
ar
X

iv
:1

50
6.

08
56

8v
2

 [
m

at
h.

O
C

]
 1

6
O

ct
 2

01
6

A Low-Rank Coordinate-Descent Algorithm for

Semidefinite Programming Relaxations of

Optimal Power Flow

Jakub Mareček and Martin Takáč

October 18, 2016

Abstract

The alternating-current optimal power flow (ACOPF) is one of the
best known non-convex non-linear optimisation problems. We present a
novel re-formulation of ACOPF, which is based on lifting the rectangu-
lar power-voltage rank-constrained formulation, and makes it possible to
derive alternative SDP relaxations. For those, we develop a first-order
method based on the parallel coordinate descent with a novel closed-form
step based on roots of cubic polynomials.

1 Introduction

Alternating-current optimal power flow problem (ACOPF) is one of the best
known non-linear optimisation problems [59]. Due to its non-convexity, de-
ciding feasibility is NP-Hard even for a tree network with fixed voltages [30].
Still, there has been much recent progress [35, 36]: Bai et al. [2] introduced
a semidefinite programming (SDP) relaxation, which turned out to be partic-
ularly opportune. Lavaei and Low [29] have shown that the SDP relaxation
produces exact solutions, under certain spectral conditions. More generally, it
can be strengthened so as to obtain a hierarchy of SDP relaxations whose op-
tima are asymptotically converging to the true optimum of ACOPF [19, 23, 22].
Unfortunately, the run-times of even the best-performing solvers for the SDP
relaxations [55, 51] remain much higher than that of commonly used methods
without global convergence guarantees such as Matpower [62].

Following a brief overview of our notation, we introduce a novel rank-constrained
reformulation of the ACOPF problem in Section 3, where all constraints, except
for the rank constraint, are coordinate-wise. Based on this reformulation, we
derive novel SDP relaxations. Next, we present a parallel coordinate-descent
algorithm in Section 4, which solves a sequence of convex relaxations with
coordinate-wise constraints, using a novel closed-form step considering roots
of cubic polynomials. We can show:

1

http://arxiv.org/abs/1506.08568v2

• the algorithm converges to the exact optimum of the non-convex problem,
when the optimum of the non-convex problem coincides with the opti-
mum of the novel SDP relaxations and certain additional assumptions are
satisfied, as detailed in Section 6

• the algorithm suggests a strengthening of the novel SDP relaxations is
needed, whenever it detects the optimum of the non-convex problem has
not been found, using certain novel sufficient conditions of optimality

• our pre-liminary implementation reaches a precision comparable to the de-
fault settings of Matpower [62], the commonly used interior-point method
without global convergence guarantees, on certain well-known instances
including the IEEE 118 bus test system, within comparable times, as de-
tailed in Section 7

although much more work remains to be done, especially with focus on large-
scale instances. Also, as with most solvers, the proposed assumes feasibility and
does not certify infeasibility, when encountered. The proofs of convergence
rely on the work of Burer and Monteiro [12], Grippo et al. [20], and our earlier
work [54, 41].

2 The Problem

Informally, within the optimal power flow problem, one aims to decide where to
generate power, such that the demand for power is met and costs of generation
are minimised. In the alternating-current model, one considers the complex volt-
age, complex current, and complex power, although one may introduce decision
variables representing only a subset thereof. The constraints are non-convex in
the alternating-current model, and a particular care hence needs to be taken
when modelling those, and designing the solvers to match.

Formally, we start a network of buses N , connected by branches L ⊆ N×N ,
modeled as Π-equivalent circuits, with the input comprising also of:

• G ⊆ N , which are the generators, with the associated coefficients c0k, c
1
k, c

2
k

of the quadratic cost function at k ∈ G,

• P d
k + jQd

k, which are the active and reactive loads at each bus k ∈ N ,

• Pmin
k , Pmax

k , Qmin
k and Qmax

k , which are the limits on active and reactive
generation capacity at bus k ∈ G, where Pmin

k = Pmax
k = Qmin

k = Qmax
k =

0 for all k ∈ N \G,

• y ∈ C|N |×|N |, which is the network admittance matrix capturing the value
of the shunt element b̄lm and series admittance glm + jblm at branch
(l,m) ∈ L,

• V min
k and V max

k , which are the limits on the absolute value of the voltage
at a given bus k,

2

• Smax
lm , which is the limit on the absolute value of the apparent power of a

branch (l,m) ∈ L.

In the rectangular power-voltage formulation, the variables are:

• P g
k + jQg

k, which is the power generated at bus k ∈ G,

• Plm + jQlm, which is the power flow along branch (l,m) ∈ L,

• ℜVk + jℑVk, which is the voltage at each bus k ∈ N .

The power-flow equations at generator buses k ∈ G are:

P g
k = P d

k + ℜVk

n
∑

i=1

(ℜyikℜVi −ℑyikℑVi) + ℑVk

n
∑

i=1

(ℑyikℜVi + ℜyikℑVi), (1)

Qg
k = Qd

k + ℜVk

n
∑

i=1

(−ℑyikℜVi −ℜyikℑVi) + ℑVk

n
∑

i=1

(ℜyikℜVi −ℑyikℑVi),

(2)

while at all other buses k ∈ N \G we have:

0 = P d
k + ℜVk

n
∑

i=1

(ℜyikℜVi −ℑyikℑVi) + ℑVk

n
∑

i=1

(ℑyikℜVi + ℜyikℑVi), (3)

0 = Qd
k + ℜVk

n
∑

i=1

(−ℑyikℜVi −ℜyikℑVi) + ℑVk

n
∑

i=1

(ℜyikℜVi −ℑyikℑVi). (4)

Additionally, the power flow at branch (l,m) ∈ L is expressed as

Plm = blm(ℜVlℑVm −ℜVmℑVl) + glm(ℜVl
2 + ℑVm

2 −ℑVl,ℑVm −ℜVlℜVm),

(5)

Qlm = blm(ℜVlℑVm −ℑVlℑVm −ℜVl
2 −ℑVl

2)

+ glm(ℜVlℑVm −ℜVmℑVl −ℜVmℑVl)−
b̄lm
2

(ℜVl
2 + ℑVl

2). (6)

Considering the above, the alternating-current optimal power flow (ACOPF) is:

min
∑

k∈G

(

c2k(P
g
k + P d

k)
2 + c1k(P

g
k + P d

k) + c0k
)

[ACOPF]

s.t. Pmin
k ≤ P g

k + P d
k ≤ Pmax

k ∀k ∈ G

Qmin
k ≤ Qg

k +Qd
k ≤ Qmax

k ∀k ∈ G

(V min
k)2 ≤ ℜVk

2 + ℑVk
2 ≤ (V max

k)2 ∀k ∈ N

P 2
lm +Q2

lm ≤ (Smax
lm)2 ∀(l,m) ∈ L

(1)− (6),

3

where c2k is the coefficient of the leading term of the quadratic cost function at
generator k.

In line with recent work [2, 29, 44, 19], let ek be the kth standard basis vector
in R2|N | and define:

yk = eke
T
k y,

ylm = (j
b̄lm
2

+ glm + jblm)ele
T
l − (glm + jblm)ele

T
m,

Yk =
1

2

[

ℜ(yk + yTk) ℑ(yTk − yk)
ℑ(yk − yTk) ℜ(yk + yTk)

]

,

Ȳk = −1

2

[

ℑ(yk + yTk) ℜ(yk − yTk)
ℜ(yTk − yk) ℑ(yk + yTk)

]

,

Mk =

[

eke
T
k 0

0 eke
T
k

]

,

Ylm =
1

2

[

ℜ(ylm + yTlm) ℑ(yTlm − ylm)
ℑ(ylm − yTlm) ℜ(ylm + yTlm)

]

,

Ȳlm =
−1

2

[

ℑ(ylm + yTlm) ℜ(ylm − yTlm)
ℜ(yTlm − ylm) ℑ(ylm + yTlm)

]

.

Using these matrices, we can rewrite [ACOPF] as a real-valued polynomial opti-
mization problem of degree four in variable x ∈ R2|N | comprising of ℜVk ∈ R|N |

and ℑVk ∈ R|N |, stacked:

min
∑

k∈G

(

c2k(tr(Ykxx
T) + P d

k)
2 + c1k(tr(Ykxx

T) + P d
k) + c0k

)

[PP4]

s.t. Pmin
k ≤ tr(Ykxx

T) + P d
k ≤ Pmax

k ∀k ∈ G (7)

P d
k = tr(Ykxx

T) ∀k ∈ N \G (8)

Qmin
k ≤ tr(Ȳkxx

T) +Qd
k ≤ Qmax

k ∀k ∈ G (9)

Qd
k = tr(Ykxx

T) ∀k ∈ N \G (10)

(V min
k)2 ≤ tr(Mkxx

T) ≤ (V max
k)2 ∀k ∈ N (11)

(tr(YlmxxT))2 + (tr(ȲlmxxT))2 ≤ (Smax
lm)2 ∀(l,m) ∈ L, (12)

Henceforth, we use n to denote 2|N |, i.e., the dimension of the real-valued
problem [PP4].

