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Abstract

Reverse-mode algorithmic differentiation is an established method for obtaining

adjoint derivatives of computer simulation applications. In computational fluid

dynamics (CFD), adjoint derivatives of a cost function output such as drag or lift

with respect to design parameters such as surface coordinates or geometry control

points are a key ingredient for shape optimisation, uncertainty quantification, and

flow control. The computational cost of CFD applications and their derivatives

makes it essential to use high-performance computing hardware efficiently,

including multi- and many-core architectures. Nevertheless, OpenMP is not

supported in most algorithmic differentiation tools, and previously shown methods

achieve poor scalability of the derivative code.

We present the algorithmic differentiation of an OpenMP-parallelised finite volume

compressible flow solver for unstructured meshes. Our approach enables us

to reuse the parallelisation of the original code in the computation of adjoint

derivatives. The method works by identifying code segments that can be

differentiated in reverse-mode without changing their memory access pattern.

The OpenMP parallelisation is integrated into the derivative code during the build

process in a way that is robust to modifications of the original code and independent

of the OpenMP support of the differentiation tool.

We show the scalability of our adjoint CFD solver on test cases ranging from

thousands to millions of finite volume mesh cells on CPUs with up to 16 threads,

as well as on an Intel XeonPhi card with 236 threads. We demonstrate that

our approach is more practical to implement for production-size CFD codes, and

produces more efficient adjoint derivative code than previously shown algorithmic

differentiation methods.
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1 Introduction

Computer simulations are used in industrial applications to augment or replace
experiments that are expensive or time-consuming to conduct. A simulation can be used
to compute an objective function J ∈ Rm such as fuel consumption or noise, based on
the design of a system α ∈ Rn consisting of e.g. shape or operating conditions. The
design can be modified and the objective function recomputed in an iterative process to
find a design that minimises the objective function output. J can often be expressed as a
scalar or vector with few entries. In contrast, α often consists of millions of parameters.

For gradient-based optimisation methods or as a guidance for a human designer, it
is desirable to obtain the Jacobian dJ

dα that expresses the sensitivity of the objective
function to design changes. The adjoint method provides a way to compute dJ

dα

at a relative cost that is independent of the number of design parameters, which
makes the method feasible for industrial applications (1) where m� n. Given a
computer program that implements y := J(α) with runtime T , the corresponding
adjoint program J̄ computes the product of the transpose Jacobian matrix with a vector
ȳ ∈ Rm as

x̄ =

(
dJ

dα

)T
· ȳ,

which can be used to assemble dJ
dα by calling J̄ repeatedly, using each of the m unit

vectors in Rm as inputs. The runtime complexity of evaluating J and J̄ is the same,
and so the time required to assemble the full Jacobian is O(m · T ).

If J is based on a physical model that is discretised in time and/or space, at least
two separate paths exist for creating the adjoint program J̄ . This situation applies in
the case of computational fluid dynamics (CFD).

One may mathematically derive an adjoint model based on the physical primal
model. The adjoint model is then discretised and implemented in software. This is
commonly referred to as the continuous adjoint approach (2), which has met with some
success. A key advantage of this approach is that the same parallelisation strategy can
generally be used for the primal and adjoint code (1). For a typical edge-based finite
volume CFD solver on an unstructured mesh as covered extensively in the literature (3),
a parallelisation strategy based on mesh colouring can be used for both the primal and
adjoint solver, as illustrated in Figure 1.

However, the differentiation of the primal model, as well as the following
discretisation of the adjoint model and its implementation, is a manual effort and
hence error-prone. Aspects such as the correct handling of boundary conditions
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Figure 1. Control volumes and the dual graph that is used for an edge-based finite volume
solver. The same spatial discretisation is typically used for both primal and adjoint
computation. Any parallel schedule that is valid for the primal solver should therefore be
applicable to the adjoint solver as well. We exploit this fact to automatically generate an
OpenMP-parallel adjoint solver.

or turbulence models are subject to ongoing research. Since the adjoint system is
discretised separately, the adjoint derivatives computed in the conventional continuous
adjoint approach reflect the derivatives of the primal computation only in the limit
of infinitely fine meshes. In addition, it is hard to keep the primal and adjoint codes
consistent with each other in the presence of updates and bug fixes.

This situation makes discrete adjoint programs generated by algorithmic
differentiation (AD) attractive (4). Based on the source code of a primal program, an
AD tool can generate a program that accumulates the partial derivatives of the primal
program’s individual operations. In reverse-mode AD, the accumulation is performed
in reverse order, starting from the program output, and tracing backwards through all
operations that influence the output. The resulting adjoint program can be used to
compute the derivative of the primal output with respect to all primal inputs, without
requiring knowledge of the application domain or the underlying physical model.

The AD process can be incorporated into the automated build system of the
program (5). Hence, updates to the primal implementation such as new turbulence
models or boundary conditions and bug fixes are automatically reflected in the
derivative computation. The runtime of the automatically generated code is typically
within an order of magnitude of the primal runtime for serial cases and has been
reported to be as low as 1.3 times the primal runtime (6).

Reverse-mode AD for programs using message passing parallelisation has been
discussed previously (7; 8; 9; 10). While open problems remain, adjoint MPI is well
enough understood to be used in practice.
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In contrast, the differentiation of shared memory parallel code is not yet in
widespread use. This situation is in spite of the ongoing trend to increasing numbers
of CPU cores in each compute node (11). An established way to implement shared
memory parallelisation is the OpenMP standard (12; 13), which recently also has been
advancing into the domain of accelerators and many-core architectures (14).

