
HAL Id: hal-01811322
https://hal.science/hal-01811322

Submitted on 24 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global solution of non-convex quadratically constrained
quadratic programs

Sourour Elloumi, Amélie Lambert

To cite this version:
Sourour Elloumi, Amélie Lambert. Global solution of non-convex quadratically con-
strained quadratic programs. Optimization Methods and Software, 2019, 34 (1), pp.98-114.
�10.1080/10556788.2017.1350675�. �hal-01811322�

https://hal.science/hal-01811322
https://hal.archives-ouvertes.fr

Global solution of non-convex quadratically
constrained quadratic programs

Sourour Elloumi1 and Amélie Lambert2

1 CEDRIC-ENSTA, 828 Boulevard des Maréchaux, 91120 Palaiseau, France
{sourour.elloumi}@ensta-paristech.fr

2 CEDRIC-CNAM, 292 rue saint Martin, F-75141 Paris Cedex 03, France
amelie.lambert@cnam.fr

Abstract. The class of mixed-integer quadratically constrained quadratic
programs (QCQP) consists of minimizing a quadratic function under
quadratic constraints where the variables could be integer or continuous.
On a previous paper we introduced a method called MIQCR for solving QC-
QPs with the following restriction : all quadratic sub-functions of purely
continuous variables are already convex. In this paper, we propose an
extension of MIQCR which applies to any QCQP. Let (P) be a QCQP.
Our approach to solve (P) is first to build an equivalent mixed-integer
quadratic problem (P ∗). This equivalent problem (P ∗) has a quadratic
convex objective function, linear constraints, and additional variables y
that are meant to satisfy the additional quadratic constraints y = xxT ,
where x are the initial variables of problem (P). We then propose to
solve (P ∗) by a branch-and-bound algorithm based on the relaxation of
the additional quadratic constraints and of the integrality constraints.
This type of branching is known as spatial branch-and-bound. Compu-
tational experiences are carried out on a total of 325 instances. The
results show that the solution time of most of the considered instances is
improved by our method in comparison with the recent implementation
of QuadProgBB, and with the solvers Cplex, Couenne, Scip, BARON and
GloMIQO.

Key words: General mixed-integer quadratic programming, Global optimiza-
tion, Spatial branch-and-bound, Quadratic convex relaxation, Experiments

1 Introduction

We consider the problem of optimizing a quadratic function subject to quadratic
and bound constraints:

2 Sourour Elloumi, Amélie Lambert

(P)



min f0(x) ≡ 〈Q0, xx
T 〉+ cT0 x

s.t.

fr(x) ≡ 〈Qr, xxT 〉+ cTr x ≤ br r = 1, . . . ,m

` ≤ x ≤ u
xi ∈ N ∀i ∈ J
xi ∈ R ∀i ∈ I\J

with 〈A,B〉 =

n∑
i=1

n∑
j=1

aijbij , and where I = {1, . . . , n}, J ⊂ I, ∀ r = 0, . . . ,m

(Qr, cr) ∈ Sn × Rn, b ∈ Rm, and u ∈ Rn. Without loss of generality we suppose
that l ∈ Rn+. We denote by Sn the set of n × n symmetric matrices, by S+

n the
set of positive semidefinite matrices of Sn and M � 0 means that M ∈ S+

n . We
also denote by 0n the zero n × n matrix and by I2 the cartesian product of a
set I by itself.

We assume the feasible domain of (P) to be non-empty. Problem (P) trivially
contains the case where there are quadratic equalities, since an equality can be
replaced by two inequalities. It also contains the case of linear constraints since
a linear equality is a quadratic constraint with a zero quadratic part.

Problem (P) is a Mixed-Integer Quadratically Constrained Program (MIQCP)
and belongs to the class of NP-hard problems [37]. It arises in many applica-
tion areas such as graph theory [38], market prices computation [44], or the
pooling problem introduced by Haverly [7, 40]. Several applications of the box-
constrained case, namely, when J = ∅ and the only constraints are ` ≤ x ≤ u
were mentioned by Moré and Toraldo in [49]. Moreover, (P) generalizes sev-
eral difficult problems such as binary programming, fractional programming, or
polynomial programming. This is due to the fact that these problems can be re-
formulated Redinto a MIQCP. Binary quadratic programming has itself a large
set of applications. We refer the reader to recent surveys on more general mixed
integer non linearproblems [25].

Exact solution methods for solving (P) generally use the well-known branch-
and-bound algorithm. Key operations of this algorithm are called bounding and
branching. Bounding often relies on the computation of a lower bound (for a
minimization problem) by solving a relaxed problem of the initial one. There
are several bounding strategies. Among others, three strategies are classically
used: approximation of the convex envelope of each quadratic term [45], outer
approximation of convex terms [21, 30, 31], or computation of a bound thanks
to semidefinite relaxations [6, 52]. Branching strategies depend on the nature of
the variables. For integer variables, branching is commonly done by recursively
dividing the solution set into two subsets in such a way that a current fractional
solution is discarded. This represents a hope to improve the bounds further ob-
tained by the relaxation in the two subsets. For continuous variables, branching
is done by considering a variable xi whose current interval is [`i, ui], choosing

Global solution of non-convex quadratically constrained quadratic programs 3

some value x̄i in]`i, ui[, and dividing the solution set into two subsets, one with
interval [`i, x̄i] and the other with interval [x̄i, ui] for variable xi. Doing this
does not directly discard undesired points but may change the structure of the
relaxed problem. This branching is called spatial branch-and-bound (sBB) in
the global optimization literature and is due to Falk and Soland [32]. Finally, a
sBB algorithm can be improved by computing feasible local solutions.

Several versions of the sBB algorithm were proposed [9, 55, 56, 54, 61, 62].
Three classical relaxations can be used to perform a sBB. The first and most
common version uses a linear relaxation of (P) tightened by cuts such as the
reformulation-linearization technique (RLT) [53]. Some softwares, implement-
ing the methods described above, are available for solving (P). See for in-
stance Couenne 0.5 [11], Baron [51], Scip 3.2.1 [1, 58]. Another frequently
used technique to obtain convex relaxations of (P) is semi-definite program-
ming, see for example [5, 52]. The last way is based on a non-linear convex relax-
ation and is called αBB [2–4, 24, 33–35, 59, 60]. It is implemented into software
GloMIQO 2 [46–48]

Cplex 12.6.2 [20, 22, 42] and the recent solver QuadProgBB [27] also han-
dle (P), but are limited to the case where all constraints are linear. The solver
QuadprogBB uses a finite branch-and-bound scheme, in which branching is based
on the first-order KKT conditions. Moreover, polyhedral-semidefinite relaxations
are solved at each node of the branch-and-bound tree. In particular, their relax-
ations are derived from completely positive and doubly nonnegative programs.
In the last version of Cplex 12.6.2, a sBB algorithm is performed based on two
different quadratic and convex relaxations of (P) built as follows: in the first one,
(P) is reformulated as a separable problem where the diagonal Hessian matrix is
chosen positive semi-definite, in the second one, a convex reformulation is built
based on the factorized eigenvector space. Moreover, Cplex 12.6.2 exploits the
performances of Cplex for binary quadratic programs to solve box-constrained
problems [22].

