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Abstract

The class of nonsmooth codifferentiable functions was introduced by
professor V.F. Demyanov in the late 1980s. He also proposed a method
for minimizing these functions called the method of codifferential descent
(MCD). However, until now almost no theoretical results on the perfor-
mance of this method on particular classes of nonsmooth optimization
problems were known. In the first part of the paper, we study the perfor-
mance of the method of codifferential descent on a class of nonsmooth con-
vex functions satisfying some regularity assumptions, which in the smooth
case are reduced to the Lipschitz continuity of the gradient. We prove that
in this case the MCD has the iteration complexity bound O(1/ε). In the
second part of the paper we obtain new global optimality conditions for
piecewise affine functions in terms of codifferentials. With the use of these
conditions we propose a modification of the MCD for minimizing piece-
wise affine functions (called the method of global codifferential descent)
that does not use line search, and discards those “pieces” of the objective
functions that are no longer useful for the optimization process. Then we
prove that the MCD as well as its modification proposed in the article
find a point of global minimum of a nonconvex piecewise affine function
in a finite number of steps.

1 Introduction

An interesting approach to the analysis of nonsmooth functions based on the use
of continuous approximations called codifferentials was proposed by Demyanov
in [5, 6, 7]. He developed the codifferential calculus [9] (see [37, 12, 13] for its
extensions and generalizations), and proposed a method for minimizing codif-
ferentiable functions called the method of codifferential descent (MCD). This
method was applied to some problems of cluster analysis [8], computational
geometry [34, 33], calculus of variations [10, 11] and optimal control problems
[17, 16]. Hybrid methods for solving convex and DC (difference-of-convex) opti-
mization problems combining the ideas of bundle methods and the MCD were
proposed in [2, 3, 35]. A comprehensive convergence analysis of the MCD and
some of its modifications was presented in the recent paper [14]. However, almost
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nothing is known about the global performance of the MCD on particular class-
es of nonsmooth optimization problems apart from some results of numerical
experiments.

The main goal of this article is to analyse the overall performance of the
method of codifferential descent in two tractable cases. Namely, the first part
of the paper is devoted to the analysis of this method in the convex case. Some
of the most popular black-box methods of convex optimization are subgradient
methods [27, 30, 23, 31, 36] and bundle methods [21, 26, 24, 22, 4]. However,
these methods are relatively slow in the general case, since they require O(1/ε2)
iterations to find an ε-optimal solution [27]. In the case when a certain infor-
mation about the structure of the optimization problem under consideration is
known, one can devise significantly faster methods (see, e.g., [28, 29]). In this
article, we demonstrate that under some natural regularity assumptions the
method of codifferential descent finds an ε-optimal solution in at most O(1/ε)
iterations, which is better than the iteration complexity bound for subgradi-
ent methods, despite the fact that the MCD is also a black-box method. On
the other hand, it should be noted that the MCD utilises an oracle that pro-
vides significantly more information about the objective function than the one
used by subgradient and bundle methods. Thus, in a sense, the MCD trades off
the complexity of each call of the oracle for the better rate of convergence in
comparison with subgradient methods.

The second part of the paper is devoted to the analysis of the method of
codifferential descent in the piecewise affine case. As it was demonstrated via
numerical simulation in [8], the MCD “jumps over” some points of local mini-
mum of nonsmooth functions, and in some applications it is capable of finding
a global minimizer of the objective function in spite of the fact that the MCD
is a black-box local search method. To understand a reason behind this phe-
nomenon we derive new global optimality conditions for piecewise affine func-
tions in terms of codifferentials, which are significantly different from the ones
obtained by Polyakova [32] or from the standard global optimality conditions
for DC (difference-of-convex) optimization problems [19, 20]. It turns out that
new conditions for global optimality are implicitly incorporated into the MCD.
With the use of these conditions we propose a modification of the MCD for
minimizing piecewise affine functions that, unlike the original method, does not
use line search, and allows one to avoid unnecessary computations by discarding
those “pieces” of the objective function that no longer provide useful information
about the global behaviour of this function. Then we prove that the modified
MCD as well as the MCD itself find a point of global minimum of a piecewise
affine function in a finite number of steps, thus giving a first theoretical expla-
nation for the ability of the MCD to find a globally optimal solution in some
applications.

The paper is organized as follows. In Section 3 some new natural regularity
assumptions on nonsmooth convex functions are introduced, and the perfor-
mance of the MCD on the class of nonsmooth convex functions satisfying these
assumptions is analysed. New necessary and sufficient global optimality condi-
tions for piecewise affine functions in terms of codifferentials are obtained in
Section 4. We utilise these conditions in order to propose a modification of the
MCD, and to prove that this modification as well as the original method find
a point of global minimum of a piecewise affine function in a finite number of
steps. Finally, for reader’s convenience, some basic definitions and results from
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the codifferential calculus are given in Section 2.

