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QUASI-NEWTON METHODS: SUPERLINEAR CONVERGENCE

WITHOUT LINE SEARCHES FOR SELF-CONCORDANT FUNCTIONS

WENBO GAO∗† AND DONALD GOLDFARB†

Industrial Engineering and Operations Research, Columbia University
500 W 120th St., New York, NY 10027

Abstract. We consider the use of a curvature-adaptive step size in gradient-based itera-
tive methods, including quasi-Newton methods, for minimizing self-concordant functions,
extending an approach first proposed for Newton’s method by Nesterov. This step size has
a simple expression that can be computed analytically; hence, line searches are not needed.
We show that using this step size in the BFGS method (and quasi-Newton methods in the
Broyden convex class other than the DFP method) results in superlinear convergence for
strongly convex self-concordant functions. We present numerical experiments comparing
gradient descent and BFGS methods using the curvature-adaptive step size to traditional
methods on deterministic logistic regression problems, and to versions of stochastic gradi-
ent descent on stochastic optimization problems.

1. Introduction

We are concerned in this paper with iterative optimization algorithms, which at each
step, first select a direction dk and then determine a step size tk. Such algorithms, which
are usually referred to as line search algorithms, need to choose an appropriate step size tk
to perform well, both in theory and in practice.

Theoretical proofs of global convergence generally assume one of the following approaches
for selecting the step sizes:

(1) The step sizes are obtained from line searches.
(2) The step size is a constant, often chosen ‘sufficiently small’.

Inexact line searches, and in particular those that choose steps that satisfy the Armijo-Wolfe
conditions, or just the latter combined with backtracking, are usually performed and work
well in practice. However, they can be costly to perform, and are often prohibitively costly
for many common objective functions such as those that arise in machine learning, computer
vision, and natural language processing. Moreover, in stochastic optimization algorithms,
line searches based on stochastic function values and gradients, which are only estimates
of the true quantities (see Section 8), can be meaningless. In contrast, constant step sizes
tk = t for all k require no additional computation beyond selecting t, but determining an
appropriate constant t may be difficult. The value of t required in the theoretical analysis
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2 QUASI-NEWTON METHODS WITHOUT LINE SEARCHES

is often too small for practical purposes, and moreover, is impossible to compute without
knowledge of unknown parameters (e.g. the Lipschitz constant of ∇f). A single constant
step size may also be highly suboptimal, as the iterates transition between regions with
different curvature.

The basic idea for a step size determined by the local curvature of the objective function
f was developed by Nesterov, who introduced the damped Newton method [17]. This idea is
closely related to a well-behaved class of functions known as self-concordant functions [18],
which we define in Section 3. When applied to a self-concordant function f , the damped
Newton method is globally convergent and locally converges quadratically. These results
were extended in recent work.

(1) Tran-Dinh et al. [25] propose a proximal framework for composite self-concordant
minimization, which includes proximal damped Newton, proximal quasi-Newton,
and proximal gradient descent. They establish that proximal damped Newton is
globally convergent and locally quadratically convergent, and that proximal damped
gradient descent is globally convergent and locally linearly convergent. However,
they do not propose a proximal quasi-Newton algorithm or prove global convergence
for a generic version of such an algorithm.

(2) Zhang and Xiao [26] propose a distributed method for self-concordant empirical loss
functions, based on the damped Newton method, and establish its convergence.

(3) Lu [16] proposes a randomized block proximal damped Newton method for compos-
ite self-concordant minimization, and establishes its convergence.

While the damped Newton method has been extensively studied, no comparable theory
exists for quasi-Newton methods in the self-concordant setting. It is well known that for
convex functions, proving global convergence for the BFGS method [2, 8, 11, 24] with
inexact line searches is far more challenging than proving global convergence for scaled
gradient methods, and that a similar statement holds for the Q-superlinear convergence of
the BFGS method applied to strongly convex functions compared with, for example, proving
Q-quadratic convergence of Newton’s method. With regard to Q-superlinear convergence, it
is well known [21] that if the the largest eigenvalue of the Hessian of the objective is bounded
above, and if the sum of the distances of the iterates generated by the BFGS method from the
global minimizer is finite, then the BFGS method converges Q-superlinearly. We note that
Tran-Dinh et al. [25] give a proof of this local result for their “pure”-proximal-BFGS method
(i.e., one that uses a step size of 1 on every iteration and starts from a point “close” to the
global minimizer), but they do not prove that this method generates iterates satisfying the
required conditions. This leaves open the question of how to design a globally convergent
“dampled” version of the BFGS method for self-concordant functions. In particular, we
wish to avoid assuming either the Dennis-Moré condition [7] or the summability of the
distances to the global minmizer, since these conditions are extremely strong, verging on
being tautological, as assumptions.

In this paper we extend the theory of self-concordant minimization developed by Nesterov
and Nemirovski [18] and further developed by Tran-Dinh et al. [25]. Our focus here is mainly
on filling the gap in this theory for quasi-Newton methods. To simplify the presentation, we
consider only quasi-Newton methods that use the BFGS update, although our results apply
to all methods in the Broyden class of quasi-Newton methods other than the DFP method
[6, 9]. We introduce a framework for non-composite optimization; i.e., we do not consider
proximal methods as in [25]. The key feature of this framework is a step size that is optimal
with respect to an upper bound on the decrease in the objective value, which we call the
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curvature-adaptive step size. We use the term curvature-adaptive, or simply adaptive, to
refer to this step size choice or to methods that employ it, so as not to confuse such methods
with damped BFGS updating methods (e.g., see [20, §18.3]), which are unrelated.

We first prove that scaled gradient methods that use the curvature-adaptive step size are
globally R-linearly convergent on strongly convex self-concordant functions. We note that
in [25], this step size is also identified, but that the R-linear convergence is only proved
locally. We then prove our main result, on quasi-Newton methods: that the BFGS method,
using this step size, is globally convergent for functions that are self-concordant, bounded
below, and have a bounded Hessian, and furthermore, is Q-superlinearly convergent when
the function is strongly convex and self-concordant. For completeness, we then present
several numerical experiments which shed insight on the behavior of adaptive methods.
These show that for deterministic optimization, using curvature-based step sizes in quasi-
Newton methods is dominated by using inexact line searches, whereas in stochastic settings,
using curvature-based step sizes is very helpful compared to constant step sizes.

Our paper is organized as follows. In Section 2, we introduce the notation and assump-
tions that we use throughout the paper. In Section 3, we define the class of self-concordant
functions and describe their essential properties. In Section 4, we introduce our framework
for self-concordant minimization and provide a derivation of what we call the curvature-
adaptive step size, which extends the curvature-based step size obtained in [25] for proximal
gradient methods. In Section 5, we apply our approach to scaled gradient methods, and
give a simple proof that these methods are globally R-linearly convergent on strongly con-
vex self-concordant functions. In Section 6, we present our main results. Specifically, we
prove there that the BFGS method with curvature-adaptive step sizes is globally and Q-
superlinearly convergent. In Section 7, we present numerical experiments testing our new
methods on logistic regression problems in the deterministic setting. In Section 8, we dis-
cuss stochastic extensions of adaptive methods. In Appendix A, we provide a numerical
example of solving an online stochastic problem using stochastic adaptive methods.