In this paper, we present a new sBB algorithm for solving (P) to ε-global
optimality. In previous papers [15–17], we introduced quadratic convex refor-
mulation methods to solve (P) with the following restriction : all quadratic
sub-functions of purely continuous variables are already convex. More precisely,
let f(a, b) be a quadratic function of integer variables a, and of continuous vari-
ables b. Function f(a, b) is a sum of monomials, and can be viewed as the sum
of 2 functions: f1(a, b) that is composed of the mixed-integer monomials, and
f2(b) that corresponds to the monomials with only continuous variables. We call
f2(b) the sub-function of purely continuous variables. Our contribution in this
paper is to handle the general quadratic case without any restriction over the
pure-continuous sub-functions. One originality of our approach is that it is based
on an equivalent quadratic reformulation of (P) which is computed thanks to
semi-definite programming, in a pre-processing step. Then, a quadratic convex
relaxation of the equivalent formulation is used as a bounding strategy within
a sBB. To evaluate our algorithm, we present computational experiences on
325 instances coming from benchmarks of the literature. We compare our al-

4 Sourour Elloumi, Amélie Lambert

gorithm with the recent implementation of QuadProgBB, and with the solvers
Cplex 12.6.2 [42], Couenne 0.5 [11], Scip 3.2.1 [58], BARON 17.3.31 and
GloMIQO 2 [48]. We show on performance profiles that for these instances, our
method outperforms the others for many large and high density instances.

The outline of the paper is the following. In Section 2, we review quadratic
convex reformulation methods and situate the current paper compared to our
previous ones. In Section 3, we present our new quadratic reformulation of (P)
and we show that this reformulation is an improvement of the complete lin-
earization standardly used within a sBB. Then, in Section 4, we describe the
main features of our sBB based on the relaxation of the quadratic constraints
yij = xixj and of the integrality constraints. In Section 5, we present our com-
putational results. Section 6 draws a conclusion.

2 Review of Quadratic Convex Reformulations

Problem (P) presents two difficulties: non-convexity of functions fr and the
integrality of some of its variables. It is qualified as convex when all functions
f0, . . . , fm are convex [50]. When (P) is convex and there are no integer variables
(J = ∅), we have a convex problem that can be solved in polynomial time.
Thanks to the later property, convex problems with integer variables can be
solved by a branch-and-bound based on continuous relaxation, as frequently done
in quadratic convex solvers. Without these convexity assumptions, problem (P),
even with only continuous variables, is significantly harder to solve.

In this paper, we present an algorithm based on a reformulation. By this, we
mean an algorithm that works in two phases. In the first phase, an equivalent for-
mulation to the initial problem is designed. The key idea is that one relaxation of
the equivalent formulation is a convex problem. Finally, the equivalent formula-
tion can be solved to ε-global optimality by a spatial branch-and-bound process
based on this convex relaxation. This is the second phase of the algorithm.

In the presence of integer variables, many reformulation methods rely on the
reformulation of a quadratic program into a MILP. This is called linearization.
A very well-known linearization for quadratic programs with binary variables is
due to Fortet [36] and consists in replacing any product of two binary variables
xi and xj by an additional variable yij , together with a set of linear constraints
enforcing the equality yij = xixj . The idea of linearization can be extended to
quadratic programs with general bounded integer variables with a tricky binary
expansion of the general integers [14]. The obtained MILP is then solved by
branch-and-bound or branch-and-cut. Linearization is also used for continuous
variables. An equivalent problem is built where the only non-linearity is in the
equality yij = xixj . This equality is then relaxed in each node and enforced by
a spatial branch-and-bound.

Another alternative to linearization consists in reformulating a non-convex
quadratic program with binary variables into a convex quadratic program with
the same variables. This idea appeared in Hammer and Rubin [39] where the

Global solution of non-convex quadratically constrained quadratic programs 5

authors use the equality x2
i = xi which holds for any binary variable xi, and

the smallest (resp. largest) eigenvalue in order to shift the diagonal terms of the
Hessian matrix of the objective function and obtain an equivalent convex (resp.
concave) function. Another simple quadratic convex reformulation was proposed
in [12]. This reformulation, also based on x2

i = xi, transforms every non-convex
product xixj into the convex function 1

2 ((xi + xj)
2 − xi − xj) or to the concave

function 1
2 (−(xi−xj)2 +xi+xj). These simple quadratic convex reformulations,

while being very easy to implement, often lead to inefficient methods because
their continuous relaxation bound may be very poor.

Considering the problem of minimizing a quadratic function of binary vari-
ables, Billionnet and Elloumi [13] introduced the question of how to change the
diagonal terms of the Hessian matrix in such a way that (i) the obtained function
is convex, and (ii) the continuous relaxation bound of this function is as tight as
possible. The authors prove that, in this regard, “optimal” diagonal terms can
be obtained from the dual solution of a semidefinite programming relaxation of
the initial problem. With these optimal diagonal terms, the continuous relax-
ation bound is equal to the semidefinite programming relaxation bound. The
reformulation idea and the solution method were then extended in [19] to the
case of binary quadratic programs with linear equalities and the acronym QCR

for Quadratic Convex Reformulation was born. Here, the SDP relaxation whose
solution gives the best reformulation contains the so-called RLT constraints,
obtained by multiplying the linear inequalities by the variables in order to get
stronger relaxations.

Further extentions were designed in Billionnet et al. [15] for the case of
bounded integer variables but still with linear constraints. In this case, a bi-
nary expansion of the initial variables is performed, together with the addition
of new variables yij that represent the product of two general integer variables xi
and xj . These additional variables allow to widen the family of potential refor-
mulations since any perturbation of each element of the Hessian matrix is now
considered. In this extension, a quadratic program with linear constraints and
bounded integer variables is considered. The reformulation phase is based on a
stronger SDP relaxation, sometimes called “Shor+RLT” in the literature [6]. The
reformulated problem is a convex quadratic problem with continuous and binary
variables, which is again solved by a quadratic convex programming solver. We
present an extension to the case where the initial quadratic problem contains
continuous variables in Billionnet et al. [15]. But, we had the following restric-
tion: in the objective function, all quadratic sub-functions of purely continuous
variables are already convex. This extension was called MIQCR (Mixed Integer
Quadratic Convex Reformulation).

Another extension is obtained in [17] to the case of programs with quadratic
inequalities, with the same kind of restriction on the quadratic sub-functions of
purely continuous variables. The quadratic convex reformulation is presented in
a new setting which includes linearization as a particular case. More precisely,
the equivalent problem has additional variables yij , additional quadratic con-
straints yij = xixj , a convex objective function and a set of valid inequalities.

6 Sourour Elloumi, Amélie Lambert

These quadratic constraints are linearized by the addition of a large number of
variables (binary expansion) and constraints. The obtained equivalent problem
is a mixed-integer quadratic program with a convex objective function and linear
constraints. It can be solved by a mixed-integer quadratic convex solver. How-
ever, in the presence of convex purely continuous sub-functions, the “Shor+RLT”
relaxation cannot yet be used for computing the reformulation, hence, in this
case we use a weaker SDP relaxation than in the current paper.

For the linearly constrained case, we introduced in [16], a specific branch-and-
bound algorithm to solve the equivalent formulation. Constraints yij = xixj are
not linearized but are rather enforced within a branch-and-bound process based
on the relaxation of these quadratic constraints only, i.e. we keep the integrality
constraints.