2 Preliminaries

Let H be a real Hilbert space, and U be a neighbourhood of a point x ∈ H.
Recall that a function f : U → R is called codifferentiable at x, if there exist
weakly compact convex sets df(x), df(x) ⊂ R × H such that for any ∆x ∈ H
one has

lim
α→+0

1

α

∣∣∣f(x+ α∆x) − f(x)− max
(a,v)∈df(x)

(
a+ 〈v,∆x〉

)

− min
(b,w)∈df(x)

(
b+ 〈w,∆x〉

)∣∣∣ = 0,

and
max

(a,v)∈df(x)
a+ min

(b,w)∈df(x)
b = 0. (1)

Here 〈·, ·〉 is the inner product in H, and we suppose that the space R × H is
endowed with the norm ‖(a, v)‖2 = a2 + ‖v‖2H for any (a, v) ∈ R × H. The
pair Df(x) = [df(x), df(x)] is called a codifferential of f at x, the set df(x)
is called a hypodifferential of f at x, while the set df(x) is referred to as a
hyperdifferential of f at x. Let us note that the function f is codifferentiable at
x if and only if its increment f(x+∆x)−f(x) can be locally approximated by the
difference of two convex functions, i.e. by a DC function (see [13, Example 3.10]
for more details). Hence, in particular, any function that can be represented as
the difference of convex functions is codifferentiable.

It is easy to see that a codifferential of f at x is not unique. Therefore,
it seems natural to single out a codifferential of f at x that has some useful
additional properties. At first, let us note that without loss of generality [9, 14]
one can suppose that

max
(a,v)∈df(x)

a = min
(b,w)∈df(x)

b = 0 (2)

(cf. (1)). At second, recall that f is said to be continuously codifferentiable at x,
if f is codifferentiable at every point in a neighbourhood of x, and there exists
a codifferential mapping Df(·) = [df(·), df(·)] defined in a neighbourhood of
x, and such that the multifunctions df(·) and df(·) are Hausdorff continuous
at x. This codifferential mapping Df(·) is called continuous at x. Similarly, a
function f : H → R is called continuously codifferentiable on a set A ⊂ H, if f is
codifferentiable at every point x ∈ A, and the exists a continuous codifferential
mapping Df(·) defined on A, i.e. a codifferential mapping Df(·) such that the
corresponding multifunctions df : A ⇒ R×H and df : A ⇒ R×H are Hausdorff
continuous on A. Let us note that the set of all those nonsmooth functions that
are continuously codifferentiable on a given convex set A is closed under all
standard algebraic operations, the pointwise maximum and minimum of finite
families of functions, as well as the composition with smooth functions. Further-
more, there exists simple and well-developed codifferential calculus [9, 13, 14].

One can check that if a function f : U → R is codifferentiable at x, then f
is directionally differentiable at x, and the standard necessary condition for a
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Algorithm 1: The method of codifferential descent (MCD).

Step 1. Choose µ ≥ 0, a starting point x0 ∈ H, and set n := 0.
Step 2. Compute df(xn) and dµf(xn).
Step 3. For any z = (b, w) ∈ dµf(xn) compute (an(z), vn(z)) ∈ R×H
by solving

min ‖(a, v)‖2 s.t. (a, v) ∈ df(xn) + z.

Step 4. For any z ∈ dµf(xn) compute αn(z) ≥ 0 by solving

min
α

f(xn − αvn(z)) s.t. α ≥ 0.

Step 5. Compute zn ∈ dµf(xn) by solving

min
z

f(xn − αn(z)vn(z)) s.t. z ∈ dµf(xn).

Set xn+1 = xn − αn(zn)vn(zn), n := n+ 1, and go to Step 2.

minimum f ′(x, ·) ≥ 0 is satisfied if and only if

0 ∈ df(x) + {(0, w)} ∀(0, w) ∈ df(x) (3)

(see [9, 14]). Here f ′(x, h) is the directional derivative of f at x in the direction
h. A point x satisfying optimality condition (3) is called an inf-stationary point
of the function f . Note that the definition of inf-stationary point is independent
of the choice of a codifferential, since the optimality condition f ′(x, ·) ≥ 0 is
invariant with respect to the choice of a codifferential.

One can utilise optimality condition (3) to design a numerical method for
minimizing codifferentiable functions called the method of codifferential descent
[9, 14]. Let a function f : H → R be codifferentiable (i.e. codifferentiable on H),
and Df(·) be its given codifferential mapping. For any µ ≥ 0 denote

dµf(x) = {(b, w) ∈ df(x) | b ≤ µ}

(cf. (2)). Let us note that in the definition of dµf(x) it is sufficient to consider
only extreme points (b, w) of the hyperdifferential df(x) (see [14]). A description
of the original version of the method of codifferential descent (MCD) [9] is given
in Algorithm 1.

Note that in each iteration of the MCD one must perform line search in
several directions (unless df(·) ≡ {0}; see Step 4). One can verify that at least
one of these directions is a descent direction of the function f , and f(xn+1) <
f(xn) for all n ∈ N∪{0}. On the other hand, some of these directions might not
be descent directions, i.e. the function f may first increase and then decrease in
these directions. This interesting feature of the MCD allows it to “jump over”
some points of local minimum of the function f , provided the parameter µ > 0
is sufficiently large (see [8] for a particular example). However, no results on the
convergence of the MCD to a global minimizer of the function f are known.
The main goal of this article is to shed some light on this problem. To this end,
below we study the performance of the MCD in the case when f is either convex
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Algorithm 2: The method of hypodifferential descent (MHD).