2. Preliminaries

We use f : Rn → R to denote the objective function, and g(·), G(·) denote the gradient
∇f(·) and Hessian ∇2f(·), respectively. In the context of a sequence of points {xk}∞k=0, we
write gk for g(xk) and Gk for G(xk). Unless stated otherwise, the function f is assumed to
have continuous third derivatives (as f is generally assumed to be self-concordant), which
we write as f ∈ C3.

The norm ‖ · ‖ denotes the 2-norm, and when applied to a matrix, the operator 2-norm.

3. Self-Concordant Functions

The notion of self-concordant functions was first introduced by Nesterov and Nemirovski
[18] for their analysis of Newton’s method in the context of interior-point methods. Nesterov
[17] provides a clear exposition and motivates self-concordancy by observing that, while
Newton’s method is invariant under affine transformations, the convergence analysis makes
use of norms which are not invariant. To remedy this, Nesterov and Nemirovski replace
the Euclidean norm by an invariant local norm, and replace the assumption of Lipschitz
continuity of the Hessian G(x) by the self-concordancy of f .
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Definition. Let f be a convex function. The local norm of h ∈ R
n at a point x where

G(x) ≻ 0 is given by

‖h‖x =
√
hTG(x)h.

Definition. A closed convex function f : Rn → R is self-concordant if f ∈ C3 and there
exists a constant κ such that for every x ∈ R

n and every h ∈ R
n, we have

|∇3f(x)[h, h, h]| ≤ κ(∇2f(x)[h, h])3/2.

If κ = 2, f is standard self-concordant. Any self-concordant function can be scaled to be
standard self-concordant; the scaled function 1

4κ
2f is standard self-concordant. Hence, we

assume all self-concordant functions have κ = 2, unless stated otherwise.

There is also an equivalent definition which is frequently useful.

Theorem 3.1 (Lemma 4.1.2, [17]). A closed convex function f is self-concordant if and
only if for every x ∈ R

n and all u1, u2, u3 ∈ R
n, we have

|∇3f(x)[u1, u2, u3]| ≤ 2
3∏

i=1

‖ui‖x.

The next inequalities are fundamental for self-concordant functions. These results are
well known (see [17, §4.1.4]), but for completeness, we provide a proof.

Lemma 3.2. Let f be standard self-concordant and strictly convex, and let x ∈ R
n and

0 6= d ∈ R
n. Let δ = ‖d‖x. Then for all t ≥ 0,

(3.1) f(x+ td) ≥ f(x) + tg(x)T d+ δt− log(1 + δt)

and

(3.2) g(x+ td)T d ≥ g(x)T d+ δ2t

1 + δt
.

For all 0 ≤ t < 1
δ ,

(3.3) f(x+ td) ≤ f(x) + tg(x)T d− δt− log(1− δt)
and

(3.4) g(x+ td)T d ≤ g(x)T d+ δ2t

1− δt .

Proof. Define φ : R→ R by φ(t) = dT∇2f(x+td)d. Since f has continuous third derivatives,
φ(t) is continuously differentiable and from the definition of self-concordancy, its derivative
satisfies

(3.5) |φ′(t)| = |∇3f(x+ td)[d, d, d]| ≤ 2(∇2f(x+ td)[d, d])3/2 = 2φ(t)3/2.

Moreover, since f is strictly convex and d 6= 0, φ(t) > 0 for all t. Therefore, from (3.5),

| d
dt
φ(t)−1/2| = 1

2
|φ(t)−3/2φ′(t)| ≤ 1.

Defining ψ(s) = d
dtφ(t)

−1/2
∣∣
t=s

, the above inequality is equivalent to |ψ(s)| ≤ 1. By Taylor’s

Theorem, there exists a point u ∈ (0, t) such that φ(t)−1/2 − φ(0)−1/2 = tψ(u). Since
|ψ(u)| ≤ 1, we deduce that

φ(0)−1/2 − t ≤ φ(t)−1/2 ≤ φ(0)−1/2 + t.
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Note that δ = φ(0)1/2. Rearranging the upper bound, we find that for all t ≥ 0,

(3.6) φ(t) ≥ δ2

(1 + δt)2
.

Similarly, we find that for 0 ≤ t < 1
δ ,

(3.7) φ(t) ≤ δ2

(1− δt)2 .

Integrating (3.6) yields the inequalities (3.1), (3.2), and integrating (3.7) produces (3.3),
(3.4). �

4. Curvature-Adaptive Step Sizes

We define a general framework for an iterative method with step sizes determined by the
local curvature. At each step, we compute a descent direction dk = −Hkgk, where Hk is a
positive definite matrix, and a step size

tk =
ρk

(ρk + δk)δk
,

where
δk = ‖dk‖xk

and
ρk = gTkHkgk.

We then advance to the point xk+1 = xk + tkdk.
We will refer to the above step size tk as the curvature-adaptive step size, or simply

the adaptive step size. A method within our framework will be referred to as an adaptive
method. A generic method in this framework is specified in Algorithm 1.

Note that this framework encompasses several classical methods. When Hk = I for all
k, the resulting method is gradient descent. When Hk = G−1

k , we recover the damped

Newton method proposed by Nesterov. When Hk is an approximation of G−1
k obtained by

applying a quasi-Newton updating formula, the resulting method is a quasi-Newton method.
In particular, we will focus on the case where Hk evolves according to the BFGS update
formula. We also note that in all variants other than the damped Newton method, we do
not access the full Hessian matrix Gk at any step, but only the action of Gk on the direction
dk, which typically requires a computational effort similar to that required to compute the
gradient gk.

Using the results of Section 3, we now show that the curvature-adaptive step size tk =
ρk

(ρk+δk)δk
in Algorithm 1 maximizes a lower bound on the decrease in f obtained by taking

a step in the direction dk.