In this paper, contrarily to the reformulation proposed in [15, 17], and fol-
lowing the ideas of [16], we keep in our reformulation the non-convex quadratic
constraints yij = xixj . To solve the reformulated problem, we design a sBB based
on the relaxation of constraints yij = xixj and of the integrality constraints. In
contrast to [17], not only we obtain convex relaxations of smaller size, but we
can also handle general quadratic problems.

3 A quadratic reformulation of (P)

We consider any set of positive semi-definite matrices S0, . . . , Sm. We also lift
the problem to a higher space by introducing variables yij that are meant to
satisfy yij = xixj . We build the following equivalent quadratic formulation to
(P):

(PS0,...,Sm)



min f0,S0(x, Y) ≡ 〈S0, xx
T 〉+ cT0 x+ 〈Q0 − S0, Y 〉

s.t.

fr,Sr (x, Y) ≡ 〈Sr, xx
T 〉+ cTr x+ 〈Qr − Sr, Y 〉 ≤ br r = 1, . . . ,m(1)

yij ≤ ujxi + lixj − uj li (i, j) ∈ I2, i ≤ j (2)

yij ≤ uixj + ljxi − uilj (i, j) ∈ I2, i ≤ j (3)

yij ≥ ujxi + uixj − uiuj (i, j) ∈ I2, i ≤ j (4)

yij ≥ ljxi + lixj − lilj (i, j) ∈ I2, i ≤ j (5)

yii ≥ xi i ∈ J (6)

yij = yji (i, j) ∈ I2, i < j (7)

yij = xixj (i, j) ∈ I2 (8)

xi ∈ N ∀i ∈ J (9)

To build (PS0,...,Sm), we introduce n2 new variables Y to model the prod-
ucts xixj (Constraints (8)). Then, we formulate fr(x) as a sum of a quadratic
function of the x variables and a linear function of the Y variables. It holds that
fr,Sr

(x, Y) is equal to fr(x) if yij = xixj . We also add the well-known McCormick
inequalities (2) - (5) [45], and Constraints (6) that come from x2

i ≥ xi, a valid
inequality for general integer variables to tighten the relaxation. Because ma-
trices S0, . . . Sm are positive semidefinite, the reformulated problem (PS0,...,Sm)

Global solution of non-convex quadratically constrained quadratic programs 7

has the property that when Constraints (8) and (9) are relaxed, it is a convex
problem. We call this convex relaxation (PS0,...,Sm

).

We then consider the problem of finding the best set of positive semi-definite
matrices S0, . . . , Sm, in the sense that the optimal solution value of (PS0,...,Sm

)
is as large as possible. This amounts to solving the following problem (OPTS):

(OPTS)

{
max

S0,...,Sm�0

v(PS0,...,Sm
)

where v(P) is the optimal value of problem (P). The following theorem shows
that v(OPTS) is equal to the optimal value of an SDP program which is a semi-
definite relaxation of (P).

Theorem 1. Let (SDP) be the following semi-definite program:

(SDP)



min f(X,x) = 〈Q0, X〉+ cT0 x

s.t.

〈Qr, X〉+ cTr x ≤ br r = {1, . . . ,m} (10)

Xij − ujxi − lixj + uj li ≤ 0 (i, j) ∈ I2, i ≤ j (11)

Xij − uixj − ljxi + uilj ≤ 0 (i, j) ∈ I2, i ≤ j (12)

−Xij + ujxi + uixj − uiuj ≤ 0 (i, j) ∈ I2, i ≤ j (13)

−Xij + ljxi + lixj − lilj ≤ 0 (i, j) ∈ I2, i ≤ j (14)

−Xii + xi ≤ 0 i ∈ J (15)(
1 x
xT X

)
� 0 (16)

x ∈ Rn X ∈ Sn (17)

It holds that v(OPTS) = v(SDP). Besides, the following positive semi-
definite matrices allow to build an optimal solution (S∗0 , . . . , S

∗
m) of (OPTS):

i) ∀r = 1, . . . ,m, S∗r = 0n

ii) S∗0 = Q0 +

m∑
r=1

α∗rQr + Φ∗, where α∗ is the vector of optimal dual variables

associated with Constraints (10). Matrix Φ∗ is computed as:

� Φ∗ii = Φ1∗
ii + Φ2∗

ii − Φ3∗
ii − Φ4∗

ii − ϕ∗i ,
� Φ∗ij = Φ1∗

ij + Φ2∗
ij − Φ3∗

ij − Φ4∗
ij ,

where Φ1∗, Φ2∗, Φ3∗, Φ4∗ are the symmetric matrices built from the optimal
dual variables associated with Constraints (11)–(14), and ϕ∗ is the vector
of dual variables associated with Constraints (15).

Proof. This proof is similar to Proof of Theorem 1 in [17], but we now consider
the case where the lower bounds `i over the variables x can be any non negative

8 Sourour Elloumi, Amélie Lambert

reals, while in [17], `i was considered as 0. To prove Theorem 1, we show that
v(OPTS) = v(SDP) by showing that v(OPTS) ≤ v(SDP) and then v(OPTS) ≥
v(SDP).
� To prove that v(OPTS) ≤ v(SDP), we show that v(P S̄0,...,S̄m

) ≤ v(SDP)
for any S̄0, . . . , S̄m ∈ S+

n , which in turn implies that v(OPTS) ≤ v(SDP) since
the right hand side is constant. For this, we show that if (x̄, X̄) is feasible for
(SDP), then (x, Y) := (x̄, X̄) is i) feasible for (P S̄0,...,S̄m

) and ii) its objective

value is less or equal than v(SDP). Since (P S̄0,...,S̄m
) is a minimization problem,

v(P S̄0,...,S̄m
) ≤ v(SDP) follows.

i) We prove that (x, Y) is feasible to (P S̄0,...,S̄m
). Constraints(2)-(7) are ob-

viously satisfied from Constraints (11)–(15) and (17). We now prove that
Constraints (1) are satisfied:

〈S̄r, xxT 〉+ cTr x+ 〈Qr − S̄r, Y 〉 = 〈S̄r, x̄x̄T 〉+ cTr x̄+ 〈Qr − S̄r, X̄〉
= 〈S̄r, x̄x̄T − X̄〉+ cTr x̄+ 〈Qr, X̄〉
≤ br from Constraints (10), since

S̄r � 0, and Constraint (16).

ii) Let us compare the objective values. For this, we prove that 〈S̄0, x̄x̄
T 〉 +

cT0 x̄ + 〈Q0 − S̄0, X̄〉 − 〈Q0, X̄〉 − cT0 x̄ ≤ 0 or that 〈S̄0, x̄x̄
T − X̄〉 ≤ 0. This

last inequality follows from S̄0 � 0 and Constraint (16).

� Let us secondly prove that v(OPTS) ≥ v(SDP) or equivalently v(OPTS) ≥
v(DSDP) where (DSDP) is the dual of (SDP). The following problem (DSDP)
is the dual of (SDP):

(DSDP)



max g(α,Φ) = −
m∑

r=1

αrbr + 〈Φ1 + Φ2, ulT 〉 − 〈Φ3, uuT 〉 − 〈Φ4, llT 〉

s.t.