Further, the problem can be lifted to obtain a rank-constrained problem in

4

W = xxT ∈ Rn×n:

min
∑

k∈G

fk(W) [R1]

s.t. Pmin
k ≤ tr(YkW) + P d

k ≤ Pmax
k ∀k ∈ G (13)

P d
k = tr(YkW) ∀k ∈ N \G (14)

Qmin
k ≤ tr(ȲkW) +Qd

k ≤ Qmax
k ∀k ∈ G (15)

Qd
k = tr(ȲkW) ∀k ∈ N \G (16)

(V min
k)2 ≤ tr(MkW) ≤ (V max

k)2 ∀k ∈ N (17)

(tr(YlmW))2 + (tr(ȲlmW))2 ≤ (Smax
lm)2 ∀(l,m) ∈ L (18)

W � 0, rank(W) = 1, (19)

for a suitable definition of fk. This problem [R1] is still NP-Hard, but where
one can drop the rank constraint to obtain a strong and efficiently solvable SDP
relaxation:

min
∑

k∈G

fk(W) s.t. (13− 18), W � 0, [LL]

as suggested by [2]. Lavaei and Low [29] studied the conditions, under which
the relaxation [LL] (Optimization 3 of [29]) is equivalent to [R1]. We note that
for traditional solvers [44, 29, 19], the dual of the relaxation (Optimization 4 of
[29]) is much easier to solve than [LL], as documented in Table 2. Ghaddar et al.
[19] have shown the relaxation [LL] to be equivalent to a first-level [OP4−H1] of
a certain hierarchy of relaxations, and how to obtain the solution to [R1] under
much milder conditions than those of [29].

3 The Reformulation

The first contribution of this paper is a lifted generalisation of [R1]:

5

min
∑

k∈G

fk(W) [RrBC]

s.t. tk = tr(YkW) ∀k ∈ N (20)

Pmin
k − P d

k ≤ tk ≤ Pmax
k − P d

k ∀k ∈ G (21)

P d
k = tk ∀k ∈ N \G (22)

gk = tr(ȲkW) ∀k ∈ N (23)

Qmin
k −Qd

k ≤ gk ≤ Qmax
k −Qd

k ∀k ∈ G (24)

Qd
k = gk ∀k ∈ N \G (25)

hk = tr(MkW) ∀k ∈ N (26)

(V min
k)2 ≤ hk ≤ (V max

k)2 ∀k ∈ N (27)

ulm = tr(YlmW) ∀(l,m) ∈ L (28)

vlm = tr(ȲlmW) ∀(l,m) ∈ L (29)

zlm = (ulm)2 + (vlm)2 ∀(l,m) ∈ L (30)

zlm ≤ (Smax
lm)2 ∀(l,m) ∈ L (31)

W � 0, rank(W) ≤ r. (32)

There, we still have:

Proposition 3.1 (Equivalence). [R1BC] is equivalent to [PP4].

Even in the special case of r = 1, however, we have lifted the problem to a
higher dimension by adding variables t, g, h, u, v, z, which are box-constrained
functions of W .

Subsequently, we make four observations to motivate our approach to solving
the [RrBC]:

O1: constraints (21), (24), (27), and (31) are box constraints, while the re-
mainder of (20–31) are linear equalities

O2: using elementary linear algebra:

{W ∈ Sn s.t. W � 0, rank(W) ≤ r}
= {RRT s.t. R ∈ Rn×r},

where Sn is the set of symmetric n× n matrices.

O3: if rank(W ∗) > 1 for the optimum W ∗ of [LL], there are no known methods
for extracting the global optimum of [R1] from W , except for [19].

O4: zero duality gap at any SDP relaxation in the hierarchy of [19] does not
guarantee the solution of the SDP relaxation is exact for [PP4], c.f. [21].

Note that Lavaei and Low [29] restate the condition in Observation O3 in
terms of ranks using a related relaxation (Optimization 3), where the rank has
to be strictly larger than 2.

6

4 The Algorithm

Broadly speaking, we use the well-established Augmented Lagrangian approach
[52, 16], with a low-rank twist [12], and a parallel coordinate descent with a
closed-form step. Considering Observation O2, we replace variable W ∈ Rn×n

by RRT ∈ Rn×n for R ∈ Rn×r to obtain the following augmented Lagrangian
function:

L(R, t, h, g, u, v, z, λt, λg, λh, λu, λv, λz) := (33)
∑

k∈G

fk(RRT)

−
∑

k

λt
k(tk − tr(YkRRT)) + µ

2

∑

k

(tk − tr(YkRRT))2

−
∑

k

λg
k(gk − tr(ȲkRRT)) + µ

2

∑

k

(gk − tr(ȲkRRT))2

−
∑

k

λh
k(hk − tr(MkRRT)) + µ

2

∑

k

(hk − tr(MkRRT))2

−
∑

(l,m)

λu
(l,m)(u(l,m) − tr(Y(l,m)RRT)) + µ

2

∑

(l,m)

(u(l,m) − tr(Y(l,m)RRT))2

−
∑

(l,m)

λv
(l,m)(v(l,m) − tr(Ȳ(l,m)RRT)) + µ

2

∑

(l,m)

(v(l,m) − tr(Ȳ(l,m)RRT))2

−
∑

(l,m)

λz
(l,m)(z(l,m) − u2

(l,m) − v2(l,m)) +
µ
2

∑

(l,m)

(z(l,m) − u2
(l,m) − v2(l,m))

2 + νR.

Note that constants µ, ν > 0 pre-multiply regularisers, where R can often be
0 in practice, although not in our analysis, where we require R = det(RTR),
which promotes low-rank solutions.

As suggested in Algorithm 1, we increase the rank r = 1, 2, . . . allowed in
W in an outer loop of the algorithm. In an inner loop, we use coordinate descent
method to find an approximate minimizer of L(R, t, h, g, u, v, z, λt, λg, λh, λu, λv, λz),
and denote the k-th iterate R(k). Note that variables t, h, g, z have simple box
constraints, which have to be considered outside of L.

In particular:

The Outer Loop

The outer loop (Lines 1-12) is known as the “low-rank method” [12]. As sug-
gested by Observation O3, in the case of [LL], one may want to perform only
two iterations r = 1, 2. In the second iteration of the outer loop, one should like
to test, whether the numerical rank of the iterate Rk in the inner iteration k
has numerical rank 1. If this is the case, one can conclude the solution obtained
for r = 1 is exact. This test, sometimes known as “flat extension”, has been
studied both in terms of numerical implementations and applicability by Burer
and Choi [10].

7

Algorithm Schema 1: A Low-Rank Coordinate Descent Algorithm

1: for r = 1, 2, . . . do

2: choose R ∈ Rm×r

3: compute corresponding values of t, h, g, u, v, z
4: project t, h, g, u, v, z onto the box constraints
5: for k = 0, 1, 2, . . . do
6: in parallel, minimize L in t, g, h, u, v, z, coordinate-wise
7: in parallel, minimize L in R, coordinate-wise
8: update Lagrange multipliers λt, λg, λh, λu, λv, λz

9: update µ
10: terminate, if criteria are met
11: end for

12: end for

The Inner Loop

The main computational expense of the proposed algorithm is to find an ap-
proximate minimum of L(R, t, h, g, u, v, z, λt, λg, λh, λu, λv, λz) with respect to
R, t, h, g, u, v, z within the inner loop (Lines 6–7). Note that L as a function
of R is – in general – non-convex. The inner loop employs a simple iterative
optimization strategy, known as the coordinate descent. There, two subsequent
iterates differ only in a single block of coordinates. In the very common special
case, used here, we consider single coordinates, in a cyclical fashion. This algo-
rithm has been used widely at least since 1950s. Recent theoretical guarantees
of random coordinate descent algorithm are due to Nesterov [49] and the present
authors [54, 41]. See the survey of Wright [60] for more details.