Step 1. Choose a starting point x0 ∈ H, σ ∈ (0, 1) and γ ∈ (0, 1), and
set n := 0.
Step 2. Compute df(xn).
Step 3. Compute (an, vn) ∈ R×H by solving

min ‖(a, v)‖2 s.t. (a, v) ∈ df(xn).

Step 4. Compute k ∈ N ∪ {0} by solving

max
k∈N∪{0}

γk s.t. f(xn − γkvn)− f(xn) ≤ −γkσ‖(an, vn)‖2,

and set αn = γk.
Step 5. Set xn+1 = xn − αnvn, n := n+ 1, and go to Step 2.

or piecewise affine. For a comprehensive convergence analysis of the MCD and
its modifications in the general case see [14].

3 The method of hypodifferential descent for

convex optimization

In this section, we study the performance of the method of codifferential de-
scent in the convex case. Let f : H → R be a convex function. As it was noted
above, a function is codifferentiable if and only if its increment can be locally
approximated by the difference of convex function (i.e. a DC function). If a cod-
ifferentiable function under consideration is convex, then it is natural to assume
that its increment can be approximated by a convex function. In other words,
it is natural to suppose that f is hypodifferentiable, i.e. that there exists a cod-
ifferential mapping Df(·) such that df(·) ≡ {0}. Furthermore, in this section
we suppose that the function f is continuously hypodifferentiable on H, and
consider only its continuous hypodifferential mapping df(·). Note that by (3) a
point x∗ is a global minimizer of f if and only if 0 ∈ df(x∗), since in the convex
case f ′(x∗, ·) ≥ 0 if and only if x∗ is a global minimizer of f .

When the MCD is applied to a hypodifferentiable convex function, one calls
it the method of hypodifferential descent (MHD). Moreover, in the convex case
one can utilise Armijo’s step-size rule (cf. [14]). The scheme of the MHD for
minimizing the function f is given in Algorithm 2.

Let us note that by [14, Lemma 1] one has f ′(xn,−vn) ≤ −‖(an, vn)‖2.
Hence by the definition of directional derivative for any sufficiently small α > 0
one has

f(xn − αvn)− f(xn) ≤ ασf ′(xn,−vn) ≤ −ασ‖(an, vn)‖2, (4)

if ‖(an, vn)‖ > 0, i.e. 0 /∈ df(xn). Therefore, the step sizes αn (see Step 4 of the
MHD) are correctly defined, and f(xn+1) < f(xn) for all n ∈ N∪ {0}, provided
xn is not a point of global minimum of the function f .
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Our aim is to estimate a rate of convergence of the MHD for the function
f . This problem is very complicated in the general case due to the nonunique-
ness of hypodifferential mapping. A poor choice of a hypodifferential mapping
might significantly slow down the convergence of the method. To overcome this
difficulty we must assume that the chosen hypodifferential mapping somehow
agrees with the convexity of the function f . The following definition provides a
precise and natural formulation of this assumption.

Definition 3.1. Let C ⊆ H be a nonempty convex set. A hypodifferential
mapping df(·) of the function f is called amenable on C, if for any x ∈ C and
(a, v) ∈ df(x) one has

f(y)− f(x) ≥ a+ 〈v, y − x〉 ∀y ∈ C.

Clearly, if f is continuously differentiable, then df(·) = {(0,∇f(·))} is an
amenable continuous hypodifferential mapping of the function f on any convex
set C, since

f(y)− f(x) ≥ 〈∇f(x), y − x〉 ∀x, y ∈ H
due to the convexity of the function f . Moreover, the amenability of hypodif-
ferential mapping is preserved under addition and pointwise maximum.

Proposition 3.2. Let convex functions fi : H → R be hypodifferentiable, and
dfi(·) be their hypodifferential mappings that are amenable on a convex set C ⊆
H, i ∈ I = {1, . . . , k}. Then

dg(·) =
k∑

i=1

λidfi(·) (5)

is a hypodifferential mapping of the function g =
∑k

i=1 λifi that is amenable on
C (here λi ≥ 0), and

du(·) = co
{
(fi(·)− u(·), 0) + dfi(·)

∣∣∣ 1 ≤ i ≤ k
}

(6)

is a hypodifferential mapping of the function u = maxi∈I fi that is amenable on
C as well.