Lemma 4.1. Suppose f is self-concordant and strictly convex. At iteration k of Algo-
rithm 1, taking the step tkdk, where dk = −Hkgk and tk = ρk

(ρk+δk)δk
, yields the point

xk+1 = xk + tkdk at which the objective function f(xk+1) satisfies

(4.1) f(xk+1) ≤ f(xk)− ω(ηk)
where

ηk =
ρk
δk

and ω : R→ R is the function ω(z) = z − log(1 + z).
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Algorithm 1 Adaptive Iterative Method

input: x0,H0, variant
1: for k = 0, 1, 2, . . . do
2: Set dk ← −Hkgk
3: Set ρk ← −gTk dk
4: Set δ2k ← dTkGkdk
5: Set tk ← ρk

(ρk+δk)δk
6: Set xk+1 ← xk + tkdk
7: if variant (i): gradient descent then
8: Hk+1 ← I
9: end if

10: if variant (ii): Newton then

11: Hk+1 = G−1
k+1

12: end if

13: if variant (iii): BFGS then

14: Use standard BFGS formula (6.1) to compute Hk+1

15: end if

16: if variant (iv): L-BFGS then

17: Update L-BFGS curvature pairs
18: end if

19: end for

Moreover, the step size tk minimizes the upper bound (3.3) on f(xk+1) provided by
Lemma 3.2.

Proof. We fix the index k and omit the subscripts for brevity. First, observe that

0 ≤ t = ρ

(ρ+ δ)δ
<

1

δ
.

Therefore, we can apply inequality (3.3) to f(x + td). Noting that ρ = −gTd, (3.3) can
be written as f(x + td) ≤ f(x) − ∆(t) where ∆(·) is defined to be the function ∆(τ) =
(ρ+ δ)τ + log(1− δτ). For the curvature-adaptive step size t, it is easily verified that

∆(t) = ∆

(
ρ

(ρ+ δ)δ

)
=
ρ

δ
+ log

(
δ

ρ+ δ

)
=
ρ

δ
− log

(
1 +

ρ

δ

)
= ω(η).

Furthermore, for 0 ≤ τ < 1
δ ,

d
dτ∆(τ) = ρ + δ − δ

1−δτ and d2

dτ2∆(τ) = − δ2

(1−δτ)2 . We find

that d
dτ∆(t) = 0 and d2

dτ2∆(t) ≤ 0, which implies that ∆ is maximized at τ = t = ρ
(ρ+δ)δ . �

Since ω(η) = η − log(1 + η) is positive for all η > 0, it follows that if lim supk ηk > 0,
then f(xk)→ −∞. This simple fact will be crucial in our convergence analysis.

Lemma 4.2. If, in addition to the assumptions in Lemma 4.1, f is bounded below, then
ηk = ρk

δk
→ 0 for any of the adaptive variants in Algorithm 1.

Proof. By Lemma 4.1, f(xk) satisfies f(xk) ≤ f(x0)−
∑k−1

j=0 ω(ηj). Suppose that lim supk ηk >

0. Since the function ω(η) is positive and monotonically increasing for η > 0, we have
lim supk ω(ηk) = ω(lim supk ηk) > 0. Hence f(xk)→ −∞, a contradiction. �
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In terms of gk,Hk, and Gk, the adaptive step size tk can be expressed as

tk =
gTkHkgk

gTkHkGkHkgk + gTkHkgk

√
gTkHkGkHkgk

.

This formula relates tk to the local curvature. When the curvature of f in the direction

dk = −Hkgk is relatively flat, the local norm ‖dk‖xk
=

√
gTkHkGkHkgk is small, and the

adaptive step size tk will be large. Conversely, when the curvature of f in the direction dk
is steep, tk will be small. Intuitively, this is precisely the desired behavior for a step size,
since we wish to take larger steps when the function changes slowly, and smaller steps when
the function changes rapidly.

5. Scaled Gradient Methods

We first consider the class of methods where the matrices Hk are positive definite and
uniformly bounded above and below. That is, there exist positive constants λ,Λ such that
for every k ≥ 0,

(5.1) λI � Hk � ΛI.

The convergence analysis is rather straightforward, as seen in the proofs of the following
two theorems for these methods.

Theorem 5.1. If f is self-concordant, strictly convex, bounded below, and the Hessian
satisfies G(x) � MI on the level set Ω = {x : f(x) ≤ f(x0)}, then any adaptive method
(Algorithm 1) for which the matrices Hk satisfy equation (5.1) converges globally in the
sense that lim

k→∞
‖gk‖ = 0.

Proof. Since Hk is positive definite, H
1/2
k exists and we may define zk = H

1/2
k gk. Observe

that

(5.2) ηk =
gTkHkgk√

gTkHkGkHkgk

=
zTk zk√

zTk (H
1/2
k GkH

1/2
k )zk

≥ ‖zk‖√
ΛM

≥
√

λ

ΛM
‖gk‖

where we have used the fact that the maximum eigenvalue of H
1/2
k GkH

1/2
k is bounded by

ΛM . By Lemma 4.2, ηk → 0. Therefore ‖gk‖ → 0. �

If in addition, f is strongly convex with mI � G(x) for m > 0, then an adaptive method
satisfying equation (5.1) is globally R-linearly convergent. The proof uses the fact that
strongly convex functions satisfy the Polyak- Lojasiewicz inequality, which is stated in the
following well known lemma (e.g., see [21, 10]).

Lemma 5.2. If f is strongly convex with mI � G(x), and x∗ is the unique minimizer of
f , then ‖g(x)‖2 ≥ 2m(f(x)− f(x∗)).

We are now ready to prove the R-linear convergence of adaptive scaled gradient methods.

Theorem 5.3. If f is self-concordant and strongly convex (so there exist constants 0 <
m ≤M such that mI � G(x) �MI for all x ∈ Ω), then an adaptive method (Algorithm 1)
for which the matrices Hk satisfy equation (5.1) is globally R-linearly convergent. That is,
there exists a positive constant γ < 1 such that f(xk+1)− f(x∗) ≤ γ(f(xk)− f(x∗)) for all
k.
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Proof. Since ηk → 0 by Lemma 4.2, the sequence {ηk}∞k=0 is bounded. Let Γ = supk ηk <∞,

and let c = 1
2(1+Γ) . Observe that ω(z) = z − log(1 + z) ≥ cz2 for 0 ≤ z ≤ Γ, as ω(0) = 0

and d
dz (ω(z)− cz2) =

z(1−2c−2cz)
1+z , which is non-negative for 0 ≤ z ≤ Γ. Hence, since ηk ≤ Γ

for all k, we have

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− ω(ηk) ≤ f(xk)− f(x∗)− cη2k

≤ f(xk)− f(x∗)−
cλ

ΛM
‖g(xk)‖2

≤
(
1− λm

Λ(1 + Γ)M

)
(f(xk)− f(x∗))

where the first line follows from inequality (3.3), the second from inequality (5.2), and
the third from Lemma 5.2. Taking γ = 1 − λm

Λ(1+Γ)M , we obtain the desired R-linear

convergence. �

5.1. Adaptive Gradient Descent. When Hk = I for all k in Algorithm 1, the method
corresponds to gradient descent with adaptive step sizes that incorporate second-order in-
formation. This strategy for selecting analytically computable step sizes may have several
advantages in practice. Using second-order information allows a better local model of the
objective function. The classical analysis of gradient descent with a fixed step size also
generally requires a sufficiently small step size in order to guarantee convergence. This step
size is a function of the Lipschitz constant for the gradient g(x), which is either unknown or
impractical to compute. The step size needed to ensure convergence in theory is also often
impractically tiny, leading to slow convergence in practice. For the class of self-concordant
functions, an adaptive step size can be easily computed without knowledge of any constants,
and still provides a theoretical guarantee of convergence, which is a significant advantage.