The Closed-Form Step

An important ingredient in the coordinate descent is a novel closed-form step.
Nevertheless, if we update only one scalar ofR at a time, and fix all other scalars,
the minimisation problem turns out to be the minimisation of a fourth order
polynomial. In order to find the minimum of a polynomial ax4+bx3+cx2+dx+0,
we need to find a real root of the polynomial 4ax3 + 3bx2 + 2cx+ d = 0. This
polynomial has at most 3 real roots and can be found using closed form formulae
due to Cardano [13]. Whenever you fix the values across all coordinates except
one, finding the best possible update for the one given coordinate requires either
the minimisation of a quadratic convex function with respect to simple box
constraints (for variables t, g, h, z) or minimisation of a polynomial function of
degree 4 with no constraints (for variables R, u, v), either of which can be done
by checking the objective value at each out of 2 (for variables t, g, h, z) or 3 (for
variables R, u, v) stationary points and choosing the best one.

8

The Parallelisation

For instances large enough, one can easily exploit parallelism. Notice that min-
imization of coordinates of t, g, h, u, v, z can be carried out in parallel without
any locks, as there are no dependences. One can also update coordinates of R
in parallel, although some degradation of the speed-up thus obtainable is likely,
as there can be some dependence in the updates. The degradation is hard to
bound. Most analyses, c.f. [60], hence focus on the uniformly random choice of
(blocks of) coordinates, although there are exceptions [41]. Trivially, one could
also parallelise the outer loop, for each r that should be considered.

Sufficient Conditions for Termination of the Inner Loop

For both our analysis and in our computational testing, we use a “target infea-
sibility” stopping criterion for the inner loop, considering squared error:

Tk(R
(k)) =

∑

k

(tk − tr(YkR
(k)(R(k))T))2 +

∑

k

(gk − tr(ȲkR
(k)(R(k))T))2+

(34)
∑

k

(hk − tr(MkR
(k)(R(k))T))2 +

∑

(l,m)

(u(l,m) − tr(Y(l,m)R
(k)(R(k))T))2+

∑

(l,m)

(v(l,m) − Ȳ(l,m)R
(k)(R(k))T))2 +

∑

(l,m)

(z(l,m) − u2
(l,m) − v2(l,m))

2.

We choose the threshold to match the accuracy in terms of squared error ob-
tained by Matpower using default settings on the same instance. Tk(R

(k)) ≤
0.00001 is often sufficient.

The Initialisation

In our analysis, we assume that the instance is feasible. This is difficult to
circumvent, considering Lehmann et al. [30] have shown it is NP-Hard to
test whether an instance of ACOPF is feasible. In our numerical experiments,
however, we choose R such that each element is independently identically dis-
tributed, uniformly over [0, 1], which need not be feasible for the instance of
ACOPF. Subsequently, we compute t, h, g, u, v, z to match the R, projecting
the values onto the intervals given by the box-constraints. Although one may
improve upon this simplistic choice by a variety of heuristics, it still performs
well in practice.

The Choice of µk, νk

The choice of µk, νk may affect the performance of the algorithm. In order
to prove convergence, one requires limk→∞ νk → 0, but computationally, we
consider R = 0, which obliterates the need for varying νk and computation of
the gradient, ∇ det(RTR), as suggested by [12].

9

In order to prove convergence, any choice of µk > 0 is sufficient. Computa-
tionally, we use µk = µ = 0.0001 throughout much of the reported experiments.
On certain well-known pathological instances, c.f., Section 7.3, other choices
may be sensible. Considering that many of those instances are very small,
the use of large step-sizes, such as µk = µ = 0.01 may seem justified. We
have also experimented with an adaptive strategy for changing µk, as detailed
in Section 7.4. There, we require the infeasibility to shrink by a fixed factor
between consecutive iterations. If such an infeasibility shrinkage is not feasi-
ble, one ignores the proposed iteration update and picks µk+1 < µk such that
the infeasibility shrinkage is observed. Although the performance does improve
slightly, we have limited the use of this strategy to Section 7.4. We have also
experimented with decreasing µk geometrically, i.e. µk = c · µk−1, but we have
observed no additional benefits. The fact one does not have to painstakingly
tune the parameters is certainly a relief.

5 Implementation Details

In order to understand the details of the implementation, it is important to
realise that

• the quadratic forms such as Ykxx
T in the polynomial optimisation problem

([PP4]) and YkRRT in the augmented Lagrangian (33) are used for the
simplicity of presentation. Indeed, the evaluation of the quadratic forms
can be simplified considerably, when one does not strive for the brevity of
expression

• many well-known benchmarks, including the Polish network, consider an
extension of the polynomial optimisation problem ([PP4]).

We elaborate upon these points in turn.

5.1 The Simplifications

Let us consider the example of tr(Ykxx
T) in more detail. The evaluation of the

quadratic form can be simplified to 16 ‖Yk‖0 multiplications, i.e., performed in
time linear in the number ‖Yk‖0 of non-zero elements of the matrix Yk. More-
over, the evaluation of the trace of the quadratic form requires only 2 ‖Yk‖0
multiplications, as one needs to consider only the diagonal elements. The num-
ber of non-zero elements varies in each power system, and is quadratic in the
number of buses for hypothetical systems, where there would be a branch be-
tween each pair of buses, but the number of non-zero elements is linear in the
number of buses, in practice. Consequently, one can simplify the first step of the
inner loop (Lines 6–7), where one minimises the augmented Lagrangian (33),
i.e., L(R, t, h, g, u, v, z, λt, λg, λh, λu, λv, λz), with respect to t, as follows. At

10

iteration k, for each coordinate j, in parallel, one computes the update:

t
(k)
j :=−

πt
j + c1jSb + 2c2jS

2
b (P

g
j)

2 − tr(YkR
(k)(R(k))T)
µ

1
µ
+ 2c2jS

2
b

, (35)

where Sb is the base power of the per-unit system, such as 100 MVA, and πt

are the residuals:

πt
j :=−

tr(YkR
(k−1)(R(k−1))T)− t

(k−1)
j

µ
. (36)

Notice that the terms c1jSb and 2c2jS
2
b are constant throughout the run and can

hence be pre-computed, while the residuals (36) have to be precomputed only
once per iteration, e.g., just before the termination criteria are evaluated (Line
10), and hence there are only 3 multiplications and 1 division involved, in ad-
dition to the run-time of the evaluation of the quadratic form. Subsequently,
one projects onto the box-constraints, i.e., if tj is large than the upper bound,
it is set to the upper bound. If tj is smaller than the lower bound, it is set to
the lower bound. Similar simplifications can be made for minimisation of the
augmented Lagrangian (33) with respect to other variables.

5.2 The Extensions

In an often considered, but rarely spelled out [44] extension of the ACOPF
problem (12), one allows for tap-changing and phase-shifting transformers, as
well as parallel lines and multiple generators connected to one bus. Let us
denote the the total line charging susceptance (p.u.) by blm, the transformer
off nominal turns ratio by tlm, and the transformer phase shift angle by φlm.
Then, the thermal limits (12) become:





(Smax
lm)2 −tr(ZlmxxT) −tr(Z̄lmxxT)

−tr(ZlmxxT) 1 0
−tr(Z̄lmxxT) 0 1



 � 0 (37)





(Smax
lm)2 −tr(ΥlmxxT) −tr(ῩlmxxT)

−tr(ΥlmxxT) 1 0
−tr(ῩlmxxT) 0 1



 � 0 (38)

11

where:

Zlm =
glm
t2lm

(ele
T
l + el+|N |e

T
l+|N |) (39)

−
(

glm cos(φlm) + blm cos(φlm + π
2)

2tlm

)

(ele
T
m + emeTl + el+|N |e

T
m+|N | + em+|N |e

T
l+|N |)

+

(

glm sin(φlm) + blm sin(φlm + π
2)

2tlm

)

(ele
T
m+|N | + em+|N |e

T
l − el+|N |e

T
m − emeTl+|N |)

Υlm = glm(emeTm + em+|N |e
T
m+|N |) (40)

−
(

glm cos(−φlm) + blm cos(−φlm + π
2)

2tlm

)

(ele
T
m + emeTl + el+|N |e

T
m+|N | + em+|N |e

T
l+|N |)

+

(

glm sin(−φlm) + blm sin(−φlm + π
2)

2tlm

)

(el+|N |e
T
m + emeTl+|N | − ele

T
m+|N | − em+|N |e

T
l)

Z̄lm = −2blm + b̄lm
2t2lm

(ele
T
l + el+|N |e

T
l+|N |) (41)

+

(

glm cos(φlm) + blm cos(φlm + π
2)

2tlm

)

(ele
T
m+|N | + em+|N |e

T
l − el+|N |e

T
m − emeTl+|N |)

+

(

glm sin(φlm) + blm sin(φlm + π
2)

2tlm

)

(ele
T
m + emeTl + el+|N |e

T
m+|N | + em+|N |e

T
l+|N |)

Ῡlm = −2blm + b̄lm
2

(emeTm + em+|N |e
T
m+|N |) (42)

+

(

glm cos(−φlm) + blm cos(−φlm + π
2)

2tlm

)

(el+|N |e
T
m + emeTl+|N | − ele

T
m+|N | − em+|N |e

T
l)

+

(

glm sin(−φlm) + blm sin(−φlm + π
2)

2tlm

)

(ele
T
m + emeTl + el+|N |e

T
m+|N | + em+|N |e

T
l+|N |)

where ek be the kth standard basis vector in Rn, one can perform similar
simplifications.

