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In the late sixties, N. Shor and B. Polyak independently proposed optimal first-order meth-
ods for solving non-smooth convex optimization problems. In 1982 A. Nemirovski proposed
optimal first-order methods for solving smooth convex optimization problems, which utilized
auxiliary line search. In 1985 A. Nemirovski and Yu. Nesterov proposed a parametric family
of optimal first-order methods for solving convex optimization problems with intermediate
smoothness. In 2013 Yu. Nesterov proposed a universal gradient method which combined all
good properties of the previous methods, except the possibility of using auxiliary line search.
One can typically observe that in practice auxiliary line search improves performance for
many tasks. In this paper, we propose the apparently first such method of non-smooth con-
vex optimization allowing the use of the line search procedure. Moreover, it is based on the
universal gradient method, which does not require any a priori information about the actual
degree of smoothness of the problem. Numerical experiments demonstrate that the proposed
method is, in some cases, considerably faster than Nesterov’s universal gradient method.
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1. Introduction

Traditionally, convex optimization problems have been divided into two main classes: the
class of smooth problems and the class of non-smooth problems [12]. However, introduc-
ing an intermediate class of problems with convex differentiable objectives with Hölder
continuous gradient allows us to view the classes of smooth and non-smooth convex
optimization problems as two extreme cases of this intermediate class.
The first optimal methods for this class were introduced in [8]. However, both these

procedures and some others presented later had a serious drawback: they required too
much information about the objective (for example, the degree of the objective function’s
smoothness or the distance from the initial point to the solution) to be used efficiently.
In [11] the Universal Fast Gradient Method is presented. It is optimal for the class of

problems with convex differentiable objectives with Hölder continuous gradient, has a
low iteration cost, and does not involve any parameters dependent on the objective.
Some minimization methods allow for the use of an exact line search procedure. A

classic example of such a method is the steepest descent method, which is a version of
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the gradient descent method in which on each iteration instead of performing a step of
fixed length in the direction of the negative gradient the objective function is minimized
along said direction. Although this does not improve the worst-case convergence rate,
such line search procedures often perform very well in practice. The aim of this work
was to construct a universal method which allowed for the use of an exact line search
procedure. By combining the core idea of Nesterov’s Universal Fast Gradient Method
with the framework described by Allen-Zhu et al. in [1], such a method was devised. As
far as it is known to the authors of this paper, our work contains the first example of such a
method, although a method utilising exact line search for solving minimization problems
with convex Lipschitz continuous objectives was recently constructed by Drori et al [4].
Their work also contains an example of a universal method which uses an exact three
dimension subspace minimization on each iteration. Our numerical experiments indicate
that the exact line search step does indeed demonstrate great performance on some
non-smooth problems. Note that in the well-known Shor’s type methods with variable
metric for non-smooth convex optimization problems line search is performed not in the
direction of the negative gradient. These methods also require quadratic memory [12].
The paper is organized as follows. Firstly, we define the intermediate class of problems

which we refer to above, set the problem and give other definition used later in this
paper. Secondly, we define Nesterov’s Universal Fast Gradient Method, which we will
be using as a benchmark in our numerical experiments. In Section 2 we present our
Universal Linear Coupling Method, prove its convergence and equip it with a stopping
criterion. Section 3 contains notes on how to implement the line search procedure and
how its accuracy affects the method’s convergence. Finally, Section 4 is dedicated to
the results of our numerical experiments.

1.1 Preliminaries

One of the conditions often used in convergence analysis of numerical optimization meth-
ods is 𝐿-smoothness.

Definition 1 A function 𝑓 : R𝑛 → R𝑚 is called Lipschitz continuous with constant 𝐿
if

‖𝑓(𝑥)− 𝑓(𝑦)‖ 6 𝐿‖𝑥− 𝑦‖ ∀𝑥, 𝑦 ∈ R𝑛.

Definition 2 A differentiable function 𝑓 : R𝑛 → R𝑚 is called 𝐿-smooth if its gradient
is Lipschitz continuous with constant 𝐿:

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ 6 𝐿‖𝑥− 𝑦‖ ∀𝑥, 𝑦 ∈ R𝑛.

We will be using the following natural generalisation of Lipschitz continuity.

Definition 3 A function 𝑓 : R𝑛 → R𝑚 satisfies the Hölder condition (or is Hölder
continuous) if there exist constants 𝜈 ∈ [0, 1] and 𝑀𝜈 > 0, such that

‖𝑓(𝑥)− 𝑓(𝑦)‖ 6𝑀𝜈‖𝑥− 𝑦‖𝜈 ∀ 𝑥, 𝑦 ∈ R𝑛.

The constant 𝜈 in this definition is called the exponent of the Hölder condition. Hölder
continuity coincides with Lipschitz continuity if 𝜈 = 1. On the other hand, Hölder con-
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tinuity with 𝜈 = 0 is just boundedness. If a function is differentiable and its gradient is
Hölder continuous, then exponent 𝜈 is a measure of the function’s smoothness.
Throughout this paper we will be working with the problem

𝑓(𝑥)→ min
𝑥∈R𝑛

,

where 𝑓(𝑥) is a convex differentiable function and its gradient satisfies the Hölder condi-
tion for some 𝜈 ∈ [0, 1] with some constant𝑀𝜈 . We denote some solution to this problem
as 𝑥*.
Let us define Bregman divergence 𝑉𝑥(𝑦) as follows:

𝑉𝑥(𝑦) = 𝜔(𝑦)− ⟨∇𝜔(𝑥), 𝑦 − 𝑥⟩ − 𝜔(𝑥),

where 𝜔(𝑥) is a 1-strongly convex function. 𝜔 is also called a distance generating function.
By definition,

𝑉𝑥(𝑦) >
1

2
‖𝑦 − 𝑥‖2.

