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Department of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, Illinois, USA – 60208

December 23, 2016

Abstract

We consider the problem of minimizing a continuous function that may be nonsmooth and nonconvex,
subject to bound constraints. We propose an algorithm that uses the L-BFGS quasi-Newton approxima-
tion of the problem’s curvature together with a variant of the weak Wolfe line search. The key ingredient
of the method is an active-set selection strategy that defines the subspace in which search directions
are computed. To overcome the inherent shortsightedness of the gradient for a nonsmooth function, we
propose two strategies. The first relies on an approximation of the ε-minimum norm subgradient, and
the second uses an iterative corrective loop that augments the active set based on the resulting search di-
rections. We describe a Python implementation of the proposed algorithm and present numerical results
on a set of standard test problems to illustrate the efficacy of our approach.

Keywords: nonsmooth optimization; bound constraints; quasi-Newton; L-BFGS; active-set method;
active-set correction

1 Introduction

We propose an algorithm for solving bound-constrained optimization problems of the form

min
x∈Rn

f(x) (1)

s.t. l ≤ x ≤ u,

where the objective function f : Rn −→ R is continuous but may not be differentiable everywhere. No
assumptions are placed on the convexity of f . The lower bounds l ∈ (R ∪ {−∞})n and upper bounds
u ∈ (R ∪ {∞})n can take values of −∞ or ∞ whenever the variables are unbounded in those coordinates.
We assume that the problem is feasible; i.e., l ≤ u.

Many algorithms have been proposed for solving (1) when x is unconstrained. Some of these methods
include gradient-sampling methods [4, 11, 25], bundle methods [16, 17, 30], quasi-Newton methods [12,
20, 26, 27, 33], and hybrid methods [12]. Gradient-sampling methods randomly sample gradients in the
vicinity of the iterate to calculate an estimate of the minimum-norm subgradient. In conjunction with an
Armijo-like line search, global convergence can be proved using these minimum-norm subgradients as search
directions. Bundle methods aggregate subgradients from previous iterates and iteratively solve piecewise-
quadratic approximations of the objective function to generate steps. Recently, Lewis and Overton [26]
observed that the unadulterated BFGS method works very well when applied to unconstrained nonsmooth
optimization problems so long as the weak Wolfe line search is performed. Skajaa [33] reported similar results
for L-BFGS [28]. For problems ranging from n = 100 to n = 10000, it was found that L-BFGS was not only
more efficient in solving test problems, but it was also more reliable compared to other methods. However,
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theoretical convergence guarantees (or the lack thereof) of (L-)BFGS for nonsmooth problems remain to
be shown. Recent efforts (e.g., [12]) focused on the design of a hybrid strategy that retains the efficacy of
standard L-BFGS but ensures convergence through a gradient-sampling approach. Other approaches for
solving (1) include subgradient methods, quasi-secant methods, and discrete gradient methods. We refer the
reader to [2, 8, 21, 30, 33] for a detailed summary of these methods and their numerical performance.

In certain applications, it is necessary to optimize a nonsmooth objective function subject to bound con-
straints. These include applications in many fields including statistics, optimal control, and as subproblems
for certain robust optimization problems [2]. Some of the algorithms described above can be extended to solve
problems with bound constraints. For instance, the LMBM-B [22, 23] method extends the limited-memory
bundle method to (1). Gradient-sampling methods have also been extended to the case of constrained op-
timization [10]. A natural question is whether the surprising and remarkable success of the unadulterated
(L-)BFGS method in the unconstrained case can be extended to problems with bound constraints.

The L-BFGS-B method is a variant of L-BFGS for minimizing a smooth objective function over box
constraints. At an iterate xk, the method first determines an active set by computing a Cauchy point x̃k as
the first local minimizer α > 0 of f along the gradient-projection path α 7→ P (xk−α∇f(xk)). Here, P (v) is
the orthogonal projection of a vector v ∈ Rn onto the feasible hypercube [l, u]. The bound constraints that
are tight at the Cauchy point x̃k then define an active set, Ak = {i : x̃ki ∈ {li, ui}}, and a subspace step p̃k

is computed as the solution of the problem

min
p∈Rn

f(xk) +∇f(xk)T p+
1

2
pTBkp (2)

s.t. pi = 0 for all i ∈ Ak.

The objective in this subproblem is a quadratic model of the original objective function. Its Hessian matrix
Bk is defined by the L-BFGS update and therefore is positive definite. Subproblem (2) is solved efficiently
using the compact-form representation of L-BFGS [7]. Finally, the overall step pk = (x̃k + p̃k) − xk is
computed and a projected line search is performed along the path α 7→ P (xk + αpk) to find a step size
satisfying the strong Wolfe conditions.

Henao et al. [18] recently proposed L-BFGS-B-NS as a variant of L-BFGS-B for solving (1) with a
nonsmooth objective function. The only difference to the original method is that the strong Wolfe line
search is replaced with the weak Wolfe line search. This is the same modification that was suggested by
Lewis and Overton [26] in the unconstrained case.

In this paper, we propose a different adaptation of the L-BFGS method. Our method first determines
an active set based on the bound constraints that are tight at the current iterate, without referring to a
Cauchy point. After computing the search direction from (2), a new iterate is determined using a variant of
the weak Wolfe line search.

The key ingredients in our method are active-set selection strategies that take into account the non-
smoothness of the function. First, we propose the use of an approximation of the minimum-norm ε-
subgradient instead of the gradient to determine which bound constraints are binding at the current iterate.
Second, we explore an iterative corrective mechanism that augments the active set until the final search
direction points inside the feasible region.