In this work, we present the application of the source-transformation AD tool
Tapenade (15) to the compressible finite volume flow solver mgopt (5). The approach,
which we will refer to as SSMP for self-adjoint shared memory parallelisation,
preserves the existing parallelisation strategy of the primal code when generating the
adjoint code. The adjoint solver is equipped with OpenMP pragmas during the build
process. The method does not rely on the OpenMP support of an AD tool and should
therefore work independently of the tool used and is applicable to a whole class of
parallel loops that are commonly found in finite volume solvers.

We make the following contributions in this paper:

1. We identify a class of primal programs for which source transformation adjoint
OpenMP can be generated that mimics the parallelisation of the primal code.

2. We show an approach to instrument the adjoint code with OpenMP pragmas
during the build process that works independently of the source-transformation
AD tool being used, along with a correctness proof.

3. We present an adjoint CFD solver with OpenMP parallelism along with
scalability measurements on CPU and Intel XeonPhi for a series of test cases.

The paper is organised as follows: Section 3 discusses the role of reverse-mode AD
in adjoint CFD computations. We describe the parallelisation of the primal code in
Section 4 and that of the adjoint code in Section 5. Test cases in Section 6 and timing
results in Section 7 lead to a conclusion in Section 8.

2 Related work and background

Other approaches to developing parallel adjoint CFD solvers have been shown in the
literature and are outlined in this section. None of them allow one to automatically
transform a shared memory parallel scalable primal solver into an equivalently scalable
adjoint solver. At the end of this section we review the conventional reverse-mode
differentiation of OpenMP-parallel code shown in previous work.

Adjoint solvers have been hand-implemented following the continuous adjoint
approach, for example as part of the solver framework OpenFoam (16). Continous
adjoint solvers naturally inherit the parallelisation of the primal code, but the computed
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derivatives suffer from the aforementioned consistency problems and significant
manual implementation effort is required.

The authors of (17) show automatic generation of parallel primal and adjoint solvers.
While their approach leads to derivatives that are consistent with the primal code, it is
limited to finite element discretisations and does not work with existing legacy code.

Efforts to develop production-sized parallel discrete adjoint solvers have focused
on MPI (18) and have not taken full advantage of the shared memory capabilities
of modern hardware. Methods for MPI cannot be easily applied to OpenMP, since
communication between threads with shared memory is not explicitly stated in the
source code, and in some cases the presence of communication cannot be decided at
compile time. This makes it hard to ensure the absence of data races in the adjoint code.

Previous work on differentiating OpenMP presents the parallelisation of vector-
mode AD to compute multiple directional derivatives in parallel (19; 20; 21). Other
work covering the differentiation of already parallel primal programs depends on the
static analysis of the adjoint communication pattern (22; 23; 24), which rarely works
for non-trivial programs or relies on critical or reduction pragmas (25) resulting in poor
scalability. We summarise the solutions in the literature previous to this work:

Critical/atomic sections All write access to shared variables is safeguarded with
critical sections or declared atomic. While this will guarantee a correct result,
it comes with a considerable performance overhead. We observed this in our test
cases shown in Section 7.

Reduction Some parallel loops can be expressed as a reduction into an array using
the OpenMP reduction pragma. Due to the runtime and memory footprint of
this approach, it is only an option for small arrays and scalar variables. In CFD
applications, arrays are often large enough to occupy a significant fraction of the
available memory.

Detection Detecting the presence of write conflicts at compile time is discussed
in (23), while schemes to reschedule loops at runtime are studied e.g. in (26).
Compile-time solutions are limited to simple cases and in particular, they cannot
work for unstructured meshes where the schedule depends on the program input.

Automatic parallelisation Techniques for parallelising irregular computations
exist (27; 28), but focus on cases where full parallelisation can be found.
Multi-colouring parallelisations have not been automated as of yet.

In contrast to previous work, we do not attempt to prove the absence of write conflicts
in shared memory or resort to critical sections to safeguard potential write conflicts.
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Instead, we identify code segments for which the data dependencies of the primal and
adjoint code have a one-to-one correspondence, and hence the same parallelisation
strategy can be used for the adjoint code. With our approach, the correctness of the
parallel adjoint code depends only on the correctness of the primal code.

3 Primal and adjoint CFD

Computational fluid dynamics (CFD) is commonly used in automotive, aerospace and
many other industries to predict the behaviour of flow inside and around vehicles and
other equipment. The governing equations that describe the behaviour of flow at a
steady state can be discretised in space. We denote as α the vector of design parameters
and as u the variables that describe the state of the flow, such as density and momentum.
This system can be written as

F (u, α) = 0. (1)

The residual function F is driven to zero by iteratively updating the discrete state u

un+1 ← un − P (un, α)−1 · F (un, α),

where P (un, α) is a preconditioning matrix that depends on the exact scheme
being used. In each iteration, the function F that computes the residual, and the
preconditioning matrix P need to be updated. If the scheme converges, we find that

lim
n→∞

un = u∗,

although in practice the iterative process is stopped after a finite number of steps as
soon as the result is sufficiently accurate.