1.2 Universal Method

In [3] it is shown that the notion of inexact oracle allows one to apply some methods of
smooth convex optimization to non-smooth problems. The following lemma plays a key
role in this:

Lemma 1.1 Let function 𝑓 be differentiable and have H𝑜lder continuous gradient. Then
for any 𝛿 > 0 we have

𝑓(𝑦) 6 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+ 𝑀

2
‖𝑦 − 𝑥‖2 + 𝛿

2
,

where

𝑀 =𝑀 (𝛿, 𝜈,𝑀𝜈) =

[︂
1− 𝜈
1 + 𝜈

𝑀𝜈

𝛿

]︂ 1−𝜈

1+𝜈

𝑀𝜈 .

The exact values (𝑓(𝑥),∇𝑓(𝑥)) of a differentiable function 𝑓 with Hölder continuous
gradient allow us to obtain an upper bound similar to the one obtained by using inexact
information for a differentiable and L-smooth function. This allows one to apply methods
reliant on the usage of an inexact oracle for L-smooth objectives to optimize objectives
with Hölder continuos gradient.
However, knowledge of the parameters 𝜈 and 𝑀𝜈 from the definition of Hölder con-

tinuity is still required to apply such an approach. In [11] a line search procedure was
used to estimate the needed parameters similarly to how the constant of 𝐿-smoothness is
estimated in adaptive methods. For a general norm on R𝑛 and a corresponding Bregman
divergence 𝑉𝑥(𝑦) the Universal Fast Gradient Method may be written as follows.
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Algorithm 1: UFGM(𝑓 , 𝐿0, 𝑥0, 𝜀, 𝑇 )

Input : 𝑓 a differentiable convex function with Hölder continuous gradient; initial
value of the ”inexact” Lipschitz continuity constant 𝐿0; initial point 𝑥0;
accuracy 𝜀; number of iterations 𝑇 .

𝑦0 ← 𝑥0, 𝑧0 ← 𝑥0, 𝛼0 ← 0, 𝜓0(𝑥)← 𝑉𝑥0
(𝑥)

for 𝑘 = 0 to 𝑇 − 1 do

𝐿𝑘+1 ← 𝐿𝑘

2
while True do

𝑣𝑘 = argmin
𝑥∈R𝑛

𝜓𝑘(𝑥)

𝛼𝑘+1 ← 1
2𝐿𝑘+1

+
√︁

1
4𝐿2

𝑘+1
+ 𝛼2

𝑘
𝐿𝑘

𝐿𝑘+1

𝜏𝑘 ← 1
𝛼𝑘+1𝐿𝑘+1

𝑥𝑘+1 ← 𝜏𝑘𝑣𝑘 + (1− 𝜏𝑘)𝑦𝑘
𝑧𝑘+1 ← argmin

𝑧∈R𝑛

𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧 − 𝑣𝑘⟩+ 𝑉𝑣𝑘
(𝑧)

𝑦𝑘+1 ← 𝜏𝑘𝑧𝑘+1 + (1− 𝜏𝑘)𝑦𝑘
if 𝑓(𝑦𝑘+1) 6 𝑓(𝑥𝑘+1) + ⟨∇𝑓(𝑥𝑘+1), 𝑦𝑘+1 − 𝑥𝑘+1⟩+ 𝐿𝑘+1

2 ‖𝑦𝑘+1 − 𝑥𝑘+1‖2 + 𝜏𝑘𝜀
2

then
break

end
else

𝐿𝑘+1 ← 2𝐿𝑘+1

end

end
𝜓𝑘+1(𝑥)← 𝜓𝑘(𝑥) + 𝛼𝑘+1 [𝑓(𝑥𝑘+1) + ⟨∇𝑓(𝑥𝑘+1), 𝑥− 𝑥𝑘+1⟩]

end
return 𝑦𝑇

The above method does not require a priori knowledge of the smoothness parameter 𝜈
or the corresponding 𝑀𝜈 . The following theorem gives the convergence rate of the above
algorithm:

Theorem 1.2 Let f be a differentiable convex function with Hölder continuous gradient
with some exponent 𝜈 and 𝑀𝜈 <∞. Let 𝐿0 6𝑀(𝜀, 𝜈,𝑀𝜈). Then

𝑓(𝑦𝑘)− 𝑓(𝑥*) 6
[︂
22+4𝜈𝑀2

𝜈

𝜀1−𝜈𝑘1+3𝜈

]︂ 1

1+𝜈

+
𝜀

2
.

What follows is that one may obtain an 𝜀-accurate solution in

𝑘 6 inf
𝜈∈[0,1]

⎡⎣(︃2
3+5𝜈

2 𝑀𝜈

𝜀

)︃ 2

1+3𝜈
(︂
1

2
‖𝑥0 − 𝑥*‖2

)︂ 1+𝜈

1+3𝜈

⎤⎦
iterations. If the problem admits multiple solutions, then 𝑥* may be considered to be the
solution minimizing 1

2‖𝑥0 − 𝑥*‖2. As shown in [9], this is optimal up to a multiplicative
constant independent of the accuracy, the initial point, and the objective function.
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2. Universal Linear Coupling Method

We are now ready to present our universal method based on the linear coupling method
proposed by Allen-Zhu et al. [1] The Linear Coupling framework is chosen as a basis for
our method because it allows for the usage of an exact line search step, which is our
goal. The original linear coupling method utilizes gradient and mirror descent steps to
guarantee optimal convergence rate for convex objectives. However, it is clear from the
convergence analysis of said method that the gradient step is only used to obtain a lower
bound on the decrease of the objective during this step. This means that any procedure
capable of guaranteeing at least such a decrease may be utilized instead. Since in the
unconstrained Euclidean setting the gradient step is always performed in the direction of
the negative of the gradient, one may use the steepest descent method instead. This idea
combined with the idea of Nesterov’s universal method allows us to modify the Linear
Coupling method in the following way:

Algorithm 2: ULCM(𝑓 , 𝐿0, 𝑥0, 𝜀, 𝑇 )

Input : 𝑓 a differentiable convex function with Hölder continuous gradient; initial
value of the ”inexact” Lipschitz continuity constant 𝐿0; initial point 𝑥0;
accuracy 𝜀; number of iterations 𝑇 .

