
Robust Sensitivity Analysis of the
Optimal Value of Linear Programming

Guanglin Xu∗ Samuel Burer†

September 14, 2015
Revised: November 4, 2015

Abstract
We propose a framework for sensitivity analysis of linear programs (LPs) in minimiza-
tion form, allowing for simultaneous perturbations in the objective coefficients and
right-hand sides, where the perturbations are modeled in a compact, convex uncer-
tainty set. This framework unifies and extends multiple approaches for LP sensitiv-
ity analysis in the literature and has close ties to worst-case linear optimization and
two-stage adaptive optimization. We define the minimum (best-case) and maximum
(worst-case) LP optimal values, p− and p+, over the uncertainty set, and we discuss
issues of finiteness, attainability, and computational complexity. While p− and p+ are
difficult to compute in general, we prove that they equal the optimal values of two
separate, but related, copositive programs. We then develop tight, tractable conic
relaxations to provide lower and upper bounds on p− and p+, respectively. We also
develop techniques to assess the quality of the bounds, and we validate our approach
computationally on several examples from—and inspired by—the literature. We find
that the bounds on p− and p+ are very strong in practice and, in particular, are at
least as strong as known results for specific cases from the literature.

Keywords: Sensitivity analysis, minimax problem, nonconvex quadratic programming,
semidefinite programming, copositive programming, uncertainty set.

1 Introduction

The standard-form linear program (LP) is

min ĉTx

s. t. Âx = b̂

x ≥ 0

(1)
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where x ∈ Rn is the variable and (Â, b̂, ĉ) ∈ Rm×n × Rm × Rn are the problem parameters.

In practice, (Â, b̂, ĉ) may not be known exactly or may be predicted to change within a

certain region. In such cases, sensitivity analysis (SA) examines how perturbations in the

parameters affect the optimal value and solution of (1). Ordinary SA considers the change of

a single element in (Â, b̂, ĉ) and examines the corresponding effects on the optimal basis and

tableau; see [8]. SA also extends to the addition of a new variable or constraint, although

we do not consider such changes in this paper.

Beyond ordinary SA, more sophisticated approaches that allow simultaneous changes in

the coefficients ĉ or right-hand sides b̂ have been proposed by numerous researchers. Bradley

et al. [4] discuss the 100-percent rule that requires specification of directions of increase or

decrease from each ĉj and then guarantees that the same basis remains optimal as long as

the sum of fractions, corresponding to the percent of maximum change in each direction

derived from ordinary SA, is less than or equal to 1. Wendell [35, 36, 37] develops the

tolerance approach to find the so-called maximum tolerance percentage by which the objective

coefficients can be simultaneously and independently perturbed within a priori bounds. The

tolerance approach also handles perturbations in one row or column of the matrix coefficients

[31] or even more general perturbations in all elements of the matrix coefficients under certain

assumptions [30]. Freund [15] investigates the sensitivity of an LP to simultaneous changes

in matrix coefficients. In particular, he considers a linear program whose coefficient matrix

depends linearly on a scalar parameter θ and studies the effect of small perturbations on the

the optimal objective value and solution; see also [21, 22, 28]. Readers are referred to [34]

for a survey of approaches for SA of problem (1).

An area closely related to SA is interval linear programming (ILP), which can be viewed as

multi-parametric linear programming with independent interval domains for the parameters

[17, 18, 26]. Steuer [33] presents three algorithms for solving LPs in which the objective

coefficients are specified by intervals, and Gabrel et al. [16] study LPs in which the right-

hand sides vary within intervals and discuss the maximum and minimum optimal values.

Mraz [27] considers a general situation in which the matrix coefficients and right-hand sides

change within intervals and calculates upper and lower bounds for the associated optimal

values. A comprehensive survey of ILP has been given by Hladik [20].

To the best of our knowledge, in the context of LP, no authors have considered simulta-

neous LP parameter changes in a general way, i.e., perturbations in the objective coefficients

ĉ, right-hand sides b̂, and constraint coefficients Â within a general region (not just inter-

vals). The obstacle for doing so is clear: general perturbations lead to nonconvex quadratic

programs (QPs), which are NP-hard to solve (as discussed below).

In this paper, we extend—and in many cases unify—the SA literature by employing
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modern tools for nonconvex QPs. Specifically, we investigate SA for LPs in which (b̂, ĉ)

may change within a general compact, convex set U , called the uncertainty set . Our goal

is to calculate—or bound—the corresponding minimum (best-case) and maximum (worst-

case) optimal values. Since these values involve the solution of nonconvex QPs, we use

standard techniques from copositive optimization to reformulate these problems into convex

copositive programs (COPs), which provide a theoretical grounding upon which to develop

tight, tractable convex relaxations. We suggest the use of semidefinite programming (SDP)

relaxations, which also incorporate valid conic inequalities that exploit the structure of the

uncertainty set. We refer the reader to [10] for a survey on copositive optimization and

its connections to semidefinite programming. Relevant definitions and concepts will also be

given in this paper; see Section 1.1.

Our approach is related to the recent work on worst-case linear optimization introduced

by Peng and Zhu [29] in which: (i) only b̂ is allowed to change within an ellipsoidal region; and

(ii) only the worst-case LP value is considered. (In fact, one can see easily that, in the setup

of [29] based on (i), the best-case LP value can be computed in polynomial time via second-

order-cone programming, making it less interesting to study in their setup.) The authors

argue that the worst-case value is NP-hard to compute and use a specialized nonlinear

semidefinite program (SDP) to bound it from above. They also develop feasible solutions to

bound the worst-case value from below and show through a series of empirical examples that

the resulting gaps are usually quite small. Furthermore, they also demonstrate that their

SDP-based relaxation is better than the so-called affine-rule approximation (see [2]) and the

Lasserre linear matrix inequality relaxation (see [24, 19]).

Our approach is more general than [29] because we allow both b̂ and ĉ to change, we

consider more general uncertainty sets, and we study both the worst- and best-case values.

In addition, instead of developing a specialized SDP approach, we make use of the machinery

of copositive programming, which provides a theoretical grounding for the construction of

tight, tractable conic relaxations using existing techniques. Nevertheless, we have been

inspired by their approach in several ways. For example, their proof of NP-hardness also

shows that our problem is NP-hard; we will borrow their idea of using primal solutions to

estimate the quality of the relaxation bounds; and we test some of the same examples.

