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A GENERIC ONLINE ACCELERATION SCHEME FOR
OPTIMIZATION ALGORITHMS VIA RELAXATION AND INERTIA

F. IUTZELER AND J. M. HENDRICKX ∗

Abstract. We propose generic acceleration schemes for a wide class of optimization and iterative
schemes based on relaxation and inertia. In particular, we introduce methods that automatically
tunes the acceleration coefficients online, and establish their convergence. This is made possible by
considering the class of fixed-points iterations over averaged operators which encompass gradient
methods, ADMM, primal dual algorithms, an so on.
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1. Introduction. A large class of optimization algorithms can be cast as fixed-
point iterations in the sense that they consist in applying the same operation suc-
cessively in order to converge to a fixed point of this operation. For the gradient
algorithm on a differentiable function f , the operation consists in applying the iden-
tity minus the gradient of f , and the fixed point reached nulls the gradient of f .
The convergence of such fixed-points iterations can be proven by finding a suitable
contraction property, for which the monotone operators provide an attractive frame-
work. They also provide an elegant framework to derive splitting algorithms such
as the Alternating Direction Method of Multipliers (ADMM) [23], or, more recently,
primal-dual algorithms [10], and randomized or distributed optimization algorithms
[17, 38, 33, 18, 7].

In order to accelerate the convergence of fixed point algorithms and in particular
optimization methods, there exists a variety of modifications based on the construction
of the next iterate by combining the output of the operation with former outputs or
iterates. We focus here on the two main modification schemes: relaxation and inertia.

� Relaxation combines the output of the operation with the former iterate as

xk+1 = ηT(xk) + (1− η)xk

where η is some positive parameter. This modification notably appears in Richard-
son’s method for solving linear systems [31], and in Krasnoselskĭı–Mann monotone
operators convergence theorem. For the gradient algorithm, relaxation amounts to
modifying the step-size. For ADMM, the benefits of relaxation are often reduced
to the phrase “experiments [...] suggest that over-relaxation with η ∈ [1.5, 1.8] can
improve convergence.” (see [11] and [8, Chap. 3.4.3]) except in specific cases [13].

� Inertia on the other side is performed by combining the output of the operation
with the former output. An inertial iteration for operator T writes

{
xk+1 = T(yk)
yk+1 = xk + γ(xk − xk−1)

⇔ xk+1 = T (xk + γ(xk − xk−1))

where γ is some positive parameter. This modification was made immensely pop-
ular by Nesterov’s accelerated gradient algorithm [27]. More recently extensions of
this method to proximal gradient (FISTA [6]) and ADMM (Fast ADMM [15]) were
proposed and quite popular themselves.

∗F.I. is with LJK, Université Grenoble Alpes, Grenoble, France. J.H. is with ICTEAM, Université
Catholique de Louvain, Louvain-la-Neuve, Belgium. This project was conducted while F.I. was a
post-doctoral researcher at UCL and is supported by the Belgian Network DYSCO, funded by the
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However, despite the popularity of these methods, proving the convergence of the
iterates sequence (xk) is still an issue in many situations (see e.g. [9, 3] for the case of
FISTA) and additional restart mechanisms may have to be implemented to improve
the convergence properties [29]. Finally, the key problem when using these methods
is tuning efficiently their parameters. Indeed, “good”, if not optimal, parameters
depend on a variety of elements including the algorithm itself (an optimal parameter
for the gradient may make the ADMM divergent for instance) or function parameters
in the case of optimization (often through the strong convexity constant which may
be hard to estimate [22] or maladjusted to local analysis [35]).
Contributions. In this paper, our aim is to propose online acceleration methods for
a general class of fixed point algorithms that encompasses the aforementioned opti-
mization methods. The idea of generic acceleration using inertia was investigated in
the sub-linear case in [21] by sequentially solving well-chosen strongly convex approx-
imations of the original problem or in [22, 14] which are based on line-search.

Our approach is to based on the monotone operators framework and more pre-
cisely on the averaging contraction property, verified by a large class of algorithms
such as (proximal) gradient algorithms and, very interestingly, ADMM and recent
primal-dual algorithms for which only seldom results exists concerning the choice of
relaxation or inertial parameters. More precisely, we begin by considering the partic-
ular case of affine operators (T(x) = Rx+ d where R is a matrix and d a vector) and
study how theses modifications translate for the spectrum of the linear part and thus
for the convergence rate. This spectral characterization makes possible the derivation
of optimal parameters (in the linear case) and gives us useful guidelines for the general
case. Our online acceleration methods are based on approximating the base algorithm
by an affine operator at each iteration and choosing the acceleration parameter as the
optimal one for the linear approximation. Finally, we illustrate the performance of
our online acceleration methods for the proximal gradient algorithm, ADMM1, and a
primal-dual algorithm on popular lasso and logistic regression problems.

The paper is organized as follows. In Section 2, we introduce the averaged oper-
ators framework and related useful lemmas. In Section 3, we formulate Relaxation,
Inertia, and Alternated Inertia as modifications on the fixed-point iterations on av-
eraged operators; we provide a coherent set of results concerning convergence (in the
general case) and linear rate in the case of affine operators. In Section 4, based on
the previous analysis, we derive and prove the convergence of our online acceleration
methods. These algorithms are based on the general operator framework and thus fit
a large variety of optimization algorithms. Finally, Section 5 is devoted to numerical
illustrations.

2. Fixed-point Algorithms.

2.1. Averaged Operators. Let T be a mapping2 on R
N . T is said monotone

if ∀x, y ∈ R
N , 〈x − y;T(x)− T(y)〉 ≥ 0. For α ∈]0, 1[, T is said α-averaged iff

∀x, y ∈ R
N , ‖T(x)− T(y)‖2 + 1− α

α
‖(I− T)(x)− (I− T)(y)‖2 ≤ ‖x− y‖2

and T is said to be Firmly Non-Expansive (FNE) if it is 1/2-averaged. The set of the
fixed points of T will be denoted by fixT = {x̄ : x̄ = Tx̄}.

1For ADMM, this led us to develop a new Inertial ADMM, different from Fast ADMM [15], build
on the monotone operator formulation (see [11] and references therein).

2For the sake of clarity, we only discuss single-valued mappings in finite dimensional spaces;
further results on monotone operators theory can be found in [5].
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For instance, if f is a convex function, then its subgradient ∂f is monotonous.
J = (I + ∂f)−1 is FNE. Furthermore, if its gradient ∇f is L-Lipschitz continuous,
G = I − (1/L)∇f is also FNE. Both the fixed points of J and G coincide with the
points where 0 belong to ∂f i.e. the minimizers of f . Similar derivations can be
performed for a large class of algorithms such as the proximal gradient, the ADMM,
etc.

Lemma 1 (Krasnoselskĭı–Mann algorithm). [5, Prop. 5.15] Let α ∈]0, 1[. Let T

be an α-averaged operator such that fixT 6= ∅. Then, the sequence (xk)k>0 generated
by x0 ∈ R

N and the iterations

xk+1 = T(xk)

converges to a point in fixT.

Remark 1. The iterations produced by averaged operators give Fejér monotonous
iterates sequences (xk)k>0: for any fixed point x̄ and iteration k,

‖xk+1 − x̄‖ ≤ ‖xk − x̄‖ ;

we will investigate this attractive property for the modifications considered.