𝑦0 ← 𝑥0, 𝑧0 ← 𝑥0, 𝛼0 ← 0
for 𝑘 = 0 to 𝑇 − 1 do

𝐿𝑘+1 ← 𝐿𝑘

2
while True do

𝛼𝑘+1 ← 1
2𝐿𝑘+1

+
√︁

1
4𝐿2

𝑘+1
+ 𝛼2

𝑘
𝐿𝑘

𝐿𝑘+1

𝜏𝑘 ← 1
𝛼𝑘+1𝐿𝑘+1

𝑥𝑘+1 ← 𝜏𝑘𝑧𝑘 + (1− 𝜏𝑘)𝑦𝑘
ℎ𝑘+1 ← argmin

ℎ>0
𝑓(𝑥𝑘+1 − ℎ∇𝑓(𝑥𝑘+1))

𝑦𝑘+1 ← 𝑥𝑘+1 − ℎ𝑘+1∇𝑓(𝑥𝑘+1)
𝑧𝑘+1 ← 𝑧𝑘 − 𝛼𝑘+1∇𝑓(𝑥𝑘+1)
if ⟨𝛼𝑘+1∇𝑓(𝑥𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩ − 1

2‖𝑧𝑘 − 𝑧𝑘+1‖2 6
𝛼2
𝑘+1𝐿𝑘+1(𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1) +

𝜏𝑘𝜀
2 ) then

break
end
else

𝐿𝑘+1 ← 2𝐿𝑘+1

end

end

end
return 𝑦𝑇

5



As far as it is known to the authors of this paper, this is the first universal method of
non-smooth optimization utilizing steepest descent steps.
From this point onwards 𝐿𝑘 will always denote the value obtained at the end of a full

iteration of the ”for” loop.
We shall now show that the above algorithm is well-defined. To be more precise, we

shall prove that the if-condition inside the while loop is satisfied after a finite number of
iterations for any 𝑘.

Lemma 2.1 𝑓(𝑥) is a convex differentiable function and its gradient satisfies the Hölder
condition for some 𝜈 ∈ [0, 1] with some constant 𝑀𝜈 . Then for all steps k of above
algorithm

𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩ −
1

2
‖𝑧𝑘 − 𝑧𝑘+1‖2 6 𝛼2

𝑘+1𝐿𝑘+1

(︁
𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1) +

𝜏𝑘𝜀

2

)︁
,

for all 𝐿𝑘+1 satisfying

𝐿𝑘+1 >𝑀(𝜏𝑘𝜀, 𝜈,𝑀𝜈) =

[︂
1− 𝜈
1 + 𝜈

𝑀𝜈

𝜏𝑘𝜀

]︂ 1−𝜈

1+𝜈

𝑀𝜈 .

Proof.

𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩ −
1

2
‖𝑧𝑘 − 𝑧𝑘+1‖2

6
𝛼2
𝑘+1

2
‖∇𝑓(𝑥𝑘+1)‖2 6𝑀𝛼2

𝑘+1

(︁
𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1) +

𝜏𝑘𝜀

2
)
)︁

Here the first inequality follows from the fact that ‖𝛼𝑘+1∇𝑓(𝑥𝑘+1)− (𝑧𝑘−𝑧𝑘+1)‖2 > 0.
To get the last inequality we will use Lemma 1.1 with 𝛿 = 𝜏𝑘𝜀 and 𝑥 = 𝑥𝑘+1, 𝑦 =
𝑥𝑘+1 − 𝛽∇𝑓(𝑥𝑘+1):

𝑓(𝑦) 6 𝑓(𝑥𝑘+1) + ⟨∇𝑓(𝑥𝑘+1),−𝛽∇𝑓(𝑥𝑘+1)⟩+
𝛽2𝑀

2
‖∇𝑓(𝑥𝑘+1)‖2 +

𝜏𝑘𝜀

2

= 𝑓(𝑥𝑘+1)− 𝛽‖∇𝑓(𝑥𝑘+1)‖2 +
𝛽2𝑀

2
‖∇𝑓(𝑥𝑘+1)‖2 +

𝜏𝑘𝜀

2
.

Minimising the right-hand side over 𝛽 ∈ R, we get 𝛽 = 1
𝑀 . This results in the following

guarantee:

𝑓(𝑦)− 𝑓(𝑥𝑘+1) 6 −
‖∇𝑓(𝑥𝑘+1)‖2

2𝑀
+
𝜏𝑘𝜀

2
.

In our algorithm

𝑦𝑘+1 = 𝑥𝑘+1 − ℎ𝑘+1∇𝑓(𝑥𝑘+1),

ℎ𝑘+1 = argmin
ℎ>0

𝑓(𝑥𝑘+1 − ℎ∇𝑓(𝑥𝑘+1)),
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so

𝑓(𝑦𝑘+1)− 𝑓(𝑥𝑘+1) 6 𝑓(𝑦)− 𝑓(𝑥𝑘+1) 6 −
‖∇𝑓(𝑥𝑘+1)‖2

2𝑀
+
𝜏𝑘𝜀

2
.

�

2.1 Comparison with the UFGM method

Note that in the case of Euclidean norm and 𝑉𝑥(𝑦) =
1
2‖𝑥−𝑦‖2, in the UFGM algorithm

the mirror descent step

𝑧𝑘+1 ← argmin
𝑧∈R𝑛

𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧 − 𝑣𝑘⟩+ 𝑉𝑣𝑘
(𝑧)

may be rewritten as

𝑧𝑘+1 ← 𝑣𝑘 − 𝛼𝑘+1∇𝑓(𝑥𝑘+1).

Moreover, in the case of the Euclidean norm the sequence {𝑣𝑘} turns out to be identical
to the sequence {𝑧𝑘}. Now by direct substitution of 𝑧𝑘+1 and by using (1 − 𝜏𝑘)𝑦𝑘 =
𝑥𝑘+1 − 𝜏𝑘𝑣𝑘 we get that

𝑦𝑘+1 = 𝜏𝑘(𝑧𝑘 − 𝛼𝑘+1∇𝑓(𝑥𝑘+1)) + (1− 𝜏𝑘)𝑦𝑘 = 𝑥𝑘+1 −
1

𝐿𝑘+1
∇𝑓(𝑥𝑘+1).