We mention two additional connections of our approach with the literature. In [3],

Bertsimas and Goyal consider a two-stage adaptive linear optimization problem under right-

hand side uncertainty with a min-max objective. A simplified version of this problem, in

which the first-stage variables are non-existent, reduces to worst-case linear optimization;

see the introduction of [3]. In fact, Bertsimas and Goyal use this fact to prove that their

problem is NP-hard via the so-called max-min fractional set cover problem, which is a specific
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worst-case linear optimization problem studied by Feige et al. [14]. Our work is also related

to the study of adjustable robust optimization [2, 39], which allows for two sets of decisions—

one that must be made before the uncertain data is realized, and one after. In fact, our

problem can viewed as a simplified case of adjustable robust optimization having no first-

stage decisions. On the other hand, our paper is distinguished by its application to sensitivity

analysis and its use of copositive and semidefinite optimization.

We organize the paper as follows. In Section 2, we extend many of the existing approaches

for SA by considering simultaneous, general changes in (b̂, ĉ) and the corresponding effect

on the LP optimal value. Precisely, we model general perturbations of (b̂, ĉ) within a com-

pact, convex set U—the uncertainty set, borrowing terminology from the robust-optimization

literature—and define the corresponding minimum and maximum optimal values p− and p+,

respectively. We call our approach robust sensitivity analysis , or RSA. Then, continuing in

Section 2, we formulate the calculation of p− and p+ as nonconvex bilinear QPs (or BQPs)

and briefly discuss attainability and complexity issues. We also discuss how p− and p+ may

be infinite and suggest alternative bounded variants, q− and q+, which have the property

that, if p− is already finite, then q− = p− and similarly for q+ and p+. Compared to re-

lated approaches in the literature, our discussion of finiteness is unique. We then discuss the

addition of redundant constraints to the formulations of q− and q+, which will strengthen

later relaxations. Section 3 then establishes COP reformulations of the nonconvex BQPs by

directly applying existing reformulation techniques. Then, based on the COPs, we develop

tractable SDP-based relaxations that incorporate the structure of the uncertainty set U , and

we also discuss procedures for generating feasible solutions of the BQPs, which can also be

used to verify the quality of the relaxation bounds. In Section 4, we validate our approach on

several examples, which demonstrate that the relaxations provide effective approximations

of q+ and q−. In fact, we find that the relaxations admit no gap with q+ and q− for all tested

examples.

We mention some caveats about the paper. First, we focus only on how the optimal

value is affected by uncertainty, not the optimal solution. We do so because we believe

this will be a more feasible first endeavor; determining how general perturbations affect

the optimal solution can certainly be a task for future research. Second, as mentioned

above, we believe we are the first to consider these types of general perturbations, and thus

the literature with which to compare is somewhat limited. However, we connect with the

literature whenever possible, e.g., in special cases such as interval perturbations and worst-

case linear optimization. Third, since we do not make any distributional assumptions about

the uncertainty of the parameters, nor about their independence or dependence, we believe

our approach aligns well with the general sprit of robust optimization. It is important to
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note, however, that our interest is not robust optimization and is not directly comparable to

robust optimization. For example, while in robust optimization one wishes to find a single

optimal solution that works well for all realizations of the uncertain parameters, here we are

only concerned with how the optimal value changes as the parameters change. Finally, we

note the existence of other relaxations for nonconvex QPs including LP relaxations (see [32])

and Lasserre-type SDP relaxations. Generally speaking, LP-based relaxations are relatively

weak (see [1]); we do not consider them in this paper. In addition, SDP approaches can often

be tailored to outperform the more general Lasserre approach as has been demonstrated in

[29]. Our copostive- and SDP-based approach is similar; see for example the valid inequalities

discussed in Section 3.2.

1.1 Notation, terminology, and copositive optimization

Let Rn denote n-dimensional Euclidean space represented as column vectors, and let Rn
+

denote the nonnegative orthant in Rn. For a scalar p ≥ 1, the p-norm of v ∈ Rn is defined

‖v‖p := (
∑n

i=1 |vi|p)1/p, e.g., ‖v‖1 =
∑n

i=1 |vi|. We will drop the subscript for the 2-norm,

e.g., ‖v‖ := ‖v‖2. For v, w ∈ Rn, the inner product of v and w is defined as vTw =
∑n

i=1 viwi

and the Hadamard product of v and w is defined by v ◦ w := (v1w1, ..., vnwn)T ∈ Rn.

Rm×n denotes the set of real m × n matrices, and the trace inner product of two matrices

A,B ∈ Rm×n is defined A • B := trace(ATB). Sn denotes the space of n × n symmetric

matrices, and for X ∈ Sn, X � 0 denotes that X is positive semidefinite. In addition,

diag(X) denotes the vector containing the diagonal entries of X.

We also make several definitions related to copositive programming . The n×n copositive

cone is defined as

COP(Rn
+) := {M ∈ Sn : xTMx ≥ 0 ∀ x ∈ Rn

+},

and its dual cone, the completely positive cone, is

CP(Rn
+) := {X ∈ Sn : X =

∑
kx

k(xk)T , xk ∈ Rn
+},

where the summation over k is finite but its cardinality is unspecified. The term copositive

programming refers to linear optimization over COP(Rn
+) or, via duality, linear optimization

over CP(Rn
+). A more general notion of copositive programming is based on the following
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ideas. Let K ⊆ Rn be a closed, convex cone, and define

COP(K) := {M ∈ Sn : xTMx ≥ 0 ∀ x ∈ K},

CP(K) := {X ∈ Sn : X =
∑

kx
k(xk)T , xk ∈ K}.

Then generalized copositive programming is linear optimization over COP(K) and CP(K)

and is also sometimes called set-semidefinite optimization [11]. In this paper, we work

with generalized copositive programming, although we will use the shorter phrase copositive

programming for convenience.

2 Robust Sensitivity Analysis

In this section, we introduce the concept of robust sensitivity analysis of the optimal value of

the linear program (1). In particular, we define the best-case optimal value p− and the worst-

case optimal value p+ over the uncertainty set U , which contains general perturbations in

the objective coefficients ĉ and the right-hand sides b̂. We then propose nonconvex bilinear

QPs (BQPs) to compute p− and p+. Next, we clarify when p− and p+ could be infinite

and propose finite, closely related alternatives q+ and q−, which can also be formulated

as nonconvex BQPs. Importantly, we prove that q− equals p− whenever p− is finite; the

analogous relationship is also proved for q+ and p+.

2.1 The best- and worst-case optimal values

In the Introduction, we have described b̂ and ĉ as parameters that could vary, a concept

that we now formalize. Hereafter, (b̂, ĉ) denotes the nominal , “best guess” parameter values,

and we let (b, c) denote perturbations with respect to (b̂, ĉ). In other words, the true data

could be (b̂ + b, ĉ + c), and we think of b and c as varying. We also denote the uncertainty

set containing all possible perturbations (b, c) as U ⊆ Rm × Rn. Throughout this paper, we

assume the following:

Assumption 1. U is compact and convex, and U contains (0, 0).