A proximal gradient descent method with adaptive step sizes was studied by Tran-Dinh et
al. [25], who proved the method to be globally convergent for self-concordant functions, and
locally R-linearly convergent for strongly convex self-concordant functions. However, our
convergence analysis above employs different techniques from those in [25], and in particular,
we obtain the following theorem, which shows that the adaptive gradient descent method is
globally R-linearly convergent, as an immediate corollary of Theorem 5.1 and Theorem 5.3:

Theorem 5.4. Suppose that f is self-concordant, strictly convex, bounded below, and
G(x) � MI on the level set Ω = {x ∈ R

n : f(x) ≤ f(x0)}. Then the adaptive gradient
descent method converges in the sense that limk→∞ ‖gk‖ = 0. Furthermore, if f is strongly
convex on Ω, then the adaptive gradient descent method is globally R-linearly convergent.

5.2. Adaptive L-BFGS. The limited-memory BFGS algorithm (L-BFGS, [15]) stores a
fixed number of previous curvature pairs (sk, yk), where sk = xk+1−xk and yk = gk+1− gk,
and computes dk = −Hkgk from the curvature pairs using a two-loop recursion [19]. It is
well known that L-BFGS satisfies equation (5.1). In [12], the following bounds are obtained.

Theorem 5.5 (Lemma 1, [12]). Suppose that f is strongly convex, with mI ≤ G(x) ≤MI.
Let ℓ be the number of curvature pairs stored by the L-BFGS method. Then the matrices
Hk satisfy

λI � Hk � ΛI,

where λ = (1 + ℓM)−1 and Λ = (1 +
√
κ)2ℓ

(
1 + 1

m(2
√
κ+κ)

)
for κ =M/m.
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Hence, it follows immediately from Theorem 5.1 and Theorem 5.3 that:

Theorem 5.6. Suppose that f is self-concordant, strongly convex, and mI � G(x) � MI
on the level set Ω = {x ∈ R

n : f(x) ≤ f(x0)}. Then the adaptive L-BFGS method is globally
R-linearly convergent.

We note that, as with gradient descent, it is well known that the L-BFGS method con-
verges if inexact Armijo-Wolfe line searches are performed, or a sufficiently small fixed step
size, that depends on the Lipschitz constant of g(x), is used.

6. Adaptive BFGS

If Hk is chosen to approximate (∇2f(xk))
−1, then we obtain quasi-Newton methods with

adaptive step sizes. In particular, we may iteratively update Hk using the BFGS update
formula, which we briefly describe. Let sk = xk+1 − xk and yk = gk+1 − gk. The BFGS
update sets Hk+1 to be the nearest matrix to Hk (in a variable metric) satisfying the secant
equation Hk+1yk = sk[11]. It is well known that Hk+1 has the following expression in terms
of Hk, sk and yk:

(6.1) Hk+1 =
sks

T
k

yTk sk
+

(
I − sky

T
k

yTk sk

)
Hk

(
I − yks

T
k

yTk sk

)
.

6.1. Superlinear Convergence of Adaptive BFGS. The convergence analysis of the
classical BFGS method [21, 4] assumes that the method uses inexact line searches satisfying
the Armijo-Wolfe conditions: for constants c1, c2 ∈ (0, 1) with c1 <

1
2 and c1 < c2, the step

size tk should satisfy

(6.2) f(xk + tkdk) ≤ f(xk) + c1tkg
T
k dk (Armijo condition)

and

(6.3) g(xk + tkdk)
Tdk ≥ c2gTk dk. (Wolfe condition)

Under the assumption of Armijo-Wolfe line searches, Powell [21] proves the following
global convergence theorem for BFGS.

Theorem 6.1 (Lemma 1, [21]). If the BFGS algorithm with Armijo-Wolfe inexact line
search is applied to a convex function f(x) that is bounded below, if x0 is any starting
vector and H0 is any positive definite matrix, and if the Hessian G(x) satisfies G(x) �MI
for all x in the level set Ω = {x : f(x) ≤ f(x0)}, then the limit

(6.4) lim inf
k→∞

‖gk‖ = 0

is obtained.

In our setting, f is a self-concordant and strictly convex function that is bounded below
and satisfies G(x) �MI. In order to prove that adaptive BFGS is convergent in the sense of
the limit (6.4), it suffices to show that the adaptive step sizes tk satisfy the Armijo condition
for any c1 <

1
2 , and eventually satisfy the Wolfe condition for any c2 < 1 (i.e. there exists

some k0 such that the Wolfe condition is satisfied for all k ≥ k0). Specifically, we prove the
following two theorems that apply to every adaptive method described by Algorithm 1.

Theorem 6.2. Let f be self-concordant and strictly convex. The curvature-adaptive step
size tk = ρk

(ρk+δk)δk
satisfies the Armijo condition for any c1 ≤ 1

2 .
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Proof. Let c1 ≤ 1
2 . We aim to prove that f(xk+1) ≤ f(xk) + c1tkg

T
k dk. By Lemma 4.1,

f(xk+1) ≤ f(xk)− ω(ηk). Therefore, it suffices to prove that

ω(ηk) ≥ −
1

2
tkg

T
k dk.

For brevity, we omit the index k. Notice that

−tgTd = tgTHg = tρ =
ρ2

(ρ+ δ)δ
=

ρ2/δ2

ρ/δ + 1
=

η2

1 + η
.

Therefore, we must prove that for η ≥ 0,

ω(η) = η − log(1 + η) ≥ 1

2

η2

1 + η
.

Define ζ(z) = z − log(1 + z)− 1
2

z2

1+z . Observe that ζ(0) = 0 and

d

dz
ζ(z) = 1− 1

1 + z
− 1

2

z2 + 2z

(1 + z)2
=

1

2

z2

(1 + z)2
.

Since d
dz ζ(z) ≥ 0 for all z ≥ 0, we conclude that ω(η) ≥ 1

2
η2

1+η for all η ≥ 0. This completes

the proof. �

Theorem 6.3. Let f be self-concordant, strictly convex, and bounded below. Suppose that
{xk}∞k=0 is a sequence of iterates generated by Algorithm 1. For any 0 < c2 < 1, there exists
an index k0 such that for all k ≥ k0, the curvature-adaptive step size tk satisfies the Wolfe
condition.