Q0 +

m∑
r=1

αrQr + Φ � 0 (18)

c0 +

m∑
r=1

αrcr − (Φ1 + Φ2 − 2Φ3)Tu− (Φ1 + Φ2 − 2Φ4)T l + ϕ ≥ 0 (19)

Φ = Φ1 + Φ2 − Φ3 − Φ4 − diag(ϕ) (20)

α ∈ Rm
+ , Φ ∈ Sn, Φ1, Φ2, Φ3, Φ4 ∈ Sn, Φr

ij ≥ 0∀(r, i, j), ϕ ∈ Rn
+

where α ∈ Rm+ are the dual variables associated to constraints (10), and Φi,
i = 1, . . . , 4 are the positive semidefinite matrices built from the dual variables
θ associated with constraints (11), (12), (13), (14), respectively. For instance, if

θ1 is the dual variable associated to constraint (11), then Φ1 = θ1+θ1T

2 . ϕ are the
dual variables associated to constraints (15). As mentioned in Constraint (20)

Global solution of non-convex quadratically constrained quadratic programs 9

we have Φ = Φ1 + Φ2 − Φ3 − Φ4 − diag(ϕ).

Let (ᾱ, Φ̄1, Φ̄2, Φ̄3, Φ̄4, ϕ̄) be a feasible solution to (DSDP) and let Φ̄ = Φ̄1 +
Φ̄2−Φ̄3−Φ̄4−diag(ϕ̄), then we build the following positive semidefinite matrices:

S̄r = 0n r = 1, . . . ,m

S̄0 = Q0 +

m∑
r=1

ᾱrQr + Φ̄

by Constraint (18), (S̄0, . . . , S̄m) form a feasible solution to (OPTS). The objec-
tive value of this solution is equal to v(P S̄0,...,S̄m

).

We now prove that v(P S̄0,...,S̄m
) ≥ v(DSDP). For this, we prove that for

any feasible solution (x̄, Ȳ) to (P S̄0,...,S̄m
), the associated objective value is not

smaller than g(ᾱ, Φ̄). Denote by ∆ the difference between the objective values,
i.e., ∆ = 〈S̄0, x̄x̄

T 〉+ cT0 x̄+ 〈Q0 − S̄0, Ȳ 〉 − g(ᾱ, Φ̄). We below prove that ∆ ≥ 0.

∆ = 〈S̄0, x̄x̄
T 〉+ cT0 x̄+ 〈Q0 − S̄0, Ȳ 〉+

m∑
r=1

ᾱrbr − 〈Φ1 + Φ2, ulT 〉+ 〈Φ3, uuT 〉+ 〈Φ4, llT 〉

≥ cT0 x̄− 〈
m∑
r=1

ᾱrQr + Φ̄, Ȳ 〉+

m∑
r=1

ᾱrbr − 〈Φ1 + Φ2, ulT 〉+ 〈Φ3, uuT 〉+ 〈Φ4, llT 〉

since S̄0 � 0, and Q0 − S̄0 = −(

m∑
r=1

ᾱrQr + Φ̄)

= cT0 x̄+

m∑
r=1

ᾱr(br − 〈Qr, Ȳ 〉)− 〈Φ̄, Ȳ 〉 − 〈Φ1 + Φ2, ulT 〉+ 〈Φ3, uuT 〉+ 〈Φ4, llT 〉

≥ cT0 x̄+

m∑
r=1

ᾱrc
T
r x̄− 〈Φ̄, Ȳ 〉 − 〈Φ1 + Φ2, ulT 〉+ 〈Φ3, uuT 〉+ 〈Φ4, llT 〉

as cTr x̄+ 〈Qr, Ȳ 〉 ≤ br and ᾱr ≥ 0. Moreover, by Constraint (20) we get:

∆ ≥ cT0 x̄+

m∑
r=1

ᾱrc
T
r x̄− 〈Φ̄1 + Φ̄2 − Φ̄3 − Φ̄4 − diag(ϕ̄), Ȳ 〉 − 〈Φ1 + Φ2, ulT 〉+ 〈Φ3, uuT 〉+ 〈Φ4, llT 〉

= cT0 x̄+

m∑
r=1

ᾱrc
T
r x̄− 〈Φ̄1, Ȳ + ulT 〉 − 〈Φ̄2, Ȳ + ulT 〉+ 〈Φ̄3, Ȳ + uuT 〉+ 〈Φ̄4, Ȳ + llT 〉+ 〈diag(ϕ̄), Ȳ 〉

10 Sourour Elloumi, Amélie Lambert

By Constraints (2)–(6), and since all the coefficients of Φ̄1, Φ̄2, Φ̄3, Φ̄4, and ϕ̄ are
non-negative, we get:

∆ ≥ cT0 x̄+

m∑
r=1

ᾱrc
T
r x̄− 〈Φ̄1, x̄(uT + lT)〉 − 〈Φ̄2, x̄(uT + lT)〉+ 〈Φ̄3, 2x̄uT 〉+ 〈Φ̄4, 2x̄lT 〉+ ϕ̄T x̄

=
(
c0 +

m∑
r=1

ᾱrcr − (Φ̄1 + Φ̄2 − 2Φ̄3)Tu− (Φ̄1 + Φ̄2 − 2Φ̄4)T l + ϕ̄
)T
x̄

≥ 0 since x̄ ≥ 0 and by Constraint (19).

2

To sum up, we reformulate (P) as the equivalent following problem:

(P ∗)


min f0,S∗

0
(x, Y) = 〈S∗0 , xxT 〉+ cT0 x+ 〈Q0 − S∗0 , Y 〉

s.t.

fr(x, Y) = 〈Qr, Y 〉+ cTr x ≤ br r = 1, . . . ,m

(2)− (9)

From (P ∗), we build a quadratic convex relaxation of (P ∗) by dropping Con-

straints (8) and (9). We call this relaxation (P
∗
). The optimal value of (P

∗
) is

equal to the optimal value of (SDP) which is known to provide a tight bound [6].

One can note the generality of our algorithm which is completely independent
from the equivalent convex formulation (P ∗) that we used in this paper. In fact,
it works with any set of positive semi-definite matrices S0, . . . , Sm. As mentioned
in the Introduction, sBB algorithms developed to solve (P) are classically based
on complete linearization of (P) which corresponds to reformulation (PS0,...,Sm)
where we set all matrices to 0n. From this remark, we can deduce Corollary 1.

Corollary 1. Take the following feasible solution to (OPTS) that amounts to
the complete linearization of (P):

S̄r = 0n r = 0, . . . ,m

By definition, we have v(P S̄0,...,S̄m
) ≤ v(P

∗
). In other words, the bound obtained

by the complete linearization is weaker than the bound we get with the solution
of (P

∗
).

As an illustration, we solve the following small instance obtained from the
instance in [8] by a shift on the bounds of the variables:

(PEx)


min x

2
1 + 6x1x2 − 2x1x4 + 10x2x3 + 20x3x4 − 60x1 − 160x2 − 300x3 − 180x4 + 3500

s.t.

14x1x2 − 12x1x4 + 8x2x3 − 16x2x4 + 6x3x4 − 20x1 − 60x2 − 140x3 + 220x4 ≤ 17

xi ∈ [0, 20] i = 1, . . . , 4

Global solution of non-convex quadratically constrained quadratic programs 11

From the optimal solution of the associated semidefinite relaxation (SDPEx),
we deduce the bound -3300 and the following equivalent reformulation:

(P
∗
Ex)



min 1.996x
2
1 + 8.008x

2
2 + 15.006x

2
3 + 8.993x

2
4 + 6x1x2 − 2x1x4 + 10x2x3 + 20x3x4

−60x1 − 160x2 − 300x3 − 180x4 − 0.996y11 − 8.008y22 − 15.006y33 − 8.993y44 + 3500

s.t.