2.2. Linear Convergence of Affine Operators. We now give a precise char-
acterization of the spectral signification of the averaging property for an affine oper-
ator. This will be useful to investigate the relaxation and inertia and will lead to our
online algorithms for the general class of averaged operators.

Results of the literature include analyses of matrices with subdominant eigen-
values and applications to alternating projections and Douglas-Rachford splitting [4]
or spectral analysis in the case of the FISTA algorithm [35]. The novelties in our
characterization include i) a proof that the algebraic and geometric multiplicities of
eigenvalue 1 coincide, which allows the definition of a proper projection onto the fixed
points space (see Apx. A); ii) the characterization of the practical linear convergence
rate based on the greatest eigenvalue in magnitude, 1 excluded (Theo. 2); and iii) the
derivation of the position of the eigenvalues under the averaging property (Lemma 3).
For the sake of clarity, all the proof details are reported in Apx. A.

T is an affine operator denoted by T = R ·+d if it can be written

T(x) = Rx+ d

where R is an N ×N real matrix and d is a size-N real vector.
Let us define the eigenspace of R linked to eigenvalue 1: N ,

{
x ∈ R

N : Rx = x
}
.

Importantly, as shown in Apx. A, the averaging property implies that one can define
a projection ΠN onto N ; and thus the complementary projection ΠN .

Theorem 2. Let α ∈]0, 1[. Let T = R ·+d be an α-averaged operator and suppose
that fixT 6= ∅. Then, the sequence (xk)k>0 generated by x0 ∈ R

N and

xk+1 = T(xk)

converges linearly to a point in fixT at a rate

ν , max{|λi| : λi 6= 1 is an eigenvalue of R} < 1

in the sense that ∃x̄ ∈ fixT, lim supk
log ‖ΠN (xk−x̄)‖

k
≤ log ν.

3
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Fig. 1: Eigenvalues disks of some α-averaged linear operators

The proof is reported in Apx. A. In the sequel, we will call any eigenvalue λ
such that |λ| = ν a dominant eigenvalue and we will approximate it online as vk =
‖xk+1 − xk‖/‖xk − xk−1‖.

Remark 2. This definition of the convergence rate differs from [4] (notably Ex-
ample 2.11) as taking the log enables to retrieve directly the principal eigenvalue and
not some ν + ε or knνk; this choice was made in order to match practical rates and
justifies our next analysis.

Lemma 3. Let α ∈]0, 1[ and T , R ·+d be an α-averaged affine operator. Then,
every eigenvalue λi of R satisfies |λi − (1 − α)| ≤ α. Furthermore, |λi| ≤ 1 with
equality iff λi = 1, so ν < 1.

This lemma shows, if T is α-averaged, the eigenvalues of R are contained in a disk
of center 1− α and radius α as illustrated by Fig. 1-a,b.

Example 1 (Gradient algorithm on a Quadratic Function). For a differentiable
convex function f with an L-Lipschitz gradient ∇f , the standard gradient algorithm
writes

xk+1 = xk −
1

L
∇f(xk)(1)

and the related operator is T = I− 1
L
∇f .

For this illustration, we take quadratic f(x) = 1
2‖Ax − b‖2; thus, f is L-smooth

with L = λmax(A
TA) and µ-strongly convex with µ = λmin(A

TA). The iterations are
affine and the spectrum of the linear part of T is comprised in the interval [0, 1−µ/L]
so we obtain the well-known rate ν = 1− µ/L.

3. Relaxation and Inertia. In this section, we describe Relaxation, Inertia,
and Alternated Inertia as modifications on the classical fixed-point iterations pre-
sented above. Notably, we give convergence results for the iterates, and exhibit the
differences in monotonicity between inertia and relaxation. In addition, we derive
optimal parameters and rates in the case of affine operators with real eigenvalues.

3.1. Relaxation.

3.1.1. Convergence. For a positive sequence (ηk), the relaxed iterations follow

xk+1 = ηkT(xk) + (1− ηk)xk = T(xk) + (ηk − 1)(T(xk)− xk).(2)

4



As mentioned in the introduction, this modification is present since Richardson’s
iterations and Krasnosel’skĭı–Mann algorithm, and over-relaxation (η > 1) is still
investigated to improve convergence speed. The following result directly comes from
Krasnoselskĭı–Mann theorem.

Lemma 4. Let α ∈]0, 1[ and let the sequence (ηk) verify 0 < η ≤ ηk ≤ η < 1/α
for all k > 0. Let T be an α-averaged operator such that fixT 6= ∅. Then, the sequence
(xk)k>0 generated by x0 ∈ R

N and the iterations

xk+1 = ηkT(xk) + (1− ηk)xk

converges to a point in fixT.

The proof is based on the fact that if α ∈]0, 1[ and η ∈]0, 1/α[, then Tη is ηα-
averaged [5, Prop. 4.28]. The convergence thus directly follows from Lemma 1 and
the produced iterates are monotonous in the light of Remark 1.

3.1.2. Optimal parameters for real eigenvalues. Let T = R · +d be an α-
averaged linear operator. Suppose that R has real eigenvalues λi ∈ [1 − 2α, λ] ∪ {1}.
The eigenvalues of Rη = ηR+ (1− η)I have the form µi = ηλi + (1− η) . The effect
of over-relaxation (for η > 1) is thus the combination of an inflation and a translation
as seen in Figure 1-c.
i) When η > 0 is small enough, the dominant eigenvalue of Rη is ηλ+ (1− η) > 0; so
that the convergence rate ν will decrease when η increases.
ii) When η < 1/α is big enough, the dominant eigenvalue of Rη will be η(1 − 2α) +
(1− η) = 1− 2αη < 0; so that the convergence rate ν will increase when η increases.
Finally, The optimal parameter η⋆, which minimizes the rate, corresponds to the case
where the dominant eigenvalues in the two cases are the opposite one of each other:

η⋆ =
2

2α+ 1− λ
and optimal rate ν⋆ =

2α− 1 + λ

2α+ 1− λ
.

In the field of iterative methods for solving linear systems, relaxation has received
a lot of attention and the optimal relaxation boils down to Richardson/Chebyshev
iterations (see [32, Example 4.1] and Fig. 2a for an illustration).
Application in the setup of Ex. 1: The relaxed iterations write

xk+1 = xk −
ηk+1

L
∇f(xk)

and thus relaxation simply consists in adjusting the step size for the gradient algorithm
and we have the following optimal relaxation parameter

η⋆ =
2

1 + µ/L
and rate ν⋆ =

1− µ/L

1 + µ/L

leading to an optimal stepsize of 2/(µ + L) which matches the asymptotic optimal
stepsize (see e.g. [36, Sec. 4.1.2]).

3.2. Inertia.

3.2.1. Convergence. Stemming from popular inertial methods [30, 27, 28], ac-
celeration techniques based on the use of the memory of the previous outputs are very
popular both from a theoretical and a practical point of view (see [37] and references

5



therein for an overview of these methods). Formally, with T an operator, the core of
these methods consist in performing the following iterations.