Given (b, c) ∈ U , we define the perturbed optimal value function at (b, c) as

p(b, c) := min{(ĉ+ c)Tx : Âx = b̂+ b, x ≥ 0}. (2)

For example, p(0, 0) is the nominal optimal value of the nominal problem based on the nomi-

nal parameters. The main idea of robust sensitivity analysis is then to compute the infimum
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(best-case) and supremum (worst-case) of all optimal values p(b, c) over the uncertainty set

U , i.e., to calculate

p− := inf{p(b, c) : (b, c) ∈ U}, (3)

p+ := sup{p(b, c) : (b, c) ∈ U}. (4)

We illustrate p− and p+ with a small example.

Example 1. Consider the nominal LP

min x1 + x2

s. t. x1 + x2 = 2

x1, x2 ≥ 0

(5)

and the uncertainty set

U :=

{
(b, c) :

b1 ∈ [−1, 1]

c1 ∈ [−0.5, 0.5], c2 = 0

}
.

Note that the perturbed data b̂1 + b1 and ĉ1 + c1 remain positive, while ĉ2 + c2 is constant.

Thus, the minimum optimal value p− occurs when b1 and c1 are minimal, i.e., when b1 = −1

and c1 = −0.5. In this case, p− = 0.5 at the solution (x1, x2) = (1, 0). In a related manner,

p+ = 3 when b1 = 1 and c1 = 0.5 at the point (x1, x2) = (0, 3). Actually, any perturbation

with c1 ∈ [0, 0.5] and b1 = 1 realizes the worst-case value p+ = 3. Figure 1 illustrates this

example.

We can obtain a direct formulation of p− by simply collapsing the inner and outer mini-

mizations of (3) into a single nonconvex BQP:

infb,c,x (ĉ+ c)Tx

s. t. Âx = b̂+ b, x ≥ 0

(b, c) ∈ U .
(6)

The nonconvexity comes from the bilinear term cTx in the objective function. In the special

case that (b, c) ∈ U implies c = 0, i.e., when there is no perturbation in the objective

coefficients, we have the following:

Remark 1. If U is tractable and c = 0 for all (b, c) ∈ U , then p− can be computed in

polynomial time as the optimal value of (6) with c = 0, which is a convex program.
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(a) Illustration of the best-case optimal value (b) Illustration of the worst-case optimal value

Figure 1: Illustration of Example 1. Note that the dashed line in both (1a) and (1b)
corresponds to the feasible region of the nominal problem.

A direct formulation for p+ can, under a fairly weak assumption, be gotten via duality.

Define the perturbed primal and dual feasible sets for any (b, c) ∈ U :

P (b) := {x : Âx = b̂+ b, x ≥ 0},

D(c) := {(y, s) ≥ 0 : ÂTy + s = ĉ+ c, s ≥ 0}.

For instance, P (0) and D(0) are the primal-dual feasible sets of the nominal problem. Next

define the dual LP for (2) as

d(b, c) := max{(b̂+ b)Ty : (y, s) ∈ D(c)}.

Considering the extended notion of strong duality, which handles the cases of infinite values,

we have that d(b, c) = p(b, c) when at least one of P (b) and D(c) is nonempty. Hence, under

the assumption that every (b, c) ∈ U yields P (b) 6= ∅ or D(c) 6= ∅, a direct formulation for p+

can be constructed by replacing p(b, c) in (3) with d(b, c) and then collapsing the subsequent

inner and outer maximizations into the single nonconvex BQP

supb,c,y,s (b̂+ b)Ty

s. t. ÂTy + s = ĉ+ c, s ≥ 0

(b, c) ∈ U .
(7)

Here again, the nonconvexities arise due to the bilinear term bTy in the objective. If (b, c) ∈ U
implies b = 0, then p+ can be calcuated in polynomial time:
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Remark 2. If U is tractable and b = 0 for all (b, c) ∈ U , then p+ can be computed in

polynomial time as the optimal value of (7) with b = 0, which is a convex program.

We summarize the above discussion in the following proposition:

Proposition 1. The best-case value p− equals the optimal value of (6). Moreover, if P (b) 6= ∅
or D(c) 6= ∅ for all (b, c) ∈ U , then the worst-case value p+ equals the optimal value of (7).

We view the condition in Proposition 1—that at least one of P (b) and D(c) is nonempty

for each (b, c) ∈ U—to be rather mild. Said differently, the case that P (b) = D(c) = ∅ for

some (b, c) ∈ U appears somewhat pathological. For practical purposes, we hence consider

(7) to be a valid formulation of p+. Actually, in the next subsection, we will further restrict

our attention to those (b, c) ∈ U for which both P (b) and P (c) are nonempty. In such cases,

each p(b, c) is guaranteed to be finite, which—as we will show—carefully handles the cases

when p+ and p− are infinite.

Indeed, the worst-case value p+ could equal +∞ due to some perturbed P (b) being empty

as shown in the following example:

Example 2. In Example 1, change the uncertainty set to

U :=

{
(b, c) :

b1 ∈ [−3, 1]

c1 ∈ [−0.5, 0.5], c2 = 0

}
.

Then p(b, c) = +∞ whenever b1 ∈ [−3,−2) since then the primal feasible set P (b) is empty.

Then p+ = +∞ overall. However, limiting b1 to [−2, 1] yields a worst-case value of 3 as

discussed in Example 1.

Similarly, p− might equal −∞ due to some perturbed LP having unbounded objective value,

implying infeasibility of the corresponding dual feasible set D(c).

2.2 Attainability and complexity

In this brief subsection, we mention results pertaining to the attainability of p− and p+ and

the computational complexity of computing them.

By an existing result concerning the attainability of the optimal value of nonconvex

BQPs, we have that p− and p+ are attainable when U has a relatively simple structure:

Proposition 2 (theorem 2 of [25]). Suppose U is representable by a finite number of linear

constraints and at most one convex quadratic constraint. Then, if the optimal value of (6)

is finite, it is attained. A similar statement holds for (7).
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In particular, attainability holds when U is polyhedral or second-order-cone representable

with at most one second-order cone. Moreover, the bilinear nature of (6) implies that, if the

optimal value is attained, then there exists an optimal solution (x∗, b∗, c∗) with (b∗, c∗) an

extreme point of U . The same holds for (7) if its optimal value is attained.