Proof. Fix arbitrary x,∆x ∈ H. By the definition of hypodifferentiable function
for any i ∈ I one has

fi(x+ α∆x) − fi(x) = max
(a,v)∈dfi(x)

(a+ α〈v,∆x〉) + oi(α),

where oi(α)/α → 0 as α → +0. Hence

g(x+ α∆x) − g(x) =

k∑

i=1

λi

(
fi(x+ α∆x) − fi(x)

)

=
k∑

i=1

λi max
(a,v)∈dfi(x)

(a+ α〈v,∆x〉) +
k∑

i=1

λioi(α). (7)
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Observe that

k∑

i=1

λi max
(a,v)∈dfi(x)

(a+ α〈v,∆x〉) = max
(a,v)∈dg(x)

(a+ α〈v,∆x〉), (8)

where dg(x) is defined as in (5). Consequently, (7) implies that

∣∣∣g(x+ α∆x) − g(x)− max
(a,v)∈dg(x)

(a+ α〈v,∆x〉)
∣∣∣ ≤

k∑

i=1

λi|oi(α)|.

Therefore g is hypodifferentiable, and (5) is its hypodifferential mapping. Let
us check that it is amenable on C. Indeed, fix x, y ∈ C and (a, v) ∈ dg(x). By
(5) there exists (ai, vi) ∈ dfi(x) such that

(a, v) =

k∑

i=1

λi(ai, vi). (9)

From the fact that the hypodifferentials dfi(x) are amenable on C it follows
that

fi(y)− fi(x) ≥ ai + 〈vi, y − x〉 ∀i ∈ I.

Multiplying these inequalities by λi and summing them up one obtains that

g(y)− g(x) =
k∑

i=1

(
λifi(y)− λifi(x)

)
≥

k∑

i=1

λi

(
ai + 〈vi, y− x〉

)
= a+ 〈v, y− x〉,

where the last equality follows from (9). Thus, hypodifferential mapping (5) of
the function g is amenable.

Let us now turn to the function u. By the definition of hypodifferentiable
function one has

u(x+ α∆x)− u(x) = max
i∈I

(
fi(x + α∆x)− u(x)

)

= max
i∈I

(
fi(x)− u(x) + max

(a,v)∈dfi(x)
(a+ α〈v,∆x〉) + oi(α)

)
.

Consequently, taking into account the fact that

max
(a,v)∈du(x)

(a+α〈v,∆x〉) = max
i∈I

(
fi(x)−u(x)+ max

(a,v)∈dfi(x)
(a+α〈v,∆x〉)

)
(10)

(here du(x) is defined as in (6)), and applying the inequality

min
i∈I

di ≤ max
i∈I

(ci + di)−max
i∈I

ci ≤ max
i∈I

di, (11)

which is valid for any ci, di ∈ R, with ci = fi(x) − u(x) + max(a,v)∈dfi(x)(a +
α〈v,∆x〉) and di = oi(α) one obtains that

min
i∈I

oi(α) ≤ u(x+ α∆x)− u(x)− max
(a,v)∈du(x)

(a+ α〈v,∆x〉) ≤ max
i∈I

oi(α).

Hence with the use of the inequality mini∈I di ≥ −maxi∈I |di| one gets
∣∣∣u(x+ α∆x) − u(x)− max

(a,v)∈du(x)
(a+ α〈v,∆x〉)

∣∣∣ ≤ max
i∈I

|oi(α)|, (12)
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which implies that the function u is hypodifferentiable, and (6) is its hypodif-
ferential mapping. Let us show that this mapping is amenable on C. Indeed, fix
any x, y ∈ C and (a, v) ∈ du(x). By (6) there exist αi ≥ 0 and (ai, vi) ∈ dfi(x),
i ∈ I such that

(a, v) =

k∑

i=1

αi(fi(x)− u(x), 0) +

k∑

i=1

αi(ai, vi),

k∑

i=1

αi = 1.

With the use of the amenability of dfi(x) on C one gets that

u(y)− u(x) = max
i∈I

(
fi(y)− u(x)

)
≥ max

i∈I

(
fi(x)− u(x) + ai + 〈vi, y − x〉

)

≥
k∑

i=1

αi

(
fi(x) − u(x) + ai + 〈vi, y − x〉

)
= a+ 〈v, y − x〉

for any y ∈ H, which implies the required result.

In the smooth case the rate of convergence of gradient methods for convex
minimization is typically estimated under the assumption that the gradient of
the objective function is globally Lipschitz continuous (cf. [27]). Therefore, it is
natural to expect that in order to estimate the rate of convergence of the MHD
in the nonsmooth case we have to utilise a generalization of this assumption.

Recall that if a function f is differentiable, and its gradient is globally Lip-
schitz continuous with Lipschitz constant L, then

∣∣f(y)− f(x)− 〈∇f(x), y − x〉
∣∣ ≤ L

2
‖y − x‖2 ∀x, y ∈ H

(see, e.g., [27, Lemma 1.2.3]). We use this inequality as a basis for the general-
ization of the Lipschitz continuity assumption to the nonsmooth case.

Definition 3.3. Let C ⊆ H be a nonempty set. One says that a hypodifferential
mapping df(·) is a Lipschitzian approximation of the function f on the set C
with Lipschitz constant L > 0, if

∣∣∣f(y)− f(x)− max
(a,v)∈df(x)

(
a+ 〈v, y − x〉

)∣∣∣ ≤ L

2
‖y − x‖2.

for all x, y ∈ C.