Throughout the paper, we assume that the function is differentiable at each iterate and trial point, and
that its gradient can be computed. This is in line with the work by Lewis and Overton [26] who make the
same assumption for their numerical experiments. Burke et al. [4] describe a mechanism that perturbs a trial
point in case f is not differentiable at that point. In the box-constrained case, the boundary of the feasible
region might align with a manifold of nondifferentiability. Then, the projections carried out during the line
search might generate trial points that lie in this manifold. To circumvent this problem, we assume that
there is an extension of the function beyond the feasible region that is differentiable at almost all boundary
points. For example, consider the feasible set [0, 1] ⊂ R with objective function f(x) = |x| which is not
differentiable at the boundary point x = 0. When we replace the objective with f̃(x) = x, the objective
values are identical within the feasible region, resulting in the same optimal solution, but the function is now
differentiable at x = 0.

The paper is organized as follows. In the subsection to follow, we introduce some notation that is
used throughout the paper. In Section 2, we describe our algorithm including the active-set prediction and
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correction strategies, as well as the proposed weak Wolfe line search. Finally, in Section 3, we present details
of our Python implementation and detailed numerical results examining the efficacy of our approach.

1.1 Notation

We use superscripts to denote the iteration index and subscripts to denote a specific element of a vector.
For instance, xkj refers to the jth element of the kth iterate. We abbreviate [∇f(x)]i by ∇if(x). We define
the instantaneous projection of a direction p at an iterate x as

[T (x, p)]i =


pi if xi ∈ (li, ui)

max(pi, 0) if xi = li

min(pi, 0) if xi = ui.

(3)

This operator zeroes out those components of p for which x is at its bounds with p pointing in the direction
of infeasibility. We use the notation Bε(x) to denote the closed ball of radius ε centered at x. Further, we
denote the cardinality of a set A by |A|. Finally, given a vector v and a set of indices A, vA refers to the
subvector corresponding to the indices in A. Similarly, given a matrix M , then MA,B denotes the submatrix
with row indices given in A and column indices given in B. Finally, we let N = {1, . . . , n} be the set of all
variable indices.

2 Proposed Algorithm

2.1 Active-Set Framework

The proposed algorithm is an active-set method which, at each iteration, determines an estimate Ak of the
optimal active set A∗ := {i ∈ N : x∗i = li or x∗i = ui} of a local solution x∗ of (1). We say that the bound
constraints in A∗ are tight at x∗. The L-BFGS-B algorithm chooses as active set Ak the bounds at which
the Cauchy point is tight. In contrast, our method chooses from bounds for which the current iterate xk

itself is tight, without referring to a Cauchy point.
For a smooth objective function, we might consider the set of the tight constraints that are binding; i.e.,

Bk(gk) = {i ∈ N : xki = li and gki ≥ 0} ∪ {i ∈ N : xki = ui and gki ≤ 0} (4)

with gk = ∇f(xk). These are the coordinates for which the gradient predicts no decrease in the objective if
the corresponding components of the iterate are moved inside the feasible region. With this, ∇if(xk) = 0
for all i ∈ N \ B(∇f(xk)) if and only if xk satisfies the first-order optimality conditions for problem (1) at
xk; i.e.,

∇if(xk) = 0 for all i with li < xki < ui

∇if(xk) ≥ 0 for all i with xki = li (5)

∇if(xk) ≤ 0 for all i with xki = ui.

Consequently, the subspace step pk obtained from solving (2) with Ak = B(∇f(xk)) is zero if and only if xk

is a first-order optimal point. In addition, it can be shown that pk is a descent direction for the projected
line search; i.e., the function α 7→ f(P (xk + αpk)) is decreasing for α > 0 sufficiently small. (This is a
consequence of [3, Proposition 1].)

Consider a simple algorithm that computes search directions from (2) with Ak = B(∇f(xk)) and performs
a projected line search to determine the new iterate xk+1 = P (xk+αkpk) with some step size αk > 0. Suppose
that f is differentiable and that the iterates converge to a non-degenerate first-order optimal x∗; i.e., x∗

satisfies (5) and ∇if(x∗) 6= 0 for all i ∈ A∗. Further assume that at some iterate xk sufficiently close to x∗,
the bounds that are tight at xk are identical to the optimal active set; i.e., {i ∈ N : xki = li or xki = ui} = A∗.
It is then not difficult to show that Ak = B(∇f(x∗)) for all large k. In other words, the optimal active set
is identified in a finite number of iterations. This observation motivates the choice Ak = B(∇f(xk)).
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Figure 1: The contour lines of the objective function in (6). The arrows indicate the gradients of the function.

The conclusion in the previous paragraph was drawn under the strong assumption that an iterate is
encountered at which all constraints in A∗ are tight. To the best of our knowledge, no convergence proof
has been established for the simple algorithm when this assumption is lifted, even when f is differentiable.
Nevertheless, despite the lack of theoretical convergence guarantees, our proposed active-set selection strategy
is based on (4) since it seems to perform well in practice in our setting. Recall that global convergence has
not been proved for the unadulterated L-BFGS algorithm with a nonsmooth objective function even in the
unconstrained case.

In the context of nonsmooth optimization, the gradient of the objective function can be very myopic
in regions close to a manifold on which the function is nondifferentiable, and a gradient-based active-set
identification can be quite misleading. We illustrate this with a simple example, depicted in Figure 1.

Consider the problem

min
x∈R2

|x1 − x2|+
1

2
(x1 + 0.1x2)2 (6)

s.t. x1 ≤ −0.5

with optimal solution x∗ = (−0.5,−0.5)T . Suppose we have an iterate xk = (−0.5, a)T for a number
a ∈ (−5,−0.5). The function is differentiable at this point with gradient ∇f(xk) = (1,−1)T + (−0.5 +
0.1a)(1, 0.1)T = (0.5 + 0.1a,−1.05 + 0.01a)T . Given that a > −5, we have ∇1f(xk) > 0. Therefore, the
choice Ak = B(∇f(xk)) predicts x1 to be free, no matter how close xk is to x∗. This determination is
incorrect since x1 is indeed at its bound at the solution. Notice that the failure of identification is caused
by the inherent shortsightedness of the gradient and not due to some kind of degeneracy.