As discussed in the Introduction, the worst-case value p+ has been studied by Peng and

Zhu [29] for the special case when c = 0 and b is contained in an ellipsoid. The authors

demonstrate (see their proposition 1.1) that calculating p+ in this case is NP-hard. By the

symmetry of duality, it thus also holds that p− is NP-hard to compute in general.

2.3 Finite variants of p− and p+

We now discuss closely related variants of p+ and p− that are guaranteed to be finite and

to equal p+ and p−, respectively, when those values are themselves finite. We require the

following feasibility and boundedness assumption:

Assumption 2. Both feasible sets P (0) and D(0) are nonempty, and one is bounded.

By standard theory, P (0) and D(0) cannot both be nonempty and bounded. Also define

U := {(b, c) ∈ U : P (b) 6= ∅, D(c) 6= ∅}.

Note that (0, 0) ∈ U due to Assumption 2. In fact, U can be captured with linear constraints

that enforce primal-dual feasibility and hence is a compact, convex subset of U :

U =

{
(b, c) ∈ U :

Âx = b̂+ b, x ≥ 0

ÂTy + s = ĉ+ c, s ≥ 0

}
.

Analogous to p+ and p−, define

q+ := sup{p(b, c) : (b, c) ∈ U} (8)

q− := inf{p(b, c) : (b, c) ∈ U}. (9)

The following proposition establishes the finiteness of q+ and q−:

Proposition 3. Under Assumptions 1 and 2, both q+ and q− are finite.

Proof. We prove the contrapositive for q−. (The argument for q+ is similar.) Suppose

q− = −∞. Then there exists a sequence {(bk, ck)} ⊆ U with finite optimal values p(bk, ck)→
−∞. By strong duality, there exists a primal-dual solution sequence {(xk, yk, sk)} with
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(ĉ + c)Txk = (b̂ + b)Tyk → −∞. Since U is bounded, it follows that ‖xk‖ → ∞ and

‖yk‖ → ∞.

Consider the sequence {(zk, dk)} with (zk, dk) := (xk, bk)/‖xk‖. We have Âzk = b̂/‖xk‖+

dk, zk ≥ 0, and ‖zk‖ = 1 for all k. Morover, b̂/‖xk‖ + dk → 0. Hence, there exists a

subsequence converging to (z̄, 0) such that Âz̄ = 0, z̄ ≥ 0, and ‖z̄‖ = 1. This proves that

the recession cone of P (0) is nontrivial, and hence P (0) is unbounded. In a similar manner,

D(0) is unbounded, which means Assumption 2 does not hold.

Note that the proof of Proposition 3 only assumes that U , and hence U , is bounded, which

does not use the full power of Assumption 1.

Similar to p−, a direct formulation of q− can be constructed by employing the primal-dual

formulation of U and by collapsing the inner and outer minimizations of (9) into a single

nonconvex BQP:

q− = infb,c,x,y,s (ĉ+ c)Tx

s. t. Âx = b̂+ b, x ≥ 0

ÂTy + s = ĉ+ c, s ≥ 0

(b, c) ∈ U .

(10)

Likewise for p+, after replacing p(b, c) in (8) by d(b, c), we can collapse the inner and outer

maximizations into a single nonconvex BQP:

q+ = supb,c,x,y,s (b̂+ b)Ty

s. t. Âx = b̂+ b, x ≥ 0

ÂTy + s = ĉ+ c, s ≥ 0

(b, c) ∈ U .

(11)

The following proposition establishes q+ = p+ when p+ is finite and, similarly, q− = p−

when p− is finite.

Proposition 4. If p+ is finite, then q+ = p+, and if p− is finite, then q− = p−.

Proof. We prove the second statement only since the first is similar. Comparing the formu-

lation (6) for p− and the formulation (10) for q−, it is clear that p− ≤ q−. In addition, let

(b, c, x) be any feasible solution of (6). Because p− is finite, p(b, c) is finite. Then the cor-

responding dual problem is feasible, which implies that we can extend (b, c, x) to a solution

(b, c, x, y, s) of (10) with the same objective value. Hence, p− ≥ q−.

In the remaining sections of the paper, we will focus on the finite variants q− and q+ given

by the nonconvex QPs (10) and (11), which optimize the optimal value function p(b, c) =
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d(b, c) based on enforcing primal-dual feasibility. It is clear that we may also enforce the

complementary slackness condition x ◦ s = 0 without changing these problems. Although

it might seem counterintuitive to add the redundant, nonconvex constraint x ◦ s = 0 to an

already difficult problem, in Section 3, we will propose convex relaxations to approximate

q− and q+, in which case—as we will demonstrate—the relaxed versions of the redundant

constraint can strengthen the relaxations.

3 Copositve Formulations and Relaxations

In this section, we use copositive optimization techniques to reformulate the RSA problems

(10) and (11) into convex programs. We further relax the copositive programs into conic,

SDP-based problems, which are computationally tractable.

3.1 Copositive formulations

In order to formulate (10) and (11) as COPs, we apply a result of [6]; see also [5, 9, 12].

Consider the general nonconvex QP

inf zTWz + 2wT z (12)

s. t. Ez = f, z ∈ K

where K is a closed, convex cone. Its copositive reformulation is

inf W • Z + 2wT z (13)

s. t. Ez = f, diag(EZET ) = f ◦ f(
1 zT

z Z

)
∈ CP(R+ ×K),

as established by the following lemma:

Lemma 1 (corollary 8.3 in [6]). Problem (12) is equivalent to (13), i.e.: (i) both share the

same optimal value; (ii) if (z∗, Z∗) is optimal for (13), then z∗ is in the convex hull of optimal

solutions for (12).

The following theorem establishes that problems (10) and (11) can be reformulated as

copositive programs according to Lemma 1. The proof is based on describing how the two

problems fit the form (12).
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Theorem 1. Problems (10) and (11) to compute q− and q+ are solvable as copositive pro-

grams of the form (13), where

K := hom(U)× Rn
+ × Rm × Rn

+

and

hom(U) := {(t, b, c) ∈ R+ × Rm × Rn : t > 0, (b, c)/t ∈ U} ∪ {(0, 0, 0)}

is the homogenization of U .

Proof. We prove the result for just problem (10) since the argument for problem (11) is

similar. First, we identify z ∈ K in (12) with (t, b, c, x, y, s) ∈ hom(U) × Rn
+ × Rm × Rn

+ in

(10). In addition, in the constraints, we identify Ez = f with the equations Âx = tb̂ + b,

ÂTy + s = tĉ + c, and t = 1. Note that the right-hand-side vector f is all zeros except for

a single entry corresponding to the constraint t = 1. Moreover, in the objective, zTWz is

identified with the bilinear term cTx, and 2wT z is identified with the linear term ĉTx. With

this setup, it is clear that (10) is an instance of (12) and hence Lemma 1 applies to complete

the proof.