{
xk+1 = T(yk)
yk+1 = xk+1 + γk(xk+1 − xk)

⇔ xk+1 = T (xk + γk(xk − xk−1))(3)

A careful choice of the sequence (γk)k>0 is known to accelerate the theoretical
functional convergence rate from O(1/k) to O(1/k2) for a large class of algorithms
(see [37, 9, 20] for details) and is very popular in practice.

However, contrary to the relaxation, this modification of the algorithm deeply
changes the algorithm behavior as the error between the iterates and some fixed
point is not monotonously decreasing anymore which can cause stability or domain
problems for the iterates. The next lemma provides a general set of conditions for
iterates convergence encompassing several results of the literature [2, 1, 25, 24, 21].

Lemma 5. Let α ∈]0, 1[. Let T be an α-averaged operator such that fixT 6= ∅.
Assume one the following:

i) ∃γ, 0 ≤ γk ≤ γ̄ < 1 and
∑∞

k=1 γk‖xk − xk−1‖2 <∞.
ii) ∃γ̄ < 1, (γk)k>0 is non-decreasing sequence in [0, γ̄) such that ∀k > 1

1− γk−1 − (1− γk)γk −
α

1− α
γk(1 + γk) ≥ m > 0.

iii) as a particular case of ii), when γk = γ for all ∀k > 1, (1−γ)2 > α
1−α

γ(1+γ).

Then, the sequence (xk)k>0 generated by x−1 = x0 ∈ R
N and the iterations

xk+1 = T(xk + γk(xk − xk−1))

converges to a point in fixT.

3.2.2. Optimal parameters for real eigenvalues. Let us define T
γ , the op-

erator generating (xk+1, xk) from (xk, xk−1) where xk+1 = T(xk + γ(xk − xk−1)).
When T = R ·+d, we have

T
γ

([
z1
z2

])

=

[
(1 + γ)Rz1 − γRz2 + d

z1

]

=

[
(1 + γ)R −γR

I 0

]

︸ ︷︷ ︸

Rγ

[
z1
z2

]

+

[
d
0

]

︸ ︷︷ ︸

d̃

.

As for relaxation, the eigenvalues of Rγ can be derived from those of from R. However,
one eigenvalue λi of R leads to two eigenvalues for Rγ ; they are the roots of

pi(µ) = µ2 − (1 + γ)λiµ+ γλi.

The main results are:
i) for negatives eigenvalues λi < 0, the magnitude of µi is

(1 + γ)|λi|+
√

(1 + γ)2λ2
i + 4γ|λi|

2
≥ (1 + γ)|λi|

thus inertia has a negative effect on the negative side of the spectrum. For the
sake of clarity, we will focus on the non-negative eigenvalue case in the following,
corresponding to α ∈ (0, 1/2] for the averaging property.
ii) for non-negative eigenvalues λi ∈ [0, λ] ∪ {1}, optimal parameter and rate are

γ⋆ =
(1−

√
1− λ)2

λ
and ν⋆ = 1−

√
1− λ.

6



Notably, we have ν⋆ ≥ λ/2 which means the rate with inertia cannot be better than
half the original rate.
Application in the setup of Ex. 1: The inertial iteration of T writes

{
yk = xk + γk(xk − xk−1)

xk+1 = yk − 1
L
∇f(yk)

we have the following optimal inertia parameter

γ⋆ =
1−

√

µ/L

1 +
√

µ/L
and rate ν⋆ = 1−

√

µ/L.

Once again, the obtained parameter and rate matches practical and theoretical optimal
situations as summarized in [29].

3.3. Alternated Inertia.

3.3.1. Convergence. In order to improve the convergence properties of the
iterates of Eq. (3), it was suggested in [26] to apply inertia every other iteration. This
variant is a lot less popular than vanilla inertia. However, its rather good convergence
properties and performances, along with its remarkable closeness with relaxation make
it worthy of careful attention. The iterations of alternated inertia are:

(4)

{
xk+1 = T(xk) if k is even
xk+1 = T(xk + γk(xk − xk−1)) if k is odd

Interestingly, using inertia every other iteration can make the error monotonously
decreasing again which will reveal to be interesting numerically.

Lemma 6. Let α ∈]0, 1[. Let T be an α-averaged operator such that fixT 6= ∅.
Assume that the sequence (γk) verifies 0 ≤ γk ≤ 1−α

α
for all k > 0. Then, the

sequence (xk)k>0 generated by x0 ∈ R
N and the iterations

{
xk+1 = T(xk) if k is even
xk+1 = T(xk + γk(xk − xk−1)) if k is odd

converges to a point in fixT.

The proof, which generalizes [26] to α-averaged operators, can be found in Apx. B.

3.3.2. Optimal parameters for real eigenvalues. Let us define T.,γ the op-
erator generating xk+2 from xk for k even. When T = R ·+d, one has

xk+2 = T (T(xk) + γ(T(xk)− xk)) =
[
(1 + γ)R2 − γR

]

︸ ︷︷ ︸

R.,γ

xk + (1 + γ)Rd+ d

so that the eigenvalues of R.,γ are µi = (1 + γ)λ2
i − γλi with λi an eigenvalue of R.

The main results are:
i) for negatives eigenvalues λi < 0, the magnitude of µi is

(1 + γ)|λi|2 + γ|λi|

thus alternated inertia has a negative effect on negative eigenvalues.
ii) for non-negative eigenvalues λi ∈ [0, λ]∪ {1}, the largest µi in magnitude is linked
to the original dominant eigenvalue λ and intermediate eigenvalues. Taking the worst

7
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Fig. 2: Effect of studied modification on linear iterations rate

case scenario over the unknown (and hard to estimate) intermediate eigenvalues, the
optimal parameter and rate are

γ⋆ =
2(λ)2 + (

√
2− 1)λ

2λ(1 − λ) + 1
2

and ν⋆ =
(γ⋆)2

4(1 + γ⋆)
.

Application in the setup of Ex. 1: The alternated inertial iteration of T writes






yk = xk + γk(xk − xk−1)
xk+1 = yk − 1

L
∇f(yk)

xk+2 = xk+1 − 1
L
∇f(xk+1)

⇔
{

xk+1 = xk − 1
L
∇f(xk)

xk+2 = xk+1 − 1+γk+2

L
∇f(xk+1)

This formulation properly illustrates the equivalence between alternated inertia and
alternated relaxation. We have the following optimal inertia parameter

γ⋆ =
2(µ/L)2 − (3 +

√
2)µ/L+ 1 +

√
2

−2(µ/L)2 + 2µ/L+ 1
2

and rate ν⋆ =
(γ⋆)2

4(1 + γ⋆)
.

3.3.3. Comparison of the optimal rates. In general, comparison between
relaxation and inertia on linear iterations depends on the interval [λmin, λmax] in which
the eigenvalues of the original matrix R live. Fig. 2a provides a graphical illustration
of the effect of relaxation on the linear rate. Fig. 2b displays a 3D plot of the optimal
rate obtained by numerical simulations (the lower the better) when λmin and λmax

vary between 0 and 1 along with the modification scheme attaining it.
One can notice that the optimal speed with inertia (alternated or classical) is

always faster than with relaxation when λmin = 0. For instance, it is the case for the
gradient algorithm setup of Ex. 1; the equality case being when µ/L = 1. Between
alternated and classical inertia, the alternated version is faster for well enough condi-
tioned problems, more precisely when 1 ≥ µ/L ≥ 4/(9 + 4

√
2) ≈ 0.273; surprisingly

making alternated inertia more performing than both inertia and relaxation for some

8



problems. Also, the optimal parameter for inertia γ⋆ is greater than theoretical limit
1/3 as soon as µ/L ≤ 1/4. Similarly, for alternated inertia, optimal γ⋆ is greater than
1 when µ/L ≤ (3−

√
2)/4 ≈ 0.396.