14y12 − 12y14 + 8y23 − 16y24 + 6y34 − 20x1 − 60x2 − 140x3 + 220x4 ≤ 17

(2)− (8)

As expected, at the root node of the sBB, we obtain again the optimal value
−3300 from the quadratic convex relaxation (P

∗
Ex). The sBB further proves, at

the root node, that −3300 is also the optimal solution value of (P ∗Ex) and thus
of (PEx). Observe that the root bound computed in [8] is −3400. Finally, the
complete linearization bound is −3900.

4 Main features of our spatial branch-and-bound

A classical way to solve MIQCPs is to use a sBB algorithm. A complete descrip-
tion of this algorithm can be found for instance in [10]. In this paper, we solve

(P ∗) by a sBB where the bounding step is based on (P
∗
). In the following we

give some details on our implementation of MIQCR BB.

The variable selection strategy

Let (x̄, Ȳ) be the solution of the relaxed problem at the current node, three
cases are possible:

1. If (x̄, Ȳ) satisfies Constraints (8) and (9) with an accuracy εconst, then (x̄, Ȳ)
is the optimal solution of the considered branch. The branch is pruned.

2. Else, if Constraints (8) are not satisfied, we select an index i∗ satisfying:

(i∗, j∗) = argmax|s∗0ij(x̄ix̄j − ȳij)|

where s∗0ij is the (i, j)-th element of matrix S∗0 .
3. Else, we select the first index i∗ ∈ J , such that x̄i∗ /∈ N

The branching rules

Let (x̄, Ȳ) be the solution of (P
∗
) at the current node, xi∗ the selected variable

with a current value x̄i∗ . We branch as described below:

1. If xi∗ is an integer variable (i.e. i∗ ∈ J):
i) Branch 1: xi∗ ≤ bx̄i∗c, i.e. ui∗ = bx̄i∗c.

ii) Branch 2: xi∗ ≥ dx̄i∗e, i.e. li∗ = bx̄i∗c.

12 Sourour Elloumi, Amélie Lambert

2. If xi∗ is a continuous variable (i.e. i∗ ∈ I\J), let γ be a parameter in [0, 1],
and let vi∗ = (1− γ)ui∗+li∗

2 + γx̄i∗ :
i) Branch 1: xi∗ ≤ vi∗ , i.e. ui∗ = vi∗ .

ii) Branch 2: xi∗ ≥ vi∗ , i.e. li∗ = vi∗ .

The node selection strategy

We implement two classical strategies for selecting the next subproblem: the
”depth-first” and the ”best-first” selection strategy. In our experiments of Sec-
tion 5, we use the most efficient for the considered class of instances.

Computation of feasible solutions and bound propagation

At each node of our algorithm, we compute a feasible solution to (P) using
one of the two following strategies:

1. From a current solution (x̄, Ȳ) of (P
∗
), if x̄ satisfies the initial constraints,

then it is a feasible solution to (P) and f0(x̄) can be used as an upper bound.

2. We alternatively use the local search of standard solvers to compute feasi-
ble local solutions to (P). More precisely, we use the local search of Cplex

12.6.2 [42] for unconstrained and linearly constrained problems, and the
local search of Scip 3.2.1 [1] for quadratically constrained problems.

We also use bound propagation for upper and lower bounds of the x variables.
for this, we implement the propagation of quadratic constraints described in [29].

5 Computational results

Considered instances

We evaluate our algorithm on several sets of instances. The first set is com-
posed of 90 pure-continuous quadratic instances with box constraints called
boxqp or spar coming from [26, 57]. Then, we perform experiments on 100 in-
stances of quadratically constrained quadratic programs of [17] available at [43].
For those, we consider two classes of instances: the classQCP5 of pure-continuous
instances and the class IQCP5 of pure-integer instances. Finally, we consider the
135 instances of quadratically constrained quadratic programs from [8] called
unitbox.

Experimental environment

Our experiments were carried out on a server with 2 CPU Intel Xeon each of
them having 12 cores and 2 threads of 2.5 GHz and 4 ∗ 16 GB of RAM using a

Global solution of non-convex quadratically constrained quadratic programs 13

Linux operating system. For all algorithms, we use the multi-threading version
of Cplex 12.6.2 with up to 48 threads.

For method MIQCR BB, we used the solver CSDP [23] together with the Conic
Bundle algorithm [41] for solving semi-definite programs (SDP), as described
in [18]. We used the C interface of the solver Cplex 12.6.2 for solving the

quadratic convex problem (P
∗
) at each node of the search tree of MIQCR BB. For

computing feasible local solutions, we use the local search of Cplex 12.6.2 for
class boxqp, and the local search of Scip 3.2.1 [1] for classes QCP5, IQCP5,
and unitbox.

Parameters of MIQCR BB

We set the parameters as follows:

– Phase 1: Parameters axtol, aytol of CSDP [23] are set to 10−5. The pre-
cision of the Conic Bundle [41] is set to 10−5.

– Phase 2: We initialize γ to 0.25 and accuracies as follows:
• relative mipgap of the branch-and-bound: ε = 10−5 for classes boxqp,
QCP5 and IQCP5 and 10−4 for class unitbox.

• absolute accuracy for the constraints violation: εconst = 10−4,
• absolute accuracy for considering a value as zero or as an integer: εzero = 10−6,
• for Cplex 12.6.2 [42], the relative mipgap is 10−5, the absolute gap is

0.99, and the parameter varsel is set to 0.

Solvers used for comparison

– QuadProgBB [27] (MIQCP solver) that performs a finite branch-and-bound,
based on the same semidefinite relaxation as MIQCR BB, but in QuadProgBB

the branch-and-bound enforces the first-order KKT conditions. Here, it runs
with Cplex 12.6.2 [42] and matlab, and the relative mipgap is set to 10−5.

– Cplex 12.6.2 [42] (MIQP solver). This version of Cplex implements the
recent advances introduced in [22], that exploit the performances of Cplex
for binary quadratic programming to solve box-constrained continuous prob-
lems. The relative mipgap is set to 10−5.

– Couenne 0.5 [11] (MINLP solver) that uses a complete linearization as con-
vex relaxation into a SBB procedure. The solver Couenne 0.5 runs with
Cplex 12.6.2, and the relative mipgap is set to 10−5.

– GloMIQO 2 [48] (MIQCP solver) that mixes several algorithmic components
for solving MIQCPs. After a reformulation of the instance, it generates tight
convex relaxations, in particular by detecting special structures. As we do
not have the license of GloMIQO 2, for the results of this method, we take
the results of the paper [48]. We observe that these experiments were carried
out on a server with a very similar configuration to our server. However, the
relative mipgap (10−4) is different from the relative mipgap (10−5) of the
other solvers for the boxqp class.

– Scip 3.2.1 [58] (MINLP solver) that uses a linear outer approximation as
convex relaxation into a sBB. The relative mipgap is set to 10−5 for classes
QCP5 and IQCP5 and to 10−4 for class unitbox.