This means that the two methods are not just very similar, but are practically identical.
The only difference between them is the usage of exact line search instead of a fixed-length
gradient descent step.

2.2 Convergence Analysis

To ascertain the convergence of the above algorithm we will require the following lemmas:

Lemma 2.2 For any 𝑢 ∈ R𝑛

𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧𝑘−𝑢⟩ 6 𝛼2
𝑘+1𝐿𝑘+1

(︁
𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1) +

𝜏𝑘𝜀

2

)︁
+
1

2
‖𝑧𝑘−𝑢‖2−

1

2
‖𝑧𝑘+1−𝑢‖2.

Proof.

𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧𝑘 − 𝑢⟩ = 𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩+ 𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧𝑘+1 − 𝑢⟩
1○
= 𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩+ ⟨𝑧𝑘 − 𝑧𝑘+1, 𝑧𝑘+1 − 𝑢⟩
2○
= 𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩+

1

2
‖𝑧𝑘 − 𝑢‖2 −

1

2
‖𝑧𝑘+1 − 𝑢‖2 −

1

2
‖𝑧𝑘 − 𝑧𝑘+1‖2

3○
6 𝛼2

𝑘+1𝐿𝑘+1

(︁
𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1) +

𝜏𝑘𝜀

2

)︁
+

1

2
‖𝑧𝑘 − 𝑢‖2 −

1

2
‖𝑧𝑘+1 − 𝑢‖2.
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Here, 1○ is due to

𝑧𝑘+1 = argmin
𝑧∈R𝑛

⟨𝛼𝑘+1∇𝑓(𝑥𝑘+1), 𝑧⟩+
1

2
‖𝑧𝑘 − 𝑧‖2,

which implies

∇
(︂
1

2
‖𝑧𝑘 − 𝑧‖2 + ⟨𝛼𝑘+1∇𝑓(𝑥𝑘+1), 𝑧⟩

)︂ ⃒⃒⃒⃒
𝑧=𝑧𝑘+1

= 0.

2○ follows from the triangle equality of Bregman divergence

⟨−∇𝑉𝑥(𝑦), 𝑦 − 𝑢⟩ = 𝑉𝑥(𝑢)− 𝑉𝑦(𝑢)− 𝑉𝑥(𝑦),

which takes the following form when 𝑉𝑥(𝑦) =
1
2‖𝑥− 𝑦‖2:

⟨𝑥− 𝑦, 𝑦 − 𝑢⟩ = 1

2
‖𝑥− 𝑢‖2 − 1

2
‖𝑦 − 𝑢‖2 − 1

2
‖𝑥− 𝑦‖2

Finally, 3○ is due to our choice of 𝐿𝑘+1.
�

Lemma 2.3 For any 𝑢 ∈ R𝑛

𝛼2
𝑘+1𝐿𝑘+1𝑓(𝑦𝑘+1)−

(︀
𝛼2
𝑘+1𝐿𝑘+1 − 𝛼𝑘+1

)︀
𝑓(𝑦𝑘)+(︂

1

2
‖𝑧𝑘+1 − 𝑢‖2 −

1

2
‖𝑧𝑘 − 𝑢‖2

)︂
− 𝛼𝑘+1𝜀

2
6 𝛼𝑘+1𝑓(𝑢).

Proof. We deduce the following sequence of relations:

𝛼𝑘+1(𝑓(𝑥𝑘+1)− 𝑓(𝑢)) 6 𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑥𝑘+1 − 𝑢⟩
= 𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑥𝑘+1 − 𝑧𝑘⟩+ 𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧𝑘 − 𝑢⟩
1○
=

(1− 𝜏𝑘)𝛼𝑘+1

𝜏𝑘
⟨∇𝑓(𝑥𝑘+1), 𝑦𝑘 − 𝑥𝑘+1⟩+ 𝛼𝑘+1⟨∇𝑓(𝑥𝑘+1), 𝑧𝑘 − 𝑢⟩

2○
6

(1− 𝜏𝑘)𝛼𝑘+1

𝜏𝑘
(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘+1)) + 𝛼2

𝑘+1𝐿𝑘+1

(︁
𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1) +

𝜏𝑘𝜀

2

)︁
+

1

2
‖𝑧𝑘 − 𝑢‖2 −

1

2
‖𝑧𝑘+1 − 𝑢‖2 3○

= (𝛼2
𝑘+1𝐿𝑘+1 − 𝛼𝑘+1)𝑓(𝑦𝑘)− 𝛼2

𝑘+1𝐿𝑘+1𝑓(𝑦𝑘+1)

+ 𝛼𝑘+1𝑓(𝑥𝑘+1) +

(︂
1

2
‖𝑧𝑘 − 𝑢‖2 −

1

2
‖𝑧𝑘+1 − 𝑢‖2

)︂
+
𝛼𝑘+1𝜀

2
.

Here, 1○ uses the fact that our choice of 𝑥𝑘+1 satisfies 𝜏𝑘(𝑥𝑘+1−𝑧𝑘) = (1−𝜏𝑘)(𝑦𝑘−𝑥𝑘+1).
2○ is by convexity of 𝑓(·) and Lemma 2.2, while 3○ uses the choice of 𝜏𝑘 = 1

𝛼𝑘+1𝐿𝑘+1
. �

We are now ready to begin our proof of the method’s convergence.
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Theorem 2.4 Let 𝑓(𝑥) be a convex, differentiable function such that its gradient satisfies
the Hölder condition for some 𝜈 ∈ [0, 1] with some finite 𝑀𝜈 . Let 𝐿0 also satisfy

𝐿0 6 inf
𝜈∈[0,1]

4

[︂
1− 𝜈
1 + 𝜈

𝑀𝜈

𝜀

]︂ 1−𝜈

1+𝜈

𝑀𝜈 .