Unfortunately, while L can often be known or upper bounded, µ is in general
unknown so that the optimal parameters cannot be computed hence the need for
automatically tuned schemes as developed further in this paper.

4. Online Acceleration of Linear Rates using Relaxation and Inertia.
In this Section, we provide practical acceleration algorithms for fixed point iterations
of general averaged operators using relaxation and inertia.

These methods, that automatically tune relaxation/inertia parameters, are based
on affine approximation with real eigenvalues, as investigated in the previous section.
This may appear limiting at first but i) in practice, linear approximation of averaged
operators often have dominant eigenvalues close to the real line (real eigenvalues are
linked to the cyclic monotonicity property which appears when considering (sub)-
gradients, see [34] and [5, Theo. 22.14]; ii) similar reasoning have been used in recent
proofs of inertial algorithms [12]; iii) we prove the iterates convergence in the general
averaged operator case (not just affine let alone with real eigenvalues) and iv) our
method works very well in practice as demonstrated in Section 5.

For all three modifications, we will iterate in the same steps:
From some acceleration parameter δ,
i) Apply the accelerated operator Tδ on the current iterates and estimate its current
rate by computing vk = ‖Tδ(xk−1)− Tδ(xk−2)‖/‖xk−1 − xk−2‖ as in Sec. 2.2;
ii) From δ and vk, construct an approximation of the virtual dominant eigenvalue λ of
original operator T using the results of the previous section (virtual as T is a general
non-linear averaged operator, λ is thus linked to an affine approximation of T);
iii) From λ, update δ as the optimal acceleration parameters previously derived.

4.1. ORM: Online Relaxation Method. Building on the derivations of
Sec. 3.1.2, we wish to estimate η⋆ without having access to the spectrum of R.
i) To do so, we estimate the current convergence rate as3

vk = (ηk−1‖xk − xk−1‖)/(ηk‖xk−1 − xk−2‖).
ii) Using this vk, the current relaxation ηk, and the expression for ν⋆, we can compute
an estimate for virtual dominant eigenvalue λ: λk = (vk + ηk − 1)/ηk.
iii) Using λk and optimal η⋆, we take our next relaxation parameter as

ηk+1 =
2

2α+ 1− λk

=
2ηk

2αηk + 1− vk
.

This gives the intuition for our Online Relaxation Method (ORM).

Online Relaxation Method (ORM) for α-averaged operator T :

Initialization: ε ∈]0, 2min(α; 1− α)], x0, x1 = Tx0 , η0 = η1 = 1.

3Note the extra factor ηk−1/ηk compared to Sec. 2.2. In the specific case of relaxation, this
modified definition enables to estimate the convergence of Tηk by applying it only once. Monotone
operators theory ensures us that vk ∈ [0, 1], and enables the convergence proof.
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At each iteration k ≥ 1:

ηk+1 =
(2− ε)ηk

2αηk + 1− ηk−1‖xk−xk−1‖
ηk‖xk−1−xk−2‖

+
ε

4α

xk+1 = ηk+1Txk + (1− ηk+1)xk

The following result provides convergence guarantees for this method in the gen-
eral framework of averaged operators.

Theorem 7. Let α ∈]0, 1[. Let T be an α-averaged operator such that fixT 6= ∅.
Then, the sequence (xk)k>0 generated by the Online Relaxation Method converges to
a point in fixT.

Proof. In order to use Lemma 4 to prove the convergence, let us prove by induction
that for all k ≥ 1, ηk ∈ [ ε

4α ,
1
α
− ε

4α ]. It is obviously true for η1 = 1. Let us assume
that ηk ∈ [ ε

4α ,
1
α
− ε

4α ].
First, as T is α-averaged, it writes T = αR+(1−α)I with R a non-expansive operator
and I the identity. Tηk

then writes Tηk
= αηkR+ (1− αηk)I, thus

‖xk − xk−1‖ = αηk‖R(xk−1)− xk−1‖
= αηk‖R(xk−1)− R(xk−2) + (1− αηk−1)(R(xk−2)− xk−2)‖
≤ αηk‖xk−1 − xk−2‖+ αηk(1− αηk−1)‖R(xk−2)− xk−2‖

= αηk‖xk−1 − xk−2‖+ αηk
1− αηk−1

αηk−1
‖xk−1 − xk−2‖ =

ηk
ηk−1

‖xk−1 − xk−2‖

Thus, we have vk ≤ 1 which makes ηk+1 ≥ ε
4α . Now,

ηk+1 ≤
(2− ε)ηk
2αηk

+
ε

4α
=

1

α
− ε

2α
+

ε

4α
=

1

α
− ε

4α

thus we have that ηk+1 ∈ [ ε
4α ,

1
α
− ε

4α ]. This means the generated sequence (ηk)k>0

lies in [ ε
4α ,

1
α
− ε

4α ] and thus verifies the conditions of Lemma 4 for convergence.

Interestingly, one can notice that when the basis algorithm converges sub-linearly,
the paramter chosen by ORM becomes close to 2/L. For the gradient algorithm,
this would amount to having a stepsize that becomes close to 2/L as the number of
iterations grow which is coherent with the optimality results in [36, Sec. 4.1.1]4.

4.2. OIM: Online Inertia Method. An online inertia method can be proposed
based on the same principles as ORM building on Sec. 3.2.2. In the same vein, we
approximate the operation Tγ2k by an affine operator with non-negative eigenvalues.
i) We estimate the current convergence rate related to operator Tγ2k (by applying
twice the same inertia twice) as

v2k =
√

‖x2k+2−x2k+1‖2+‖x2k+1−x2k‖2

‖x2k+1−x2k‖2+‖x2k−x2k−1‖2 .

ii) Using v2k, current inertia γ2k, we estimate λ: λ2k = ((v2k)
2)/(γ2kv2k − γ2k + v2k).

iii) Using λ2k and the formula for optimal γ⋆, we take our next relaxation parameter
as γ2k+2 = (1−

√
1− λ2k)

2/λ2k.
These steps are at the core of our Online Inertia Method (OIM). However, to the

difference of ORM but similarly to other inertia-based accelerations [15], a restart

4The optimal stepsize when doing K iterations goes to 2/L, staying strictly below, when K → ∞.
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mechanism has to be introduced to make sure the algorithm converges. Indeed, this
scheme, which is rather aggressive, often overpasses the theoretical limits of the con-
vergence results. Thus, in order to maintain convergence, the algorithm must either
i) sufficiently decrease the error ‖xk− yk‖; or ii) set inertial parameter γk to 0 so that
classical convergence results apply.