The adjoint method can help choose the design parameters α to minimise an
objective function J(u, α) that defines the quality of a given design based on a function
of the design itself and the resulting flow conditions, for example pressure loss, noise,
or average lift or drag over a certain time span. Given a program that computes both
the flow field and the objective function, one can directly apply an AD tool to it and
obtain dJ

dα . However, it is common practice and often more efficient to use AD only for
certain parts of the program and to assemble the total derivative manually. To this end,
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one can express the sensitivity of the objective function with respect to the design as

dJ
dα

=
∂J

∂α
− ūT

∂F

∂α
,

where ū is the solution to the adjoint system(
∂J

∂u

)T
−
(
∂F

∂u

)T
ū = 0.

This can be solved iteratively (29; 30) as

ūn+1 ← ūn + P (u∗, α)−T ·

((
∂J

∂u

)T
−
(
∂F

∂u

)T
· ūn

)
,

using the temporal discretisation and transposed preconditioner of the primal program.
AD tools such as Tapenade (15), ADOL-C (31), Taf (25) or OpenAD (32) can

generate code that computes the derivatives in these equations. The cost of repeatedly
evaluating F (u, α) is a major contributor to the overall cost of the primal CFD solver.
Likewise, the cost of evaluating

(
∂F
∂u

)T · ūn in each iteration is the main computational
expense for an adjoint solver. This is enhanced by the fact that the adjoint system is
linear and the preconditioning matrix PT depends only on the primal solution and
hence needs to be computed only once, while the adjoint residual is updated in each
iteration. In the primal solver, P and F are recomputed in every iteration.

In addition, other parts of the code such as I/O, time stepping with Runge-Kutta or
multigrid preconditioning (33) or linear system solvers can be reused in the adjoint
solver. The evaluation of the objective function J typically does not require expensive
operations such as linear system solves, and hence neither the evaluation of J nor(
∂J
∂u

)T
contributes significantly to the overall runtime. Therefore, evaluating F̄ often

causes the only significant computational expense of algorithmically differentiated
code in an adjoint solver. For mgopt, typical runtime contributions for F , P , and
their adjoints are shown in Table 1.

4 Primal parallelisation strategy

The primal residual function F shown in Equation (1) is an example of an edge-based
flux residual computation as can be found, for example, in (3; 34). It can be expressed as
a loop over edges in a graph where information is exchanged between nodes connected
by an edge, as expressed in Algorithm 1. The connectivity is stored in edge2nodes(i),
which is a mapping from the edge i to the nodes l, r that are connected by i.
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Table 1. Percentage of runtime contributed by primal residual and preconditioning to
overall primal runtime (Column 3-5), and percentage of runtime contributed by adjoint
residual and preconditioning to overall adjoint runtime (Column 6-8). First-order cases run
with inviscid flow, second-order cases run with the Spalart Allmaras turbulence model and
Green-Gauss gradients, with explicit local timestepping or a Block Jacobi preconditioner.

Stepping Order F P other
(
∂J
∂u

)T
PT other

Explicit 1st 83% 13% 4% 98% 0% 2%
Explicit 2nd 85% 11% 4% 98% 0% 2%

Block Jacobi 1st 25% 73% 2% 96% 1% 3%
Block Jacobi 2nd 27% 72% 1% 96% 1% 3%

a a

b

b
c

1
2

34

Figure 2. Example of a mesh with colouring (colours shown as letters on edges). Fluxes
along all edges with the same colour can be computed in parallel. The nodes with numbers
2 and 4 have a vertex degree of 3 (i.e., three neighbours), meaning that at least 3 colours
are needed for this mesh.

for i← 1 . . . nedges do
l, r ← edge2nodes(i);

rl
+←− fl(ul, ur);

rr
+←− fr(ul, ur);

end
Algorithm 1: Interface-based residual computation 1D

This can be considered as a function of u with

r = F(u), (2)

where each entry in the output vector r is the result of a scalar sum-reduction of all
contributions to that index.

It is tempting to use an OpenMP reduction pragma to parallelise the loop in
Algorithm 1. Although the reduction pragma will prevent race conditions, it is not
feasible for large cases because it will require a local copy of the residual vector for
each thread. The consequence is not only an increased memory footprint proportional
to the number of threads (which may be hundreds for many-core architectures) but
also a slowdown of the execution, since each thread will only contribute to selected
elements, but the entire vector needs to be initialised to zero on each thread and will be
treated as a dense vector despite the number of nonzero elements per thread only being
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O(#nodes/#threads). This could be solved using sparse accumulators (35), which
have been described as a method to implement reduction operations with a runtime
proportional to the number of nonzero entries. At the time of writing, no OpenMP
implementation that we know of implements them.

For this reason, it is preferable to avoid write conflicts e.g. by using a colouring on
the edges (36) or colouring with mini-partitions (37). In the form used in this work, the
edges in the mesh are coloured such that for any node in the mesh, all edges connected
to that node have a distinct colour. No two edges with the same colour are therefore
connected to the same node, and the flux along all edges with a given colour can be
computed in parallel without causing concurrent write access to any node. Similar
colouring strategies have been described for other application areas as well, such as
mesh smoothing (38).

The write access pattern of the primal loop over edges in the coloured graph
in Figure 2 becomes apparent by expressing F as the sum of the contributions of
individual iterations, and similarly for the adjoint code in Section 5.