From the proof of Proposition 3.2, it follows that the property of being a
Lipschitzian approximation is preserved under addition and pointwise maximum
(see (7) and (12)). Namely, the following result holds true.

Proposition 3.4. Let convex functions fi : H → R be hypodifferentiable, and
dfi(·) be their hypodifferential mappings, i ∈ I = {1, . . . , k}. Suppose that for
any i ∈ I the mapping dfi(·) is a Lipschitzian approximation of the function
fi on a set C ⊆ H with Lipschitz constant Li > 0. Then the hypodifferential
mapping (5) is a Lipschitzian approximation of the function g =

∑k

i=1 λifi on

the set C with Lipschitz constant L ≤ ∑k

i=1 |λi|Li (here λi ∈ R), and (6) is a
Lipschitzian approximation of the function u = max1≤i≤k fi on the set C with
Lipschitz constant L ≤ max1≤i≤k Li.

8



Proof. Fix any x, y ∈ C. With the use of (8) and Def. 3.3 one obtains that

∣∣g(y)− g(x)− max
(a,v)∈dg(x)

(a+ 〈v, y − x〉)
∣∣

≤
k∑

i=1

|λi|
∣∣fi(y)− fi(x) − max

(a,v)∈dfi(x)
(a+ 〈v, y − x〉

∣∣

≤
k∑

i=1

|λi|
Li

2
‖y − x‖2.

Therefore the hypodifferential mapping (5) is a Lipschitzian approximation

of the function g =
∑k

i=1 λifi on the set C with Lipschitz constant L ≤∑k

i=1 |λi|Li.
To prove the assertion for the function u, denote

ωi(y, x) = fi(y)− fi(x)− max
(a,v)∈dfi(x)

(a+ 〈v, y − x〉). (13)

By definition one has

u(y)− u(x) = max
i∈I

(fi(y)− u(x))

= max
i∈I

(
fi(x)− u(x) + max

(a,v)∈dfi(x)
(a+ 〈v, y − x〉) + ωi(y, x)

)
.

Subtracting max(a,v)∈du(x)(a + 〈v, y − x〉) (see (10)), and applying inequality
(11) with ci = fi(x) − u(x) + max(a,v)∈dfi(x)(a + 〈v, y − x〉), and di = ωi(y, x)
one obtains that

min
i∈I

ωi(y, x) ≤ u(y)− u(x)− max
(a,v)∈du(x)

(a+ 〈v, y − x〉) ≤ max
i∈I

ωi(y, x).

Therefore

∣∣u(y)− u(x)− max
(a,v)∈du(x)

(a+ 〈v, y − x〉)
∣∣ ≤ max

i∈I
|ωi(y, x)|.

From (13) and the fact that dfi(·) is a Lipschitzian approximation of the function
fi on C with Lipschitz constant Li it follows that

|ωi(y, x)| ≤
Li

2
‖y − x‖2, max

i∈I
|ωi(y, x)| ≤

maxi∈I Li

2
‖y − x‖2,

which implies the required result.

Now, we can obtain an upper estimate of the rate of convergence of the
MHD that coincides with the upper estimate of the rate of convergence of the
standard gradient method in the convex case (see, e.g., [27, Theorem 2.1.14]).
This result is not surprising since in the smooth case the MHD is reduced to
the gradient method with Armijo’s step-size rule. Let us note that the proof
of the following theorem is a straightforward modification of the proof of the
corresponding result for gradient methods to the nonsmooth case.
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Theorem 3.5. Let f be a closed convex function, the set

S0 = {x ∈ H | f(x) ≤ f(x0)}

be bounded, and let the continuous hypodifferential mapping df(·) be amenable
and bounded on the set S0. Suppose also that df(·) is a Lipschitzian approxi-
mation of f on the set Sε = {x ∈ H | dist(x, S0) ≤ ε} for some ε > 0, and
a sequence {xn} is generated by the MHD. Then there exists α̂ > 0 such that
αn ≥ α̂ for all n ∈ N, and the following inequality holds true:

f(xn)− f(x∗) ≤ (f(x0)− f(x∗))R2

R2 + (f(x0)− f(x∗))α̂σn
= O

(
1

n

)
∀n ∈ N, (14)

Here x∗ is a point of global minimum of f , and R = 1+supn≥0 ‖xn−x∗‖ < +∞.

Proof. At first, let us note that f attains a global minimum by [15, Prop. II.1.2],
since f is closed, the set S0 is bounded, and H is a Hilbert space. Note also
that R = 1 + supn≥0 ‖xn − x∗‖ is finite due to the facts that {xn} ⊂ S0,
and S0 is bounded (the validity of the inclusion follows from the inequality
f(xn+1) < f(xn); see (4)).

