

1 + t
tx1

x2 + x1
= 0 (3.7)

has no solution. In fact, suppose that the equation (3.7) has a solution, then it
follows from (3.7) that x3

1 + x2
1x2 + t2x1 = 0, which is impossible because x1 > 0

and x2 > 0.

(C2) If x2 > 0, (Ax2)2 + tx2 = 2x2
1 − x2

2 + tx2 = 0. Then

x2
1 =

x2
2 − tx2

2
≥ 0. (3.8)
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a) If x1 = 0, then

(Ax2)1 + tx1 = x2
1 − x2

2 + tx1 = −x2
2 ≤ 0,

which contradicts the condition that x2 > 0.

b) If x1 > 0, then it follows from (3.8) that x2 > t and

(Ax2)1 + tx1 = x2
1 − x2

2 + tx1 =
x2
2 − tx2

2
− x2

2 + t

√

x2
2 − tx2

2
.

Let (Ax2)1+tx1 = 0, we derive a contradiction. It follows from (Ax2)1+tx1 =
0 that

x2
2

2
+

tx2

2
= t

√

x2
2 − tx2

2
,

and hence,
x2
2(x2 + t)2 = t2(2x2

2 − 2tx2). (3.9)

Since x2 > 0, (3.9) can be simplified as

x3
2 + 2tx2

2 − t2x2 + 2t3 = 0,

which does not hold since x3
2 > t2x2 from x2 > t and t ≥ 0.

Therefore, the system (3.2) has no solution (x, t) ∈ (Rn
+ \{0})×R+, which demonstrates

that A is an ER-tensor.

Second, we show that A is not an R-tensor. In fact, take x̄1 = 0, x̄2 = a > 0 and
t̄ = a2. Then, it is easy to check that (x̄, t̄) ∈ (R2

+ \ {0}) × R+ is a solution of (2.1).
Therefore, A is not an R-tensor. ✷

In Theorem 3.1, we have showed that every wP -tensor is an ER-tensor. In fact, the
inverse does not hold.

Theorem 3.2 The class of wP -tensors is a proper subset of the class of ER-tensors.

Proof. From Theorem 3.1, we only need to show that there exists a tensor which is an
ER-tensor, but not a wP -tensor. Suppose that A ∈ T3,2 is given by Example 3.2, then
A is an ER-tensor. Next, we show that A is not a wP -tensor. In fact, let x̄ = (0, 1)T

and we have that
{

x̄1 = 0, x̄2
1(Ax̄2)1 = 0;

x̄2 = 1 > 0, x̄2
2(Ax̄2)2 = 1 · (0− 1) = −1 < 0.

That is to say, for given x̄ = (0, 1)T , there exists no index i ∈ {1, 2} such that x̄2
i (Ax̄2)i >

0. Thereby, the tensor A is not a wP -tensor. ✷
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Now, we discuss the properties of ER-tensors.

The following proposition provides several necessary conditions for a tensor being an
ER-tensor.

Proposition 3.2 Suppose that the tensor A ∈ Tm,n is an ER-tensor. Then the follow-
ing results hold.

(i) A is an R0-tensor.

(ii) Every principal sub-tensor of A is also an ER-tensor.

(iii) The Z-eigenvalue of A associated with a nonnegative Z-eigenvector is positive.

Proof. (i) Since A is an ER-tensor, then any point (x, t) ∈ (Rn
+ \ {0}) × R+ is not a

solution of the system (3.2). So, the system (3.2) has no nonzero solution when t = 0,
that is, the system (2.2) has no solution x ∈ R

n
+ \ {0}. Therefore, A is an R0-tensor.

(ii) Let J ⊂ [n] and |J | = r (1 ≤ r ≤ n), then AJ
r is one of the principal sub-tensors

of A. Suppose AJ
r is not an ER-tensor, then there exists a point (xJ , t) ∈ (Rr

+\{0})×R+

satisfying the system (3.2). Define x̄ ∈ R
n
+ \ {0} by

x̄i =

{

(xJ)i, if i ∈ J,
0, if i /∈ J,

then, it is easy to see that the point (x̄, t) ∈ (Rn
+ \ {0}) × R+ solves the system (3.2).

Therefore, A is not an ER-tensor, which causes a contradiction.

(iii) We assume that x ≥ 0 is a Z-eigenvector of A and λ is the corresponding
Z-eigenvalue, then Axm−1 = λx. Suppose λ ≤ 0 and let t = −λ ≥ 0, then we have

{

(Axm−1)i + txi = 0, if xi > 0,
(Axm−1)i ≥ 0, if xi = 0.

That is, the point (x, t) ∈ (Rn
+ \ {0}) × R+ solves the system (3.2), which contradicts

that A is an ER-tensor. Hence, we have λ > 0. ✷

Corollary 3.1 Given an ER-tensor A ∈ Tm,n with m being even, then the Z-eigenvalue
of A associated with a nonnegative (or nonpositve) Z-eigenvector is positive.