F =


fl(u1, u4)

0

0

fr(u1, u4)

+


0

fl(u2, u3)

fr(u2, u3)

0

 (a)

+


fl(u1, u2)

fr(u1, u2)

0

0

+


0

0

fl(u3, u4)

fr(u3, u4)

 (b)

+


0

fl(u2, u4)

0

fr(u2, u4)

 (c)

Given a mesh with a valid colouring, the following statements are all equivalent.

• Two edges E1 = {i, j} and E2 = {k, l} have the same colour.
• i, j, k, l are pairwise distinct.
• No index in the output array is written to by both the fluxes on E1 and E2.
• The flux update on E1 and E2 can be executed in parallel.

We can therefore implement the edge flux loop in Algorithm 1 using OpenMP
as a serial loop over all colours in the mesh, within which we loop over all edges
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with that colour in parallel without any further synchronisation except for the implicit
synchronisation barrier at the end of each parallel for loop. The vector ia contains for
each colour the index of the first edge with that colour. The parallelisation schedule is
determined only after the colouring of the mesh is known, at runtime of the program.

for c← 1 . . . ncolours do
!$OMP parallel for shared(u, r);
for i← ia(c) . . . ia(c+ 1)− 1 do

l, r ← edge2nodes(i);

rl
+←− fl(ul, ur);

rr
+←− fr(ur, ul);

end
end

Algorithm 2: Interface-based residual computation 1D

5 Recycling the primal parallelisation for the adjoint solver

An AD tool without built-in support for OpenMP such as the most recent version 3.11

of Tapenade will simply omit the OpenMP pragmas when generating the adjoint code.
In the absence of user intervention or sophisticated performance optimisation steps, a
source-transformation AD tool will generate adjoint code as shown in Algorithm 3.

for c← ncolours . . . 1 do
// possibly some OpenMP
for i← ia(c+ 1)− 1 . . . ia(c) do

l, r ← edge2nodes(i);

[ūl, ūr]
+←− f̄l(ul, ur) · r̄l;

[ūl, ūr]
+←− f̄r(ul, ur) · r̄r;

end
end

Algorithm 3: Interface-based adjoint

With our new self-adjoint shared memory parallelisation approach (SSMP), we
propose to take into account the observation that the loop nesting is preserved by the
AD tool, so there is still an outer loop over colours and an inner loop over edges within
each colour. We further observe in the above example that each iteration in the adjoint
reads and writes to the same indices as the corresponding primal iteration. This is a
consequence of the fact that potential write conflicts in the adjoint code are caused by
nonexclusive read access in the primal as explained in Section 5.1.
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By definition (39), the adjoint code of equation (2) has to be an implementation of

ū = F̄ · r̄ (3)

with

F̄ :=

(
∂F

∂u

)T
,

where F̄ for Figure 2 is given as

F̄ =


∂fl
∂u1

0 0 ∂fr
∂u1

0 0 0 0

0 0 0 0
∂fl
∂u4

0 0 ∂fr
∂u4

+


0 0 0 0

0 ∂fl
∂u2

∂fr
∂u2

0

0 ∂fl
∂u3

∂fr
∂u3

0

0 0 0 0

 (a)

+


∂fl
∂u1

∂fr
∂u1

0 0
∂fl
∂u2

∂fr
∂u2

0 0

0 0 0 0

0 0 0 0

+


0 0 0 0

0 0 0 0

0 0 ∂fl
∂u3

∂fr
∂u3

0 0 ∂fl
∂u4

∂fr
∂u4

 (b)

+


0 0 0 0

0 ∂fl
∂u2

0 ∂fr
∂u2

0 0 0 0

0 ∂fl
∂u4

0 ∂fr
∂u4

 . (c)

The implementation of (3) involving F̄ performs read operations in r̄ and write
operations in ū at the same indices as the primal function F in u and r. The coefficients
of F̄ may depend on the primal variable u if fl or fr are nonlinear in u, in which case
the evaluation of F̄ further requires read access in u.

5.1 Self-adjoint memory access

We assume that each memory location is either only read from or only written to during
the entire parallel loop. The only exception is made for memory locations that are
incremented using statements equivalent to a sum-reduction. In particular, we consider
only loops without loop-carried dependencies where the result of one iteration does not
depend on the result of previous iterations.

We state in Lemma 1 a basic property of the relationship between memory access in
primal and adjoint codes. This is used to show in Proof 1 that the absence of concurrent
read access in the primal code is a sufficient condition to ensure an adjoint code that
is free of data races. We then define self-adjoint memory access as a property of the
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memory access pattern of the primal code, and prove in the remainder of the section
that this is a sufficient condition to ensure exclusive read access, allowing us to reverse-
differentiate code with self-adjoint memory access while retaining its parallelisation.

Lemma 1. Let I be an iteration of a loop that reads data from the primal input vector
u at the set of indices Min(u) and writes to the primal output vector r at the set of
indices Mout(r). Further, let Ī be an iteration of the corresponding adjoint loop that
performs read access in the adjoint input vector r̄ at the set of indices M̄in(r̄) as well
as the primal input vector u at the set of indices M̄in(u), and performs write access to
the adjoint output vector ū at the set of indices M̄out(ū).

The following statements hold.