Online Inertia Method (OIM) for α-averaged operator T:

Initialization: x1, x2 = T(x1), y2 = x1 γ2 = 0, ε > 0.
For each k ≥ 1:







y2k+1 = x2k + γ2k(x2k − x2k−1)
x2k+1 = T(y2k+1)
y2k+2 = x2k+1 + γ2k(x2k+1 − x2k)
x2k+2 = T(y2k+2)

c2k = max
(

‖x2k+2−y2k+2‖
‖x2k+1−y2k+1‖ ;

‖x2k+1−y2k+1‖
‖x2k−y2k‖

)

if c2k ≤ 1− ε [Acceleration]

v2k =
√

‖x2k+2−x2k+1‖2+‖x2k+1−x2k‖2

‖x2k+1−x2k‖2+‖x2k−x2k−1‖2

λ2k = min
(

(v2k)
2

γ2kv2k−γ2k+v2k
; 1− ε

)

γ2k+2 = max
(

0; (1−
√
1−λ2k)

2

λ2k

)

elseif γ2k > 0 [Restart]

γ2k+2 = 0
(x2k+1, x2k+2, y2k+2) = (x2k−1, x2k, y2k)

elseif γ2k = 0 [No Acceleration]

γ2k+2 = 0

Theorem 8. Let α ∈]0, 1[. Let T be an α-averaged operator such that fixT 6= ∅.
Then, the sequence (yk)k>0 generated by the Online Inertia Method converges in the
sense that ‖T(yk) − yk‖ → 0. Furthermore, if fixT is reduced to a single point x⋆,
xk → x⋆.

Proof. The proof follows the same reasoning as [15, Theo. 3]. At each iteration,
one of the following situation happens:
i) the last iteration was beneficial: ck ≤ 1−ε so that ‖xk−yk‖ ≤ (1−ε)‖xk−1−yk−1‖
and ‖xk−1 − yk−1‖ ≤ (1 − ε)‖xk−2 − yk−2‖ ;
ii) a restart is made so that the iterates xk and xk−1 by their previous values ‖xk −
yk‖ = ‖xk−2 − yk−2‖ and ‖xk−1 − yk−1‖ = ‖xk−3 − yk−3‖;
iii) there is no acceleration and non expansiveness gives ‖xk−yk‖ ≤ ‖xk−1−yk−1‖ ≤
‖xk−2 − yk−2‖.
To conclude the proof, one has to notice that for all k > 0, ‖xk−yk‖ ≤ ‖xk−1−yk−1‖
and ‖xk − yk‖ ≤ (1− ε)‖xk−1 − yk−1‖ if i) happens. Now, if there is a finite number
of beneficial iterations (when i) happens), then after the last one, the algorithm goes
back to the unaccelerated iterations and convergence is ensured by Lemma 1. If
there is a infinite number of beneficial iterations, introducing variable ιk as ιk = 1 if
iteration k is beneficial and 0 elsewhere; we have

∞∑

k=1

ιk‖T(yk)− yk‖ ≤ ‖T(x0)− x0‖
∞∑

k=1

k∏

ℓ=1

(1− ε)ιℓ ≤ ‖T(x
0)− x0‖
ε

<∞

11



and thus ‖T(yk) − yk‖ → 0. This means that the accumulation points of (yk) are in
fixT. In addition, if it is reduced to a single point, then (yk) converges to it and as
‖xk − yk‖ → 0, so does (xk).

When the convergence is sublinear, the restart condition based on a constant ε
may be too harsh. Following the convergence proof, one can easily deduce that ε
can be taken as a sequence (εℓ) provided that 1/εℓ = o(ℓ) where ℓ is the number
of accelerations. For instance, a typical setting is to keep track of the number of
accelerations ℓ and take εℓ = ε0/

√
ℓ. Note that in the sublinear case, the OIM makes

the acceleration parameter go to 1 as in Nesterov’s optimal method [27].

4.3. OAIM: Online Alternated Inertia Method. Using the same reasoning
as for OIM, we are able to obtain a similar algorithm.

Online Alternated Inertia Method (OAIM) for an α-averaged operator T:

Initialization: x3, x4 = T(x3), y4 = x3 γ4 = 0, ε > 0.
For each k ≥ 1:






y4k+1 = x4k + γ4k(x4k − x4k−1)
x4k+1 = T(y4k+1)
y4k+2 = x4k+1

x4k+2 = T(y2k+2)







y4k+3 = x4k+2 + γ4k(x4k+2 − x4k+1)
x4k+3 = T(y4k+3)
y4k+4 = x4k+3

x4k+4 = T(y4k+4)

c4k = max
(

‖x4k+4−x4k+3‖
‖x4k+2−x4k+1‖ ;

‖x4k+2−x4k+1‖
‖x4k−x4k−1‖

)

if c4k ≤ 1− ε [Acceleration]

v4k =
‖x4k+4−x4k+2‖
‖x4k+2−x4k‖

λ4k = min

(
γ4k+
√

(γ4k)2+4γ4kv4k+4v4k
2(γ4k+1) ; 1− ε

)

γ4k+4 = 2(λ4k)
2+(

√
2−1)λ4k

2λ4k(1−λ4k)+
1
2

elseif γ4k > 0 [Restart]

γ4k+4 = 0
(x4k+3, x4k+4) = (x4k−1, x4k)

elseif γ4k = 0 [No Acceleration]

γ4k+4 = 0

Theorem 9. Let α ∈]0, 1[. Let T be an α-averaged operator such that fixT 6=
∅. Then, the sequence (xk)k>0 generated by the Online Alternated Inertia Method
converges in the sense that ‖T(x2k)− x2k‖ → 0. Furthermore, if fixT is reduced to a
single point x⋆, xk → x⋆.

Proof. The proof follow the same steps as the proof of Theo. 8.

5. Relaxation and Inertia of Optimization algorithms. We now particu-
larize the operator T to different values corresponding to popular algorithms of the
literature. We illustrate the interest of the modifications studied and, most impor-
tantly, we demonstrate the acceleration provided by our online methods over three
popular algorithms: the proximal gradient algorithm, the ADMM, and a Primal-Dual
algorithm by Condat [10].

For each of these algorithms, we will proceed in the same fashion:
1) We discuss how relaxation and inertia translate for these algorithms along with a
review on existing accelerated versions;
2) We provide numerical illustrations over the three following functions chosen for
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their differences in terms of smoothness and strong convexity:
a) lasso:

min
x∈Rn

Fa(x) =
1

2
‖Ax − b‖22

︸ ︷︷ ︸

fa(x)

+λ‖x‖1
︸ ︷︷ ︸

ga(x)

where A has m = 100 examples and n = 300 observations taken from the
normal distribution with zero mean and unit variance, the columns of A are
then scaled to have unit norm. b is generated by i) drawing a sparse vector
p ∈ R

n with 90 non-zeros entries taken from the normal distribution with zero
mean and unit variance; ii) then creating b as b = Ap+ e where e is a small
white noise taken from the normal distribution with zero mean and standard
deviation σ = 0.001. λ is chosen so that the optimal solution has sought
sparsity. Lipschitz constant of ∇fa is taken equal to true L = ‖ATA‖2.

b) ℓ1-regularized logistic regression:

min
x∈Rn

Fb(x) =
1

m

m∑

i=1

log (1 + exp(−yi〈ai, x〉))
︸ ︷︷ ︸

fb(x)