For instance, following the pre-computation of vectors cA, cC , cD ∈ R|M|

prior to the outer loop of the algorithm, the evaluation of the trace of the
quadratic form, tr(ZlmxxT), considering (39) can be implemented using 4 look-
ups into the vector x and 13 float-float multiplications:

tr(ZlmxxT) = cAlm(x2
l + x2

l+|N |) (43)

+ cClm(2xlxm + 2xl+|N |xm+|N |)

+ cDlm(2xlxm+|N | − 2xmxl+|N |).

One can simplify the multiplication in a similar fashion for the remaining ex-
pressions involving (traces of) quadratic forms of Υlm, Z̄lm, and Ῡlm as well.

12

6 An Analysis

The analysis needs to distinguish between optima of the semidefinite program-
ming problem [LL], which is convex, and stationary points, local optima, and
global optima of [RrBC], which is the non-convex rank-constrained problem.
Let us illustrate this difference with an example:

Example 6.1. Consider the following simple rank-constrained problem:

max
W∈S2

+,rank(W)=1
tr(diag(3, 1)W), (44)

subject to tr(IW) = 1 and

W ∗ :=

(

1 0
0 0

)

= (1, 0)(1, 0)T ,

W̃ :=

(

0 0
0 1

)

= (0, 1)(0, 1)T =: R̃R̃T .

W ∗ is the unique optimal solution of (44), as well as the optimal solution of the
SDP relaxation, where the rank constraint is dropped. There exists a Lagrange
multiplier such that W̃ is a stationary point, though. Let us define a Lagrange
function L(R, λ) = tr(diag(3, 1)RRT)+λ(tr(IRRT)−1). Then ∇RL(RRT , λ) =
2 diag(3, 1)R + 2λR. If we plug in R̃ and λ̃ = −1 we obtain ∇RL(R̃R̃T , λ̃) =
2 diag(3, 1)(0, 1)T + 2λ̃(0, 1)T = (0, 0)T . Hence (R̃, λ̃) is a stationary point of
a Lagrange function. However, one can follow the proof of Proposition 6.4 to
show that [R̃, 0] is not a local optimum solution of SDP relaxation.

Indeed, in generic non-convex quadratic programming, the test whether a
stationary point solution is a local optimum [48] is NP-Hard. For ACOPF,
there are a number of sufficient conditions known, e.g. [43]. Under strong
assumptions, motivated by Observation O3, we provide necessary and sufficient
conditions based on those of Grippo et al. [20]. We use ⊗ for Kronecker product
and Ir for identity matrix in Rr×r.

Proposition 6.2. Consider the SDP relaxation obtained from [RrBC] by drop-
ping the rank constraint and writing it down as min tr(QW) such that tr(AiW) =
bi for constraints i = 1, . . . ,m in variable W � 0,W ∈ Sn. If there exists an
optimum W ∗ with rank r for the SDP relaxation, for any point R ∈ Rn×r, RRT

is a global minimiser of [RrBC] if and only if there exists a λ∗ ∈ Rm such that:

[(

Q+

m
∑

i=1

λ∗
iAi

)

⊗ Ir

]

R = 0 (45)

Q+

m
∑

i=1

λ∗
iAi � 0

RT (Ai ⊗ Ir)R = bi ∀i = 1, . . . ,m.

13

Proof. The proof is based on Proposition 3 of Grippo et al. [20], which requires
the existence of rank r optimum and strong duality of the SDP relaxation. The
existence of an optimum of [LL] with rank r is assumed. One can use Theorem
1 [21] and Theorem 1 of [19] to show that a ball constraint is sufficient for strong
duality in the SDP relaxation, c.f. Observation O4.

Notice that the test for whether there exists an optimum W ∗ with rank r
for the SDP relaxation is suggested Proposition 5, i.e. by solving for rank r+1.

Next, let us consider the convergence:

Proposition 6.3. There exists an instance-specific constant r′, such that for
every r ≥ r′, whenever Algorithm 1 with {R(k)} ∈ Rn×r,R = det(RTR) and
limk→∞ νk → 0 produces solution with limk→∞ Tk(R

(k)) → 0 and a local opti-
mum R(k) is generated within the inner loop (5–11), R(k)(R(k))T is an optimal
solution to [LL]. Moreover, r′ depends on the number of constraints m in the
optimisation problem and is O(

√
m).

Proof. The proof follows from Theorem 3.3 of Burer and Monteiro [12]. One
can rephrase Theorem 3.3 to show that if {R(k)} ∈ Rn×r is a bounded sequence
such that:

C1: limk→∞ Tk = 0

C2: limk→∞ ∇L(R(k)) = 0

C3: lim infk→∞ ∇2L(R(k))(Hk, Hk) ≥ 0 for all bounded sequences {Hk},Hk ∈
Rn×r

C4: rank(R(k)) < r for all k

every accumulation point of R(k)(R(k))T is an optimal solution of [LL]. Let us
show that these four conditions are satisfied, in turn. Condition C1, which effec-
tively says that W = R(k)(R(k))T should be feasible with respect to constraints
(13–18), is affected by the termination criteria of the inner loop, albeit only
approximately for a finite k and finite machine precision. Conditions C2 and
C3 follow from our assumption that R(k) is a local optimum. The satisfaction
of Condition C4 can be shown in two steps: First, there exists an r′, such that
for every feasible semidefinite programming problem with m constraints, there
exists an optimal solution with a rank bounded from above by r′. This r′ is
O(

√
m). This follows from Theorem 1.2 of Barvinok [4], as explained by Pataki

[50]. Second, the R = det(RTR) regularisation forces the lower-rank optimum
to be chosen, should there be multiple optima with different ranks. This can
be seen easily by contradiction. Finally, one can remove the requirement on the
sequence to be bounded by the arguments of Burer and Monteiro [12], as per
Theorem 5.4.

Further,

14

Proposition 6.4. Consider an instance of ACOPF such that there exists an
optimum solution W ∗ of [LL] with rank 1 and ∀k : c2k ≥ 0. Let R(k) be a iterate
produced by the Algorithm 1 when run with r = 1 and moreover it is such that
Tk = 0. Then if RRT (where R = [R(k),0]) is a local optimum of [R2BC], then
R(k)(R(k))T is a global optimum solution of [R1BC] and [PP4].

Proof. We will prove this proposition by contradiction. For the sake of contra-
diction, we assume that R is a local optimum and R(k) is not a global optimum.
Therefore, we know that objective function of [R1BC] for W1 = W ∗ is smaller
than for W2 = R(k)(R(k))T and both W1 and W2 are feasible. By the assump-
tion on optimum solution W ∗ of [LL], we know that W ∗ can be written as W ∗ =
wwT . Now, it is easy to observe that if we define R̃λ = [(1 −

√
λ)R(k),

√
λw∗]

then for any λ ∈ [0, 1] this vector is feasible for [R2BC]. Moreover, for λ = 0 we
have R̃0 = R. Because the objective function F of [RrBC] is convex in W with
c2k ≥ 0, we have that

F (R̃λ(R̃λ)T) ≤ (1− λ)F (W2) + λF (W1) < F (W2)

and hence for all λ ∈ (0, 1] we have that F (R̃λ(R̃λ)T) < F (W2), which is a
contradiction with the assumption that R is a local optimum.

Overall,

Remark 1. The first iteration of the outer loop of Algorithm 1 may produce a
global optimum to [R1] and [RrBC] and [PP4], as suggested in Propositions 3.1–
6.4. The second and subsequent iterations of the outer loop of Algorithm 1 may
find the optimum of [LL], the semidefinite programming problem, as suggested
in Proposition 6.3, but for R = 0, they are not guaranteed to find the global
optimum of [R1] nor [RrBC] nor [PP4].