• M̄out(ū) ⊆Min(u)

• M̄in(r̄) ⊆Mout(r)

• M̄in(u) ⊆Min(u)

The lemma becomes clear with the following proof.

Proof 1. Assume that I does not write to an index m in r, that is, m /∈Mout(r). In
other words, the contribution of I to rm is zero. Consequently, the m-th row of the
Jacobian matrix is zero. Formally, ∂Im∂un

= 0 for any n.
Likewise, if I does not read from an index n in u, namely, n /∈Min(u), the Jacobian
matrix of I will contain only zeroes in column n.
Obviously, if the n-th column is all zero in

(
∂I
∂u

)
, then the n-th row in

(
∂I
∂u

)T
is all

zero. The adjoint of I is an implementation of

Ī : ū←
(
∂I

∂u

)T
· r̄.

Hence, the linear operator Ī will make no contribution to index n. Similarly, a zero row
m in

(
∂I
∂u

)
will mean that Ī does not read from index m.

Förster previously observed (23) that because of this property, write conflicts at
shared arrays in the adjoint code can happen only if there is concurrent read access
to shared arrays in the primal code. He introduced the exclusive read property that,
when held by a code I , guarantees that Ī does not produce write conflicts in shared
arrays. In practice, this is hard to prove at compile time. We solve this problem by
introducing the concept of self-adjoint memory access.

Definition 1. The memory access of a code is self-adjoint if the code has distinct read-
only input and write-only output vectors, and the set of indices accessed in the primal
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input vector is equal to the set of indices accessed in the primal output vector, that is,
Min(u) = Mout(r).

Lemma 2. If a primal parallel loop whose body has self-adjoint memory access writes
a result into a shared output vector without data race, then its adjoint can be created
with a shared adjoint output vector and executed in parallel without data race.

Proof 2. If the original loop has no data race, then it has a mapping from iteration
numbers to non-overlapping output indices. By definition, it that loop has self-adjoint
memory access, the mapping from iteration number to input indices is the same, and
thus also non-overlapping. This means that the original loop has exclusive read access.
The output indices of the adjoint loop are a subset of the input indices of the original
loop, and therefore also non-overlapping. It follows that a code that is self-adjoint and
free of data races also has an adjoint code that is free of data races.

5.2 Rules for adjoint OpenMP

In this section we summarise the correct treatment of parallel OpenMP loops during
reverse-mode differentiation. The approach presented in this work affects only the
treatment of shared arrays in loops with self-adjoint memory access. For all other types
of variables and loops we summarise the existing approach in the literature (22; 23) as
follows.

Primal variable scope Scope of corresponding adjoint variable
private private

firstprivate reduction
lastprivate shared (only last iteration writes)
reduction firstprivate

shared write shared read
shared read atomic write

We recommend the following refined strategy for shared variables that are used as
shared read variables in the primal code (last case in the above table).

• Following our method, for arrays ā for which the primal variable a has self-
adjoint memory access, use the shared work construct.

• Following the previous methods outlined in Section 2, for arrays with sparse
memory access (large arrays, many threads), use the atomic construct, else use
the reduction construct.∗

∗Reductions to array variables in C/C++ were introduced in the OpenMP 4.5 standard in November 2015
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5.3 Automatic generation

To implement self-adjoint shared memory parallelisation (SSMP), a user has to identify
loops with self-adjoint memory access and mark them in a preprocessing step of which
the AD tool does not need to be aware. A postprocessing script is used to deploy
the correct OpenMP pragmas in the generated adjoint code before compilation for all
adjoint loops for which the corresponding primal loops were found to have self-adjoint
memory access.

We use the technique known as the subroutine technique (13) or function

outlining (40) for variable scoping. In this approach, all primal loop bodies of
parallel loops with self-adjoint memory access are placed into dedicated subroutines.
If the compiler uses function inlining during compilation, this will not change the
performance. The names of these subroutines contain a particular tag.

All OpenMP shared variables are passed to the routine by using call-by-reference.
OpenMP private variables are declared as local variables inside the routine. The
generated adjoint code contains an adjoint argument for each active primal routine
argument and an internal adjoint variable for each internal private variable. Because
the memory access in the primal code is self-adjoint, all external subroutine arguments
of the adjoint code are allowed to be shared variables, while all internal variables must
be private.

The generated adjoint code can then be postprocessed in two simple steps. First, in
front of every loop that contains a call to a subroutine that has a name that contains the
aforementioned tag, the pragma

!$OMP PARALLEL DO DEFAULT SHARED

is placed. Second, most AD tools will place calls to a taping mechanism inside the
generated adjoint code. This is used to store intermediate results during the original
computation, which have an influence on the derivatives calculated during the adjoint
computation. This is the case for nonlinear functions or branches. Therefore, inside all
subroutines that are named with the tag, access to the taping mechanism provided by
the AD tool are rerouted to a thread-safe stack implementation.