14 Sourour Elloumi, Amélie Lambert

– BARON 17.3.31 [51] (MINLP solver) that uses linear relaxations combined
with domain reduction strategies within a sBB. The relative mipgap is set to
10−5 for classes boxqp, and QCP5 and IQCP5 and to 10−4 for class unitbox.

5.1 Results for the boxqp instances

This set of 90 instances was proposed in [57] and extended in [26]. They were gen-
erated as follows: nonzeros of Q0 and c0 are integers uniformly generated over
the interval [−50, 50]. The sizes of the instances of [57] are n = 20, 30, 40, 50,
and 60 and the densities vary from 20% to 100%. For the instances of [26] the
sizes are n = 70, 80, 90, and 100 and the densities are 25%, 50%, and 75%. In
these instances J = ∅, r = 0, and for all i ∈ I, li = 0, ui = 1. An instance with
n variables, a density of d%, and whose instance number is k is named spar-n-d-k.

In these experiments, we set the time limit to 1 hour, and we set the node
selection strategy to ”best first”. In Figure 1, we present the performance pro-
file [28] of the CPU times for methods MIQCR BB, QuadprogBB, Cplex, Couenne,
BARON and GloMIQO over the 90 boxqp instances. In this profile we can see that
MIQCR BB outperforms the other algorithms both in terms of the total CPU time
and of the number of instances solved. We do not report results for the solver
Scip as it was less efficient than Couenne. More precisely, it solves 17 instances
out of 90 within the time limit.

Fig. 1. Performance profile of the total time for the boxqp instances with n = 20 to
100 with a time limit of 1 hour.

In Tables 1 and 2 we present a more detailed comparison. Each line corre-
sponds to one instance. We report in Column Gap the initial gap that is equal to

Global solution of non-convex quadratically constrained quadratic programs 15

|Opt−BoundOpt |∗100 where Opt is the best known solution of the instance and Bound
the optimal value of the relaxation at the root node of the branch-and-bound,
in Column Time the CPU time in seconds, where - means that the instance is
unsolved within the time limit, and in Column Nodes the number of nodes vis-
ited. For these instances, the initial gaps of methods MIQCR BB and QuadProgBB

are the same, while the initial gap of Cplex is about 105 times larger. We did
not report the reformulation time, but we observe that in MIQCR BB the reformu-
lation phase represents about 32% of the total solution time, and it represents
about 3.6% for QuadProgBB.

For these instances, Couenne is not able to solve instances with more than 60
variables within the time limit while the other methods solve instances with up
to 100 variables within one hour. We observe that the complete linearization used
in Couenne is outperformed by MIQCR BB as suggested by Corollary 1. Finally,
over the 90 considered instances, Couenne solves 33 instances, GloMIQO solves 71
instances (with a relative gap of 10−4 instead of 10−5 for other methods), Cplex
solves 76 instances, BARON solves 78 instances, QuadProgBB solves 81 instances,
and MIQCR BB solves 87 instances within the time limit. In particular MIQCR BB is
more performant for large instances with high density.

In Table 3, we report the results of MIQCR BB and Cplex for the 9 instances
of boxqp with n = 125. We observe that MIQCR BB is able to solve one more
instance, but Cplex is faster over the 2 instances solved by both methods.

5.2 Instances of quadratically constrained quadratic programs :
IQCP5 and QCP5

We use class IQCP5 from [17] and we build class QCP5 by continous relaxation
of the variables of IQCP5. Each instance consists of minimizing a quadratic
function subject to 5 quadratic inequality constraints. Instances of IQCP5 were
randomly generated as follows:

– `i = 0 and ui = 20, for all i ∈ I = {1, . . . , n}.
– The coefficients ofQ0 are integers uniformly distributed in the interval [−5, 5]

with a density of 75%, and c0 = 0

– The coefficients of Qr are integers uniformly distributed in the interval [0, 10]
with a density of 25%, and cr = 0

– br = b0.1 ∗ (

n∑
i=1

n∑
j=1

qrijuiuj)c.

We use the instances with n = 10, 20, 30, 40 or 50 for each class, and for each
n we have 10 instances. We have a total of 100 instances. The instances are
named QCP5-n-k or IQCP5-n-k where n is the number of variables, and k is
the instance number.

In these experiments, we set the time limit to 1 hour, and we set the node
selection strategy to ”best first” for QCP5 and to ”depth first” for IQCP5. In
Figure 2, we present the performance profile of the CPU times for methods

16 Sourour Elloumi, Amélie Lambert

Fig. 2. Performance profile of the total time for the QCP5 instances with n = 10 to
50 with a time limit of 1 hour.

Fig. 3. Performance profile of the total time for the IQCP5 instances with n = 10 to
50 with a time limit of 1 hour.

Global solution of non-convex quadratically constrained quadratic programs 17

MIQCR BB, Couenne, Scip, and BARON over the 50 QCP5 instances, and in Fig-
ure 3 for the 50 IQCP5 instances. We recall that the difference between classes
QCP5 and IQCP5 is only the type of the variables. In QCP5 all variables are
continuous, while in IQCP5 they are all integers. In these profiles, for both
classes, we observe that MIQCR BB outperforms the other algorithms.

We present in Tables 4–7 a more detailed comparison of the methods. Each
line corresponds to one instance. We report in Column Sdp T. the reformulation
CPU time, and in Column sBB T. the time spent for the sBB. In Table 4, we can
observe that BARON is the fastest solver for the smallest instances and MIQCR BB is
the fastest solver for the largest instances. Moreover, for instances with n = 40,
BARON solves 7 instances over 10 within the time limit, while MIQCR BB solves the
10 instances. In Table 6, we observe that that Couenne is fastest for the smallest
instances (n = 10 or 20), and here again, MIQCR BB is the fastest solver for the
largest instances (n = 30 or 40). Indeed, MIQCR BB solves all these instances,
while Couenne solves 5 out of 20, BARON solves 3 out of 20, and Scip is not able
to solve any instances of these sizes.

We observe that the initial gap with reformulation (P ∗) (S0 = S∗0 : MIQCR BB)
is on average about 15 times smaller than the initial gap with the complete
linearization (S0 = 0n: Couenne) for these instances. It is important to notice
that the sizes of the two reformulations are the same. However, the price of this
better initial gap is the solution of a semi-definite relaxation. In fact this solution
time represents about 38% of the total time on average over the 100 instances.

The results for the 10 generated instances of each class QCP5 and IQCP5

with n = 50 are reported in Tables 5 and 7. MIQCR BB is able to solve 8 instances
of class QCP5 and 4 of class IQCP5 while Couenne, Scip, and BARON cannot
solve any one. We also tested mixed-integer instances built from IQCP5 where
we relax the integrality constraints of half of the variables. Since the results
reveal a similar trend as for instances of classes QCP5 and IQCP5, we did not
report the specific results in this section.

5.3 Results for the unitbox instances

Each instance from [8] consists in minimizing a quadratic function of n contin-
uous variables in the interval [0, 1], subject to m quadratic inequalities. For the
considered instances, n varies from 8 to 50, and m from 8 to 100. An instance is
denoted by unitbox-n-m-k-d where n is the number of variables, m is the number
of quadratic constraints, k is the instance number, and d is the density in %. We
set the time limit to 2 hours, and the node selection strategy to ”best first”.