Proof. By Proposition 3.2(iii), we only need to prove that the Z-eigenvalue of A
associated with a nonpositve Z-eigenvector is positive.
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Now we assume that x ≤ 0 is a Z-eigenvector of A and λ is the corresponding
Z-eigenvalue, then Axm−1 = λx. Suppose λ ≤ 0. Since m is even, we have

A(−x)m−1 = −Axm−1 = −λx = λ(−x),

which implies that −x is also a Z-eigenvector associated with λ. Obviously, −x ≥ 0.
Let t = −λ and x̄ = −x, then (x̄, t) ∈ (Rn

+ \ {0}) × R+ solves the system (3.2), which
contradicts that A is an ER-tensor. Therefore, we have λ > 0. ✷

From Corollary 3.1 it follows that if an ER-matrix A ∈ R
n×n has a nonpositive

eigenvalue λ associated with an eigenvector x, then there exist at least two distinct
indexes i, j ∈ [n] such that xixj < 0.

The following theorem gives the equivalence of three classes of structured tensors
within the class of semi-positive tensors.

Theorem 3.3 If A ∈ Tm,n is semi-positive, then the following results are equivalent.

(i) A is an R0-tensor,

(ii) A is an ER-tensor,

(iii) A is an R-tensor.

Proof. On one hand, it is obvious that every R-tensor is an R0-tensor; and on the
other hand, it follows from [18, Theorem 3.4] that every semi-positive R0-tensor is an
R-tensor. Thus, (i) holds if and only if (iii) holds.

In the following, we show that (i) holds if and only if (ii) holds. Since every ER-
tensor is an R0-tensor by Proposition 3.2(i), we only need to show thatA is an ER-tensor
under the assumption that it is an R0-tensor. Suppose that A is not an ER-tensor, then
there exists a point (x̄, t̄) ∈ (Rn

+ \ {0})× R+ satisfying the system (3.2). Since A is an
R0-tensor, we have t̄ > 0. Thus, we have

{

(Ax̄m−1)i + t̄x̄i = 0, if x̄i > 0,
(Ax̄m−1)i ≥ 0, if x̄i = 0,

i.e.,

{

(Ax̄m−1)i = −t̄x̄i < 0, if x̄i > 0,
(Ax̄m−1)i ≥ 0, if x̄i = 0.

This implies that for x̄ ∈ R
n
+ \ {0}, we have

x̄i

(

Ax̄m−1
)

i
= −t̄x̄2

i < 0, ∀i ∈ {j ∈ [n] : x̄j > 0},
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which contradicts the condition that A is a semi-positive tensor. So, A is an ER-tensor.

The proof is complete. ✷

Since every P0-tensor is semi-positive, from Theorem 3.3 we have the following results.

Corollary 3.2 If A ∈ Tm,n is a P0-tensor, then A is an R0-tensor iff A is an ER-tensor
iff A is an R-tensor.

4 Properties of the solution set of TCP(q,A)

In this section, we study properties of the solution set of TCP(q,A). For any x ∈ R
n,

we denote
[x]+ := (max{x1, 0}, . . . ,max{xn, 0})

T .

We will use the following condition and proposition.

Condition 4.1 Given A ∈ Tm,n and q ∈ R
n. If there exists a sequence {xk} ⊂ R

n
+

satisfying

‖xk‖ → +∞ and
[−A(xk)m−1 − q]+

‖xk‖
→ 0 as k → +∞, (4.1)

then there exists an index i ∈ [n] such that xi[A(xk)m−1 + q]i > 0 holds for some k ≥ 0.

Proposition 4.1 Given A ∈ Tm,n and q ∈ R
n.

(i) If A is an R0-tensor, then Condition 4.1 holds.

(ii) If the solution set of TCP(q,A) is nonempty and Condition 4.1 holds, then the
solution set of TCP(q,A) is bounded.

(iii) If the solution set of TCP(q,A) is nonempty, then it is closed.

Proof. The proof of this proposition can be found in the proof of [1, Theorem 3.1].
We omit it here. ✷

It follows from [18, Theorem 3.2] that if A ∈ Tm,n is an R-tensor, then the solution
set of TCP(q,A) is nonempty. Combining this with the fact that every R-tensor is an
R0-tensor, we can obtain the following result, which is a generalization of Theorem 3.2
in [18].

13



Theorem 4.1 Suppose that A ∈ Tm,n is an R-tensor and q ∈ R
n is given, then the

solution set of TCP(q,A) is nonempty and compact.

Now, we discuss properties of the solution set of TCP(q,A) with A being an ER-
tensor.

Theorem 4.2 Suppose that A ∈ Tm,n is an ER-tensor and q ∈ R
n is given. Then the

solution set of TCP(q,A) is nonempty and compact.