Arguably, the application of SSMP has limitations. It requires changes in the primal
code, and the primal code inside parallel loops must not use global variables or common
blocks (with the exception of constant parameters). If the primal code performs self-
adjoint memory access to some array and conflicting access to another array, SSMP
can be used for the former, but other approaches have to be used for the latter. A user
must ensure that there is no concurrent read access from any memory address in the
primal code even if it is accessible through multiple variable names (aliasing).
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6 Test cases

To demonstrate the effectiveness of the SSMP approach, we apply it to the 3D
unstructured edge-based fluid dynamics solver mgopt, which simulates compressible
inviscid, laminar, or turbulent flow using the Spalart-Allmaras(41) or DES (42) model.
The adjoint solver parallelised with SSMP is used to compute sensitivities for three
different test cases that are derived from real-life applications: a U-shaped cooling
channel, a turbine stator blade, and a fuel-efficient concept car. We present scalability
and absolute speed of the adjoint solver with SSMP on a system with two CPUs, as
well as on a XeonPhi accelerator card, and we compare them with the timings of an
adjoint solver that has been parallelised using atomic pragmas without SSMP.

6.1 Methodology

The solver mgopt in the version considered in this work consists of 35, 994 lines
of Fortran 90 code, of which 11, 794 lines are in core solver routines that are
differentiated by using the AD tool Tapenade (15). The differentiated routines contain
mainly the spatial discretisation of the flow model such as second-order Roe (43)
flux, approximated spatial gradients of physical quantities and limiters, and turbulence
models. The generated adjoint routines are used to build the adjoint CFD solver in an
automated process that incorporates algorithmically differentiated routines with hand-
coded adjoints for the BDF2, Runge-Kutta, geometric multigrid, and linear solver
implementations using the fact that BDF2 and most Runge-Kutta schemes are self-
adjoint and multigrid operators are self-adjoint up to a constant factor (33).

The routines that contribute most to the overall runtime are parallelised by using
OpenMP based on an edge-colouring of the input mesh. The number of colours affects
the number of synchronisation barriers inside the code and thus affects the parallel
performance. We therefore report the number of colours required for each of the test
cases. We compute the maximum vertex degree of each mesh as a lower bound for
the minimum number of required colours (44). The mgopt solver uses a greedy edge
colouring heuristic (45) without edge preordering, which sometimes results in a higher
than optimum number of colours.

The tests are run on two Intel Xeon E5-2660 CPUs clocked at 2.2 GHz with 8 cores
and 20 MB L3 cache each. We run Scientific Linux 6.2. The codes are compiled with
gfortran 4.8.2 with the -O3 flag and scatter OpenMP thread affinity; AD code is
generated with Tapenade 3.11 and then compiled with the same flags as the primal. We
also test the performance of the adjoint solver on an Intel XeonPhi Coprocessor (MIC)
5110P Knights Corner clocked at 1.053 GHz. We use native execution to measure
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timings on the MIC (i.e., the full code runs on the MIC, not just parallel sections).
The solver is compiled for the MIC using ifort 14.0 with -fast -mmic flags and
balanced OpenMP thread affinity. There are 60 cores of which we use up to 59 and
leave the remaining core to the operating system. Each core supports up to 4 threads
and has 512 kB of L2 cache. We measure performance for serial execution as well as
with multiples of 59 threads up to 236 threads.

Timings are measured for the internal residual computation only. We exclude all
I/O, linear solvers and temporal discretisation, because they are not differentiated and
therefore not parallelised with SSMP. The baseline for the scalability figures of the
primal solver on a CPU is the runtime of the serial primal solver on the CPU. For the
scalability on the XeonPhi, the baseline timing is obtained by running the serial primal
solver on the XeonPhi. Likewise, the baseline timing for the adjoint scalability is the
runtime of the serial adjoint solver on the respective machine. The scalings for SSMP
and atomic adjoint approaches use the same baseline, since the serial adjoint solver
does not contain any OpenMP and can therefore not contain atomic pragmas.

We run three test cases to demonstrate the speedup of our OpenMP solver: flow
inside a U-shaped cooling channel, flow around a turbine stator blade, and flow
around a fuel-efficient concept vehicle. We chose cases with different sizes and mesh
topologies, to test the parallelisation in a variety of conditions.

6.2 U-bend (BEND)

We simulate flow through a U-shaped cooling channel, which is used inside turbine fan
blades to prevent damage from the combustion temperatures. The adjoint derivatives
are useful to redesign the channel for lower pressure loss or better heat exchange, which
can help increase the fuel efficiency of aircraft.

The mesh is generated as a fully structured cartesian mesh, after which a coordinate
transformation is applied to create the bend shape. Although the mesh is structured,
the solver treats it as an unstructured mesh. The simplicity of the geometry allows us
to automatically generate a variety of different mesh sizes for this case to investigate
the solver speed; see Figure 3 for an example with 200k nodes. The node numbering is
randomised, making the test case more challenging as it causes the colouring heuristic
to require more colours and also probably increases the number of cache misses. This
is in contrast to the RR case in the following section where the difference in node
numbers of any two points corresponds to their spatial distance, resulting in a better
scalability of that test case.
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Figure 3. BEND: U-Bend used to model flow in an internal cooling channel of turbine
wings. Structured hexahedral mesh. Only quadrilateral surface mesh and streamlines are
shown.

The flow is set up with a fixed inlet velocity of Ma 0.02565 (the Mach number
is defined as a fraction of the speed of sound; under the flow conditions inside the
bend this is ca. 8 m/s) and a fixed pressure outlet. We use second-order-accurate Roe
fluxes, the Spalart Allmaras turbulence model, and Green-Gauss spatial gradients, all of
which are fully differentiated with Tapenade for the adjoint solver, and an explicit time-
stepping scheme. The channel has viscous non-slip walls. The greedy mesh colouring
algorithm in mgopt required 11 colours for this mesh, significantly more than the
optimum number of colours of 6. All volume elements are hexahedral, and all boundary
faces are quadrilateral.