In Figure 4, we present the performance profile of the CPU times for meth-
ods MIQCR BB, GloMIQO, Scip, and BARON over the 135 unitbox instances. We
observe that MIQCR BB outperforms the other methods. Here again, the results
for GloMIQO are taken from [48].

In Tables 8-10, we present a more detailed comparison of the methods. Each
line corresponds to one instance. We observe that Scip solves 88 instances,
GloMIQO and BARON solve 109 instances, and MIQCR BB solves 119 instances out

18 Sourour Elloumi, Amélie Lambert

Fig. 4. Performance profile of the total time for the unitbox instances with n = 8 to
50 with a time limit of 2 hours.

of 135 within the time limit. Observe that GloMIQO or BARON are faster on most of
the sparse instances, while MIQCR BB is again faster on large and dense instances.

6 Conclusion

We consider the general problem (P) of minimizing a quadratic function subject
to quadratic constraints where the variables can be integer or continuous. In this
paper, we extend the quadratic convex reformulation method to the solution of
(P). Our previous versions of this method could handle these programs with the
restriction that all quadratic sub-functions of purely continuous variables are
already convex.

We start by a reformulation step which solves a semidefinite program (SDP)
in order to build an equivalent quadratic program. From this equivalent program,
we compute a strong quadratic convex relaxation which captures the tightness of
(SDP). In previous versions, in the presence of continuous variables, the reformu-
lated problem was computed thanks to a weaker semidefinite relaxation of (P),
but it could be solved by standard branch-and-bound for mixed-integer quadratic
convex programs. In this paper, to handle the continuous variable case, we build
a tighter convex relaxation, but we can no longer rely on standard branch-and-
bound. We thus develop an appropriate spatial branch-and-bound to solve the
reformulated problem where the bounding step solves our strong quadratic con-

Global solution of non-convex quadratically constrained quadratic programs 19

vex relaxation. Our whole method can be viewed as an improvement of the classic
spatial branch-and-bound based on complete linearization.

We report computational results on 325 instances. These results show that
the method allows us to solve almost all the continuous box-constrained instances
with up to 100 variables and some of the instances with 125 variables. Among
the considered instances with 5 inequality constraints, the method can handle
instances with up to 50 integer or continous variables in less than 1 hours of
computation time. Finally, for the unitbox instances, our method solves 119
instances out of 135 within a time limit of 2 hours, which is, to the best of our
knowledge, the best result for this class of problems.

Acknowledgement: This research was partially funded by the Fondation
Mathématique Jacques Hadamard (FMJH) through the Gaspard Monge Pro-
gram for Optimization and operations research (PGMO). The authors are grate-
full to Alain Billionnet for all our collaborations and for a carefull reading of this
manuscript.

References

1. T. Achterberg. Scip : solving constraint integer programs. Mathematical Program-
ming Computation, (1):1–41, 2009.

2. Claire S Adjiman, Ioannis P Androulakis, and Christodoulos A Floudas. A global
optimization method, αbb, for general twice-differentiable constrained nlpsii. im-
plementation and computational results. Computers & Chemical Engineering,
22(9):1159–1179, 1998.

3. C.S. Adjiman, S. Dallwig, C.A. Floudas, and A. Neumaier. A global optimiza-
tion method, αbb, for general twice-differentiable constrained nlpsi. theoretical
advances. Computers and Chemical Engineering, 22(9):1137–1158, 1998.

4. I.P. Androulakis, C.D. Maranas, and C.A. Floudas. abb : A global optimization
method for general con- strained nonconvex problems. Journal of Global Optimiza-
tion, 7:337–363, 1995.

5. M.F. Anjos and J.B. Lasserre. Handbook of semidefinite, conic and polynomial
optimization: Theory, algorithms, software and applications. International Series
in Operational Research and Management Science, 166, 2012.

6. K. M. Anstreicher. Semidefinite programming versus the reformulation-
linearization technique for nonconvex quadratically constrained quadratic pro-
gramming. Journal of Global Optimization, 43(2):471–484, 2009.

7. C. Audet, J. Brimberg, P. Hansen, S. Le Digabel, and N. Mladenović. Pool-
ing problem: Alternate formulations and solution methods. Management science,
50(6):761–776, 2004.

8. X. Bao, N. V. Sahinidis, and M. Tawarmalani. Multiterm polyhedral relaxations for
nonconvex, quadratically constrained quadratic programs. Optimization Methods
Software, 24(4-5):485–504, 2009.

9. X. Bao, N.V. Sahinidis, and M. Tawarmalani. Semidefinite relaxations for quadrat-
ically constrained quadratic programming: A review and comparisons. Mathemat-
ical Programming, 129:129–157, 2011.

10. P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan. Mixed-
integer nonlinear optimization. Acta Numerica, 22:1–131, 2013.

20 Sourour Elloumi, Amélie Lambert

11. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Waechter. Branching and bounds
tightening techniques for non-convex minlp. Optimization Methods and Software,
4–5(24):597–634, 2009.

12. A. Billionnet. Optimisation discrète, De la modélisation à la résolution par des
logiciels de programmation mathématique. Dunod, 2007.

13. A. Billionnet and S. Elloumi. Using a mixed integer quadratic programming
solver for the unconstrained quadratic 0-1 problem. Mathematical Programming,
109(1):55–68, 2007.

14. A. Billionnet, S. Elloumi, and A. Lambert. Linear reformulations of integer
quadratic programs. In MCO 2008, september 8-10, pages 43–51, 2008.

15. A. Billionnet, S. Elloumi, and A. Lambert. Extending the QCR method to the
case of general mixed integer program. Mathematical Programming, 131(1):381–
401, 2012.

16. A. Billionnet, S. Elloumi, and A. Lambert. A branch and bound algorithm for
general mixed-integer quadratic programs based on quadratic convex relaxation.
Journal of Combinatorial Optimization, 2(28):376–399, 2014.

17. A. Billionnet, S. Elloumi, and A. Lambert. Exact quadratic convex reformulations
of mixed-integer quadratically constrained problems. Mathematical Programming,
158(1):235–266, 2016.

18. A. Billionnet, S. Elloumi, A. Lambert, and A. Wiegele. Using a conic bundle
method to accelerate both phases of a quadratic convex reformulation. To appear,
Informs Journal On Computing, pages 1–15, 2016.

19. A. Billionnet, S. Elloumi, and M. C. Plateau. Improving the performance of stan-
dard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR
method. Discrete Applied Mathematics, 157(6):1185 – 1197, 2009. Reformulation
Techniques and Mathematical Programming.

20. C. Bliek, P. Bonami, and A. Lodi. Solving Mixed-Integer Quadratic Programming
problems with IBM-CPLEX: a progress report. In Proceedings of the Twenty-Sixth
RAMP Symposium, Hosei University, Tokyo, October 16-17, 2014.

21. P. Bonami, L. Biegler, A. Conn, G. Cornuéjols, I. Grossmann, C. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, and A. Waechter. An Algorithmic Framework for
Convex Mixed Integer Nonlinear Programs. Discrete Optimization, 5(2):186–204,
2008.

22. P. Bonami, O. Günlük, and J. Linderoth. Solving box-constrained nonconvex
quadratic programs. optimization online, 2016.