Then ULCM(𝑓 , 𝐿0, 𝑥0, 𝜀, 𝑇 ) outputs 𝑦𝑇 such that 𝑓(𝑦𝑇 )− 𝑓(𝑥*) 6 𝜀 in the number of
iterations

𝑇 6 inf
𝜈∈[0,1]

[︂
1− 𝜈
1 + 𝜈

]︂ 1−𝜈

1+3𝜈

[︃
2

3+5𝜈

2 𝑀𝜈

𝜀

]︃ 2

1+3𝜈

Θ
1+𝜈

1+3𝜈 ,

where Θ is any upper bound on 1
2‖𝑥0 − 𝑥*‖2.

Proof. Note that our choice of 𝛼𝑘+1 satisfies

𝛼2
𝑘+1𝐿𝑘+1 − 𝛼𝑘+1 = 𝛼2

𝑘𝐿𝑘, (1)

which allows us to telescope Lemma 2.3. Summing up Lemma 2.3 for 𝑘 = 0, 1, . . . , 𝑇 −1
and 𝑢 = 𝑥*, we obtain

𝛼2
𝑇𝐿𝑇 𝑓(𝑦𝑇 ) +

(︂
1

2
‖𝑧𝑇 − 𝑥*‖2 −

1

2
‖𝑧0 − 𝑥*‖2

)︂
6

𝑇∑︁
𝑘=1

𝛼𝑘𝑓(𝑥
*) +

𝑇∑︁
𝑘=1

𝛼𝑘𝜀

2
.

By using (1) we get that
𝑇∑︀

𝑘=1

𝛼𝑘 = 𝛼2
𝑇𝐿𝑇 . We also notice that 1

2‖𝑧𝑡 − 𝑥*‖2 > 0 and

1
2‖𝑧0 − 𝑥*‖2 6 Θ. Therefore,

𝑓(𝑦𝑇 )− 𝑓(𝑥*) 6
Θ

𝛼2
𝑇𝐿𝑇

+
𝜀

2
.

Note that our process of calculating 𝐿𝑘 guarantees that if the step 𝐿𝑘+1 ← 2𝐿𝑘+1 of
the algorithm was executed at least once for some 𝑘, then for that 𝑘

𝐿𝑘+1 6 2

[︂
1− 𝜈
1 + 𝜈

𝑀𝜈

𝜀𝜏𝑘

]︂ 1−𝜈

1+𝜈

𝑀𝜈 . (2)

Assume that 𝐿𝑛 6 2
[︁
1−𝜈
1+𝜈

𝑀𝜈

𝜀𝜏𝑛−1

]︁ 1−𝜈

1+𝜈

𝑀𝜈 and 𝐿𝑛+1 =
𝐿𝑛

2 for some 𝑛 > 1. Then

1

𝜏𝑛
= 𝛼𝑛+1𝐿𝑛+1 =

1

2
+

√︂
1

4
+ 𝛼2

𝑛𝐿𝑛𝐿𝑛+1 >
1

2
+

√︂
1

4
+
𝛼2
𝑛𝐿

2
𝑛

2
>

1√
2𝜏𝑛−1

.
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𝐿𝑛+1 =
𝐿𝑛

2
6

[︃
1− 𝜈
1 + 𝜈

√
2𝑀𝜈

𝜀𝜏𝑛

]︃ 1−𝜈

1+𝜈

𝑀𝜈 6 2

[︂
1− 𝜈
1 + 𝜈

𝑀𝜈

𝜀𝜏𝑛

]︂ 1−𝜈

1+𝜈

𝑀𝜈 .

This shows that even if we don’t execute the step 𝐿𝑘+1 ← 2𝐿𝑘+1, (2) remains true as
long as it held true on the previous iteration. All of the above proves that the assumption
about 𝐿0 in the statement of the theorem implies that (2) is true for all 𝑘 = 0, . . . 𝑇 − 1.
Denote 𝐴𝑘 = 𝛼2

𝑘𝐿𝑘. We may now proceed to attain a lower bound on 𝐴𝑇 .

𝛼2
𝑘

𝐴𝑘
=

1

𝐿𝑘
>

1

2𝑀𝜈

[︂
1 + 𝜈

1− 𝜈
𝜀

𝑀𝜈

]︂ 1−𝜈

1+𝜈
[︂
𝛼𝑘

𝐴𝑘

]︂ 1−𝜈

1+𝜈

𝛼𝑘 >
1

2
1+𝜈

1+3𝜈𝑀
2

1+3𝜈
𝜈

[︂
1 + 𝜈

1− 𝜈 𝜀
]︂ 1−𝜈

1+3𝜈

𝐴
2𝜈

1+3𝜈

𝑘 .

Denote 𝛾 = 1+𝜈
1+3𝜈 >

1
2 . Since 𝐴𝑘+1 = 𝐴𝑘 + 𝛼𝑘+1,

𝐴𝛾
𝑘+1 −𝐴

𝛾
𝑘+1 >

𝐴𝑘+1 −𝐴𝑘

𝐴1−𝛾
𝑘+1 +𝐴1−𝛾

𝑘

>
𝛼𝑘+1

2𝐴1−𝛾
𝑘+1

>
1

2
2+4𝜈

1+3𝜈𝑀
2

1+3𝜈
𝜈

[︂
1 + 𝜈

1− 𝜈 𝜀
]︂ 1−𝜈

1+3𝜈

. (3)

Now we telescope (3) for 𝑘 = 0, . . . , 𝑇 − 1 and get

𝐴𝑇 >

[︂
1 + 𝜈

1− 𝜈

]︂ 1−𝜈

1+𝜈 𝑇
1+3𝜈

1+𝜈 𝜀
1−𝜈

1+𝜈

2
2+4𝜈

1+𝜈 𝑀
2

1+𝜈
𝜈

.