We point out that also the active-set identification of the L-BFGS-B method does not recognize that x1

is tight at the solution. The L-BFGS-B method, as described previously, locates the first minimizer of the
gradient-projection path, α 7→ P (xk − α∇f(xk)), for the active-set identification. For problem (6), the ray
{xk−α∇f(xk) : α > 0}, for an iterate xk = (−0.5, a)T with a ∈ (−5,−0.5), never intersects a bound. Thus,
also in this case, x1 is not recognized as active.

In order to compensate for the shortsightedness of the gradient, we propose two strategies: (i) an active-set
prediction that considers an approximation g̃k of minimum-norm subgradients of nearby non-differentiable
points to determine the binding constraints B(g̃k) (Section 2.2); and (ii) a correction mechanism that aug-
ments the active set if the search direction, computed with L-BFGS approximation of the nonsmooth objec-
tive, indicates that a variable should be active (Section 2.4).
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2.2 Active-Set Prediction Using a Subgradient Approximation

Continuing with problem (6), let us consider the scenario in which we use the ε-minimum-norm subgradient
(ε-MNSG) based on the Clarke ε-subdifferential [4] for the active-set prediction. For a fixed ε > 0, the
ε-MNSG is defined as

ĝε(x) = arg min
y∈cl conv ∇f(Bε(x))

1

2
‖y‖22. (7)

Here, ∇f(Bε(x)) = {∇f(y) : y ∈ Bε(x)}, and the term “cl conv” indicates the closure of the convex hull of
a set. When ε is sufficiently small and a is close to −0.5, the ε-MNSG at xk = (−0.5, a)T is approximately
ĝε(x

k) ≈ (−0.3025,−0.3025)T . The active set Ak = B(ĝε(x
k)) correctly identifies that x1 is tight at the

solution. Indeed, the ε-MNSG attempts to be less myopic than the gradient and forms the basis for gradient-
sampling methods [4]. This motivates us to base the active-set identification on the ε-MNSG instead of the
gradient.

Computing the true ε-MNSG is usually not feasible, due to the complex nature of ∇f(Bε(x
k)). Instead,

gradient sampling methods work with an approximation g̃k that is based on the gradients at points from a

finite random subsample Gk = {xk,1, . . . , xk,lk} of the ball Bε(x
k). More specifically, g̃k =

∑lk

i=1∇f(xk,i)λ?i
where λ? is the solution of the convex quadratic problem

min
λ∈Rlk

1

2

∥∥∥∥∥∥
lk∑
i=1

∇f(xk,i)λi

∥∥∥∥∥∥
2

2

s.t.

lk∑
i=1

λi = 1 (8)

0 ≤ λi ≤ 1 for all i = 1, . . . , lk.

A good approximation of the ε-MNSG typically requires a large number lk of gradient evaluations. For
the purpose of determining the active set, however, an inexact estimate might suffice, since its main purpose
is to capture roughly the geometry of the nonsmooth function. It is not used for the step computation itself.
To avoid additional gradient evaluations, we simply choose Gk = {xk, . . . , xmax{0,k−M}} to contain the most
recent M iterates. This strategy is motivated by two observations: (i) as we will describe in Section 2.5,
the line search encourages the iterates to cross over manifolds of nondifferentiability and thus, the gradients
for Gk represent different “pieces” of the nonsmooth function; and (ii) near the solution, where active-set
prediction strategies are arguably more important, the steps taken by the algorithm are small and the points
in Gk are then from a small neighborhood around the current iterate.

Motivated by these observations, our first active-set selection strategy chooses

Ak = Bk(g̃k) ∪ Bk(∇f(xk)). (9)

Note that we include the bound constraints identified by the gradient ∇f(xk) as well. We observed in our
experiments that this led to better performance. We speculate that, in regions not close to a manifold on
which the function is nonsmooth, the active set identified by the gradient is often reliable and the subgradient
approximation might cause spurious identification, when the points in Gk are not close to each other.

2.3 Computation of the Search Direction

Our second active-set strategy loops over candidate choices for the active set that are evaluated based on
the search directions they generate. We describe the step computation first.

The search directions are based on the BFGS method [31]. This method constructs and updates a convex
second-order model of the objective function requiring only the first-order derivatives. Given an estimate,
Bl, of the curvature of the objective function, the BFGS method revises the estimate using a rank-2 update
as

Bl+1 = Bl +
yl(yl)T

(yl)T sl
− Blsl(sl)TBl

(sl)TBlsl
, (10)
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where

sl = xl+1 − xl (11a)

yl = ∇f(xl+1)−∇f(xl). (11b)

One usually requires that the curvature condition

(sl)T yl > 0 (12)

holds, since then Bl remains positive definite if the initial matrix B0 is positive definite. For smooth convex
objective functions, the BFGS method possesses strong theoretical properties including global convergence
and superlinear local convergence. Even though only limited theoretical convergence guarantees have been
established for nonconvex objectives, many have noted good performance on a variety of problems.

The original BFGS method requires the storage and manipulation of an n × n matrix. For large-scale
problems, this is unwieldy. The limited-memory BFGS (L-BFGS) method [28] attempts to alleviate this
handicap by storing only the past m curvature pairs (sl, yl). The matrix Bl itself is never explicitly con-
structed. The value for m, also called as the L-BFGS memory, is often in the range of 5–20. This reduces the
storage from O(n2) to O(mn). The complexity of the search direction computation in the L-BFGS method
is also reduced from O(n2) to O(mn).