23. B. Borchers. CSDP, A C Library for Semidefinite Programming. Optimization
Methods and Software, 11(1):613–623, 1999.

24. Fani Boukouvala, Ruth Misener, and Christodoulos A Floudas. Global optimiza-
tion advances in mixed-integer nonlinear programming, minlp, and constrained
derivative-free optimization, cdfo. European Journal of Operational Research,
252(3):701–727, 2016.

25. S. Burer and A. Letchford. Non-convex mixed-integer nonlinear programming: a
survey. Surveys in Oper. Res. and Mgmt. Sci., 17(2):97–106, 2012.

26. S. Burer and D. Vandenbussche. Globally solving box-constrained nonconvex
quadratic programs with semidefinite-based finite branch-and-bound. Comput Op-
tim Appl, 43:181–195, 2009.

27. J. Chen and S. Burer. Globally solving nonconvex quadratic programming prob-
lems via completely positive programming. Mathematical Programming Computa-
tion, 4(1):33–52, 2012.

28. D. Dolan and J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91:201–213, 1986.

Global solution of non-convex quadratically constrained quadratic programs 21

29. F. Domes and A. Neumaier. Constraint propagation on quadratic constraints.
Constraints, 15(3):404–429, 2010.

30. M. A. Duran and I. E. Grossmann. A mixed-integer nonlinear programming algo-
rithm for process systems synthesis. AIChE J, 32(4):592–606, 1986.

31. M. A. Duran and I. E. Grossmann. An outer-approximation algorithm for a class of
mixed-integer nonlinear programs. Mathematical Programming, 36:307–339, 1986.

32. J.E. Falk and R.M. SolandErkut. An algorithm for separable nonconvex program-
ming problems. Management Science, 15:550–560, 1969.

33. CA Floudas and CE Gounaris. A review of recent advances in global optimization.
Journal of Global Optimization, 45(1):3–38, 2009.

34. Christodoulos A Floudas and V Visweswaran. A global optimization algorithm
(gop) for certain classes of nonconvex nlpsi. theory. Computers & chemical engi-
neering, 14(12):1397–1417, 1990.

35. Christodoulos A Floudas and Vishy Visweswaran. Primal-relaxed dual global opti-
mization approach. Journal of Optimization Theory and Applications, 78(2):187–
225, 1993.

36. R. Fortet. L’algèbre de Boole et ses Applications en Recherche Opérationnelle.
Cahiers du Centre d’Etudes de Recherche Opérationnelle, 4:5–36, 1959.

37. M.R. Garey and D.S. Johnson. Computers and Intractability: A guide to the theory
of NP-Completness. W.H. Freeman, San Francisco, CA, 1979.

38. W.W. Hager and J.T. Hungerford. Continuous quadratic programming formula-
tions of optimization problems on graphs. European Journal of Operational Re-
search, 240(2):328 – 337, 2015.

39. P. L. Hammer and A.A. Rubin. Some remarks on quadratic programming with 0-1
variables. Revue Française d’Informatique et de Recherche Opérationnelle, 4:67–79,
1970.

40. C.A. Haverly. Studies of the behaviour of recursion for the pooling problem. ACM
SIGMAP Bulletin, 26, 1978.

41. C. Helmberg. Conic Bundle v0.3.10, 2011.
42. IBM-ILOG. IBM ILOG CPLEX 12.6.2 Reference Manual, 2015.
43. A. Lambert. IQCP/MIQCP: Library of Integer and Mixed-Integer Quadratic

Quadratically Constrained Programs. ”http://cedric.cnam.fr/~lamberta/
Library/iqcp_miqcp.html”, 2013.

44. M. Madani and M. Van Vyve. Computationally efficient MIP formulation and
algorithms for european day-ahead electricity market auctions. European Journal
of Operational Research, 242(2):580 – 593, 2015.

45. G.P. McCormick. Computability of global solutions to factorable non-convex pro-
grams: Part i - convex underestimating problems. Mathematical Programming,
10(1):147–175, 1976.

46. R. Misener and C. A. Floudas. Global optimization of mixed-integer quadratically-
constrained quadratic programs (MIQCQP) through piecewise-linear and edge-
concave relaxations. Math. Program. B, 136(1):155–182, 2012. http://www.

optimization-online.org/DB_HTML/2011/11/3240.html.
47. R. Misener and C. A. Floudas. GloMIQO: Global mixed-integer quadratic opti-

mizer. Journal of Global Optimization, 57(1):3–50, 2013.
48. R. Misener, J. B. Smadbeck, and C. A. Floudas. Dynamically generated cutting

planes for mixed-integer quadratically constrained quadratic programs and their
incorporation into GloMIQO 2. Optimization Methods and Software, 30(1):215–
249, 2015.

49. J.J. Moré and G. Toraldo. Algorithms for bound constrained quadratic program-
ming problems. Numerische Mathematik, 55(4):377–400, 1989.

22 Sourour Elloumi, Amélie Lambert

50. M. Kilinç P. Bonami and J. Linderoth. Algorithms and software for convex mixed
integer nonlinear programs. In Mixed integer nonlinear programming, pages 1–39.
Springer New York, 2012.

51. N.V. Sahinidis and M. Tawarmalani. Baron 9.0.4: Global optimization of mixed-
integer nonlinear programs. User’s Manual, 2010.

52. A. Saxena, P. Bonami, and J. Lee. Convex relaxations of non-convex mixed in-
teger quadratically constrained programs: projected formulations. Mathematical
Programming, 130:359–413, 2011.

53. H. D. Sherali and W. P. Adams. A hierarchy of relaxation between the continuous
and convex hull representations for zero-one programming problems. SIAM Journal
Discrete Mathematics, 3:411–430, 1990.

54. M. Tawarmalani and N. V. Sahinidis. Global optimization of mixed-integer nonlin-
ear programs: A theoretical and computational study. Mathematical programming,
99(3):563–591, 2004.

55. M. Tawarmalani and N.V. Sahinidis. Convexification and global optimization in
continuous and mixed-integer nonlinear programming. Kluwer Academic Publish-
ing, Dordrecht, The Netherlands, 2002.

56. M. Tawarmalani and N.V. Sahinidis. A polyhedral branch-and-cut approach to
global optimization. Mathematical Programming, 103(2):225–249, 2005.

57. D. Vandenbussche and G. Nemhauser. A branch-and-cut algorithm for nonconvex
quadratic programs with box constraints. Mathematical Programming, 102(3):259–
275, 2005.

58. S. Vigerske and A. Gleixner. Scip: Global optimization of mixed-integer nonlinear
programs in a branch-and-cut framework. optimization online, 2016.

59. V Visweswaran and CA Floudas. New properties and computational improve-
ment of the gop algorithm for problems with quadratic objective functions and
constraints. Journal of Global Optimization, 3(4):439–462, 1993.

60. V Visweswaran and CA Floudast. A global optimization algorithm (gop) for certain
classes of nonconvex nlpsii. application of theory and test problems. Computers &
chemical engineering, 14(12):1419–1434, 1990.

61. K. Zorn and N. V. Sahinidis. Computational experience with applications of bi-
linear cutting planes. Industrial & Engineering Chemistry Research, 52(22):7514–
7525, 2013.

62. K. Zorn and N. V. Sahinidis. Global optimization of general non-convex prob-
lems with intermediate bilinear substructures. Optimization Methods and Software,
29(3):442–462, 2014.