This allows us to estimate the number of iterations necessary to achieve error no more
than 𝜀. However, beforehand we shall note that this estimate heavily depends on 𝜈. By
allowing𝑀𝜈 to be infinite, we make the gradient of any differentiable function satisfy the
Hölder condition for all 𝜈 ∈ [0, 1]. This in turn allows to easily select the most appropriate
estimate:

𝑇 6 inf
𝜈∈[0,1]

[︂
1− 𝜈
1 + 𝜈

]︂ 1−𝜈

1+3𝜈

[︃
2

3+5𝜈

2 𝑀𝜈

𝜀

]︃ 2

1+3𝜈

Θ
1+𝜈

1+3𝜈 .

Note that since the solution 𝑥* was arbitrary, 𝑥* may now be considered to be the
solution which minimizes 1

2‖𝑥0 − 𝑥*‖2.
�
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2.3 Stopping criterion

In [2] it is shown that the original version of the Linear Coupling Method may be equipped
with a stopping criterion. By using similar techniques, we are now going to show that our
universal modification of said method may also be equipped with a calculable stopping
criterion.
By ignoring the first inequality in the proof of Lemma 2.3, we get that for all 𝑢 ∈ R𝑛

(remember that 𝐴𝑘 = 𝛼2
𝑘𝐿𝑘)

𝐴𝑘+1𝑓(𝑦𝑘+1)−𝐴𝑘𝑓(𝑦𝑘) +
1

2
‖𝑧𝑘+1 − 𝑢‖2 −

1

2
‖𝑧𝑘 − 𝑢‖2 −

𝛼𝑘+1𝜀

2
6 𝛼𝑘+1 (𝑓(𝑥𝑘+1) + ⟨∇𝑓(𝑥𝑘+1), 𝑢− 𝑥𝑘+1⟩) .

Summing up for 𝑘 = 0, . . . ,𝑚− 1, we obtain

𝑓(𝑦𝑚) 6
𝜀

2
+

1

𝐴𝑚
min
𝑢∈R𝑛

{︃
1

2
‖𝑧0 − 𝑢‖2 +

𝑚∑︁
𝑖=1

𝛼𝑖 (𝑓(𝑥𝑖) + ⟨∇𝑓(𝑥𝑖), 𝑢− 𝑥𝑖⟩)
}︃
.

Denote

𝑙𝑚(𝑢) =

𝑚∑︁
𝑖=1

[𝛼𝑖 (𝑓(𝑥𝑖) + ⟨∇𝑓(𝑥𝑖), 𝑢− 𝑥𝑖⟩)]

and

𝑓𝑚 = min
𝑢: 1

2
‖𝑧0−𝑢‖26Θ

1

𝐴𝑚
𝑙𝑚(𝑢).

Then by using strong duality one may see that

𝑓𝑚 = min
𝑢∈R𝑛

max
𝜆>0

{︂
1

𝐴𝑚
𝑙𝑚(𝑢) + 𝜆

(︂
1

2
‖𝑧0 − 𝑢‖2 −Θ

)︂}︂
= max

𝜆>0
min
𝑢∈R𝑛

{︂
1

𝐴𝑚
𝑙𝑚(𝑢) + 𝜆

(︂
1

2
‖𝑧0 − 𝑢‖2 −Θ

)︂}︂
.

By setting 𝜆 = 1
𝐴𝑚

, we get that

𝑓𝑚 >
1

𝐴𝑚
min
𝑢∈R𝑛

{︃
1

2
‖𝑧0 − 𝑢‖2 +

𝑚∑︁
𝑖=1

𝛼𝑖 (𝑓(𝑥𝑖) + ⟨∇𝑓(𝑥𝑖), 𝑢− 𝑥𝑖⟩)
}︃
− Θ

𝐴𝑚
.

Then 𝑓(𝑦𝑚) − 𝑓𝑚 6 𝜀
2 + Θ

𝐴𝑚
. This means that our method is primal-dual. By the

convexity of 𝑓 we also get that 𝑓(𝑥*) > 𝑓𝑚, so 𝑓(𝑦𝑚) − 𝑓(𝑥*) ≤ 𝑓(𝑦𝑚) − 𝑓𝑚 6 𝜀
may be used as an implementable stopping criterion. Of course, an estimate of Θ is
required to compute 𝑓𝑚. Overestimating Θ may lead to performing an excessive amount
of iterations, while underestimating it invalidates the criterion completely. However, the
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stopping criterion requires an estimate of only one unknown parameter, which is also
not used in the algorithm’s definition. On the other hand, three unknown parameters
(𝜈,𝑀𝜈 ,Θ) need to be estimated to calculate the upper bound on the number of iterations
required to get an 𝜀-accurate solution

3. Line search

During all of the previous analysis we assumed that ∀𝑥 ∈ R𝑛 𝑓(𝑥), ∇𝑓(𝑥), the steepest
descent step, and the mirror descent step may be calculated exactly. However, in relation
to the steepest descent step this assumption is not critical for the method’s convergence.
For any convex function of one real argument defined on a segment of the form [𝑎, 𝑏]

of length 𝑙 = 𝑏− 𝑎 a point 𝑦 such that

‖𝑦 − argmin
𝑥∈[𝑎,𝑏]

𝑓(𝑥)‖ 6 𝜀

may be found in 𝑂(log 𝑙
𝜀) function value calculations by using the bisection method.

However, to perform an exact line search in our algorithm one needs to localize the
solution first. To do that we propose the following simple procedure:

Algorithm 3: Localize(f,𝑙0)

Input : 𝑓(𝑥) – convex function defined on [0,+∞); initial segment length 𝑙0.
Output: 𝑙 such that argmin

𝑥∈[0,+∞)
𝑓(𝑥) ∈ [0, 𝑙]

𝑙← 𝑙0
while 𝑓(2𝑙) 6 𝑓(𝑙) do

𝑙← 2𝑙
end
return 𝑙

Let us estimate the accuracy with which the steepest descent must be performed to
guarantee our method’s convergence. Let’s say we want to get a solution with accuracy
of 𝜀+ 𝛿, where 𝛿 is the term resulting from the inaccuracy of the steepest descent step.
To do that we need to slightly modify our algorithm:
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Algorithm 4: 𝛿-ULCM(𝑓 , 𝐿0, 𝑥0, 𝜀, 𝛿, 𝑇 )

Input : 𝑓 a differentiable convex function with Hölder continuous gradient; initial
value of the ”inexact” Lipschitz continuity constant 𝐿0; initial point 𝑥0;
accuracy 𝜀; line search accuracy 𝛿; number of iterations 𝑇 .