Given an active set Ak and an L-BFGS approximation Bk to the curvature of the problem, we generate
the search direction pk as the solution to subproblem (2). Here, all components of pk belonging to Ak are
set to zero, and the remaining entries are obtained from a linear system involving a symmetric submatrix of
Bk. Making use of the L-BFGS compact representation matrices [6, 7], the step can be compute efficiently,
using 2m2t+ 6mt+ 4t+O(m3) operations where t = |Ak|.

To specify the L-BFGS approximation in a given iteration k, it is necessary to provide an initial matrix
Bk,0, from which Bk = Bk,m is generated by repeatedly applying the update formula (10). The matrix
Bk,0 is an estimate of the curvature of f . This choice, especially when the L-BFGS memory m is low, has

direct consequences on the quality of the search direction. For smooth optimization, θ = (sk)T yk

(yk)T yk
is often

recommended and is found to work well in a variety of applications. Intuitively, the ratio is justified since it
is a scalar approximation to ∇2f(xk) [31]. However, for nonsmooth optimization this choice seems to lead
to inferior performance. Instead, Curtis and Que [12] proposed θ = max(1.0,min(‖∇f(xk)‖∞, 108)). We use
this choice in our implementation as well.

2.4 An Active-Set Correction Mechanism

In Section 2.2, we described an active-set identification mechanism that is based on an approximation of a
subgradient. This strategy attempts to guess directly which bounds are tight at the optimal solution.

Next we describe another approach using an iterative correction procedure that judges the quality of a
candidate active set and adjusts it if necessary. The quality of the active set is adjudged through the search
direction generated using it. The goal is to obtain a direction that is feasible in the sense that a sufficiently
small step into this direction does not leave the feasible region. If, for a given candidate active set, there is
a variable that is tight at the current iterate and the candidate search direction points outside the feasible
region, then this variable is added to the active set and the procedure is repeated. Similar mechanisms have
been used previously, for example, for solving convex quadratic programs [9, 19] and `1-regularized convex
optimization problems [5, 24].

For ease of notation, we drop the iteration index k for the remainder of this section. Given an iterate
x, we let g = ∇f(x), and we define the set of interior variables, F = {i : li < xi < ui} and the set of
variables with tight bound constraints, F̄ = N \ F . Algorithm 1 formally states the proposed active-set
correction procedure. When there are no tight bounds, the active set must be empty, and step 4 immediately
returns the unrestricted search direction in the full space. Otherwise, the t-loop computes a potential search
direction in step 7 and tests if there are any components, collected in the set Ct, that would take a variable
instantaneously outside its bound constraints. Such components are added to the active set, until a feasible
direction is found. Clearly, the loop terminates in finite time, since At grows by at least one element per
iteration.

6



Algorithm 1 ActiveSetCorrection

Inputs: Current iterate x; initial active set Ainit ⊆ F̄ .
Output: Final active set A with corresponding search direction p.

1: Initialize t← 0 and set A0 = Ainit.
2: if F̄ = ∅ then . Nothing to do if there are no tight bounds
3: Compute p as solution of (2) with Ak = ∅.
4: return A = ∅ and p.
5: end if
6: for t = 0, 1, 2, . . . do
7: Compute pt as solution of (2) with Ak = At. . Potential search direction
8: Set Ct = {i ∈ F̄ \ At : T (x, pt)i 6= pti}. . Variables to be added
9: if Ct = ∅ then

10: return A = At and p = pt. . No more corrections necessary
11: end if
12: Set At+1 = At ∪ Ct.
13: end for

The approach described in Section 2.2 uses a subgradient approximation to overcome the shortsightedness
of the gradient when predicting the optimal active set. In contrast, the corrective procedure in Algorithm 1
exploits the fact that the L-BFGS approximation of the problem curvature contains information about the
structure of the nonsmoothness. It has been observed that the (L-)BFGS approximation of a nonsmooth
objective function is able to approximate the U- and V-spaces of the objective function [26, 33]. Roughly
speaking, the U-space of f at a point x is the subspace tangent to the manifold of points at which f is not
differentiable. The V-space is the orthogonal complement of the U-space. In [26], Lewis and Overton hypoth-
esized that the V-space of a nonsmooth function can be numerically approximated within the unadulterated
BFGS method through the eigenvectors of Bk corresponding to eigenvalues that converge to infinity.

In our example problem (6), the V-space at any point x with x1 = x2, including the optimal solution,
is spanned by (1,−1)T . When we apply the proposed method from random starting points, the iterates
converge to the solution (−0.5,−0.5)T . After some iterations, the BFGS matrix is approximately

Bk ≈ yk ·
[

1 −1
−1 1

]
(13)

with some sequence yk converging to infinity. Note that the eigenvectors of Bk suggest precise recovery of
the U- and V-spaces of the objective function. In particular, the eigenvector (1,−1)T with respect to the
asymptotically infinite eigenvalue indeed spans the V-space of f at the optimal solution. Even though the
matrix on the right-hand side of (13) is singular, Bk itself is always nonsingular. Numerically we observe
that the inverse matrix Hk = (Bk)−1 is approximately

Hk ≈ ỹk ·
[
1 1
1 1

]
(14)

with some sequence ỹk converging to zero, and now (1,−1)T is an eigenvector with respect to the eigenvalue
approaching zero.

Dropping the iteration index k, consider again an iterate of the form x = (−0.5, a)T with a ∈ (−5,−0.5)
and gradient ∇f(x) = (0.5 + 0.1a,−1.05 + 0.01a)T . In Section 2.1 we observed that the näıve choice
A = B(∇f(x)) = ∅ fails to recognize that x1 is active at the solution. If we choose Ainit = B(∇f(x)) in
Algorithm 1, we have A0 = ∅ in the first iteration. With the approximation (14), the search direction in
step 7 becomes p0 ≈ ỹ · (0.55− 0.11a, 0.55− 0.11a)T . Clearly, from the current iterate with x1 = −0.5, this
direction points out of the feasible region because p0

1 > 1. Therefore, T (x, p0)1 6= p0
1 and C0 = {1}. In the

next iteration of the correction loop, A1 = {1} is accepted as the final active set, and correctly predicts that
x1 is active at the solution.