Proof. First, we show that the solution set of TCP(q,A) is nonempty. Suppose
that TCP(q,A) has no solution. Then it follows from Theorem 2.2 that there exists
an exceptional family of elements for f(x) = Axm−1 + q, i.e., there exists a sequence
{xk} ⊂ R

n
+ satisfying ‖xk‖ → ∞ as k → ∞ and, for each k > 0, there exists a scalar

µk > 0 such that

(Axk)m−1
i + qi = −µkx

k
i , if xk

i > 0, (4.2)

(Axk)m−1
i + qi ≥ 0, if xk

i = 0. (4.3)

Without loss of generality, we assume that xk

‖xk‖
→ x∗. Then we have

x∗ ∈ R
n
+ and x∗ 6= 0. (4.4)

We consider the following two cases:

• Suppose that i ∈ {j ∈ [n] : x∗
j > 0}, then xk

i > 0 for all sufficiently large k. Denote
t∗ := limk→∞

µk

‖xk‖m−2 , then we have t∗ ≥ 0 and

−
[A(x∗)m−1]i

x∗
i

= lim
k→∞

[

−

(

A

(

xk

‖xk‖

)m−1
)

i

1

xk
i /‖x

k‖

]

= lim
k→∞

−
[

(A(xk)m−1)i + qi
]

‖xk‖m−1

1

xk
i /‖x

k‖

= lim
k→∞

µkx
k
i

‖xk‖m−1

1

xk
i /‖x

k‖
(by (4.2))

= t∗,

which yields that [A(x∗)m−1]i + t∗x∗
i = 0 for any i ∈ {j ∈ [n] : x∗

j > 0}.

• Suppose that i ∈ {j ∈ [n] : x∗
j = 0}, then xk

i /‖x
k‖ → 0 as k → ∞; and hence,

µkx
k
i /‖x

k‖ → 0 as k → ∞. Furthermore, we have

[A(x∗)m−1]i = lim
k→∞

[

A

(

xk

‖xk‖

)m−1
]

i

= lim
k→∞

[A(xk)m−1]i + qi
‖xk‖m−1
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=











lim
k→∞

[A(xk)m−1]i+qi
‖xk‖m−1 ≥ 0, if xk

i = 0, (by (4.3))

lim
k→∞

−µkx
k

i

‖xk‖m−1 = 0, if xk
i > 0, (by (4.2))

which yields that [A(x∗)m−1]i ≥ 0 for any i ∈ {j ∈ [n] : x∗
j = 0}.

These, together with (4.4), imply that (x∗, t∗) ∈ (Rn
+ \ {0}) × R+ satisfies the system

(3.2), which contradicts the condition that A is an ER-tensor. Thus, the solution set of
TCP(q,A) is nonempty.

Second, we show that the solution set of TCP(q,A) is compact. On one hand, since
A is an ER-tensor, by Proposition 3.2(i) it follows that A is an R0-tensor. This, together
with Proposition 4.1(i)(ii), implies that the solution set of TCP(q,A) is bounded. On
the other hand, by Proposition 4.1(iii), we have that the solution set of TCP(q,A) is
closed. Therefore, we obtain that the solution set of TCP(q,A) is compact.

The proof is complete. ✷

A function g : Rn → R
n is called to be positively homogeneous of degree t with t

being a positive integer if g(λx) = λtg(x) for all λ > 0; and it is called to be positively
homogeneous when t = 1. It has been proved in [24, Theorem 4.1] that if g(x) =
f(x) − f(0) is positively homogeneous and exceptionally regular, then CP(f) has a
solution. It should be pointed out that the proof of the existence of solution to TCP(q,A)
given in Theorem 4.2 is similar to the one of [24, Theorem 4.1], however, the function
g(x) = Axm−1 involved in Theorem 4.2 is positively homogeneous of degree m− 1.

Remark 4.1 Since a positive definite tensor is an ER-tensor and so is a strictly coposi-
tive tensor, the results in [2, Theorem 4.5] are special cases of Theorem 4.2. In addition,
by Theorem 3.2, the class of wP -tensors is a proper subset of the class of ER-tensors,
and hence, the result of [3, Theorem 6.2] is also a special case of Theorem 4.2.

From Theorem 4.2, we know that for any q ∈ R
n, TCP(q,A) with A being an

ER-tensor has at least one solution. So, we have the following corollary.

Corollary 4.1 Every ER-tensor is a Q-tensor.

From Theorem 4.2 and Corollary 3.2, we have the following result.

Corollary 4.2 If A ∈ Tm,n is a P0 + R0-tensor, then the solution set of TCP(q,A) is
nonempty and compact.
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5 Conclusions

In this paper, we introduced the concept of ER-tensor. We showed that many important
classes of tensors are the subclasses of the class of ER-tensors, including the class of
wP -tensors which is recently defined by Ding, Luo and Qi [3]. We also proved that
the intersection of the class of ER-tensors and the class of R-tensors is nonempty, and
by constructing two examples, we showed that an R-tensor is not always an ER-tensor
and an ER-tensor is not always an R-tensor. We studied some properties of ER-tensor,
in particular, we obtained that the equivalence of the class of R0-tensors, the class of
R-tensors and the class of ER-tensors within the class of the semi-positive tensors. As
an application, we investigated the tensor complementarity problem with the involved
tensor being an ER-tensor and showed that the solution set of this class of tensor
complementarity problems is nonempty and compact. We also obtained that the solution
set of the tensor complementarity problem, with the involved tensor being an R-tensor or
a P0 +R0-tensor, is nonempty and compact. We believe that more properties related to
ER-tensor can be further studied in the future work. In addition, it is worth investigating
the properties and applications of ER-matrix.
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