One should also like contrast the ability to extract low-rank solutions with
other methods:

Remark 2. Whenever there are two or more optima of [LL] with two or more
distinct ranks, the maximum rank solutions are in the relative interior of the
optimum face of the feasible set, as per Lemma 1.4 in [28]. Primal-dual interior-
point algorithms for semidefinite programming, such as SeDuMi [55], in such a
case return a solution with maximum rank.

Put bluntly, one may conclude that as long as one seeks the exact optimum
of [ACOPF], it does not make sense to perform more than two iterations of
the outer loop of Algorithm 1. When it becomes clear by the second iteration
that the rank-one optimum of [LL] has not been extracted, one should like to
consider stronger convexifications [19]. Notice that this advice is independent
of whether one uses R = det(RTR) or 0. Although R = 0 or ν = 0 does
not guarantee the recovery of low-rank solutions of [LL], in some cases [3, 8],
R = det(RTR) and ν > 0 does not guarantee that the low-rank solution of the
augmented Lagrangian (33) coincides with the optimum of [ACOPF], in some
other cases. It may hence be preferable to use R = 0, as it allows for more
iterations per second and post hoc testing of global optimality.

15

7 Numerical Experiments

We have implemented Algorithm 1 in C++ with GSL and OpenMP and tested
it on a collection [62] of well-known instances. For comparison, we have used
three solvers specialised to ACOPF:

• the MATLAB-based Matpower Interior Point Solver (MIPS) version 1.2
(dated March 20th, 2015), which has been developed by Zimmerman et
al. [62]

• the C-based Semidefinite Programming optimal Power Flow (sdp pf) ver-
sion 1.0 (dated January 17th, 2014), which has been developed by Mohlzahn
et al. [44] using SeDuMi of Sturm et al. [55]

• the MEX-based OPF Solver beta version dated December 13th, 2014,
listed as the most current as of June 1st, 20161, which has been developed
by Lavaei et al. [38] using and SDPT3 of Tütüncü et al. [56, 57]. Notice
that OPF Solver produces feasible points with objective values that are
near the values of the global optima across all instances tested, for some,
non-default settings; we have used the per-instance settings of epB, epL,
and line prob, as suggested by the authors.

For the comparison presented in Table 1, we have used a standard laptop with
Intel i5-2520M processor and 4 GB of RAM. We believe this is fair, as the solvers
we compare with cannot make a good use of a more powerful machine. For the
presentation of scalability of our code, we have used a machine with 24 Intel
E5-2620v3 clocked at 2.40GHz and 128GB of RAM, but used only the numbers
of cores listed.

We have also tested six general-purpose semidefinite-programming (SDP)
solvers:

• CSDP version 6.0.1, which has been developed by Borchers [7]

• MOSEK version 7.0, which has been developed by MOSEK ApS [1, 51]

• SeDuMi version 1.32, which has been developed by Sturm et al. [55]

• SDPA version 7.0, which has been developed by the SDPA group [61]

• SDPT3 version 4.0, which has been developed by Tütüncü et al. [56, 57]

• SDPLR version 1.03 (beta), which has been developed by Burer and Mon-
teiro [11]

Five of the codes (CSDP, SeDuMi, SDPA, SDPLR, and SDPT3) have been
tested at the NEOS 7 facility [17] at the University of Wisconsin in Madison,
where there are two Intel Xeon E5-2698 processors clocked at 2.3GHz and 192
GB of RAM per node. MOSEK has been used at a cluster equipped with one
AMD Opteron 6128 processor clocked with 4 cores at 2.0 GHz and 32 GB of
RAM per node, as per the license to Lehigh University.

1http://ieor.berkeley.edu/~lavaei/Software.html

16

http://ieor.berkeley.edu/~lavaei/Software.html

7.1 IEEE Test Cases

Our main focus has been on the IEEE test cases. In Table 1, we compare the
run-time of our implementation of Algorithm 1 with the run-time of the three
leading solvers for the ACOPF listed above, two of which (sdp pf, OPF Solver)
use elaborate tree-width decompositions. In order to obtain the numbers, we
ran Matpower first using default settings, record the accuracy with respect to
squared error Tk (34), ran our solver up to the same accuracy, and record the
time and the objective function.

In Table 2, we present the run-time of six popular general-purpose SDP
solvers for comparison. We note that we have used the default parameters and
tolerances of each code, so the precision may no longer match Matpower. We
list the reported CPU time rounded to one decimal digit, if that yields a non-
zero number, and to one significant digit, otherwise. When we display a dash,
no feasible solution has been found; the severity of the constraint violation and
abruptness of the termination of the solver vary widely. For example, MOSEK
terminates very abruptly with fatal error stopenv on five of the instances, while
SDPT3 often runs into numerical difficulties. Outside of SDPLR on the largest
instance, no solver ran out of memory, iteration limit, or time limit. In this
comparison, SeDuMi seems to be most robust solver. SDPLR is also rather
robust, but three orders of magnitude slower. Throughout, all interior-point
methods (CSDP, Mosek, SeDuMi, SDPA, and SDPT3) perform much better on
the dual of the SDP, than on the primal. Please note that direct comparison
with the run-time of our implementation of Algorithm 1 reported in Table 1 is
no possible, due to the use of three different platforms: Five of the codes (CSDP,
SeDuMi, SDPA, SDPLR, and SDPT3) have been tested at the NEOS facility,
which does not allow for our code to be run, while Mosek has been tested at a
Lehigh University facility. Still, either facility has machines considerably more
powerful than the machine used in the tests above, and we report the CPU
time reported by the individual solvers, rather than the wall-clock time, so we
believe it is fair to claim our specialised solver outperforms the general-purpose
solvers.

7.2 NESTA Test Cases

Next, we have tested our approach on the recently introduced test cases from
the NICTA Energy System Test Case Archive (NESTA) [15]. There, bounds on
commonly used IEEE test cases have been carefully tightened to make even the
search for a feasible solution difficult for many solvers. For example, in the so
called Active Power Increase (API) test cases, the active power demands have
been increased proportionally throughout the network so as to make thermal
limits active. In Table 3, we present the results. Out of the 11 API instances
tested, Matpower and sdp pf fail to find feasible solutions for three instances
each. Our implementation of Algorithm 1, using default settings, including
R = 0, obtains feasible solutions across all the 11 instances, while improving
over the objective function values obtained by either Matpower or sdp pf. For

17

example, on the instance nesta case30 as api, we improve the objective function
value by about 10%, while on the instance nesta case30 fsr api, we improve
the objective by considerably more than 10%. Although we have not tested
all instances of the NESTA archive, we are very happy with these preliminary
results.

7.3 Pathological Instances

Additionally, we have tested our approach on a number of recently introduced
pathological instances [31, 45, 9, 19, 25]. Depending on the choices ofR, ν, and µ,
Algorithm 1 may perform better or worse than the relaxation of Lavaei and Low
([LL]). Let us illustrate this on the suggested settings of R = 0, ν arbitrary,
and single-thread execution. In the example of Bukhsh et al. [9], known as
case2w, there are two local optima. Whereas many heuristics may fail or find
the local optimum with cost 905.73, we are able to find the exact optimum with
cost 877.78 in 0.49 seconds up to the infeasibility of 9.38 · 10−6 with µ = 0.01
and up to infeasibility of 7.23 · 10−6 in 0.94 seconds with µ = 0.0001. When
we replace V max

2 = 1.05 with 1.022, as in [19], the instance becomes harder
still, and the optimum of the relaxation of Lavaei and Low ([LL]) is not rank-
1. (Although one could project onto the feasible set of [R1BC] and extract
a feasible solution of [PP4], it would not be the optimum of [PP4].) With
µ = 0.01, we find only a local optimum with cost 888.05 up to infeasibility
of 8.29 · 10−6, but with µ = 0.0001, we do find the local optimum, which in
our evaluation has cost 905.66 up to infeasibility of 1.46 · 10−9. We stress that
this optimum is not the solution of plain ([LL]), but at the same time that,
we do not provide any guarantees of improving upon the relaxation of Lavaei
and Low ([LL]). In the example case9mod of Bukhsh et al. [9], µ = 0.01 does
not converge within 10000 iterations, but using µ = 0.0001, we are able to find
the exact optimum of 3087.84 and infeasibility 9.43 · 10−12 in 12.16 seconds.
In the example case39mod2 of Bukhsh et al. [9], we are able to find only a
local optimum with cost 944.71 and infeasibility 5.63 · 10−8 after 45.03 seconds,
whereas the present-best known solution has cost 941.74. In the example of
Molzahn et al. [31, 45], which is known as LMBM3, we find a solution with
cost 5688.10 up to infeasibility of 9.98 · 10−6 in 0.88 seconds using µ = 0.01
and a solution with cost 5694.34 up to infeasibility of 1.14 · 10−6 in 0.56 using
µ = 0.0001. This illustrates that the choice of µ is important and the default
value, albeit suitable for many instances, is not the best one, universally.