The following lemma shows that the correction mechanism cannot lead to a spurious termination of the
overall algorithm. A zero step can be generated only when the current iterate is already a stationary point
of the objective function (assuming that A0 is initialized as B(∇f(xk))).
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Lemma 2.1. Suppose A0 = B(∇f(xk)) and the corrective loop terminates with p = 0. Then, the current
iterate xk satisfies the first order optimality conditions (5) for problem (1).

Proof of Lemma 2.1. For ease of exposition, we assume that l = 0 and u =∞ in problem (1). Let t̂ be the

iteration in which the method terminates with p = pt̂ = 0 and let g = ∇f(x).

Given the active set At̂ ⊆ F̄ and defining Āt̂ := F̄ \ At̂, the solution p to (2) (with Ak = At̂) is obtained
by solving the linear system [

BFF BFĀt̂
BĀt̂F BĀt̂Āt̂

](
pF
pĀt̂

)
= −

(
gF
gĀt̂

)
(15)

and setting
pAt̂ = 0. (16)

Because the L-BFGS approximation B is positive definite, (15) together with pt̂ = 0 implies

gF = 0 and gĀt̂ = 0. (17)

For the purpose of deriving a contradiction suppose that t̂ > 0. Then At̂ = At̂−1 ∪ C t̂−1, and therefore

Āt̂−1 = Āt̂ ∪ C t̂−1. By definition, pt̂−1
i < 0 for every i ∈ C t̂−1. Since C t̂−1 6= ∅, we have pt̂−1 6= 0. Consider

the linear system from which pt̂−1 is computed: BFF BFĀt̂ BFCt̂−1

BĀt̂F BĀt̂Āt̂ BĀt̂Ct̂−1

BCt̂−1F BCt̂−1Āt̂ BCt̂−1Ct̂−1


︸ ︷︷ ︸

=:B̂t̂−1

 pt̂−1
F
pt̂−1

Āt̂

pt̂−1

Ct̂−1


︸ ︷︷ ︸

=:p̂t̂−1

= −

 gF
gĀt̂
gCt̂−1


︸ ︷︷ ︸

=:ĝt̂−1

.

With (17) we obtain

(gCt̂−1)T pt̂−1

Ct̂−1
= (gt̂−1)T p̂t̂−1 = −(p̂t̂−1)TB t̂−1p̂t̂−1 < 0 (18)

because B is positive definite and pt̂−1 6= 0.
On the other hand, C t̂−1 ⊆ F̄ \ At̂−1 ⊆ F̄ \ At̂−2 ⊆ . . . ⊆ F̄ \ A0 = F̄ \ B(g). From (4) we then have

gi < 0 for all i ∈ C t̂−1. Also, from the definition of C t̂−1, it is pt̂−1
i < 0 for all i ∈ C t̂−1. Therefore,

(gCt̂−1)T pt̂−1

Ct̂−1
=

∑
i∈Ct̂−1

gip
t̂−1
i > 0,

in contradiction to (18).
It follows that t̂ must be zero, and (17) yields that gi = 0 for any i 6∈ A0 = B(∇f(xk)). Consequently,

(5) holds.

2.5 Line search

Once a search direction pk at an iterate xk has been calculated, the algorithm determines a step size αk > 0
to generate the next iterate, xk+1 = P (xk + αkpk). The projection ensures that the new iterate is feasible.

For the unconstrained minimization of a nonsmooth function, Lewis and Overton [26] use the weak Wolfe
conditions (19) and (20) to determine whether a trial point xtrial = xk + αpk is acceptable as a new iterate.
Given fixed values for c1, c2 ∈ (0, 1) with c1 < c2, the first condition,

f(xtrial) ≤ f(xk) + αc1∇f(xk)T pk, (19)

ensures that the objective function decreases by at least a fraction of what is predicted by a linear approxi-
mation that is based on the gradient. Because the objective is nonsmooth, the linear model might be a good
approximation only for very small step sizes α. Nevertheless, since f is assumed to be differentiable at xk,
condition (19) can be satisfied as long as α is sufficiently small.

The second condition,
∇f(xtrial)T pk ≥ c2∇f(xk)T pk, (20)
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imposes that the slope of the function φ(α) = f(xk+αpk) is less steep at α than at 0, indicating that sufficient
progress towards a local minimizer of φ(α) is made. With a nonsmooth objective, a local minimizer of φ(α)
might be at a point where f (and hence φ) is nondifferentiable. If the current iterate is close to such a
point, requiring (20) leads to a step size α that is beyond the point of nondifferentiability. This observation
is crucial and provides the main intuition why the BFGS algorithm works well for nonsmooth problems.
Because the next iterate lies on another “smooth piece” of the nonsmooth function, the new gradient is quite
different from the current gradient, even when the next iterate is very nearby. Recalling the definition (11)
of sk and yk in the BFGS update, we see that then the gradient difference yk is much larger in size than
the step sk. Consequently, high curvature in the direction sk is incorporated into the BFGS update Bk+1,
approximating the infinite curvature at the point of nondifferentiability.

Lewis and Overton [26] prove that, in the absence of bounds, a step size α satisfying both (19) and (20)
always exists, and they provide a bracketing procedure to find it. We point out that (20) also guarantees
that the (sk, yk) pair for the BFGS update satisfies (sk)T yk > 0 so that the update is well-defined.