6.3 Fuel-efficient vehicle (FEV)

We use the geometry of the fuel efficient vehicle “Droplet”, designed as a design study
for the Shell Eco-marathon at Warsaw University of Technology, Faculty of Power
and Aeronautical Engineering, by the Student’s Association of Vehicle Aerodynamics.
The competition’s goal is to build a vehicle that can drive as far as possible on 1 litre
of fuel at an average speed of 8 mph. Adjoint-based aerodynamic shape optimisation
of the car body is one way to reduce drag, which is crucial for the performance and
fuel efficiency. We use second-order Roe fluxes, non-slip wall conditions for the car
and the ground, and freestream boundary conditions for the remaining boundaries. The

Prepared using sagej.cls



Hückelheim, Hovland, Strout and Müller 19

Figure 4. FEV: Fuel-efficient vehicle “Droplet”. Tetrahedral mesh; only triangular surface
mesh and flow streamlines are shown.

mesh consists of 1.08 million tetrahedral cells and 1.31 million edges; see Figure 4.
The highest vertex degree is 23, and our colouring algorithm requires 25 colours. The
number of colours is higher and the scalability is poorer than in all other test cases.

6.4 Turbine stator (RR)

The turbine stator used in this case is a geometry provided by Rolls-Royce
Deutschland. Adjoint-based optimisation is used to improve the performance of jet
engines. The mesh consists of 1.2M hexahedral elements with 3.7M edges. The
colouring algorithm requires 7 colours for this mesh, which has a maximum vertex
degree of 7; see Figure 5 for an illustration of the geometry and flow conditions.
Results for this test case are presented only on the CPU, because the solver exceeded
the memory limits of the MIC with this mesh.

7 Results

After the discussion of detection and implementation of self-adjoint shared memory
parallelisation (SSMP), we show runtime and speedup with either SSMP or the
approach using atomic constructs that was proposed by Förster (23).
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Figure 5. RR: Turbine stator test case. Hexahedral mesh, only quadrilateral surface mesh
on hub and casing, and streamlines are shown.
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Figure 6. Edge residual computations per second for 16 CPU threads (higher is better).
FEV and RR mesh with given size; BEND mesh with various mesh sizes from 27 to 1.5M
cells. For MIC see Figure 7

7.1 Execution speed

The runtimes in this section are presented in a normalised fashion as the number of
residual computations per second. This allows us to compare runtimes on different
mesh sizes and with different numbers of iterations. To obtain the execution speed, we
divide the measured program runtime with 16 CPU threads or 236 MIC threads by the
number of iterations and the number of edges in the given mesh.
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Figure 7. Edge residual computations per second for 236 MIC threads (higher is better).
FEV mesh with given size; BEND mesh with various mesh sizes from 27 to 1.2M cells. For
CPU see Figure 6

Table 2. Number of edge residual updates per second (computational speed) for FEV, RR,
and BEND with 600k nodes. The SSMP approach increases speed by 12− 28.1%, which
is comparable to the speed gained by ordering mesh nodes

CPU SSMP Atomic Difference
BEND 1.86M 1.61M 13.4%

FEV 2.09M 1.84M 12.0%
RR 3.40M 2.58M 24.1%

MIC MIC SSMP Atomic Difference
BEND 1.99M 1.43M 28.1%

FEV 1.75M 1.34M 23.4%

In the absence of caching effects and synchronisation barriers, we would expect the
execution speed to be the same for all test cases. In practice, however, we observe a
vastly different execution speed for different meshes. On the CPU, the execution speed
is significantly lower if the number of edges in the mesh is below 10k, since smaller
meshes do not allow enough parallelism to compensate for the serial parts of the code
such as the OpenMP barriers after each colour. The execution speed for a series of
BEND meshes with increasing size is shown in Figure 6 for the CPU and Figure 7 for
the MIC, where the speed difference for different mesh sizes is even more pronounced.
We observe a drop in execution speed on the CPU when the mesh size exceeds 100k
edges, which is probably caused by the fact that the state and residual vectors no longer
fit into theL3 cache of the CPU. On the MIC we do not observe such an effect, probably
because of the lack of shared L3 cache; see Figure 7.
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We observe a roughly constant factor in speed difference between the adjoint solver
with atomic constructs and that with SSMP for all mesh sizes. For the BEND case
with 600k edges as well as the FEV and RR case, execution speed is listed in Table 2.
The overhead of using atomic pragmas has a larger influence on the MIC than on the
CPU, probably because of the lower serial speed of the MIC and the higher cost of
synchronisation barriers for a large number of threads. The effect of atomic pragmas is
significant, with at least 12% and up to 28.1% runtime difference in all test cases.

7.2 Scalability

The scaling for up to 16 CPU cores is shown in Figure 8 for the U-bend (BEND)
with 600k nodes. The scaling is computed relative to the serial code with no OpenMP
parallelism. The scaling results therefore indicate the runtime overhead introduced by
the atomic pragmas. Similarly, the scalability of the code is shown for the Rolls-Royce
stator (RR) and fuel-efficient vehicle (FEV) test case in Figure 9 and Figure 10. The
speedups agree with previous studies on OpenMP in unstructured CFD solvers (46).