+λ‖x‖1
︸ ︷︷ ︸

gb(x)

where the couples class/feature vector (yi, ai) ∈ {−1, 1}×R
n are taken from

the ionosphere binary classification dataset5 which hasm = 351 observations
and n = 34 features. Each feature was normalized to have zero mean and unit
variance, the resulting size-n observation vectors are denoted by (ai)i=1,..,m

and the observed classes−1,+1 are denoted by (yi)i=1,..,m. Lipschitz constant
of ∇fb is upper bounded by L′ = maxi ‖ai‖22. λ was taken equal to 0.1.

c) ℓ2-regularized logistic regression:

min
x∈Rn

Fc(x) =
1

m

m∑

i=1

log (1 + exp(−yi〈ai, x〉))
︸ ︷︷ ︸

fc(x)

+
λ

2
‖x‖22

︸ ︷︷ ︸

gc(x)

where the couples class/feature vector (yi, ai) ∈ {−1, 1}×R
n are taken from

the same dataset, and λ was taken equal to 0.01.
For these three functions we computed approximated optimal values by external
solvers. For the online algorithms, the convergence-ensuring ε is set to 10−4

5.1. Proximal Gradient Algorithm.

Proximal Gradient algorithm for minx f(x) + g(x), f L-smooth.

xk+1 = argmin
w

{

g(w) +
L

2

∥

∥

∥

∥

w − xk +
1

L
∇f(xk)

∥

∥

∥

∥

2
}

5.1.1. Accelerations. It is straightforward to see that an iteration of the algo-
rithm writes as fixed point iteration xk+1 = Tpg(xk) and monotone operator theory
tells us that Tpg is 2/3-averaged [5, Chap. 27.3]. The application of both relaxation
and inertia on top of thus algorithm is thus easy.

5https://archive.ics.uci.edu/ml/datasets/Ionosphere
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Fig. 3: Proximal Gradient

In fact, the proximal gradient algorithm possesses a very popular inertial version
with the popular FISTA method (proximal gradient + Nesterov’s acceleration) [6].

5.1.2. Numerical Illustrations. In Fig. 3, we plot the functional error and the
parameters for i) classical proximal gradient algorithm; ii) FISTA; iii) our three online
methods (we implemented OIM and OAIM as if α was 1/2, in coherence with the
choice for FISTA). We observe that all proposed algorithms show good behaviors, the
less favorable case being b as neither functions exhibit strong convexity. Inertia-based
methods perform very well: OIM outperforms FISTA except in case b and OAIM
performs quite well. We notice significant behavioral differences between inertial
methods (OIM, FISTA) which show bounces in the error descent, contrary to OAIM
which is much more stable with almost no use of restart, and ORM which is provably
monotonous.

5.2. Alternating Direction Method of Multipliers. Consider the following
optimization problem:

min
x∈RN

f(x) + g(Mx)(5)
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with f, g two convex lower semi-continuous functions and M a linear operator. The
Alternating Direction Method of Multipliers (ADMM) addresses this problem by per-
forming the following iterations with free parameter ρ > 0.
ADMM

uk+1 = argmin
w

{

f(w) +
ρ

2

∥

∥

∥

∥

Mw − vk +
λk

ρ

∥

∥

∥

∥

2
}

vk+1 = argmin
w

{

g(w) +
ρ

2

∥

∥

∥

∥

Muk+1 −w +
λk

ρ

∥

∥

∥

∥

2
}

λk+1 = λk + ρ(Muk+1 − vk+1)

5.2.1. Accelerations. From an operator point of view, the iterations of ADMM
can be seen as updates on the meta-variable xk = λk + ρvk = λk−1 + ρMuk of
an 1/2-averaged operator Tadmm (see [11] and references therein for details). This
meta-variable is central as it affects the way relaxation and inertia translates for this
algorithm.

Relaxation While it is fairly evident to see that the relaxed version of the op-
eration writes xk+1 = ηTadmm(xk) + (1 − η)xk, it is slightly more complex to derive
the effect of relaxation on the algorithm variables (uk, vk, λk). Indeed, these variables
are computed by a representation of the meta-variable that is non-linear. Let us call
Jv the operation giving vk from xk, then

vk+1 = Jv(xk+1) = Jv(ηTadmm(xk) + (1− η)xk) 6= ηJv(Tadmm(xk)) + (1− η)Jv(xk).(6)

This means that, in general6 relaxation cannot be added directly on top of ADMM
in the sense performing the standard ADMM update then adding a step of the form
vk+1 ← ηvk+1 + (1− η)vk and λk+1 ← ηλk+1 + (1− η)λk.

Following the operator vision, the canonical relaxation on the ADMM leads to the
following iterations (derivations can be found in [11]); with xk being the meta-variable
that is Féjer monotonous, and used in ORM for instance.
Relaxed ADMM

uk+1 = argmin
w

{

f(w) +
ρ

2

∥

∥

∥

∥

Mw − zk +
λk

ρ

∥

∥

∥

∥

2
}

vk+1 = argmin
w

{

g(w) +
ρ

2

∥

∥

∥

∥

ηMuk+1 + (1− η)vk −w +
λk

ρ

∥

∥

∥

∥

2
}

λk+1 = λk + ρ(ηMuk+1 + (1− η)vk − vk+1)

xk+1 = λk+1 + ρvk+1

It was noted in [11] that “experiments [...] suggest that over-relaxation with
η ∈ [1.5, 1.8] can improve convergence” without further details. One can also mention
[14] based on relaxation tuning by line search. Our ORM, with its particularly stable
behavior bridges nicely the literature in this respect.

InertiaAs previously, inertial ADMM cannot be derived simply by adding inertia
on top of the above iterations. Following the operator vision, the canonical inertial

6If either i) g is the indicator function of a linear space, or ii) when g is quadratic; then the
representation operation Jv of Eq. (6) becomes linear and relaxation can be performed as an outer
modification.
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version of the ADMM leads to the following iterations; with xk and yk being the meta-
variables as in Eq. (3). See Apx. C for the derivation. To the best of our knowledge,
this is an original algorithm.
Inertial ADMM

uk+1 = argmin
w

{

f(w) +
ρ

2

∥

∥

∥

∥

Mw − vk +
λk

ρ

∥

∥

∥

∥

2
}

xk+1 = λk + ρMuk+1

vk+1 = argmin
w

{

g(w) +
ρ

2

∥

∥

∥

∥

Muk+1 −w +
λk

ρ
+ γ

(

M(uk+1 − uk) +
λk − λk−1

ρ

)∥

∥

∥

∥

2
}

λk+1 = λk + ρ(Muk+1 − vk+1) + γρ

(

M(uk+1 − uk) +
λk − λk−1

ρ

)

yk+1 = λk+1 + ρvk+1

As for relaxation, if g is either i) the indicator function of a linear space, or ii)
quadratic; inertia can be performed as an outer modification. Note that ADMM
+ outer inertia with Nesterov-like parameter sequence corresponds to the algorithm
named Fast ADMM studied in [15]. However, this algorithm is not convergent in the
general case, unless a restart scheme is added. Interestingly, for the convergence proof
of Fast ADMM in the strongly convex case, g is assumed quadratic.