On the other hand, for the minimization of a smooth objective function subject to bound constraints,
Ferry [14] proposed a generalized Wolfe line search which replaces the search direction by p̄k = T (xk, pk).
Recalling the definition of T in (3), we see that p̄k is the modified search direction that zeros out all
components that would result in an immediate violation of a constraint. With this, the Wolfe conditions
suggested by Ferry [14] are

f(xtrial) ≤ f(xk) + αc1∇f(xk)T p̄k (21)

∇f(xtrial)TT (xtrial, pk) ≥ c2∇f(xk)T p̄k. (22)

We adopt these conditions in our context of minimizing a nonsmooth objective. Algorithm 2 describes the
corresponding bracketing mechanism. Note that, in the absence of bounds, this procedure is identical to the
line search algorithm proposed by Lewis and Overton [26]. When f is smooth, Ferry [14] showed that there
always exists a step size α that satisfies both (21) and (22). For a nonsmooth objective, such a step size may
not exist. In our method, when a suitable step size cannot be found in step 16, finite termination is ensured
by the termination test in step 24.

The bracketing mechanism generates a sequence of values for U and L in a way that shrinks the length
of the interval [L,U ] to zero (see steps 20 and 22 together with steps 11 and 14). Because it is not clear
whether a step size satisfying both (21) and (22) can be found, the algorithm will attempt only a moderate
number of trial step sizes, until the relative interval length is on the order of εrel. Whenever a step size is
encountered that satisfies the sufficient decrease condition (21), step 14 sets L to this value (unless the search
is terminated in step 16). Therefore, when step 26 returns a nonzero step size, it is guaranteed that the next
iterate will have a smaller objective value, and so the overall optimization algorithm cannot cycle. On the
other hand, if L is zero in step 28, the trial step size U = α has become smaller than εabs. In that case, we
declare a line search error, which is likely caused by numerical issues in the search direction computation
or round-off in the function evaluation. Finally, it may happen that the computed search direction is such
that P (x+ αp) = x for any α > 0. Then there is no point in conducting a line search and we terminate the
optimization with an error message in step 6. This may occur due to numerical problems during the step
computation.

2.6 Main Algorithm

The overall optimization algorithm for solving (1) is given in Algorithm 3. Step 6 is purposely left vague,
because we will explore different alternatives for the active-set selection. The experiments in the following
section consider the following options:

Variant 1 Choose the active set based on the gradient at the current iterate, Ak = B(∇f(xk)).

Variant 2 Choose the active set based on the subgradient approximation using (9).

Variant 3 Compute the active set from the correction procedure Algorithm 1 with initial guess Ainit =
B(∇f(xk)).

9



Algorithm 2 ModifiedWolfe

Inputs: Current iterate x and a search direction p.
Output: Step size α to generate next iterate.
Parameters: c1, c2 ∈ (0, 1) with c1 < c2; εabs, εrel > 0.

1: Set L = 0

2: Set U = maxi{γi}, where γi
def
=


ui−xi
pi

pi > 0 and xi 6= ui;
xi−li
pi

pi < 0 and xi 6= li;

∞ otherwise.

3: Set α = min(1, U).
4: Compute p̄ = T (x, p).
5: if p̄ = 0 then
6: terminate with “No search direction”. . Error due to bad search direction
7: end if
8: for t = 0, 1, 2, . . . do
9: Set xtrial = P (x+ αp̄).

10: if (21) does not hold then . Sufficient decrease condition does not hold
11: Set U = α.
12: else
13: if (22) does not hold then . Curvature condition does not hold
14: Set L = α.
15: else
16: return α. . Return step satisfying weak Wolfe conditions
17: end if
18: end if
19: if U < maxi{γi} then . Update step-size
20: Set α = U+L

2 .
21: else
22: Set α = min(2L,U).
23: end if
24: if U − L < εabs + εrelL then
25: if L > 0 then
26: return L. . Return step satisfying sufficient decrease condition
27: else
28: terminate with “Line Search Error”. . Error, no suitable step size found
29: end if
30: end if
31: end for

Variant 4 Compute the active set from the correction procedure Algorithm 1 with initial guess Ainit based
on the subgradient approximation using (9).

For the last two variants, the search direction is already computed as byproduct of the active set selection
and step 7 does not require any actual work.

There is no guarantee that the pair (sk, yk) pair defined in (11) satisfies the curvature condition (12), even
when the weak Wolfe conditions (21) and (22) are satisfied, since the actual step sk might be different from
αkp̄k, due to the projection in step 10. This is in contrast to the unconstrained case, where (22) implies that
(11) holds. To handle this situation, the update is skipped in step 12 whenever (sk)T (yk) ≤ εskip‖sk‖‖yk‖.

As mentioned in Section 1, we do not consider any theoretical convergence properties of this method,
including the possibilities of stalling at non-stationary points and of spurious termination of the line search.
We point out that convergence guarantees remain an open question even when no constraints are present.

10



Algorithm 3 Nonsmooth Quasi-Newton (NQN)

Inputs: Initial point x0 ∈ [l, u].
Parameters: Size of L-BFGS memory m; update tolerance εskip.

1: Initialize storage S of L-BFGS curvature pairs to be empty.
2: for k = 0, 1, 2, . . . do
3: if T (xk,−∇f(xk) = 0 then
4: return xk . Finite termination at stationary point
5: end if
6: Choose active set Ak. . Details specified elsewhere
7: Compute search direction pk.
8: Compute αk = ModifiedWolfe(xk, pk). . Perform line search using Algorithm 2
9: Set p̄k = T (xk, pk).

10: Set xk+1 = P (xk + αkp̄k).
11: Compute curvature pair (sk, yk) from (11).
12: if (sk)T yk > εskip‖sk‖‖yk‖ then . Discard pair if curvature condition not satisfied
13: Store (sk, yk) in S. . Update L-BFGS memory
14: If |S| > m then discard oldest curvature pair.
15: end if
16: end for

Parameter Value Description

m 20 L-BFGS memory
M 20 Maximum size of sample set Gk

(c1, c2) (10−8, 0.9) Parameters on Wolfe conditions
εabs 10−16 Absolute bracketing tolerance
εrel 10−6 Relative bracketing tolerance
εskip 10−8 Tolerance for skipping L-BFGS update

Table 1: Parameter values used for numerical experiments.