18

Table 1: The results of our numerical experiments on IEEE test cases and certain well-known pathological instances. Dash (–)
indicates no feasible solution has been provided, often due to numerical issues or the lack of convergence.

Instance MATPOWER sdp pf OPF Solver Algorithm 1
Name Ref. Obj. Time [s] Obj. Time [s] Obj. Time [s] Obj. Time [s]
case2w [9] — — 877.78 17.08 877.78 2.52 877.78 0.077
case3w [9] — — 560.53 0.56 560.53 2.70 560.53 0.166
case5 [32] 1.755e+04 21.80 1.482e+03 120.73 1.482e+03 25.93 1.482e+03 0.263
case6ww [59] 3.144+03 0.114 3.144e+03 0.74 3.144e+03 2.939 3.144e+03 0.260
case14 [62] 8.082e+03 0.201 8.082e+03 0.84 – – 8.082e+03 0.031
case30 [32] 5.769e+02 0.788 5.769e+02 2.70 5.765e+02 6.928 5.769e+02 0.074
case39 [62] 4.189e+04 0.399 4.189e+04 3.26 4.202e+04 7.004 4.186e+04 0.885
case57 [62] 4.174e+04 0.674 4.174e+04 2.69 – – 4.174e+04 0.857
case57Tree [24] 12100.86 6.13 * 1.045e+04 4.48 * 1.046e+04 342.00 * 1.046e+04 3.924
case118 [62] 1.297e+05 1.665 1.297e+05 6.57 – – 1.297e+05 1.967
case300 [62] 7.197e+05 2.410 – 17.68 – – 7.197e+05 90.103

*: We note that the precision here is approximately 10−6, which is the case for all three SDP-based solvers, Algorithm 1, as
well as sdp pf and OPF Solver.

1
9

Table 2: For comparison, the CPU time in seconds of certain well-known general-purpose SDP solvers on the Lavaei-Low
primal or dual SDP obtained from IEEE test cases and certain well-known pathological instances. Dash (–) indicates no
feasible solution has been provided, often due to numerical issues or the lack of convergence.

Instance Time [s]
Name SDP SeDuMi 1.32 SDPA 7.0 SDPLR 1.03 CSDP 6.0.1 SDPT3 4.0 Mosek 7.0
case2w primal 0.3 0.003 0 0.02 0.4 0.1
case2w dual 0.3 0.004 0 0.02 0.4 0.1
case5w primal 0.4 – 0 0.04 0.5 0.2
case5w dual 0.4 – 0 0.03 0.5 0.2
case9 primal 1.0 0.05 25 0.1 0.5 0.3
case9 dual 1.0 0.07 25 0.1 0.6 0.3
case14 primal 0.7 0.05 58 0.1 – 0.2
case14 dual 0.7 0.04 17 0.1 – 0.3
case30 primal 2.8 – 829 0.8 – –
case30 dual 6.1 – 282 1.0 – –
case30Q primal 2.8 – 831 0.8 – –
case30Q dual 6.2 – 195 1.0 – –
case39 primal 4.4 – 2769 1.0 – 0.7
case39 dual 7.7 – 723 1.3 – –
case57 primal 3.2 – 1930 0.5 – 0.7
case57 dual 4.0 – 1175 1.0 – 1.8
case118 primal 10.3 0.9 4400 3.4 – 1.7
case118 dual 17.1 – – 13.0 – –
case300 primal 27.5 1.7 – 109.6 – –
case300 dual 133.7 – – 66.7 – –

2
0

0 100 200 300 400

400

600

800

1000

1200

1400

1600

Iteration

 O
b

je
c

ti
v
e

 V
a

lu
e

1e−01

1e−02

1e−03

1e−04

1e−05

1e−06

adaptive

Figure 1: The evolution of the objective function value over time on instance
case5, for a number of choices of µ and the adaptive updates of µ.

7.4 Adaptive Updates of µ

As it has been stressed above, it is important to pick an appropriate µ. Alter-
natively, one can adapt a strategy to change µ adaptively. This can be achieved
by requiring the infeasibility to shrink by a fixed factor between consecutive
iterations. If such an infeasibility shrinkage is not feasible, one ignores the pro-
posed iteration update and decreases µ. Figures 1 and 2 show the evolution of
objective function value and the infeasibility for 400 iterations with fixed values
µ ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} and for the adaptive strategy on the
instance case5. Figure 3 details the evolution of µ within the adaptive strategy
on the same instance. One can see that choosing very small µ forces the algo-
rithm to “jump” close to a feasible point, and get “stuck”. On the other hand,
larger fixed values of µ lead to the same objective value. One can also see that
the adaptive strategy is rejecting the first 80 updates, until the value of µ is
small enough; subsequently, it starts to make rapid progress.

7.5 Large Instances

We have also experimented with the so called Polish network [62], also known
as case2224 and case2736sp, as well as the instances collected by the Pegase
project [58], such as case9241peg. There, we cannot obtain solutions with the
same precision as Matpower, within comparable run-times. However, we can
decrease the initial infeasibility by factor of 102 for case2224 in 200 seconds, by
factor of 106 for case2736sp in 200 seconds, and by factor of 104 for case9241peg,

21

Table 3: The results of our numerical experiments on NESTA test cases. When no feasible solution has been provided, we list
the infeasibility of the least infeasible point provided in red parentheses.

Instance MATPOWER sdp pf Algorithm 1
Name Obj. Time [s] Obj. Time [s] Obj. Time [s]
nesta case3 lmbd 5.812e+03 0.946 5.789e+03 2.254 5.757e+03 0.149
nesta case4 gs 1.564e+02 1.019 1.564e+02 2.392 1.564e+02 0.139
nesta case5 pjm (1.599e-01) 0.811 (1.599e-01) 2.708 2.008e+04 0.216
nesta case6 c 2.320e+01 0.825 2.320e+01 2.392 2.320e+01 0.379
nesta case6 ww 3.143e+03 0.884 3.143e+03 2.776 3.148e+03 0.242
nesta case9 wscc 5.296e+03 1.077 5.296e+03 2.621 5.296e+03 0.211
nesta case14 ieee 2.440e+02 0.762 2.440e+02 3.164 2.440e+02 0.267
nesta case30 as 8.031e+02 0.861 8.031e+02 3.916 8.031e+02 0.608
nesta case30 fsr 5.757e+02 0.898 5.757e+02 6.201 5.750e+02 0.613
nesta case30 ieee 2.049e+02 0.818 2.049e+02 4.335 2.049e+02 0.788
nesta case39 epri 9.651e+04 0.863 9.649e+04 5.676 9.651e+04 0.830
nesta case57 ieee 1.143e+03 1.119 1.143e+03 8.053 1.143e+03 0.957
nesta case118 ieee (4.433e+02) 1.181 (4.433e+02) 18.097 4.098e+03 4.032
nesta case162 ieee dtc (3.123e+03) 0.975 (3.123e+03) 32.153 4.215e+03 8.328
nesta case3 lmbd api 3.677e+02 1.113 3.333e+02 2.459 3.333e+02 0.029
nesta case5 pjm api (5.953e+00) 1.002 (5.953e+00) 2.426 3.343e+03 1.059
nesta case6 c api 8.144e+02 1.034 8.144e+02 2.456 8.139e+02 0.722
nesta case9 wscc api 6.565e+02 1.135 6.565e+02 2.869 6.565e+02 0.708
nesta case14 ieee api 3.255e+02 1.035 3.255e+02 3.569 3.245e+02 0.214
nesta case30 as api 5.711e+02 1.156 5.711e+02 5.433 5.683e+02 0.615
nesta case30 fsr api 3.721e+02 0.862 3.309e+02 5.276 2.194e+02 0.604
nesta case30 ieee api 4.155e+02 1.076 4.155e+02 5.293 4.155e+02 0.618
nesta case39 epri api (1.540e+02) 0.965 (1.540e+02) 5.109 7.427e+03 1.978
nesta case57 ieee api 1.430e+03 1.041 1.429e+03 7.625 1.429e+03 2.437
nesta case162 ieee dtc api (1.502e+03) 1.215 (1.502e+03) 43.339 6.003e+03 5.833

2
2

0 100 200 300 400

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

1e−01

1e−02
1e−03

1e−04

1e−05

1e−06

adaptive
Iteration

 I
n

fe
a

si
b

ili
ty

Figure 2: The evolution of the infeasibility over time on instance case5, for a
number of choices of µ and the adaptive updates of µ.