Alternated Inertia It simply consists in alternating an iteration of ADMM with
an iteration of Inertia ADMM. One can remark, that with this proper formulation
of relaxed and inertial ADMM, applying inertia or relaxation every other iteration
provably gives the same algorithm (use the fact that λk − λk−1 = (Muk − vk)/ρ for
a standard ADMM iteration in the Inertial ADMM iteration). To the best of our
knowledge, this kind of algorithm has never been considered before.

5.2.2. Numerical illustrations. In Fig. 4, we compare i) the standard ADMM;
ii) our three proposed online methods; and iii) Fast ADMM with restart [15]. In all
cases, the ADMM parameter ρ was set to 1. For logistic regression functions fb and
fc, no explicit formulation of the update of the first variable is available so their have
to be computed by an external solver (SciPy’s general-purpose minimize function in
our case). We observe that, once again, the proposed online methods show remarkable
performance for their computational cost. OIM performs best; however, ORM and
OAIM, contrary to OIM and Fast ADMM show steady parameter sequences, this can
be seen as more monotonous behaviors. Finally, ORM offers a better alternative to
arbitrarily fixed relaxation.

5.3. a Primal Dual Algorithm. We investigate the primal-dual algorithm 3.1
from [10] with F = 0. For this algorithm, we will consider only7 the lasso problem
Fa as it can be implemented so that, contrary to the ADMM, no matrix inversion is
performed, with M = A, g(·) = 1/2‖ · −b‖2 and f(·) = λ‖ · ‖1 = ga(·). We chose
τ = 0.5 and σ = 1/(τ‖A‖2) as prescribed.

7for the other two problems, the algorithm boils down to previously investigated ADMM.
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Fig. 4: Alternating Direction Method of Multipliers (ADMM)

a Primal-Dual algorithm [10, Alg. 3.1] for minx f(x) + g(Mx)

uk+1 = argmin
w

{

f(w) +
1

2τ

∥

∥

∥
w − uk + τM

T
λk

∥

∥

∥

2
}

λk+1 = λk + σM(2uk+1 − uk)− σ argmin
w

{

h(w) +
σ

2

∥

∥

∥

∥

w −
λk

σ
−M(2uk+1 − uk)

∥

∥

∥

∥

2
}

With the prescribed choice of parameters, defining xk = [uk;λk] as the stacked
vector of the variables, the algorithm is a fixed point algorithm on xk with an
1/2-averaged operator. Relaxation and Inertia can be simply performed as outer-
modifications of the algorithm.

In Fig. 5, we plot the functional error and the parameters for the original algorithm
and our three online methods. The formulation of all algorithms are again quite simple
and we obtain significant speed improvements.

6. Conclusion. In this paper, we investigated the theoretical and practical in-
terests of relaxation and inertia on averaged operators. Notably, we established the
expression for optimal parameters and rate when possible and built upon it to pro-
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Fig. 5: a Primal-Dual algorithm on a lasso problem

pose novel online methods. Numerical illustrations have demonstrated the behavioral
differences between relaxation and inertia and showed the remarkable performance of
the proposed online methods.
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[25] P.-E. Maingé, Convergence theorems for inertial km-type algorithms, Journal of Computa-
tional and Applied Mathematics, 219 (2008), pp. 223–236.

[26] Z. Mu and Y. Peng, A note on the inertial proximal point method, Statistics, Optimization
& Information Computing, 3 (2015), pp. 241–248.

[27] Y. Nesterov, A method of solving a convex programming problem with convergence rate o
(1/k2), Soviet Mathematics Doklady, 27 (1983), pp. 372–376.

[28] Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical programming, 103
(2005), pp. 127–152.

[29] B. O’Donoghue and E. Candes, Adaptive restart for accelerated gradient schemes, Founda-
tions of computational mathematics, 15 (2013), pp. 715–732.

[30] B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Com-
putational Mathematics and Mathematical Physics, 4 (1964), pp. 1–17.

[31] L. F. Richardson, The approximate arithmetical solution by finite differences of physical
problems involving differential equations, with an application to the stresses in a masonry
dam, Philosophical Transactions of the Royal Society of London, (1911), pp. 307–357.

[32] Y. Saad, Iterative methods for sparse linear systems, Siam, 2003.
[33] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, On the Linear Convergence of the ADMM

in Decentralized Consensus Optimization, ArXiv e-prints, (2013), arXiv:1307.5561.
[34] E. Shiu, Cyclically monotone linear operators, Proceedings of the American Mathematical

Society, 59 (1976), pp. 127–132.
[35] S. Tao, D. Boley, and S. Zhang, Local linear convergence of ista and fista on the lasso

problem, arXiv preprint arXiv:1501.02888, (2015).
[36] A. Taylor, J. Hendrickx, and F. Glineur, Smooth strongly convex interpolation and exact

worst-case performance of first-order methods, arXiv preprint arXiv:1502.05666, (2015).
[37] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, submit-

ted to SIAM Journal on Optimization, (2008).
[38] E. Wei and A. Ozdaglar, On the O(1/k) convergence of asynchronous distributed Alternating

Direction Method of Multipliers, arXiv preprint arXiv:1307.8254, (2013).

19

http://arxiv.org/abs/1506.02186
http://arxiv.org/abs/1307.5561


Appendix A. Proof of the linear behavior of affine averaged operators
(Sec. 2.2).

We consider the fixed point iterations xk+1 = T(xk) = Rxk + d with T = R ·+d
an affine α-averaged operator. We assume that fixT 6= ∅ that is, d lives in the column
space of I −R.

Let us denote by N the nullspace of I −R: N ,
{
x ∈ R

N : Rx = x
}
. Any fixed

point of T can be expressed as one particular fixed point plus a vector in N .
Consider the Jordan decomposition of matrix R: R = WΛW−1 with W a non-

singular matrix and Λ the Jordan block-diagonal for R (see [16, Chap. 3]). The proof

of Lemma 1 (see [5, Prop. 5.15]) tells that
∑+∞

k=0 ‖xk − T(xk)‖2 <∞ so

+∞∑

k=0

∥
∥Rk(R− I)x0 +Rkd

∥
∥
2
=

+∞∑

k=0

∥
∥W

(
Λk(Λ− I)W−1x0 + ΛkW

−1d
)∥
∥
2
<∞.

From the last line, we can deduce that:
i) the eigenvalues of R are smaller than 1 in magnitude and 1 is the only one

with this magnitude;
ii) the algebraic and geometric multiplicities of eigenvalue 1 coincide as the Jor-

dan form of R does not have block of the form J1 =















1 1

. . .
. . .

. . . 1
1















. Indeed,

if it had one could take x0 so that the terms in the sum are bounded away
from zero (e.g. take J = [1 1; 0 1], then Jk(J − I) = [0 1; 0 0]).

Thus, one can write R =

[

W1 W2

] [
I

Λ̃

] [
W1

∗

W2
∗

]

where:

• Λ̃ is the block diagonal matrix of the Jordan blocks corresponding to the
eigenvalues of R with magnitude strictly smaller than 1;

• and

[

W1
∗

W2
∗

] [

W1 W2

]

=

[

W1
∗W1 W1

∗W2

W2
∗W1 W2

∗W2

]

=

[

I 0

0 I

]

.