𝑦0 ← 𝑥0, 𝑧0 ← 𝑥0, 𝛼0 ← 0
for 𝑘 = 0→ 𝑇 − 1 do

𝐿𝑘+1 ← 𝐿𝑘

2
while True do

𝛼𝑘+1 ← 1
2𝐿𝑘+1

+
√︁

1
4𝐿2

𝑘+1
+ 𝛼2

𝑘
𝐿𝑘

𝐿𝑘+1

𝜏𝑘 ← 1
𝛼𝑘+1𝐿𝑘+1

𝑥𝑘+1 ← 𝜏𝑘𝑧𝑘 + (1− 𝜏𝑘)𝑦𝑘
Choose 𝑦𝑘+1 such that 𝑓(𝑦𝑘+1) 6 argmin

ℎ>0
𝑓(𝑥𝑘+1 − ℎ∇𝑓(𝑥𝑘+1)) +

𝜏𝑘𝛿
2

𝑧𝑘+1 ← argmin
𝑧∈R𝑛

⟨𝛼𝑘+1∇𝑓(𝑥𝑘+1), 𝑧 − 𝑧𝑘⟩+ 1
2‖𝑧𝑘 − 𝑧‖2

if ⟨𝛼𝑘+1∇𝑓(𝑥𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩ − 1
2‖𝑧𝑘 − 𝑧𝑘+1‖2 6

𝛼2
𝑘+1𝐿𝑘+1(𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1) +

𝜏𝑘𝜀
2 ) then

break
end
else

𝐿𝑘+1 ← 2𝐿𝑘+1

end

end

end
return 𝑦𝑇

Theorem 3.1 Let 𝑓(𝑥) be a convex, differentiable function such that its gradient satisfies
the Hölder condition for some 𝜈 ∈ [0, 1] with some finite 𝑀𝜈 . Let 𝐿0 also satisfy

𝐿0 6 inf
𝜈∈[0,1]

4

[︂
1− 𝜈
1 + 𝜈

𝑀𝜈

𝜀

]︂ 1−𝜈

1+𝜈

𝑀𝜈 .

Then 𝛿-ULCM(𝑓 , 𝐿0, 𝑥0, 𝜀, 𝛿, 𝑇 ) outputs 𝑦𝑇 such that 𝑓(𝑦𝑇 ) − 𝑓(𝑥*) 6 𝜀 + 𝛿 in the
number of iterations

𝑇 6 inf
𝜈∈[0,1]

[︂
1− 𝜈
1 + 𝜈

]︂ 1−𝜈

1+3𝜈

[︃
2

3+5𝜈

2 𝑀𝜈

𝜀

]︃ 2

1+3𝜈

Θ
1+𝜈

1+3𝜈 ,

where Θ is any upper bound on 1
2‖𝑥0 − 𝑥*‖2.

This immediately follows from the proof of Theorem 2.4. To see that, note that if for
some 𝐿𝑘+1 and the exact solution of the line search problem 𝑦𝑘+1

⟨𝛼𝑘+1∇𝑓(𝑥𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩ − 𝑉𝑧𝑘(𝑧𝑘+1) 6 𝛼
2
𝑘+1𝐿𝑘+1

(︁
𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1) +

𝜏𝑘𝜀

2

)︁
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holds true, then by definition of 𝑦𝑘+1 we have

⟨𝛼𝑘+1∇𝑓(𝑥𝑘+1), 𝑧𝑘 − 𝑧𝑘+1⟩ − 𝑉𝑧𝑘(𝑧𝑘+1) 6 𝛼
2
𝑘+1𝐿𝑘+1

(︂
𝑓(𝑥𝑘+1)− 𝑓(𝑦𝑘+1) +

𝜏𝑘(𝜀+ 𝛿)

2

)︂
.

This leads to an analogue of Lemma 2.1. Then by proceeding with the proof the same
way it was done in Theorem 2.4, one gets the desired result.

3.1 Simplified function evaluation during line search

As noted in [7], for objectives of particular form the steepest descent step may be per-
formed significantly faster.
Consider a function of the form

𝑓(𝑥) = 𝜑(A𝑥) + 𝜓(𝑥),

where 𝑥 ∈ R𝑛, A ∈ R𝑛×𝑛.
If 𝑛 is sufficiently large, the computation of A𝑥 may be the most time-consuming

operation during computation of 𝑓(𝑥). However, if we are performing the steepest descent
step, we can be sure that 𝑥 is of the form 𝑥𝑘 + 𝛼∇𝑓(𝑥𝑘). Then

A𝑥 = A𝑥𝑘 + 𝛼A∇𝑓(𝑥𝑘) = 𝑣0 + 𝛼𝑣1.

This shows that one may calculate the two points 𝑣0 and 𝑣1 just once at the beginning
of a steepest descent step.
If 𝜓(𝑦) and 𝜑(𝑦) with 𝑦 known may be calculated in 𝒪(𝑛) arithmetic operations,

then this representation of A𝑥 allows us to evaluate 𝑓(𝑥) in 𝒪(𝑛) arithmetic operations
after performing matrix multiplication, which requires 𝒪(𝑛2) arithmetic operations, only
twice. This may significantly decrease the cost of one steepest descent step.