3 Numerical Experiments

3.1 Implementation and Problem Set

We implemented Algorithm 3 in Python. We will refer to it as NQN. The code for our algorithm can
be found in our GitHub repository: https://github.com/keskarnitish/NQN. The values for the various
parameters used are summarized in Table 1. In order to solve the quadratic program (8) for the subgradient
approximation, we used the CVXOPT package [1]. We rely on the NumPy package [35] for linear algebra
operations, and Theano [34] is used to compute derivatives of the objective functions using algorithmic
differentiation.

We compare NQN with other codes for solving (1), namely (i) L-BFGS-B [6]; (ii) L-BFGS-B-NS [18];
and (iii) LMBM-B [23]. While L-BFGS-B is not designed to solve nonsmooth problems, we nonetheless
include it owing to its documented success at solving smooth bound-constrained problems. We include
L-BFGS-B-NS and LMBM-B since they are specifically designed to solve (1) and have shown competitive
performance on variety of tasks. The former is identical to the L-BFGS-B algorithm except that it uses
the weak Wolfe line search as opposed to the strong Wolfe line search. LMBM-B [23] combines the limited-
memory bundle method (LMBM) [16, 17] with a Cauchy-point-based active-set selection strategy similar
to the one in L-BFGS-B. The LMBM-B method generates steps using a subgradient bundle in conjunction
with an L-BFGS/SR-1 updating scheme to gain curvature information.

To make sure each solver obtains the same function and derivative information, we implemented Python
wrappers around the Fortran codes written by the respective authors. The original Fortran codes can be
found at users.iems.northwestern.edu/~nocedal/lbfgsb.html, github.com/wilmerhenao/L-BFGS-B-NS
and napsu.karmitsa.fi/lmbm/ for L-BFGS-B, L-BFGS-B-NS and LMBM-B respectively. We exclude other
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Problem Number Test Problem Reference

1 Active_Faces [16]
2 Chained_CB3_1 [16]
3 Chained_CB3_2 [16]
4 Chained_Crescent_1 [16]
5 Chained_Crescent_2 [16]
6 Chained_LQ [16]
7 Chained_Mifflin_2 [16]
8 Convex_Nonsmooth [33]
9 L1 [33]

10 L1HILB [16]
11 L2 [26]
12 MAXHILB [16]
13 MAXQ [16]
14 Modified_Rosenbrock_1 [18]
15 Modified_Rosenbrock_2 [18]
16 Myopic_Coupled (24)
17 Myopic_Decoupled (23)
18 Nesterov_1 [15]
19 Nesterov_2 [15]
20 Nesterov_3 [32]
21 Nonsmooth_Brown [16]
22 TEST29_2 [29]
23 TEST29_6 [29]
24 TEST29_22 [29]
25 TEST29_24 [29]

Table 2: Test problems used in numerical experiments.

methods, including gradient-sampling methods, since we found their performance to be inferior to the meth-
ods listed above.

To explore the effect of the different active-set identification mechanisms, we propose two generalizations
of (6) as test problems for nonsmooth optimization. The two problems are defined for even values of n; we
call them Myopic Decoupled and Myopic Coupled. They are given as

min
x∈Rn

∑
i∈{1,3,··· ,n−1}

|xi − xi+1|+ (xi + 0.1xi+1)2, (23)

and

min
x∈Rn

n−1∑
i=1

|xi − xi+1|+ (xi + 0.1xi+1)2, (24)

respectively; the bound constraints for these problems are discussed below. The attributes Decoupled and
Coupled refer to whether or not the problem is separable.

In addition, we use several test problems from the literature that are listed in Table 2 along with their
references1. Since these test problems are for unconstrained optimization, we follow an approach similar to

1The objective function for problem 20, suggested by Michael Overton [32], is max
{
|x1|,maxi∈{2,3,··· ,n} |xi−1 − xi|

}
.
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Figure 2: A comparison of the four variants of the algorithm on the Myopic_Decoupled problem.

[22] in that we add the following bounds to all problems:

li =

{
[x?uncon]i − 5.5 if mod (i, 2) = 0

−100 if mod (i, 2) = 1

ui =

{
[x?uncon]i − 0.5 if mod (i, 2) = 0

100 if mod (i, 2) = 1

where x?uncon is the unconstrained global minimizer which is known for all problems in closed form. By
construction, for all problems, the unconstrained minimizer lies outside the bounds. For each of the 25
problems, ten starting points were generated randomly via a uniform distribution U(−2, 2) centered at the
midpoint of the bounds, giving rise to a total of 250 instances. Each code was run until the number of
gradient evaluations exceeded 100n or an error occurred.

3.2 Effect of Active-Set Prediction and Correction Mechanism

We begin by investigating the efficacy of the active-set prediction, the correction mechanism, and their
interplay, using the four variants given in Section 2.6.

Let us first consider the Myopic Decoupled and Myopic Coupled problems with n = 100 for one par-
ticular starting point. These problems are designed specifically to highlight the failure of gradient-based
active-set prediction strategies. Figures 2 and 3 detail the behavior of the algorithm over the course of
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Figure 3: A comparison of the four variants of the algorithm on the Myopic_Coupled problem.

the optimization. In each plot, the dotted blue line depicts the progress in objective function, measured as
(f(xk) − f(x?))/(f(x0) − f(x?)), where x? is the optimal solution. The solid red line gives the size of the
(initial) active set Ak. For the variants that employ the active set correction strategy, the dashed red line
gives the size of the active set at the end of Algorithm 1.