The adjoint code generated with SSMP consistently scales better than the adjoint
solver with atomic pragmas as well as the primal solver. While it is not surprising that
the adjoint code runs faster without atomic pragmas, some explanation is needed as
to why the adjoint solver scales better than the primal solver. First, we note that the
speedup of the adjoint solver is computed relative to the speed of the serial adjoint
solver, whereas the speedup of the primal solver is relative to the speed of the serial
primal solver. Hence, the better scaling hides the fact that the adjoint solver is still
significantly slower than the primal solver. Similarly, a better scalability on one of the
meshes does not indicate a better absolute runtime, and a better scaling on the MIC
does not indicate a better absolute runtime than on the CPU (which is why absolute
runtimes are discussed in Section 7.1).

The better scalability of the adjoint solver on the CPU can be explained by the
fact that the adjoint solver performs more operations than does the primal solver but
has the same number of colours and therefore the same number of synchronisation
barriers. The higher computational cost therefore hides some of the parallelisation
overhead. The fact that the RR case scales much better than the FEV case confirms
this theory. The case has a large number of edges and a low number of colours, which
also increased the amount of computational cost per synchronisation barrier.

On the MIC, the adjoint solver achieves a better scaling for the BEND case than
does the primal solver, while the primal solver scales slightly better than the adjoint
solver in the FEV case. The performance penalty of using atomic pragmas on the MIC
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Table 3. Speedup factors for primal, adjoint with SSMP, and adjoint with atomic pragmas,
compared with serial execution on the same machine with the same test cases. Data shown
for BEND case with 600k vertices, and RR and FEV cases, 16 CPU and 236 MIC threads.

CPU SSMP Atomic Primal Figure
BEND 9.6 8.4 8.7 8

FEV 9.5 8.5 9.3 9
RR 13.4 13.0 12.3 10

MIC SSMP Atomic Primal Figure
BEND 138.2 99.4 124.2 11

FEV 114.4 87.7 127.6 12
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Figure 8. Scaling of primal and adjoint residual for BEND mesh with 600k vertices on CPU,
with maximum speedup of 9.6 (SSMP), 8.4 (atomic), and 8.7 (primal) as in Table 3

is more pronounced than on the CPU, which is not surprising because the overhead of
synchronisation constructs grows with the number of threads.

The MIC speedups shown in Figure 11 and Figure 12 might appear poor but are
typical at least for first-generation XeonPhi coprocessors (47). The same is true for
the absolute runtimes (48). The method that we present in this work affects only
the AD process and should be orthogonal to future code optimisation steps such as
vectorisation that are undertaken to speed up the primal code in the future.

8 Conclusions and future work

We presented SSMP, an approach to generate source-transformation adjoint code
of structured or unstructured OpenMP-parallel stencil operations. The method was
successfully applied to an adjoint CFD solver that supports shared memory parallelism
on multi-core CPUs and many-core architectures such as the Intel XeonPhi.
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Figure 9. Scaling of primal and adjoint residual for FEV mesh on up to 16 CPU cores, with
the maximum speedup of 9.5 (SSMP), 8.5 (atomic), and 9.3 (primal) as in Table 3

4

8

12

16

4 8 12 16

sp
ee

du
p

number of threads

primal
adjoint SSMP
adjoint atomic

ideal

Figure 10. Scaling of primal and adjoint residual for RR mesh on up to 16 CPU cores, with
the maximum speedup of 13.4 (SSMP), 13.0 (atomic), and 12.3 (primal) as in Table 3

The parallelisation of the adjoint code that can be automatically generated by using
SSMP matches that of the primal solver. Since the computation is structured essentially
in the same way as in the primal code, we had reason to believe that the generated
adjoint code will be as scalable as the primal code. This fact was indeed confirmed
in our experiments, where the scaling of the parallel adjoint solver even exceeds
that of the primal solver in most cases. Furthermore, we demonstrated that SSMP
performs significantly better than other approaches described in the literature that
require OpenMP atomic pragmas or critical sections.
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Figure 11. Scaling of primal and adjoint residual for BEND mesh with 600k vertices on up
to 236 MIC cores, with the maximum speedup of 138.2 (SSMP), 99.4 (atomic), and
124.2 (primal) as in Table 3
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Figure 12. Scaling of primal and adjoint residual for FEV mesh on up to 236 MIC cores,
with the maximum speedup of 114.4 (SSMP), 87.7 (atomic), and 127.6 (primal) as in
Table 3

We defined the prerequisites that have to be met by a parallel loop for SSMP to
be applicable, and gave a proof of correctness for the generated parallel adjoint code.
This is an important step towards the integration of SSMP in algorithmic differentiation
tools. Since the parallelisation of the primal code is usually the result of careful manual
optimisation, we believe that the possibility to generate an equally scalable adjoint code
makes our method attractive for a wide range of applications.

In our implementation, suitable code portions need to be identified by hand. The
build process itself is automated so that changes in the primal code will correctly be
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incorporated into the adjoint solver. It would be beneficial to integrate SSMP into an
AD tool along with an automated detection of self-adjoint memory access, to make this
approach available to a wider audience. The method currently works only for parallel
loops where the indices used to access input and output arrays are identical. We plan
to extend our approach to loops that implement a function with a Jacobian matrix with
symmetric sparsity pattern.
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