4. Numerical experiments

The proposed methods were implemented in C++ and tested using the modern versions
of GCC, clang and ICC (Intel C Compiler) on both GNU/Linux, Mac OS X and Microsoft
Windows operating systems. The source code is available at http://github.com/htower/
ulcm.
For the presented computational experiments we have also implemented a variant of

the conjugate gradients method proposed by Y. Nesterov in [10], which we denote as
NCG. The method has high numerical stability and a number of interesting properties.
In particular, it lacks a restart procedure. This results in an increased iteration complex-
ity relatively to ”classic” conjugate gradient methods, which may be attributed to the
necessity of solving two line search problems at each iteration. Details are presented in
Algorithm 5 and Figure 1.
The behaviour of the proposed methods was investigated by a series of numerical exper-

iments on different smooth and non-smooth optimization problems. For all experiments
we set the starting point 𝑥0 to 10·𝑒, where 𝑒 = (1, ..., 1), and the precision value 𝜀 = 10−4.
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Algorithm 5: NCG(𝑓 , 𝑥0, 𝛿, 𝑇 )

Input : 𝑓 a differentiable convex function with Hölder continuous gradient; initial
point 𝑥0; line search accuracy 𝛿; number of iterations 𝑇 .

𝑦−2 ← 𝑥0, 𝑦−1 ← 𝑥0, 𝑦0 ← 𝑥0
for 𝑘 = 0 to 𝑇 − 1 do

𝛼𝑘 ← argmin
𝛼∈R

𝑓(𝑥𝑘 + 𝛼(𝑦𝑘−2 − 𝑥𝑘))
𝑦𝑘 = 𝑥𝑘 + 𝛼𝑘(𝑦𝑘−2 − 𝑥𝑘)
𝛽𝑘 ← argmin

𝛽≥0
𝑓(𝑦𝑘 − 𝛽∇𝑓(𝑦𝑘))

𝑥𝑘+1 = 𝑦𝑘 − 𝛽𝑘∇𝑓(𝑦𝑘)
end
return 𝑥𝑇

x0 = y0 = y−1 = y−2

−∇f(y0)

x1 = y1

x2

y2 −∇f(y1)

x3y3

−∇f(y2)

x4

y4

−∇f(y3)

Figure 1. Illustration of the NCG method.

𝑛, problem size 𝑓(𝑥0)
UFGM ULCM NCG

iterations t, sec. iterations t, sec. iterations t, sec.
103 5 · 107 743 0.035 722 0.035 121 0.004
104 5 · 109 3230 1.429 3459 3.233 385 0.079
105 5 · 1011 15231 141.2 18053 372.6 1217 2.796
106 5 · 1013 73185 6857 84117 22373 3850 98.40

Table 1. Method’s complexity for the smooth problems.

The methods were interrupted as soon as the objective function’s value became lower
than 𝑓(𝑥*) + 5𝜀 = 𝑓(𝑥*) + 5× 10−4. The dimensionality of the problem was up to 106 .
Firstly, we considered the following smooth (quadratic) problem:

𝑓(𝑥) =

𝑛∑︁
𝑖=1

𝑖𝑥2𝑖 . (4)

This function is 𝐿-smooth, but the parameter 𝐿 depends on the number of dimensions 𝑛
linearly. This minimization problem can be solved analytically, the optimal value 𝑓(𝑥*)
is equal to 0. The results of our experiments are presented in Table 1 and Figure 2.
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Figure 2. Methods convergence for the smooth problems with 𝑛 = 103 (top) and 𝑛 = 106 (bottom). The solid

line stands for the UFGM method, the dotted line stands for the ULCM method, the dashed line stands for the
NCG method.

Next, we consider the following non-smooth problem:

𝑓(𝑥) = max
𝑖=1,...,𝑛

𝑥𝑖 +
𝜇

2
‖𝑥‖22. (5)

In our experiments 𝜇 = 0.1. Though this function is differentiable almost everywhere.
Though it does not have globally Hölder continuous gradients, the gradient satisfies the
Hölder continuity condition on any bounded set.
This minimization problem can be solved analytically, the optimal value 𝑓(𝑥*) is equal

to − 1
2𝜇𝑛 = − 5

𝑛 .

The gradient (subgradient, in case 𝑓 is not differentiable at 𝑥) can be evaluated as

∇𝑓(𝑥) = 𝜇𝑥+ 𝑧(𝑥), 𝑧(𝑥) = (0, ...0, 1, 0, ...0),

where 1 is located at position 𝑘 = argmin
𝑖=1,...,𝑛

𝑥𝑖.
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𝑛, problem size 𝑓(𝑥0)
UFGM ULCM

iterations t, sec. iterations t, sec.
103 1 · 104 535795 17.48 1376 0.175
104 1 · 105 706870 233.8 6930 6.059
105 1 · 106 1751285 4713 6950 34.18
106 1 · 107 4341186 165435 6977 575.1

Table 2. Method’s complexity for the non-smooth problems.
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Figure 3. Methods convergence for the non-smooth problems with 𝑛 = 103 (top) and 𝑛 = 106 (bottom).

The results are shown in Table 2 and Figure 3.
Note that in our particular case, since the ULCM and UFGMmethods become identical

if the steepest descent of the ULCM methods is replaced with a gradient descent step
with step length 1

𝐿𝑘+1
, all the differences in actual performance may be attributed to the

line search procedure.
The results of our experiments may be summarized as follows:

(1) For the smooth problems (4) the NCG method showed best performance. Its conver-
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gence rate significantly exceeds the convergence rates of UFGM and ULCM methods
by up to two orders of magnitude. Although the ULCM method took less iterations
to converge, it was slower (about 3 times) in terms of running time.

(2) For the non-smooth problems (5) the situation is opposite. In that case the ULCM
method significantly outperformed UFGM, both in terms of required iterations and
elapsed time. In the case of 106 arguments our method converged about 300 times
faster.

Conclusions

In this paper we propose the first primal-dual method of non-smooth convex optimization
with auxiliary line search. Practical experiments show that this method significantly
outperforms Nesterov’s Universal Fast Gradient Method [11]. Moreover, we prove that
the presented method is also optimal for all the problems with intermediate level of
smoothness. The advantage of such an approach is that one can generalize it to stochastic
programming using mini-batches [6] and to gradient-free methods [5].
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