Proof. We aim to prove that gTk+1dk ≥ c2g
T
k dk. This is equivalent to g(xk + tkdk)

T dk −
g(xk)

Tdk ≥ −(1− c2)g(xk)T dk = (1− c2)ρk. By inequality (3.2) with δ = δk and t = tk, we
have

(6.5) g(xk + tkdk)
Tdk − g(xk)T dk ≥

δ2ktk
1 + δktk

=
δkρk

2ρk + δk
=

1

1 + 2ηk
ρk.

Since f is bounded below, Lemma 4.2 implies that η → 0, and hence there exists some k0
such that 1

1+2ηk
≥ 1− c2 for all k ≥ k0. �

Note that the assumption of strict convexity also implies that yTk sk > 0, so the BFGS
update is well-defined.

We can now immediately apply Theorem 6.1 to deduce that adaptive BFGS is convergent.
Since there always exists an index k0 such that the Armijo-Wolfe conditions are satisfied
for all k ≥ k0, we can consider the subsequent iterates {xk}∞k=k0

as arising from the classical
BFGS method with initial matrix Hk0 .

Theorem 6.4. Let f be self-concordant, strictly convex, bounded below, whose Hessian
satisfies G(x) �MI for all x ∈ Ω. Then for the adaptive BFGS method, lim infk→∞ ‖gk‖ =
0.

It is also possible to directly prove Theorem 6.4 by analyzing the evolution of the trace
and determinant of Hk, but the resulting proof, which is quite long, does not provide clarity
on the essential properties of the adaptive step size.

It is well known that if the objective function f is strongly convex, then the classical
BFGS method converges Q-superlinearly. Let us now assume that f is strongly convex, so
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there exist constants 0 < m ≤ M with mI � G(x) � MI for all x ∈ Ω. Let x∗ denote the
unique minimizer of f .

Theorem 6.5 (Lemma 4, [21]). Let f be strongly convex, and let {xk}∞k=0 be the sequence
of iterates generated by the BFGS method with inexact Armijo-Wolfe line searches. Then∑∞

k=0 ‖xk − x∗‖ <∞.

Since the adaptive step size tk eventually satisfies the Armijo-Wolfe conditions, the same
holds for BFGS with adaptive step sizes.

Theorem 6.6. Let f be self-concordant and strongly convex. The sequence of iterates
{xk}∞k=0 produced by adaptive BFGS satisfies

∑∞
k=0 ‖xk − x∗‖ <∞.

In the proof of superlinear convergence for the classical BFGS method, it is assumed
that the Hessian G(x) is Lipschitz continuous. However, it is unnecessary to make this
assumption in our setting, as G(x) is necessarily Lipschitz when f is self-concordant and
G(x) is bounded above. This fact is not difficult to establish, but we provide a proof for
completeness.

Theorem 6.7. If f is self-concordant and satisfies G(x) �MI for all x ∈ Ω, then G(x) is
Lipschitz continuous on Ω, with constant 2M3/2.

Proof. Let x, y ∈ Ω, and let e = x−y. Let v ∈ R
n be any unit vector. By Taylor’s Theorem,

we have

vTG(x)v = vTG(y)v +

∫ 1

0
∇3f(y + τe)[v, v, e]dτ.

Hence, by Theorem 3.1,

|vT (G(x)−G(y))v| ≤
∫ 1

0
|∇3f(y + τe)[v, v, e]|dτ

≤ 2

∫ 1

0
vTG(y + τe)v

√
eTG(y + τe)edτ

≤ 2

∫ 1

0
M3/2‖e‖dτ = 2M3/2‖x− y‖.

Therefore, the eigenvalues of G(x)−G(y) are bounded in norm by 2M3/2‖x−y‖. It follows
that ‖G(x) −G(y)‖ ≤ 2M3/2‖x− y‖, so G(x) is Lipschitz continuous. �

It is well known that the BFGS method is invariant under an affine change of coordinates,
so we may assume without loss of generality thatG(x∗) = I. This corresponds to considering

the function f̃(x̃) = f(G(x∗)−1/2x̃) and performing a change of coordinates x̃ = G(x∗)1/2x.
By [17, Theorem 4.1.2], the function f̃ is also self-concordant, with the same κ as for f .

To complete the proof of superlinear convergence, we use results established by Dennis
and Moré [7] and Griewank and Toint [13]. In [13, §4], Griewank and Toint prove that, given
Theorem 6.6 and Lipschitz continuity of G(x) (Theorem 6.7), the following limit holds:

(6.6) lim
k→∞

‖(Bk − I)dk‖
‖dk‖

= 0

Furthermore, the argument in [13] shows that both {‖Bk‖}∞k=0 and {‖Hk‖}∞k=0 are bounded.
Writing Bkdk = −gk and −dk = Hkgk, and using the fact that ‖dk‖ ≤ ‖Hk‖‖gk‖ ≤ Γ‖gk‖,
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where Γ is an upper bound on the sequence of norms {‖Hk‖}∞k=0, we have an equivalent
limit

(6.7) lim
k→∞

‖Hkgk − gk‖
‖gk‖

= 0

This enables us to prove that the adaptive step sizes tk converge to 1, which is necessary
for superlinear convergence.

Theorem 6.8. The curvature-adaptive step sizes tk in the adaptive BFGS method converge
to 1.

Proof. We omit the index k for brevity, and define u = Hg− g. Since t can be expressed as

t = η/δ
1+η , and we have from Lemma 4.2 that η → 0, it suffices to show that η

δ converges to
1.

η

δ
=

ρ

δ2
=

gTHg

gTHGHg

=
gT g + gTu

gTGg + 2gTGu+ uTGu

=
1 + gT u

gT g

gTGg
gT g

+ 2gTGu
gT g

+ uTGu
gT g

The limit (6.7) implies that ‖u‖
‖g‖ → 0. Hence, the Cauchy-Schwarz inequality and the

upper bound G(x) � MI imply that gTu
gT g

, g
TGu
gT g

, u
TGu
gT g

converge to 0. Since G = G(xk) and

xk → x∗, we have G → I, and therefore gTGg
gT g

→ 1. It follows that η
δ , and therefore t,

converges to 1. �

We now make a slight modification to the Dennis-Moré characterization of superlinear
convergence. Using the triangle inequality twice and the fact that G(x∗) = I, we obtain

‖(Bk − I)sk)‖
‖sk‖

=
‖tkgk+1 − tkgk −G(x∗)sk−tkgk+1‖

‖sk‖

≥ tk
‖gk+1‖
‖sk‖

− ‖tkgk+1 − tkgk − tkG(x∗)sk−(1− tk)G(x∗)sk‖
‖sk‖

≥ tk
‖gk+1‖
‖sk‖

− tk‖
∫ 1
0 (G(xk + τsk)−G(x∗))skdτ‖

‖sk‖
− |1− tk|

‖G(x∗)sk‖
‖sk‖

.

Rearranging, and applying Theorem 6.7,

(6.8)
‖gk+1‖
‖sk‖

≤ 1

tk

‖(Bk − I)sk)‖
‖sk‖

+ 2M3/2 max{‖xk − x∗‖, ‖xk+1 − x∗‖}+
|1− tk|
tk

M.