0 100 200 300 400

10
−4

10
−3

10
−2

10
−1

1e−01

Iteration

 A
d

a
p

ti
v
e

 µ

Figure 3: The evolution of µ with adaptive updates over time on instance case5.

23

0 5 10 15 20 25

0

1

2

3

4

5

6

7

case2224

case118mod

case9241pegase

case2736sp

case3w

Number of Threads

 S
p

e
e

d
u

p

Figure 4: The speed-up as a function of the number of cores employed.

again in 200 seconds. Although these results are not satisfactory, yet, they may
be useful, when a good initial solution is available. As discussed in Section 8,
we aim to improve upon these results by using a two-step method, where first-
order methods on the convex problem are combined with a second-order method
on the non-convex problem. These results also motivate the need for parallel
computing.

7.6 Parallel Computing

As it has been discussed above, Algorithm 1 is easy to implement in a parallel
fashion. We have implemented our multi-threading variant using OpenMP, in
order to achieve portability. The significant overhead of using OpenMP makes it
impossible to obtain a speed-up on very small instance. For example, in case3w,
there is not enough work to be shared across (any number of) threads to offset
the overhead. In Figure 4, we present the scaling properties of Algorithm 1.
In particular, we illustrate the speed-up (the inverse of the multiple of single-
threaded run-time) as a function of the number of cores used for a number of
larger instances. We can also observe that even case118 is too small to benefit
from a considerable speed-up. On the other hand, for large datasets, such as
the Polish case2224 or larger, we observe a significant speed-up.

24

8 Conclusions

Our approach seems to bring the use of SDP relaxations of ACOPF closer to the
engineering practice. A number of authors have recently explored elaborately
constructed linear programming [5] and second-order cone programming [27, 42,
46, 24, 26] relaxations, many [27, 26] of which are not comparable to the SDP
relaxations in the sense that they may be stronger or weaker, depending on the
instance, but aiming to be solvable faster. Algorithm 1 suggests that there are
simple first-order algorithms, which can solve SDP relaxations of ACOPF faster
than previously, at least on some instances.

A major advantage of first-order methods over second-order methods [62, 55]
is the ease of their parallelisability. This paper presents considers a symmetric
multi-processing, where memory is shared, but a distributed variant, where C
agents perform the iterations, is clearly possible, c.f. [41]. The C agents may
represent companies, each of whom owns some of the generators and does not
want to expose the details, such as cost functions. If C agents are C computers,
a considerable speed-up can be obtained. Either way, power systems analysis
could benefit from parallel and distributed computing.

The question as to how far could the method scale, remains open. In order
to improve the scalability, one could try to combine first- and second-order
methods [33]. We have experimented with an extension, which uses Smale’s
α-β theory [6] to stop the computation at the point z0, where we know, based
on the analysis of the Lagrangian and its derivatives, that a Newton method
or a similar algorithm with quadratic speed of convergence [14] will generate
sequence zi to the correct optimum z∗, i.e.

|zi − z∗| ≤ (1/2)2
i−1|z0 − z∗|. (46)

This should be seen as convergence-preserving means of auto-tuning of the
switch to a second-order method for convex functions.

One should also study infeasibility detection. Considering the test of feasi-
bility of an SDP is not known to be in NP [53], we assumed the instance are
feasible, throughout. Nevertheless, one may need to test their feasibility first, in
many practical applications. There are some very fast heuristics [47] available
already, but one could also use Lagrangian methods in a two-phase scheme,
common in robust linear-programming solvers. Both in methods based on sim-
plex and feasible interior-point, one first considers a variant of the problem,
which has constraints relaxed by the addition of slack variables, with objective
minimising a norm of the slack variables. This makes it possible to find feasible
solutions quickly, and by duality, one can detect infeasibility.

One could also apply additional regularisations, following [34, 39]. In [R1],
one could drop the rank-one constraint and modify the objective function to
penalise the solutions with large ranks, e.g., by adding the term λ‖W‖∗ to the
objective function, where ‖ · ‖∗ is a nuclear norm [18] and λ > 0 is a parameter.
Alternatively, one can replace the rank constraint by the requirement that the
nuclear norm of the matrix should be small, i.e. ‖W‖∗ ≤ λ. However, both

25

approaches require a search for a suitable parameter λ such that the optimal
solution has indeed rank 1. Moreover, the penalised alternative may not produce
an optimal solution of [PP4], necessitating further algorithmic work.

Finally, one could extend the method to solve relaxations a variety of related
applications, such as security-constrained problems, stability-constrained prob-
lems, network expansion planning [40], and unit commitment problems. The
question as to whether the method could generalise to the higher-order relax-
ations, c.f., Ghaddar et al. [19], also remains open. First steps [37] have been
taken, but much work remains to be done.

References

[1] E. Andersen, C. Roos, and T. Terlaky, On implementing a primal-dual
interior-point method for conic quadratic optimization, Mathematical Pro-
gramming 95 (2003), pp. 249–277.

[2] X. Bai, H. Wei, K. Fujisawa, and Y. Wang, Semidefinite programming for
optimal power flow problems, International Journal of Electrical Power &
Energy Systems 30 (2008), pp. 383–392.

[3] A.S. Bandeira, N. Boumal, and V. Voroninski, On the low-rank approach for
semidefinite programs arising in synchronization and community detection,
in Conference on Learning Theory (COLT), 2016., 2016.

[4] A. Barvinok, A remark on the rank of positive semidefinite matrices subject
to affine constraints, Discrete & Computational Geometry 25 (2001), pp.
23–31.

[5] D. Bienstock and G. Munoz, LP approximations to mixed-integer polyno-
mial optimization problems, CoRR abs/1501.00288 (2015).

[6] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real Compu-
tation, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.

[7] B. Borchers, Csdp, ac library for semidefinite programming, Optimization
methods and software 11 (1999), pp. 613–623.

[8] N. Boumal, V. Voroninski, and A.S. Bandeira, The non-convex Burer-
Monteiro approach works on smooth semidefinite programs, in Neural In-
formation Processing Systems (NIPS 2016), 2016.

[9] W.A. Bukhsh, A. Grothey, K.I. McKinnon, and P. Trodden, Local solutions
of optimal power flow, IEEE Transactions on Power Systems 28 (2013), pp.
4780–4788.

[10] S. Burer and C. Choi, Computational enhancements in low-rank semidefi-
nite programming, Optimisation Methods and Software 21 (2006), pp. 493–
512.

26

[11] S. Burer and R.D. Monteiro, A nonlinear programming algorithm for solv-
ing semidefinite programs via low-rank factorization, Mathematical Pro-
gramming 95 (2003), pp. 329–357.

[12] S. Burer and R.D. Monteiro, Local minima and convergence in low-rank
semidefinite programming, Mathematical Programming 103 (2005), pp.
427–444.

[13] G. Cardano, Ars Magna Or The Rules of Algebra, Dover Books on Ad-
vanced Mathematics, Dover, a 1968 reprint of the 1545 original.

[14] P. Chen, Approximate zeros of quadratically convergent algorithms, Math-
ematics of Computation 63 (1994), pp. 247–270.

[15] C. Coffrin, D. Gordon, and P. Scott, NESTA, The NICTA Energy System
Test Case Archive, ArXiv e-prints (2014).

[16] A.R. Conn, N.I. Gould, and P. Toint, A globally convergent augmented
lagrangian algorithm for optimization with general constraints and simple
bounds, SIAM Journal on Numerical Analysis 28 (1991), pp. 545–572.

[17] J. Czyzyk, M.P. Mesnier, and J.J. More, The neos server, IEEE Computa-
tional Science and Engineering 5 (1998), pp. 68–75.

[18] M. Fazel, Matrix rank minimization with applications, Ph.D. diss., Stanford
University, 2002.

[19] B. Ghaddar, J. Marecek, and M. Mevissen, Optimal power flow as a polyno-
mial optimization problem, IEEE Transactions on Power Systems 31 (2016),
pp. 539–546.

[20] L. Grippo, L. Palagi, and V. Piccialli, Necessary and sufficient global opti-
mality conditions for nlp reformulations of linear sdp problems, Journal of
Global Optimization 44 (2009), pp. 339–348.

[21] C. Josz and D. Henrion, Strong duality in lasserre’s hierarchy for polyno-
mial optimization, Optimization Letters 10 (2016), pp. 3–10.

[22] C. Josz and D.K. Molzahn, Moment/sum-of-squares hierarchy for complex
polynomial optimization, arXiv preprint arXiv:1508.02068 (2015).