From the previous result, R = W1W1
∗ + W2Λ̃W2

∗ where conveniently ΠN ,

W1W1
∗ defines a projection onto N .

Define ΠN , I − ΠN the complementary projection. Let x̄ ∈ fixT and define
∆k , ΠN (xk − x̄) for all k > 0. We have

∆k+1 , ΠN (xk+1 − x̄) = ΠNR(xk − x̄)

= W2Λ̃W2
∗ ΠN (xk − x̄)
︸ ︷︷ ︸

∆k

= W2Λ̃
kW2

∗∆0(7)

Thus (∆k)k>0 vanishes exponentially as a consequence of [16, Cor. 5.6.14] on
Eq. (7) which states that there is constant C ∈ R

+ such that
‖∆k‖ ≤ Cknρ(W2Λ̃W2

∗)k where the factor kn stems from the k-th power of the
Jordan decomposition of R which introduces terms of the form νkkℓ. Using the ∞
norm and taking the log gives the stated result (see [19, Sec. III-C] or [16, Chap 3.2.5]).
Recalling that Λ̃ contains the Jordan blocks associated to the non-unit eigenvalues of
R, which are all strictly smaller than 1 in magnitude, ρ(W2Λ̃W2

∗) = ν < 1.
Finally, we can notice that ΠN (xk+1 − xk) = 0, and thus

vk =
‖xk+1 − xk‖
‖xk − xk−1‖

=
‖ΠN (xk+1 − xk)‖
‖ΠN (xk − xk−1)‖

=
‖W2Λ̃W2

∗ΠN (xk − xk−1)‖
‖ΠN (xk − xk−1)‖

≤ ‖Λ̃‖
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where the inequality tends to be sharper as k grows and ν ≤ ‖Λ̃‖ ≤ 1.

Appendix B. Proof of Lemma 6.
Let x̄ ∈ fixT, and take k even, then xk+2 = T (T(xk) + γk+1(T(xk)− xk)).

‖xk+2 − x̄‖2 = ‖T (T(xk) + γk+1(T(xk)− xk))− T(x̄)‖2

≤ ‖T(xk) + γk+1(T(xk)− xk)− x̄‖2 − 1− α

α
‖T(xk) + γk+1(T(xk)− xk)− xk+2‖2

= (1 + γk+1) ‖T(xk)− x̄‖2 − γk+1 ‖xk − x̄‖2 + (1 + γk+1)γk+1 ‖T(xk)− xk‖2

− 1− α

α
‖T(xk) + γk+1(T(xk)− xk)− xk+2‖2

≤ (1 + γk+1) ‖xk − x̄‖2 − γk+1 ‖xk − x̄‖2 − (1 + γk+1)
1− α

α
‖T(xk)− xk‖2

+ (1 + γk+1)γk+1 ‖T(xk)− xk‖2 −
1− α

α
‖T(xk) + γk+1(T(xk)− xk)− xk+2‖2

= ‖xk − x̄‖2 − (1 + γk+1)

(
1− α

α
− γk+1

)

‖T(xk)− xk‖2

− 1− α

α
‖T(xk) + γk+1(T(xk)− xk)− xk+2‖2

where we used successively: i) the fact that T is α-averaged; ii) the equality of [5,
Cor. 2.14]; iii) a second time that T is α-averaged. The assumption on the sequence
(γk) makes the second term negative or null hence it can be dropped.

We notice that ‖xk+2 − x̄‖2 ≤ ‖xk − x̄‖2 − 1−α
α
‖T(xk) + γk+1(T(xk)− xk)− xk+2‖2

implies that the sequence of the even (‖x2k− x̄‖2)k>0 is decreasing and non-negative,
it is thus convergent and the (x2k)k>0 are bounded. Furthermore,

∞∑

k=0

∥
∥T(x2k) + γ2k+1(T(x2k)− x2k)− x2(k+1)

∥
∥
2
<∞

implies that any limit point of the sequence (x2k)k>0 belongs to fixT.
Let us now take x⋆, a limit point of (x2k)k>0, then (‖x2k − x⋆‖2)k>0 converges

and its limit is limk→∞ ‖x2k−x⋆‖2 = 0 which means that x⋆ is unique. Finally, using
non-expansivity, we get that the odd sequence also converges to the same point x⋆.

Appendix C. Derivation of Inertial ADMM (Sec. ref:admmacc).
The derivations follow nearly the same steps as the one of relaxed ADMM in

[11] thus we will abridge the common parts. We build upon the ADMM-generating
Lions-Mercier operator:

Tadmm =
{
(λ+ ρv, w + ρv)) : (u,−MTw) ∈ ∂f ; (v, λ) ∈ ∂g;w − ρMu = λ− ρv

}
.

but we will consider an inertial version of the proximal point algorithm8:

{
xk+1 = Tadmm(yk)
yk+1 = xk+1 + γ(xk+1 − xk)

Representation step: The input, yk, writes uniquely as λk+ρvk from the representation
lemma:

(8) yk = λk + ρvk.

8we chose to perform the operator then the inertia for the sake of clarity and consistency in the
derivations.

21



Mapping step: The definition of Tadmm implies that λk − ρvk writes uniquely as
w − ρMu with (u,−MTw) ∈ ∂f :

(9) wk+1 − ρMuk+1 = λk − ρvk.

Secondly, the output of the resolvent is:

(10) xk+1 = wk+1 + ρvk = λk + ρMuk+1.

Re-representation step: Here, the proof is a bit different in the inertial case as one
has to find the values of λk+1 and vk+1 with (vk+1, λk+1) ∈ ∂g, so that yk+1 =
xk+1 + γ(xk+1 − xk) writes uniquely as:

(11) yk+1 = λk+1 + ρvk+1.

Writing Eq. (9) of the mapping step, leads to the same step as for classical
ADMM :

wk+1 − ρMuk+1 = λk − ρvk with (uk+1,−MTwk+1) ∈ ∂f

⇒ uk+1 = argmin
u

{

f(u) +
ρ

2

∥
∥
∥
∥
Mu− vk +

λk

ρ

∥
∥
∥
∥

2
}

.

Now, combining Eqs. (10) and (11), we have (different from classical ADMM)

λk+1 + ρvk+1 = λk + ρMuk+1 + γ(λk + ρMuk+1 − (λk−1 + ρMuk)) with (vk+1, λk+1) ∈ ∂g

⇒ λk + ρMuk+1 + γ(λk + ρMuk+1 − (λk−1 + ρMuk))− ρvk+1 = λk+1 ∈ ∂g(vk+1)

⇒ 0 ∈ ∂g(vk+1)− ρ

(

Muk+1 − vk+1 +
λk

ρ
+ γ

(

Muk+1 +
λk

ρ
−Muk −

λk−1

ρ

))

⇒ vk+1 = argmin
v

{

g(v) +
ρ

2

∥
∥
∥
∥
Muk+1 − v +

λk

ρ
+ γ

(

Muk+1 +
λk

ρ
−Muk −

λk−1

ρ

)∥
∥
∥
∥

2
}

.

and the first line also tells us that

λk+1 = λk + ρ (Muk+1 − vk+1) + γ (λk + ρMuk+1 − (λk−1 + ρMuk))

which we can identify as the iterations of Inertial ADMM.
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