Since xk → x∗ by Theorem 6.4 and tk → 1 by Theorem 6.8, both of the latter terms

converge to 0. Finally, equation (6.6) implies that ‖(Bk−I)sk‖
‖sk‖ converges to 0, so it follows

from equation (6.8) that
‖gk+1‖
‖sk‖ converges to 0.

Since f is strongly convex, ‖g(x)‖ ≥ m‖x− x∗‖. Hence, we find that

‖gk+1‖
‖sk‖

≥ m‖xk+1 − x∗‖
‖xk+1 − x∗‖+ ‖xk − x∗‖

,
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which implies that
‖xk+1−x∗‖
‖xk−x∗‖ → 0. Thus, we have the following:

Theorem 6.9. Suppose that f is self-concordant, and strongly convex on Ω = {x ∈ R
n :

f(x) ≤ f(x0)}. Then the adaptive BFGS method converges Q-superlinearly.

By the same reasoning, the results in [4] and [13] imply that these convergence theorems
also hold for the adaptive versions of the quasi-Newton methods in Broyden’s convex class,
with the exception of the DFP method. The adaptive versions of the Block BFGS methods
proposed in [10] can also be shown to be Q-superlinearly convergent.

6.2. Hybrid Step Selection. Consider the damped Newton method of Nesterov, which

is obtained by setting Hk = G−1
k . This yields ρk = gTkG

−1
k gk and δk =

√
gkG

−1
k GkG

−1
k gk =

√
ρ, whence η = ρ/δ = δ. The curvature-adaptive step size t then reduces to

t =
η/δ

1 + η
=

1

1 + δ
.

When δ is large (for example, if the initial point x0 is chosen poorly), then the curvature-
adaptive step size may be very small, even when the inverse Hessian approximation Hk

is good. This conservatism is the price of the curvature-adaptive step size guaranteeing
global convergence (in contrast to Newton’s method, which is not globally convergent, and
to gradient descent, which may diverge if the step size is too large). A small step tkdk
is likely to result in tk+1 also being small1. Thus, when the initial δ is large, a method
using adaptive step sizes may produce a long succession of small steps. This suggests the
following heuristic for selecting step sizes:

(1) Select a set Tk of candidate step sizes for tk.
(2) At step k, test the elements of Tk in order until a candidate step size is found which

satisfies the Armijo condition (6.2).
(3) If no element of Tk satisfies the Armijo condition, then set tk to be the adaptive

step size.

For instance, in our numerical experiments reported in Section 7, we take Tk to be (1, 14 ,
1
16 )

for all k. This allows the method to take steps of size tk = 1 when 1 satisfies the Armijo
condition, which is desirable for reducing the number of iterations needed before superlinear
convergence kicks in.

We refer to this scheme as hybrid step selection. For a proper choice of Tk, hybrid step
selection avoids the disadvantage of exclusively using adaptive step sizes, where the step size
may be small for many iterations. It will also generally be more efficient to compute than
a full line search, since no more than |Tk| candidate step sizes are tested before switching
to the adaptive step size.

7. Numerical Experiments

To compare our adaptive methods to classical algorithms, we solve several binary classi-
fication problems using logistic regression. In these problems, the objective function to be

1As an illustrative example, consider applying the damped Newton method to the quadratic function

f(x) = 1

2
‖x‖2. Since dk = −xk and δk = ‖xk‖, we have tk = 1

1+‖xk‖
and xk+1 = ‖xk‖

1+‖xk‖
xk. If ‖x0‖ is large,

then it is clear that the damped Newton method will take many tiny steps until ‖xk‖ is sufficiently reduced.
This is in stark contrast to Newton’s method, which reaches the minimizer after a single step.
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minimized has the form

(7.1) L(w) =
1

N

N∑

i=1

log(1 + exp(−yixTi w)) +
1

2N
‖w‖22.

where the training data {(x1, y1), . . . , (xN , yN )} consists of feature vectors xi ∈ R
n and

classifications yi ∈ {−1,+1}. Zhang and Xiao [26] showed that the logistic regression
objective function L(w) is self-concordant.

Theorem 7.1 (Lemma 1, [26]). Let B = maxi ‖xi‖. The scaled function B2N
4 L(w) is

standard self-concordant.

In our tests, we compared seven algorithms:

(1) BFGS with adaptive step sizes (BFGS-A).
(2) BFGS with Armijo-Wolfe line search (BFGS-LS).
(3) BFGS with hybrid step selection (BFGS-H), using Tk = (1, 14 ,

1
16 ).

(4) L-BFGS with adaptive step sizes (LBFGS-A), using the past ℓ = min{n2 , 20} curva-
ture pairs.

(5) L-BFGS with Armijo-Wolfe line search (LBFGS-LS), using the past ℓ = min{n2 , 20}
curvature pairs.

(6) Gradient descent with adaptive step sizes (GD-A).
(7) Gradient descent with Armijo-Wolfe line search (GD-LS).

An initial Hessian approximation H0 must be provided for the BFGS and L-BFGS meth-
ods. It is easy, but not necessarily effective, to simply take H0 = I. Another common
strategy for initializing H0, described in [20], that is often quite effective, is to take H0 = I
on the first step, and then, before performing the first BFGS update (6.1), scale H0:

(7.2) H0 ←
yT0 s0

yT0 y0
I.

It is easy to verify that the scaling factor yT0 s0/y
T
0 y0 lies between the smallest and largest

eigenvalues of the inverse of the average Hessian G =
∫ 1
0 G(x0 + τs0)dτ along the initial

step.
Similarly, for the L-BFGS method, the initial matrix used at step k + 1 in the two-loop

recursion is chosen as:

H0 ←
yTk sk

yTk yk
I.

We refer to this as identity scaling.
The line search used the WolfeLineSearch routine from the minFunc software package

[23]. The Armijo-Wolfe parameters were c1 = 0.1, c2 = 0.75, and the line search was
configured to use an initial step size t = 1 and perform quadratic interpolation (LS interp

= 1, LS multi = 0).
We chose six data sets from LIBSVM [5] with a variety of dimensions, which are listed

in Table 1. We plot the progress of each algorithm as a function of CPU time used. The
progress is measured by the log gap log10(f(w)−f(w∗)), where w∗ is a pre-computed optimal
solution. The starting point was always set to w0 = 0. All algorithms were terminated when
either the gradient reached the threshold ‖g(x)‖ < 10−7, or after 480 seconds of CPU time.
A brief summary of the results can be found in Table 2, which lists the number of iterations
taken by the BFGS-type methods for convergence.
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Data set n N
covtype.libsvm.binary.scale 55 581012
ijcnn1.tr 23 35000
leu 7130 38
rcv1 train.binary 47237 20242
real-sim 20959 72309
w8a 301 49749

Table 1. Data sets used in Section 7

Data set n Identity Scaling
Number of iterations

BFGS-A BFGS-LS BFGS-H

covtype.libsvm.binary.scale 55
No 844 80 126
Yes 1532 458 479

ijcnn1.tr 23
No 286 36 66
Yes 434 142 162

w8a 301
No 2254 240 637
Yes 2506 398 653

leu 7130
No 1197 95 293
Yes 909 177 251

rcv1 train.binary 47237
No 161 31 35
Yes 284 217 232

real-sim 20959
No 356 44 55
Yes 592 247 317

Table 2. The number of iterations until convergence of the BFGS methods.