[23] C. Josz, J. Maeght, P. Panciatici, and J.C. Gilbert, Application of the
moment-sos approach to global optimization of the opf problem, IEEE
Transactions on Power Systems 30 (2015), pp. 463–470.

[24] B. Kocuk, S.S. Dey, and X.A. Sun, New formulation and strong misocp
relaxations for ac optimal transmission switching problem, arXiv preprint
arXiv:1510.02064 (2015).

27

[25] B. Kocuk, S.S. Dey, and X.A. Sun, Inexactness of sdp relaxation and valid
inequalities for optimal power flow, IEEE Transactions on Power Systems
31 (2016), pp. 642–651.

[26] B. Kocuk, S.S. Dey, and X.A. Sun, Strong socp relaxations for the optimal
power flow problem, Operations Research (2016), p. to appear.

[27] X. Kuang, L.F. Zuluaga, B. Ghaddar, and J. Naoum-Sawaya, Approxi-
mating the ACOPF problem with a hierarchy of SOCP problems, in Power
Energy Society General Meeting, 2015 IEEE, July, 2015, pp. 1–5.

[28] M. Laurent, Sums of squares, moment matrices and optimization over poly-
nomials, in Emerging applications of algebraic geometry, Springer, 2009, pp.
157–270.

[29] J. Lavaei and S. Low, Zero duality gap in optimal power flow problem, IEEE
Transactions on Power Systems 27 (2012), pp. 92–107.

[30] K. Lehmann, A. Grastien, and P.V. Hentenryck, Ac-feasibility on tree net-
works is np-hard, IEEE Transactions on Power Systems 31 (2016), pp.
798–801.

[31] B. Lesieutre, D. Molzahn, A. Borden, and C. DeMarco, Examining the lim-
its of the application of semidefinite programming to power flow problems,
in Communication, Control, and Computing (Allerton), 2011 49th Annual
Allerton Conference on, 2011, pp. 1492 –1499.

[32] F. Li and R. Bo, Small test systems for power system economic studies, in
Power and Energy Society General Meeting, 2010 IEEE, 2010, pp. 1–4.

[33] A.C. Liddell, J. Liu, J. Marecek, and M. Takac, Hybrid methods in solving
alternating-current optimal power flows, arXiv preprint arXiv:1510.02171
(2015).

[34] R. Louca, P. Seiler, and E. Bitar, A rank minimization algorithm to en-
hance semidefinite relaxations of Optimal Power Flow, in Communication,
Control, and Computing (Allerton), 2013 51st Annual Allerton Conference
on, Oct, 2013, pp. 1010–1020.

[35] S.H. Low, Convex relaxation of optimal power flow – part i: Formula-
tions and equivalence, IEEE Transactions on Control of Network Systems
1 (2014), pp. 15–27.

[36] S.H. Low, Convex relaxation of optimal power flow – part ii: Exactness,
IEEE Transactions on Control of Network Systems 1 (2014), pp. 177–189.

[37] W.J. Ma, Control, learning, and optimization for smart power grids, Ph.D.
diss., The University of Notre Dame, 2015.

28

[38] R. Madani, M. Ashraphijuo, and J. Lavaei, Promises of conic relaxation for
contingency-constrained optimal power flow problem, IEEE Transactions on
Power Systems 31 (2016), pp. 1297–1307.

[39] R. Madani, J. Lavaei, and R. Baldick, Convexification of power flow problem
over arbitrary networks, in 2015 54th IEEE Conference on Decision and
Control (CDC), Dec, 2015, pp. 1–8.

[40] J. Mareček, M. Mevissen, and J.C. Villumsen, MINLP in transmis-
sion expansion planning, in 2016 Power Systems Computation Conference
(PSCC), June, 2016, pp. 1–8.

[41] J. Mareček, P. Richtárik, and M. Takáč, Distributed block coordinate de-
scent for minimizing partially separable functions, in Numerical Analysis
and Optimization, Vol. 134, Springer, 2015, pp. 261–288.

[42] D. Molzahn and I. Hiskens, Sparsity-exploiting moment-based relaxations
of the optimal power flow problem, IEEE Transactions on Power Systems
(2014).

[43] D. Molzahn, B. Lesieutre, and C. DeMarco, A sufficient condition for global
optimality of solutions to the optimal power flow problem, IEEE Transac-
tions on Power Systems 29 (2014), pp. 978–979.

[44] D. Molzahn, J. Holzer, B. Lesieutre, and C. DeMarco, Implementation of
a large-scale optimal power flow solver based on semidefinite programming,
IEEE Transactions on Power Systems 28 (2013), pp. 3987–3998.

[45] D.K. Molzahn, Application of semidefinite optimization techniques to prob-
lems in electric power systems, Ph.D. diss., University of Wisconsin – Madi-
son, 2013.

[46] D.K. Molzahn and I.A. Hiskens, Mixed SDP/SOCP Moment Relaxations
of the Optimal Power Flow Problem, in PowerTech Eindhoven 2015.

[47] D.K. Molzahn, V. Dawar, B.C. Lesieutre, and C.L. DeMarco, Sufficient
conditions for power flow insolvability considering reactive power limited
generators with applications to voltage stability margins, in Bulk Power
System Dynamics and Control - IX Optimization, Security and Control of
the Emerging Power Grid (IREP), 2013 IREP Symposium, Aug, 2013, pp.
1–11.

[48] K.G. Murty and S.N. Kabadi, Some np-complete problems in quadratic
and nonlinear programming, Mathematical programming 39 (1987), pp.
117–129.

[49] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale opti-
mization problems, SIAM Journal on Optimization 22 (2012), pp. 341–362.

29

[50] G. Pataki, On the rank of extreme matrices in semidefinite programs and
the multiplicity of optimal eigenvalues, Mathematics of operations research
23 (1998), pp. 339–358.

[51] F. Permenter, H.A. Friberg, and E.D. Andersen, Solving conic optimization
problems via self-dual embedding and facial reduction: a unified approach,
Optimization Online (2015).

[52] M.J. Powell, A fast algorithm for nonlinearly constrained optimization cal-
culations, in Numerical analysis, Springer, 1978, pp. 144–157.

[53] M. Ramana, An exact duality theory for semidefinite programming and its
complexity implications, Mathematical Programming 77 (1997), pp. 129–
162.

[54] P. Richtárik and M. Takáč, Parallel coordinate descent methods for big data
optimization, Mathematical Programming 156 (2016), pp. 433–484.

[55] J.F. Sturm, Using sedumi 1.02, a matlab toolbox for optimization over sym-
metric cones, Optimization methods and software 11 (1999), pp. 625–653.

[56] K.C. Toh, M.J. Todd, and R.H. Tütüncü, SDPT3 – A matlab software
package for semidefinite programming, version 1.3, Optimization methods
and software 11 (1999), pp. 545–581.

[57] R.H. Tütüncü, K.C. Toh, and M.J. Todd, Solving semidefinite-quadratic-
linear programs using SDPT3, Mathematical programming 95 (2003), pp.
189–217.

[58] F. Villella, S. Leclerc, I. Erlich, and S. Rapoport, PEGASE pan-European
test-beds for testing of algorithms on very large scale power systems, in
Innovative Smart Grid Technologies (ISGT Europe), 2012 3rd IEEE PES
International Conference and Exhibition on, Oct, 2012, pp. 1–9.

[59] A. Wood and B. Wollenberg, Power Generation, Operation, and Control,
A Wiley-Interscience publication, Wiley, 1996.

[60] S. Wright, Coordinate descent algorithms, Mathematical Programming 151
(2015), pp. 3–34.

[61] M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi, K. Nakata, and M.
Nakata, Latest developments in the sdpa family for solving large-scale sdps,
in Handbook on semidefinite, conic and polynomial optimization, Springer,
2012, pp. 687–713.

[62] R.D. Zimmerman, C.E. Murillo-Sánchez, and R.J. Thomas, Matpower:
Steady-state operations, planning and analysis tools for power systems re-
search and education, IEEE Transactions on Power Systems 26 (2011), pp.
12–19.

30

	1 Introduction
	2 The Problem
	3 The Reformulation
	4 The Algorithm
	5 Implementation Details
	5.1 The Simplifications
	5.2 The Extensions

	6 An Analysis
	7 Numerical Experiments
	7.1 IEEE Test Cases
	7.2 NESTA Test Cases
	7.3 Pathological Instances
	7.4 Adaptive Updates of
	7.5 Large Instances
	7.6 Parallel Computing

	8 Conclusions