3.2 SDP-based conic relaxations

As discussed above, the copositive formulations of (10) and (11) as represented by (13) are

convex yet generally intractable. Thus, we propose SDP-based conic relaxations that are

polynomial-time solvable and hopefully quite tight in practice. In Section 4 below, we will

investigate their tightness computationally.

We propose relaxations that are formed from (13) by relaxing the cone constraint

M :=

(
1 zT

z Z

)
∈ CP(R+ ×K).

As is well known—and direct from the definitions—cones of the form CP(·) are contained

in the positive semidefinite cone. Hence, we will enforce M � 0. It is also true that

M ∈ CP(R+ × K) implies z ∈ K, although M � 0 does not necessarily imply this. So, in

our relaxations, we will also enforce z ∈ K. Including z ∈ K improves the relaxation and

also helps in the calculation of bounds in Section 3.3

Next, suppose that the description of R+ × K contains at least two linear constraints,

aT1 z ≤ b1 and aT2 z ≤ b2. By multiplying b1 − aT1 z and b2 − aT2 z, we obtain a valid, yet

redundant, quadratic constraint b1b2 − b1aT2 z − b2aT1 z + aT1 zz
Ta2 ≥ 0 for CP(R+ ×K). This

quadratic inequality can in turn be linearized in terms of M as b1b2−b1aT2 z−b2aT1 z+aT1Za2 ≥
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0, which is valid for CP(R+×K). We add this linear inequality to our relaxation; it is called

an RLT constraint [32]. In fact, we add all such RLT constraints arising from all pairs of

linear constraints present in the description of R+ ×K.

When the description of R+ × K contains at least one linear constraint aT1 z ≤ b1 and

one second-order-cone constraint ‖d2 − CT
2 z‖ ≤ b2 − aT2 z, where d2 is a vector and C2 is a

matrix, we will add a so-called SOC-RLT constraint to our relaxation [7]. The constraint is

derived by multiplying the two constraints to obtain the valid quadratic second-order-cone

constraint

‖(b1 − aT1 z)(d2 − CT
2 z)‖ ≤ (b1 − aT1 z)(b2 − aT2 z).

After linearization by M , we have the second-order-cone constraint

‖b1d2 − d2aT1 z − b1CT
2 z + CT

2 Za1‖ ≤ b1b2 − b1aT2 z − b2aT1 z + aT1Za2.

Finally, recall the redundant complementarity constraint x◦s = 0 described at the end of

Section 2.3, which is valid for both (10) and (11). Decomposing it as xisi = 0 for i = 1, . . . , n,

we may translate these n constraints to (13) as zTHiz = 0 for appropriatly defined matrices

matrices Hi. Then they may be linearized and added to our relaxation as Hi • Z = 0.

To summarize, let RLT denote the set of (z, Z) satisfying all the derived RLT constraints,

and similarly, define SOCRLT as the set of (z, Z) satisfying all the derived SOC-RLT con-

straints. Then the SDP-based conic relaxation for (13) that we propose to solve is

inf W • Z + 2wT z

s. t. Ez = f, diag(EZET ) = f ◦ f
Hi • Z = 0 ∀ i = 1, . . . , n

(z, Z) ∈ RLT∩ SOCRLT(
1 zT

z Z

)
� 0, z ∈ K.

(14)

It is worth mentioning that, in many cases, the RLT and SOC-RLT constraints will already

imply z ∈ K, but in such cases, we nevertheless write the constraint in (14) for emphasis;

see also Section 3.3 below.

When translated to the problem (10) for calculating q−, the relaxation (14) gives rise to

a lower bound q−sdp ≤ q−. Similarly, when applied to (11), we get an upper bound q+sdp ≥ q+.
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3.3 Bounds from feasible solutions

In this section, we discuss two methods to approximate q− from above and q+ from below,

i.e., to bound q− and q+ using feasible solutions of (10) and (11), respectively.

The first method, which has been inspired by [29], utilizes the optimal solution of the

SDP relaxation (14). Let us discuss how to obtain such a bound for (10), as the discussion

for (11) is similar. We first observe that any feasible solution (z, Z) of (14) satisfies Ez = f

and z ∈ K, i.e., z satisfies all of the constraints of (12). Since (12) is equivalent to (10)

under the translation discussed in the proof of Theorem 1, z gives rise to a feasible solution

(x, y, s, b, c) of (10). From this feasible solution, we can calculate (ĉ+c)Tx ≥ q−. In practice,

we will start from the optimal solution (z−, Z−) of (14). We summarize this approach in the

following remark.

Remark 3. Suppose that (z−, Z−) is an optimal solution of the relaxation (14) corresponding

to (10), and let (x−, y−, s−, b−, c−) be the translation of z− to a feasible point of (10). Then,

r− := (ĉ + c−)Tx− ≥ q−. Similarly, we define r+ := (b̂ + b+)Ty+ ≤ q+ based on an optimal

solution (z+, Z+) of (14) corresponding to (11).

Our second method for bounding q− and q+ using feasible solutions is a sampling proce-

dure detailed in Algorithm 1. The main idea is to generate randomly a point (b, c) ∈ U and

then to calculate p(b, c), which serves as an upper bound of p− and a lower bound of p+,

i.e., p− ≤ p(b, c) ≤ p+. Multiple points (bk, ck) and values pk := p(bk, ck) are generated and

the best bounds p− ≤ v− := mink{pk} and maxk{pk} =: v+ ≤ p+ are saved. In fact, by the

bilinearity of (10) and (11), we we may restrict attention to the extreme points (b, c) of U
without reducing the quality of the resultant bounds; see also the discussion in Section 2.2.

Hence, Algorithm 1 generates—with high probability—a random extreme point of U by op-

timizing a random linear objective over U , and we generate the random linear objective as a

vector uniform on the sphere, which is implemented by a well-known, quick procedure. Note

that, even though the random objective is generated according to a specific distribution, we

cannot predict the resulting distribution over the extreme points of U .

As all four of the bounds r−, r+, v−, and v+ are constructed from feasible solutions, we

can further improve them heuristically by exploiting the bilinear objective functions in (10)

and (11). In particular, we employ the standard local improvement heuristic for programs

with a bilinear objective and convex constraints (e.g., see [23]). Suppose, for example, that

we have a feasible point (x−, y−, s−, b−, c−) for problem (10) as discussed in Remark 3. To

attempt to improve the solution, we fix the variable c in (10) at the value c−, and we solve the

resulting convex problem for a new, hopefully better point (x1, y1, s1, b1, c1), where c1 = c−.