Our algorithms were implemented in Matlab 2017a and run on an Intel i5-6200U proces-
sor. While the CPU time is clearly platform-dependent, we sought to minimize implemen-
tation differences between the algorithms to make the test results as comparable as possible.

In Figure 1, we plot the results for the data sets covtype.libsvm.binary.scale, ijcnn1.tr,
and w8a. On these problems, we implemented BFGS with a dense Hessian; that is, the ma-
trices Hk were stored explicitly and updated using the formula (6.1). In Table 2, we list
the number of iterations used by the BFGS-type methods.

In Figure 2, we plot the results for the data sets leu, rcv1 train.binary, and real-sim.
These problems had a large number of variables (n > 7000), which made it infeasible to store
Hk explicitly. On these problems, BFGS was implemented using the two-loop recursion with
unlimited memory, and H0 was kept fixed throughout the iteration process. If the number
of iterations exceeds roughly n/4, then this approach would in fact require more memory
than storing Hk explicitly. However, this never occurred in our tests, as shown in Table 2.

In our tests, we found that BFGS-A required more time than BFGS-LS. Although the
cost of a single step was initially lower for BFGS-A than BFGS-LS, BFGS-A often took
numerous small steps in succession, making very slow progress. This situation was exactly
our motivation for devising the hybrid step selection described in Section 6.2, and unfor-
tunately, appears to occur often. However, BFGS-H achieved comparable speed to that of
BFGS-LS with T = (1, 14 ,

1
16 ), which suggests that always trying t = 1 first is an excellent
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Figure 1. Experiments on problems with small n. The log gap is defined
as log10(f(w) − f(w∗)). The loss functions are scaled to be standard self-
concordant. All BFGS and L-BFGS plots on the left take H0 = I, and those
on the right use identity scaling.

heuristic. These results also provide evidence of the effectiveness of performing inexact line
searches, in settings where it is practical to do so. In Table 3, the number of steps needed
until we consistently have tk ≈ 1 is shown.

Since computing tk also requires a Hessian-vector product, the cost comparison between
the adaptive step size and inexact line search reverses when the algorithm nears convergence.
Initially, a Hessian-vector product is faster than performing multiple backtracking iterations
and repeatedly testing for the Armijo-Wolfe conditions; however, the line search (and the
hybrid step selection) will eventually accept the step size tk = 1 immediately, becoming
essentially free, whereas computing the adaptive step size continues to require a Hessian-
vector product on every step.

Curiously, L-BFGS was far more effective on the problems with large n (Figure 2) than
on those with small n (Figure 1). Both LBFGS-A and LBFGS-LS were ineffective on
the problems with small n, which suggests that the problem lies with the step directions
computed by L-BFGS, rather than the step sizes. Identity scaling was also beneficial for
L-BFGS on problems with large n, substantially reducing the convergence time in some
cases. We note that we did not experiment comprehensively with varying ℓ, the number of
curvature pairs stored in L-BFGS, and used a standard choice of ℓ = min{n2 , 20}. Other
choices of ℓ might lead to very different results on the problems in our test set.
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Figure 2. Experiments on problems with large n. The log gap is defined
as log10(f(w) − f(w∗)). The loss functions are scaled to be standard self-
concordant. All BFGS and L-BFGS plots on the left take H0 = I, and those
on the right use identity scaling.

Data set n Identity Scaling
Number of iterations

BFGS-A BFGS-LS BFGS-H

covtype.libsvm.binary.scale 55
No 797 57 62
Yes 1378 2 2

ijcnn1.tr 23
No 270 25 26
Yes 369 3 2

w8a 301
No 2056 - 289
Yes 2250 5 2

leu 7130
No - - 42
Yes 818 2 2

rcv1 train.binary 47237
No 132 15 4
Yes 205 3 4

real-sim 20959
No 294 18 17
Yes 490 2 2

Table 3. The number of iterations until tk = 1 was consistently accepted
by BFGS-LS and BFGS-H, and, for BFGS-A, the number of iterations until
tk ≥ 0.9 for at least 80% of the remaining iterations. A dash ‘-’ indicates
that the condition was not met before the stopping criterion was satisfied.
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On the other hand, identity scaling appeared to be detrimental for the BFGS-type meth-
ods on most problems, which can be seen from the plots in Figure 1 and Figure 2 by compar-
ing the CPU time needed for convergence. For instance, on the data set covtype.libsvm.binary.scale,
the time to convergence for BFGS-A increased from 120s to 225s, and from 25s to 50s for
BFGS-LS and BFGS-H. In fact, identity scaling was beneficial for the BFGS-A method
only on the data set leu. The data set leu appears to be quite different from the other
problems tested. The number of training samples for leu was m = 38, while for all other
problems, m was at least 20,000. Moreover, gradient descent with Armijo-Wolfe line search
(GD-LS) was among the fastest methods on leu, while on the other test problems it was
significantly outperformed by BFGS. The iteration counts shown in Table 2 and Table 3
also indicate that identity scaling worsened the performance of the BFGS methods on every
problem except leu. Curiously, performing identity scaling led to BFGS-H accepting tk = 1
at a much earlier iteration on all problems, yet the total CPU time used by BFGS-H was
longer for covtype.libsvm.binary.scale, rcv1.train.binary, and real-sim.

GD-A was surprisingly effective, outperforming GD-LS on every problem except for leu.
This is somewhat surprising (in light of the performance of BFGS-A and BFGS-LS), and
suggests that the curvature-adaptive step size may be useful for selecting hyperparameters
for first-order methods.

8. Application to Stochastic Optimization

The adaptive step size can readily be extended to stochastic optimization methods. Con-
sider a problem of the form

(8.1) L(w) =
1

N

N∑

i=1

fi(w) + h(w).

If N is extremely large, as is often the case in machine learning, simply evaluating L(w)
is an expensive operation, and line search is entirely impractical. To solve problems of the
form (8.1), stochastic algorithms such as Stochastic Gradient Descent (SGD, [1]) select a
random subset Sk of {f1, . . . , fN} at step k and compute the gradient for the subsampled
problem

(8.2) L(Sk)(w) =
1

|Sk|
∑

fi∈Sk

fi(w) + h(w)

as an approximation to the gradient of the loss function (8.1), and take a step using an
empirically determined small and decreasing step size. In variance-reduced versions of
SGD such as SVRG [14], it is common to use a constant step size, determined through
experimentation. The curvature-adaptive step size has two desirable properties in this
setting: it eliminates the need to select a step size through ad-hoc experimentation, and it
incorporates second-order information, which is currently not exploited by most stochastic
algorithms.