Denote Φn(y) = max(a,v)∈df(xn)(a + 〈v, y〉). Applying the necessary and
sufficient condition for a minimum of a convex function on a convex set [15,
Proposition II.2.1] one obtains that

ana+ 〈vn, v〉 ≥ ‖(an, vn)‖2 ∀(a, v) ∈ df(xn), (15)

where the pair (an, vn) is computed on Step 3 of the MHD. If an = 0, then
taking into account the fact that a ≤ 0 for all (a, v) ∈ df(xn) (see (2)) one gets
that

Φn(−vn) ≤ max
(a,v)∈df(xn)

〈v,−vn〉 ≤ −‖(an, vn)‖2,

which with the use of the convexity of Φn and the equality Φn(0) = 0 (see (2))
implies that

Φn(−αvn) ≤ αΦn(−vn) + (1 − α)Φn(0) ≤ −α‖(an, vn)‖2 ∀α ∈ [0, 1]. (16)

On the other hand, if an < 0, then dividing (15) by an, and taking the maximum
over all (a, v) ∈ df(xn) one obtains

Φn

(
1

an
vn

)
≤ − 1

|an|
‖(an, vn)‖2.

Applying the convexity of Φn and the equality Φn(0) = 0 again one obtains that

Φn

(
α

an
vn

)
≤ αΦn

(
1

an
vn

)
≤ − α

|an|
‖(an, vn)‖2 ∀α ∈ [0, 1].

Combining this inequality with (16) one gets that in either case

Φn(−αvn) ≤ −α‖(an, vn)‖2 ∀α ∈
[
0,

1

|an|

]
, (17)

where 1/0 = 1 by definition. Observe that the sequence {an} is bounded by
virtue of the facts that {xn} ⊂ S0, and the hypodifferential mapping df(·) is
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bounded on S0. Therefore, there exists κ ∈ (0, 1] such that |an|−1 > κ > 0 for
all n ∈ N. Furthermore, from the boundedness of df(·) on S0 it follows that
there exists K > 0 such that ‖vn‖ ≤ K for all n ∈ N. Hence, in particular,
xn − αvn ∈ Sε = {x ∈ H | dist(x, S0) ≤ ε} for any α ∈ [0, ε/K] and n ∈ N.

Recall that df(·) is a Lipschitzian approximation of f on Sε. Therefore there
exists L > 0 such that

f(xn − αvn)− f(xn)− Φn(−αvn) ≤
Lα2

2
‖vn‖2 ∀α ∈

[
0,

ε

K

]
.

Hence and from (17) it follows that

f(xn − αvn)− f(xn) ≤
(
−α+

Lα2

2

)
‖(an, vn)‖2 ∀α ∈

[
0,min

{
κ,

ε

K

}]
.

Consequently, as it is easy to see, there exists α̂ > 0 such that

f(xn − α̂vn)− f(xn) ≤ −α̂σ‖(an, vn)‖2 ∀n ∈ N

(one can choose any α̂ ≤ min{2(1− σ)/L,κ, ε/K}), which implies that

f(xn+1)− f(xn) ≤ −α̂σ‖(an, vn)‖2, αn ≥ α̂ ∀n ∈ N, (18)

where xn+1 = xn−αnvn, and αn is computed on Step 4 of the MHD. Note that
one can set α̂ = γk for a sufficiently large k ∈ N. Then αn = γkn with kn ≤ k.

Denote ∆n = f(xn) − f(x∗), where x∗ is a point of global minimum of the
function f . From the facts that the hypodifferential mapping df(·) is amenable,
and (an, vn) ∈ df(xn) (see Step 3 of the MHD) it follows that

∆n ≤ −an + 〈vn, xn − x∗〉 ≤ ‖(an, vn)‖
(
1 + ‖xn − x∗‖

)
≤ R‖(an, vn)‖

(recall that R = 1 + supn≥0 ‖xn − x∗‖). Adding and subtracting f(x∗) in (18),
and estimating ‖(an, vn)‖2 with the use of the inequality above one gets that

∆n+1 ≤ ∆n − α̂σ

R2
∆2

n.

Dividing this inequality by ∆n ·∆n+1 one obtains

1

∆n+1
≥ 1

∆n

+
α̂σ

R2

∆n

∆n+1
≥ 1

∆n

+
α̂σ

R2

(note that ∆n+1 ≤ ∆n due to the fact that f(xn+1) ≤ f(xn)). Summing up
these inequalities one gets

1

∆n+1
≥ 1

∆0
+

α̂σ

R2
(n+ 1) ∀n ∈ N,

which implies that (14) is valid.

Remark 3.1. Let us point out how α̂ from the theorem above depends on the
problem data. LetK > 0 be such that |a| ≤ K and ‖v‖ ≤ K for all (a, v) ∈ df(x)
and x ∈ S0. Then, as it was pointed out in the proof, one can set

α̂ = min

{
min{1, ε}

K
,
2(1− σ)

L

}
.
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Furthermore, if ε = +∞, then it is sufficient to suppose that K > 0 is such that
|a| ≤ K for any (a, v) ∈ df(x) and x ∈ S0. Note that in the smooth case one can
define df(·) = {(0,∇f(·))}, which implies that α̂ = 2(1 − σ)/L, provided the
gradient ∇f(·) is globally Lipschitz continuous. Observe also that the theorem
above remains valid in the case when instead of Armijo’s step-size rule one finds
αn via the minimization of the function α 7→ f(xn − αvn).