Then, we fix x to x1, resolve, and get a new point (x2, y2, s2, b2, c2), where x2 = x1. This
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Algorithm 1 Sampling procedure to bound q− from above and q+ from below

Inputs: Instance with uncertainty set U and restricted uncertainty set U . Number of
random trials T .
Outputs: Bounds v− := mink{pk} ≥ p− and v+ := maxk{pk} ≤ p+.
for k = 1, . . . , T do

Generate (f, g) ∈ Rm × Rn uniformly on the unit sphere.
Calculate (bk, ck) ∈ Arg min{fT b+ gT c : (b, c) ∈ U}.
Set pk := p(bk, ck).

end for

alternating process is repeated until there is no further improvement in the objective of (10),

and the final objective is our bound r−.

In Section 4 below, we use the bounds r−, r+, v−, and v+ to verify the quality of our

bounds q−sdp and q+sdp. Our tests indicate that neither bound, r− nor v−, dominates the

other—and similarly for the bounds r+ and v+. Hence, we will actually report the better of

each pair: min{r−, v−} and max{r+, v+}. Also, for the calculations of v− and v+, we always

take T = 10, 000 in Algorithm 1.

4 Computational Experiments

In this section, we validate our approach by testing it on six examples from the literature as

well as an example of our own making. The first three examples in Section 4.1 correspond to

classical sensitivity analysis approaches for LP; the fourth example in Section 4.2 corresponds

to an interval LP in inventory management; the fifth example in Section 4.3 corresponds to

a systemic-risk calculation in financial systems; and the last example in Section 4.4 is a

transportation network flow problem. We implement our tests in Python (version 2.7.6)

with Mosek (version 7.1.0.33) as our convex-optimization solver. All of Mosek’s settings are

set at their defaults, and computations are conducted on a Macintosh OS X Yosemite system

with a quad-core 3.20GHz Intel Core i5 CPU and 8 GB RAM.

4.1 Examples from classical sensitivity analysis

Consider the following nominal problem from [34]:

min −12x1 − 18x2 − 18x3 − 40x4

s. t. 4x1 + 9x2 + 7x3 + 10x4 + x5 = 6000

x1 + x2 + 3x3 + 40x4 + x6 = 4000

x1, . . . , x6 ≥ 0.
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The optimal basis is B = {1, 4} with optimal solution 1
3
(4000, 0, 0, 200, 0, 0) and optimal

value p(0, 0) = −18667. According to standard, “textbook” sensitivity analysis, the optimal

basis persists when the coefficient of x1 lies in the interval [−16,−10] and other parameters

remain the same. Along this interval, one can easily compute the best-case value −24000

and worst-case value −16000, and we attempt to reproduce this analysis with our approach.

So let us choose the uncertainty set

U =

(b, c) ∈ R2 × R6 :

b1 = b2 = 0

c1 ∈ [−4, 2]

c2 = · · · = c6 = 0

 ,

which corresponds precisely to the above allowable decrease and increase on the coefficient of

x1. Note that Assumptions 1 and 2 are satisfied. We thus know from above that q− = −24000

and q+ = −16000. Since b = 0 in U , Remark 2 implies that q+ is easy to calculate. So

we apply our approach, i.e., solving the SDP-based relaxation, to approximate q−. The

relaxation value is q−sdp = −24000, which recovers q− exactly. The CPU time for computing

q−sdp is 0.10 seconds.

Our second example is also based on the same nominal problem from [34], but we consider

the 100%-rule. Again, we know that the optimal basisB = {1, 4} persists when the coefficient

of x1 lies in the interval [−16,−10] (and all other parameters remain the same) or separately

when the coefficient of x2 lies in the interval [−134/3,+∞] (and all other parameters remain

the same). In accordance with the 100%-rule, we choose to decrease the coefficient of x1, and

thus its allowed interval is [−16,−12] of width 4. We also choose to decrease the coefficient of

x2, and thus its allowed interval is [−134/3,−18] of width 80/3. The 100%-rule ensures that

the optimal basis persists as long as the sum of fractions, corresponding to the percent of

maximum changes in the coefficients of x1 and x2, is less than or equal to 1. In other words,

suppose that c̃1 and c̃2 are the perturbed values of the coefficients of x1 and x2, respectively,

and that all other coefficients stay the same. Then the nominal optimal basis persists for

(c̃1, c̃2) in the following simplex:(c̃1, c̃2) :

c̃1 ∈ [−16,−12]

c̃2 ∈ [−134/3,−18]
−12−c̃1

4
+ −18−c̃2

80/3
≤ 1

 .

By evaluating the three extreme points (−12,−18), (−16,−18) and (−12,−134/3) of this

set with respect to the nominal optimal solution, one can calculate the best-case optimal

value as q− = −24000 and the worst-case optimal value as q+ = −18667. We again apply

17



our approach in an attempt to recover empirically the 100%-rule. Specifically, let

U =

(b, c) :

b1 = b2 = 0

c1 ∈ [−4, 0], c2 ∈ [−80
3
, 0]

− c1
4
− c2

80/3
≤ 1

c3 = · · · = c6 = 0

 .

Note that Assumptions 1 and 2 are satisfied. Due to b = 0 and Remark 2, we focus our

attention on q−. Calculating the SDP-based relaxation value, we see that q−sdp = −24000,

which recovers q− precisely. The CPU time is 0.15 seconds

Our third example illustrates the tolerance approach, and we continue to use the same

nominal problem from [34]. As mentioned in the Introduction, the tolerance approach consid-

ers simultaneous and independent perturbations in the objective coefficients by calculating

a maximum tolerance percentage such that, as long as selected coefficients are accurate to

within that percentage of their nominal values, the nominal optimal basis persists; see [37].

Let us consider perturbations in the coefficients of x1 and x2 with respect to the nominal

problem. Applying the tolerance approach of [37], the maximum tolerance percentage is 1/6

in this case. That is, as long as the two coefficient values vary within −12±12/6 = [−14,−10]

and −18± 18/6 = [−21,−15], respectively, then the nominal optimal basis B = {1, 4} per-

sists. By testing the four extreme points of the box of changes [−14,−10]× [−21,−15] with

respect to the optimal nominal solution, one can calculate the best-case optimal value as

q− = −21333 and the worst-case optimal value as q+ = −16000. To test our approach in

this setting, we set

U :=

{
(b, c) :

b1 = b2 = 0, c3 = · · · = c6 = 0

c1 ∈ [−2, 2], c2 ∈ [−3, 3]

}

and, as in the previous two examples, we focus on q−. Assumptions 1 and 2 are again

satisfied, and we calculate the lower bound q−sdp = −21333, which recovers q− precisely. The

CPU time for computing q−sdp is 0.13 seconds.