Since the time of the initial writing of this article, related work on stochastic quasi-Newton
methods has appeared in the machine learning literature. In particular, the curvature-
adaptive step size was extended to stochastic gradient descent and stochastic BFGS in [27].
A complete discussion of stochastic optimization, and the content of [27], is beyond the
scope of this article. However, we have performed several preliminary experiments with
stochastic versions of adaptive methods, which are presented in Appendix A, along with a
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summary of the relevant theory from [27]. These experiments (see Figure 3) demonstrate
that stochastic adaptive BFGS can be quite effective for solving stochastic problems.

There is currently also little work on algorithms exploiting the finite sum structure (8.1),
which can provably attain superlinear convergence. Aside from [27], we are only aware of
the Newton Incremental Method (NIM) of Rodomanov and Kropotov [22], and the DiSCO
method of Zhang and Xiao [26], both of which are based on Newton’s method. These
methods require additional memory of the order O(N), which is often substantial. We are
hopeful that use of the adaptive step size, and the principles behind it, will lead to new
advances in the field of stochastic optimization.
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Appendix A. Stochastic Experiments

The experiments presented here are derived from the experiments in [27, §4]. Several
stochastic algorithms are tested on an online least-squares problem of the form

min
w

E(Y −XTw)2 +
1

2
λ‖w‖2.

Online refers to the method of sampling: we can only access (X,Y ) by calling an oracle at
each iteration k, which returns |Sk| i.i.d instances of (X,Y ). The model for (X,Y ) has the
following specification:

• X has a multivariate normal distribution N(0,Σ), where Σ is the covariance
matrix of the w8a data set (see Table 1).
• Y = XTβ + ǫ, where β is deterministic and sparse (80% sparsity) and ǫ ∼ N(0, 1)
is a noise component.

Since our model is based on the w8a data set, the dimension of w is p = 300, and the
regularizer is set to λ = 1

p .

We compare the following algorithms. For a deterministic method M , the corresponding
stochastic M method takes the step of the underlying M method, but computed from the
empirical objective function (8.2) sampled at each iteration. The convergence of these
methods2 is analyzed in [27]. In summary, the stochastic adaptive gradient descent
method returns an ǫ-optimal solution in expectation after O(log(ǫ−1)) iterations when |Sk|
is chosen as a constant (depending on ǫ), and stochastic adaptive BFGS converges
R-superlinearly with probability 1 when |Sk| increases superlinearly.

SBFGS-A: The stochastic adaptive BFGS method. At each iteration, an adaptive
BFGS step is computed from the empirical objective function (8.2). The BFGS
update is computed from the pair (dk, Gkdk) which is more stable than using the
pair (sk, yk) with the difference yk of sampled gradients (see [3, 12]).

2Note: the stochastic adaptive BFGS analyzed in [27] is slightly different, as it incorporates an additional
Wolfe condition test.

http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
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Value

α1
1

140,000 ≈ 7.14e-6

α2 5e-6

α3 2e-6

α4 1e-6

Table 4. Constant step sizes.

SBFGS-1: The stochastic BFGS method with constant step size α1. The step size
α1 is given in Table 4.

SN-A: Nesterov’s stochastic damped Newton method [17].
SN-1: The stochastic Newton method with constant step size α1.
SGD-A: Stochastic adaptive gradient descent.
SGD-i: Stochastic gradient descent with constant step size αi for i = 1, . . . , 4

(Table 4).

The theory [27] suggests taking an increasing number of samples for stochastic adaptive

methods. For SBFGS-A, SBFGS-1, SN-A, SN-1, and SGD-A, we use |Sk| = 1
2p · (1.05)⌊

k

50
⌋.

That is, the number of samples starts at 1
2p = 150 and increases by 5% every 50 iterations.

For SGD-i methods, we test three different constant batch sizes: a small batch of
|Sk| = 1

2p, a medium batch of |Sk| = p, and a large batch of |Sk| = 4p.
The results of the experiments are shown in Figure 3. As before, the log gap is
log10(f(xk)− f(x∗)), where x∗ is the true minimizer (x∗ can be computed explicitly given
Σ and β). The plots in the first column shows the trajectory of each method in 60 seconds
of CPU time; the second and third columns show the final 10 seconds (from 50s to 60s) in
greater detail. The starting point in all trials was w = 0.
Both SBFGS-A and SN-A exhibit superlinear convergence once they approach the
minimizer. Curiously, SBFGS-A attains greater accuracy than SN-A using the same
sample sizes (see second column of Figure 3); we suspect that the noisiness of sampling Gk

damages SN-A. These methods greatly outperform SGD, even with well-tuned step sizes.
We note that SGD is quite sensitive to the choice of step size. A constant step size cannot
be made much larger than α1; using

1
130,000 ≈ 7.69e-6 causes SGD (even with large

batches) to immediately diverge. In fact, we can check that the largest eigenvalue of Σ is
approximately 1.32e5. Furthermore, the superior performance of SBFGS-A and SN-A
depends at least partially on the curvature-adaptive step size. The methods SBFGS-1 and
SN-1, which use the constant step size α1, converge extremely slowly3, so the success of
SBFGS-A and SN-A is not solely due to the second-order information in Hk.
SGD-A was slower than SGD with tuned step sizes. We found that the initial adaptive
step size was 1e-8, which explains the relatively slow convergence of SGD-A. It is also
worth noting that even with a small initial sample, SGD-A never produced an overly large
step size causing it to diverge or oscillate, something which is not strictly guaranteed by
the theory.

3It is possible to use even larger step sizes with these methods. We observed that stochastic BFGS and
stochastic Newton can tolerate much larger constant step sizes than α1 without diverging wildly as SGD
does. However, for stochastic BFGS, the performance is not better, and is usually much worse than using
α1, as the algorithm escapes to a worse region before beginning to decrease slowly.
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Figure 3. Performance of the stochastic algorithms. In the top row, the
SGD methods SGD-1, SGD-2, SGD-3, SGD-4 use small batches (|Sk| =
1
2p). Likewise, the second and third row use medium and large batches,
respectively. The first column shows the performance of each method in 60s
of CPU time, and the second and third columns show a close-up of the last
10s (50s-60s).

We have not touched on the subject of variance reduction, which is generally crucial,
though not particularly relevant when considering the results in Figure 3. Good variance
reduction techniques will be important for designing an effective, general-purpose solver
based on SBFGS-A, SN-A, or indeed, any other of the stochastic algorithms tested.
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