Remark 3.2. Note that the rate of convergence of the MHD is better than the
optimal rate of convergence of subgradient methods O(1/

√
n) [27, Sect. 3.2].

This is obviously due to the fact the oracle utilised by the MHD provides
much more information about the objective function than just a single sub-
gradient. On the other hand, each call of this oracle is significantly more expen-
sive than the call of the oracle used in subgradient methods. Let us also note
that one can utilise Nesterov’s acceleration technique [27, Sect. 2.2] to design
a faster method for minimizing hypodifferentiable convex functions than the
MHD. However, this method must accumulate the Minkowski sum of the form
a1df(y1) + a2df(y2) + . . . with some ai ∈ R (cf. the optimal gradient method
in [27]), which is unreasonable both in terms of memory consumption and com-
putational effort. That is why we do not present an accelerated version of the
MHD here.

Remark 3.3. Let U ⊂ H be a bounded open set such that f is Lipschitz contin-
uous on U . By [14, Example 4] for any x ∈ U one has f(x) = max(a,v)∈C(a +
〈v, x〉), where

C =
{
(f(z)− 〈v, z〉, v) ∈ R×H

∣∣ v ∈ ∂f(z), z ∈ U
}
, (19)

and ∂f(z) is the subdifferential of f at z in the sense of convex analysis. There-
fore, for any x, y ∈ U one has

f(y)− f(x) = max
(a,v)∈C

(a+ 〈v, y〉)− f(x) = max
(a,v)∈C

(a− f(x) + 〈v, x〉+ 〈v, y − x〉)

or, equivalently, f(y)− f(x) = max(a,v)∈df(x)(a+ 〈v, y − x〉), where

df(x) = cl co
{(

f(z)− f(x)− 〈v, z − x〉, v
)
∈ R×H

∣∣∣ v ∈ ∂f(z), z ∈ U
}

(20)

(see (19)). Applying the fact that f is Lipschitz continuous on U one can verify
that the multifunction df(·) is Hausdorff continuous and bounded on U . Note
that this hypodifferential mapping is obviously a Lipschitzian approximation of
f on U . Furthermore, observe that from the inequality f(y)− f(z) ≥ 〈v, y− z〉,
where y, z ∈ U and v ∈ ∂f(z), it follows that

f(y)− f(x) ≥ f(z)− f(x)− 〈v, z − x〉+ 〈v, y − x〉 ∀x, y, z ∈ U ∀v ∈ ∂f(z).

With the use of this inequality and (20) one can check that the hypodifferential
mapping (20) is amenable on U . Thus, if the sublevel set S0 = {x ∈ H | f(x) ≤
f(x0)} is bounded, and the exists ε > 0 such that f is Lipschitz continuous on
Sε, then there exists a hypodifferential mapping of f (of the form (20)) satisfying
the assumptions of Theorem 3.5. In particular, ifH is finite dimensional, then the
boundedness of the sublevel set S0 guarantees that there exists a hypodifferential
mapping of the function f satisfying the assumptions of Theorem 3.5. Thus, at
least from the theoretical point of view the assumptions of this theorem are not
very restrictive.
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4 Codifferential calculus and global piecewise

affine optimization

The main goal of this section is to demonstrate that the method of codifferential
descent finds a point of global minimum of a nonconvex piecewise affine function
in a finite number of steps. To this end, we derive new necessary and sufficient
conditions for a global minimum of a piecewise affine functions in terms of its
codifferential, which significantly differ from the ones obtained in [32], and de-
velop a modification of the MCD call the method of global codifferential descent.

4.1 Global codifferential and optimality conditions

From this point onwards we suppose that H = R
d, and write R

d+1 instead of
R× R

d. We start with an auxiliary result for polyhedral convex functions.

Lemma 4.1. Let a function f : Rd → R have the form f(x) = maxi∈I(ai +
〈vi, x〉) for some (ai, vi) ∈ R

d+1, where I = {1, . . . , k}. Then f(x) ≥ 0 for all
x ∈ R

d if and only if either 0 ∈ C = co{(ai, vi) | i ∈ I} or f is bounded below
and a0 > 0, where

{(a0, v0)} = argmin
{
‖(a, v)‖2 | (a, v) ∈ C

}
. (21)

Proof. Let f(x) ≥ 0 for all x ∈ R
d. Arguing by reductio ad absurdum, suppose

that 0 /∈ C, but a0 ≤ 0. Applying the necessary and sufficient condition for
a minimum of a convex function on a convex set [15, Proposition II.2.1] one
obtains that

a0(a− a0) + 〈v0, v − v0〉 ≥ 0 ∀(a, v) ∈ C. (22)

If a0 = 0, then v0 6= 0 (otherwise 0 ∈ C), and 〈v,−v0〉 ≤ −‖v0‖2 for any
(a, v) ∈ C. Therefore, for all α ≥ 0 one has

f(−αv0) = max
i∈I

(ai + 〈vi,−αv0〉) ≤ max
i∈I

(ai − α‖v0‖2) = f(0)− α‖v0‖2, (23)

which contradicts the assumption that f is nonnegative.
If a0 < 0, then dividing (22) by a0 one obtains that

a+

〈
v,

1

a0
v0

〉
≤ − 1

|a0|
‖(a0, v0)‖2 < 0 ∀(a, v) ∈ C.