4.2 An example from interval linear programming

We consider an optimization problem that is typical in inventory management, and this

particular example originates from [16]. Suppose one must decide the quantity to be ordered

during each period of a finite, discrete horizon consisting of T periods. The goal is to

satisfy exogenous demands dk for each period k, while simultaneously minimizing the total

of purchasing, holding, and shortage costs. Introduce the following variables for each period
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k:

sk = stock available at the end of period k;

xk = quantity ordered at the beginning of period k.

Items ordered at the beginning of period k are delivered in time to satisfy demand during

the same period. Any excess demand is backlogged. Hence, each xk is nonnegative, each sk

is free, and

sk−1 + xk − sk = dk.

The order quantities xk are further subject to uniform upper and lower bounds, u and l, and

every stock level sk is bounded above by U . At time k, the purchase cost is denoted as ck,

the holding cost is denoted as hk, and the shortage cost is denoted gk. Then, the problem

can be formulated as the following linear programming problem (assuming that the initial

inventory is 0):

min
∑T

k=1(ckxx + yk)

s. t. s0 = 0

sk−1 + xk − sk = dk k = 1, . . . , T

yk ≥ hksk k = 1, . . . , T

yk ≥ −gksk k = 1, . . . , T

l ≤ xk ≤ u k = 1, . . . , T

sk ≤ U k = 1, . . . , T

xk, yk ≥ 0 k = 1, . . . , T.

(15)

As in [16], consider an instance of (15) in which T = 4, u = 1500, l = 1000, U = 600,

and all costs are as in Table 1. Moreover, suppose the demands dk are each uncertain

and may be estimated by the intervals d1 ∈ [700, 900], d2 ∈ [1300, 1600], d3 ∈ [900, 1100],

and d4 ∈ [500, 700]. From [16], the worst-case optimal value over this uncertainty set is

q+ = 25600. For our approach, it is easy to verify that Assumptions 1 and 2 are satisfied,

and solving our SDP-based conic relaxation with an uncertainty set corresponding to the

intervals on dk, we recover q+ exactly, i.e., we have q+sdp = 25600. The CPU time for

computing our SDP optimal value is 1,542 seconds.

Since the uncertainties only involve the right-hand sides, Remark 1 implies that the

best-case value q− can be calculated in polynomial-time by solving an LP that directly

incorporates the uncertainty.
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Period (k) Purchasing cost (ck) Holding cost (hk) Shortage cost (gk)
1 7 2 3
2 1 1 4
3 10 1 3
4 6 1 3

Table 1: Costs for each period of an instance of the inventory management problem

4.3 Worst-case linear optimization

We next consider an example for calculating systemic risk in financial systems, which is an

application of worst-case linear optimization (WCLO) presented in [29].

For an interbank market, systemic risk is used to evaluate the potential loss of the whole

market as a response to the decisions made by the individual banks [13, 29]. Specifically,

let us consider a market consisting of n banks. We use an n × n matrix L̂ to denote the

liability relationship between any two banks in the market. For instance, the element L̂ij

represents the liability of bank i to bank j. In the market, banks can also receive exogenous

operating cash flows to compensate their potential shortfalls on incoming cash flows. We use

b̂i to denote the exogenous operating cash flow received by bank i. Given the vector b̂, we

calculate the systemic loss l(b̂) of the market, which measures the amount of overall failed

liabilities [29]:

l(b̂) = min
x

∑n
i=1(1− xi)

s. t. (
∑n

j=1 L̂ij)xi −
∑n

j=1 L̂jixj ≤ b̂i ∀ i = 1, . . . , n

xi ≤ 1 ∀ i = 1, . . . , n.

Here the decision variables xi represent the ratio of the total dollar payment by bank i to

the total obligation of bank i. These ratios are naturally less than or equal to 1 (xi ≤ 1) as

the banks do not pay more than their obligations. In contrast, 1 − xi denotes the ratio of

bank i failing to fulfill its obligations. Furthermore, we have a less-than-or-equal-to sign in

the first constraint as the system allows limited liability (see [13]). Finally, the objective is

to minimize the total failure ratio of the system.

In practice, however, there exist uncertainties in the exogenous operating cash flows.

Allowing for uncertainties, the worst-case systemic risk problem [29] is given as

max
b∈V

min
x

∑n
i=1(1− xi)

s. t. (
∑n

j=1 L̂ij)xi −
∑n

j=1 L̂jixj ≤ b̂i +Qi·b ∀ i = 1, . . . , n

xi ≤ 1 ∀ i = 1, . . . , n.
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Instance max{r+, v+} gap+ q+sdp t+sdp(s)

1 0.521 0.0% 0.521 0.66
2 1.429 0.0% 1.429 0.82
3 1.577 0.0% 1.577 0.83
4 0.344 0.0% 0.344 0.68
5 0.724 0.0% 0.724 0.73
6 0.690 0.0% 0.690 0.80
7 1.100 0.0% 1.100 0.73
8 0.458 0.0% 0.458 0.78
9 0.427 0.0% 0.427 0.74
10 0.300 0.0% 0.300 0.78

Table 2: Results for the systemic-risk example

where V := {b ∈ Rm : ‖b‖ ≤ 1} denotes the uncertainty set, Q ∈ Rn×m for some m ≤ n

corresponds to an affine scaling of V , and Qi· denotes the i-th row of Q. After converting

the nominal LP to our standard form, we can easily put the systemic risk problem into our

framework by defining U := {(b, c) : b ∈ V , c = 0} and slightly changing our U to reflect the

dependence on the affine transformation as represented by the matrix Q.

Similar to table 4 in [29], we randomly generate 10 instances of size m × n = 3 × 5. In

accordance with Remark 1, which states that q− is easy to calculate in this case, we focus

our attention on the worst-case value q+. It is straightforward to verify Assumptions 1 and

2. In Table 2, we list our 10 upper bounds1 (one for each of the 10 instances) in the column

titled q+sdp, and we report the computation time (in seconds) for all 10 instances under the

column marked t+sdp. To evaluate the quality of q+sdp, we also calculate max{r+, v+} for each

instance and the associated relative gap:

gap+ =
q+sdp −max{r+, v+}

max{|max{r+, v+}|, 1}
× 100%.

The computation times for computing r− and r+ are trivial, while the average computation

time for computing v− and v+ is about 77 seconds.

From the results in Table 2, we see clearly that our approach recovers q+ for all 10

instances, which also matches the quality of results from [29].