As one might expect, Variant 1, which uses the myopic gradient and no correction strategy, fails to identify
the optimal active set (which contains 50 variables) and its guess Ak keeps fluctuating. The reduction
in the objective function is significantly slower compared to the other variants. When the subgradient
approximation is used in Variant 2, the objective function decreases faster, and after a certain number of
iterations, the active set settles to the optimal active set. When the correction strategy is used in Variants
3 and 4, the optimal active set is identified more quickly, and the reduction in the objective is even faster.
In these experiments, there is very little difference in performance between the two initializations of Ainit in
Algorithm 1. We observe similar behavior for larger dimensions of this problem. Further, rapid fluctuations
in the active set are also seen in the other algorithms (L-BFGS-B, L-BFGS-B-NS and LMBM-B) which also
employ gradient-based identification strategies.

Next we assess the relative performance of the different variants for the entire set of 250 instances with
n = 100. Figure 4 presents Dolan-Moré performance profiles [13] with respect to the number of gradient
evaluations. These profiles rely on a condition to determine when a run is deemed converged. For this
purpose, given a tolerance ε > 0, we use the test

f(xk)− f?

f(x0)− f?
< ε (25)
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Figure 4: Dolan-Moré performance profiles comparing the four variants of the algorithm on 250 test problems
for ε = 10−2, 10−4, 10−6 and ε = 10−8.
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Figure 5: Average ratio of number of corrections for Variants 3 and 4 for all problems for ε = 10−4 and
n = 100. A ratio of 0 indicates that both methods did not need any corrections.

where f? is the best value found by any of the methods for the same instance. We present plots for four
values of ε viz., 10−2, 10−4, 10−6 and 10−8.

This experiment reveals results similar to those found in Figures 2 and 3. Variant 1 shows the worst
behavior, and the use of the subgradient approximation in Variant 2 improves the convergence rate. Using the
corrective strategy gives the best performance, with an advantage for Variant 4 when a very tight tolerance
is used.

Variants 3 and 4 incur different computational costs per iteration in Algorithm 3. In addition to the cost
of the corrective loop, Variant 4 relies on the solution of the quadratic program (9) for the computation of
the subgradient approximation. Figures 2 and 3 suggest that Variant 4 might require fewer iterations in the
corrective loop in Algorithm 1 than Variant 3, since its initial active set Ainit is a better guess of the final
active set returned by the correction procedure. In Figure 5, we present the average ratio of the number
of correction iterations for Variants 3 over 4. Indeed, Variant 3 needs up to 10 times as many correction
iterations as Variant 4 to achieve similar performance.

Nevertheless, since the solution of the quadratic program (9) comes at a significant computational cost,
we used Variant 3 for the remaining experiments. Also, Variant 3 is consistent with Lemma 2.1, so that we
would encounter a zero step from the correction loop only when the current iterate is already stationary.

3.3 Comparison with Other Methods

We now compare NQN with L-BFGS-B, L-BFGS-B-NS, and LMBM-B on the 250 test instances. Figures
6, 7, and 8 correspond to three sets of experiments, with n = 100, n = 1000, and n = 10000, respectively.
We present performance profiles for two values of ε, viz. 10−2 and 10−4. We do not report experiments
for ε = 10−6 and ε = 10−8 since the relative error is based on the best function value obtained by any of
the methods. Tighter tolerances for ε would magnify insignificant differences between methods when neither
are very close to an optimal solution. It can be seen that the proposed algorithm performs better than the
other methods across different tolerances ε and problem sizes n. The figures show that NQN is able to find
a lower objective on more problems and requires fewer gradient evaluations. This difference is particularly
pronounced for tight tolerances and large problem sizes.

In Table 3, we summarize the occurrence for failures of the various methods for tolerances of ε = 10−2

and ε = 10−4. The flag OK indicates that the termination criterion was satisfied at some iteration, MAX

corresponds to reaching maximum number of gradient evaluations, and OTHER implies other failures which
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Figure 6: Dolan-Moré performance profiles of gradient evaluations for 250 test problems for ε = 10−2 and
ε = 10−4 with n = 100.
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Figure 7: Dolan-Moré performance profiles of gradient evaluations for 250 test problems for ε = 10−2 and
ε = 10−4 with n = 1000.
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Figure 8: Dolan-Moré performance profiles of gradient evaluations for 250 test problems for ε = 10−2 and
ε = 10−4 with n = 10000.

include solver-specific causes such as spurious termination of the line search, numerical issues, or convergence
to a non-stationary point. For NQN we break down the number of OTHER failures into convergence to a point
with no feasible direction in step 6 of Algorithm 2 (first number) and line search failure in step 28 of Algorithm
2 (second number).

As can be seen from Table 3, failures for NQN are more often due to budget exhaustion rather than
another type of failure. In total, there were 10 instances in which numerical issues led to a bad search
direction. A line search error was observed only once. The cause for budget exhaustion in NQN is, in part,
due to the tight tolerance of εabs; close to a solution, the bracketing procedure takes many iterations in order
to find points providing sufficient function decrease. Most of the large number of failures for L-BFGS-B
occur due to a breakdown in the line search. This is to be expected since L-BFGS-B employs a strong Wolfe
line search which is difficult to be satisfied with a nonsmooth objective. When the weak Wolfe line search
is used in L-BFGS-B-NS instead, the number of line search failures is reduced significantly. Nevertheless,
the overall number of successfully solved problems increases only marginally. LMBM-B is the least robust
method, with a noticeable increase in the failure rate as the problem size grows.

Acknowledgements

The first author was partially supported by Office of Naval Research grant N00014-14-1-0313. The second
author was partially supported by National Science Foundation grant DMS-1522747. The authors are grateful
to Jorge Nocedal and Michael Overton for their insightful comments.

References

[1] M. S. Andersen, J. Dahl, and L. Vandenberghe. CVXOPT: A Python package for convex optimization,
version 1.1.8. Available at cvxopt.org, 2013.
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