1Mosek encountered numerical problems on some—but not all—of the generated system-risk instances.
In Table 2, we show 10 instances on which Mosek had no numerical issues. From private communication with
the Mosek developers, it appears that the upcoming version of Mosek (version 8) will have fewer numerical
issues on these instances.
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Customer
Supplier 1 2 3 4 5 6 7 8 9 10

1 2 3 2
2 3 3 4 1 4
3 4 5 3
4 1 2 1 3 1 8 2
5 4 3 2 1 2 1

Table 3: The unit transportation costs associated with the arcs of the network.

4.4 A network flow problem

Next we consider a transportation network flow problem from [38], which has m1 = 5

suppliers/origins and m2 = 10 customers/destinations for a total of m = 15 facilities. The

network is bipartite and consists of n = 24 arcs connecting suppliers and customers; see

Figure 2. Also shown in Figure 2 are the (estimated) supply and demand numbers (b̂) for each

supplier and customer. In addition, the (estimated) unit transportation costs (ĉ) associated

with the arcs of the network are given in Table 3. Suppose at the early stages of planning,

the supply and demand units and the unit transportation costs are uncertain. Thus, the

manager would like to quantify the resulting uncertainty in the optimal transportation cost.

Figure 2: The transportation network of the 5 suppliers and 10 customers.

We consider three cases for the uncertainty set, each of which is also parameterized by a

scalar γ ∈ (0, 1). In the first case (“POLY”), we consider the polyhedral uncertainty set

U1(γ) = {(b, c) : ‖b‖1 ≤ γ‖b̂‖1, ‖c‖1 ≤ γ‖ĉ‖1 };
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in the second case (“SOC”), we consider the second-order-cone uncertainty set

U2(γ) := {(b, c) : ‖b‖ ≤ γ‖b̂‖, ‖c‖ ≤ γ‖ĉ‖ };

and in the third case (“MIX”), we consider a mixture of the first two cases:

U3(γ) := {(b, c) : ‖b‖1 ≤ γ‖b̂‖1, ‖c‖ ≤ γ‖ĉ‖ }.

For each, γ controls the perturbation magnitude in b and c relative to b̂ and ĉ, respectively.

In particular, we will consider three choices of γ: 0.01, 0.03, and 0.05. For example, γ = 0.03

roughly means that b can vary up to 3% of the magnitude of b̂. In total, we have three cases

with three choices for γ resulting in nine overall experiments.

Assumptions 1 and 2 are satisfied in this example, and so we apply our approach to

bound q− and q+; see Table 4. Our 18 bounds (lower and upper bounds for each of the nine

experiments) are listed in the two columns titled q−sdp and q+sdp, respectively. We also report

the computation times (in seconds) for all 18 instances under the two columns marked t−sdp
and t+sdp. We also compute r−, v−, r+, and v+ and define the relative gaps

gap− =
min{r−, v−} − q−sdp

max{|min{r−, v−}|, 1}
× 100%,

gap+ =
q+sdp −max{r+, v+}

max{|max{r+, v+}|, 1}
× 100%.

Again, the computation times for r− and r+ are trivial. The average computation time for

computing v− and v+ is about 216 seconds.

Table 4 shows that our relaxations capture q− and q− in all cases. As ours is the first

approach to study general perturbations in the literature, we are aware of no existing methods

for this problem with which to compare our results.

4.5 The effectiveness of the redundant constraint x ◦ s = 0

Finally, we investigate the effectiveness of the redundant complementarity constraint in (10)

and (11) by also solving relaxations without the the linearized version of the constraint. As

it turns out, in all calculations of q−sdp, dropping the linearized complementarity constraint

does not change the relaxation value. However, in all calculations of q+sdp, dropping it has a
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Case γ q−sdp gap− min{r−, v−} max{r+, v+} gap+ q+sdp t−sdp(s) t+sdp(s)

POLY
0.01 2638.4 0.0% 2638.4 3088.8 0.0% 3088.8 3551 4259
0.03 2139.6 0.0% 2139.6 3437.4 0.0% 3437.4 5106 4433
0.05 1640.9 0.0% 1640.9 3769.8 0.0% 3769.8 5330 4244

SOC
0.01 2745.6 0.0% 2745.6 2981.6 0.0% 2981.6 190 122
0.03 2498.9 0.2% 2504.3 3212.1 0.0% 3212.1 174 112
0.05 2257.6 0.2% 2263.0 3442.7 0.0% 3442.7 150 124

MIX
0.01 2724.1 0.0% 2724.1 3008.4 0.0% 3008.4 997 838
0.03 2429.2 0.0% 2429.2 3281.9 0.0% 3281.9 908 731
0.05 2134.3 0.0% 2134.3 3560.7 0.0% 3560.7 1001 851

Table 4: Results for the transportation network problem

Example q+sdp gap value without constraint

Sec. 4.1 (#1) -16000 100% 0
Sec. 4.1 (#2) -18667 100% 0
Sec. 4.1 (#3) -16000 100% 0
Sec. 4.2 25600 1671% 453298
Sec. 4.4 (POLY 0.01) 3088.8 5.7% 3265.8
Sec. 4.4 (POLY 0.03) 3437.4 2.7% 3528.5
Sec. 4.4 (POLY 0.05) 3769.8 2.3% 3855.6
Sec. 4.4 (SOC 0.01) 2981.6 87.6% 5593.1
Sec. 4.4 (SOC 0.03) 3212.1 84.3% 5920.2
Sec. 4.4 (SOC 0.05) 3442.7 81.6% 6252.7
Sec. 4.4 (MIX 0.01) 3008.4 10.3% 3319.4
Sec. 4.4 (MIX 0.03) 3281.9 5.2% 3453.5
Sec. 4.4 (MIX 0.05) 3560.7 3.6% 3689.4

Table 5: Effectiveness of the linearized complementarity constraint

significant effect as shown in Table 5. In the table, the gap is defined as

gap =
(value without constraint)− q+sdp

max{|q+sdp|, 1}
× 100%.

5 Conclusion

In this paper, we have introduced the idea of robust sensitivity analysis for the optimal value

of LP. In particular, we have discussed the best- and worst-case optimal values under gen-

eral perturbations in the objective coefficients and right-hand sides. We have also presented

finite variants that avoid cases of infeasibility and unboundedness. As the involved problems

are nonconvex and very difficult to solve in general, we have proposed copositive reformu-
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lations, which provide a theoretical basis for constructing tractable SDP-based relaxations

that take into account the nature of the uncertainty set, e.g., through RLT and SOC-RLT

constraints. Numerical experiments have indicated that our approach works very well on

examples from, and inspired by, the literature. In future research, it would be interesting to

improve the solution speed of the largest relaxations and to explore the possibility of also

handling perturbations in the constraint matrix.
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