Taking the maximum over all (a, v) ∈ C one gets that f(a−1
0 v0) < 0, which is

impossible. Thus, a0 > 0.
Let us prove the converse statement. If 0 ∈ C, then for any x ∈ R

d one has
f(x) = max(a,v)∈C(a+〈v, x〉) ≥ 0+〈0, x〉 = 0, i.e. the function f is nonnegative.
Arguing by reductio ad absurdum suppose now that 0 /∈ C, f is bounded below,
and a0 > 0, but there exists x ∈ R

d such that f(x) < 0.
Define f∗ = infx∈Rd f(x). By our assumptions −∞ < f∗ < 0. Our aim is

to show that (f∗, 0) ∈ C. Then for any α ∈ [0, 1] one has (1 − α)(f∗, 0) +
α(a0, v0) ∈ C. Setting α = |f∗|/(|f∗| + a0) ∈ (0, 1) one gets that (0, αv0) ∈ C,
which is impossible due to the definition of (a0, v0) (see (21)), and the fact that
‖(0, αv0)‖2 < ‖(a0, v0)‖2.
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For any ε > 0 there exists xε such that f(xε) < f∗ + ε. Hence by defi-
nition 0 ∈ ∂εf(xε), where ∂εf(xε) is the ε-subdifferential of f at xε. By [21,
Example XI.3.5.3] one has

∂εf(x) =
{
v ∈ R

d
∣∣ ∃(a, v) ∈ C : a+ 〈v, x〉 ≥ f(x)− ε

}
.

Consequently, for any ε > 0 there exists aε ≥ f(xε) − ε ≥ f∗ − ε such that
(aε, 0) ∈ C. Observe that for any (a, 0) ∈ C one has f(x) ≥ a for all x ∈ R

d,
which implies that f∗ ≥ a. Thus, f∗ ≥ aε ≥ f∗ − ε. Hence passing to the limit
as ε → 0, and taking into account the fact that the set C is closed one obtains
that (f∗, 0) ∈ C.

Corollary 4.2. Let all assumptions of Lemma 4.1 be valid, and suppose that f
is bounded below. Then f(x) ≥ 0 for all x ∈ R

d if and only if a0 ≥ 0.

Proof. If f is nonnegative, then by Lemma 4.1 either a0 > 0 or 0 ∈ C. In the
latter case, by definition one has (a0, v0) = (0, 0), i.e. a0 = 0.

Suppose now that a0 ≥ 0. If a0 > 0, then f is nonnegative by Lemma 4.1.
Therefore, suppose that a0 = 0. If v0 = 0, then 0 ∈ C and, once again, f is
nonnegative by Lemma 4.1. On the other hand, if v0 6= 0, then, as it was shown
in the proof of the lemma (see (23)), f is unbounded below, which contradicts
our assumptions.

Remark 4.1. Let us note that the assumption on the boundedness below of the
function f cannot be discarded from Lemma 4.1. A simple counterexample is
the function f(x) = a+ 〈v, x〉 with a > 0 and v 6= 0.

Now we turn to the study of piecewise affine functions. At first, let us re-
call the definition of piecewise affine function [25, 18]. A convex set Q ⊂ R

d is
referred to as polyhedral, if it can be represented as the intersection of a finite
family of closed halfspaces. A finite family σ = {Q1, . . . , Qk}, k ∈ N, of polyhe-
dral sets is said to be a polyhedral partition of Rd, if Rd = ∪k

i=1Qi, intQi 6= ∅
for 1 ≤ i ≤ k, and the interiors of the sets Qi are mutually disjoint. Finally, a
function f : Rd → R is called piecewise affine, if there exists a polyhedral par-
tition σ = {Q1, . . . , Qk} of Rd such that the restriction of f to each Qi is an
affine function.

Let f : Rd → R be a piecewise affine function. Then by [18, Theorem 3.1],
there exist (ai, vi) ∈ R

d+1, i ∈ I = {1, . . . , l}, and (bj , wj) ∈ R
d+1, j ∈ J =

{1, . . . , s}, such that

f(x) = max
i∈I

(ai + 〈vi, x〉) + min
j∈J

(bj + 〈wj , x〉) ∀x ∈ R
d. (24)

Define
f(x) = max

i∈I
(ai + 〈vi, x〉), f(x) = min

j∈J
(bj + 〈wj , x〉). (25)

Then f = f−(−f) is a DC decomposition of the function f (i.e. f = f−(−f) is a
representation of the function f as the difference of convex functions). Introduce
the set-valued mappings

df(x) = co
{
(ai − f(x) + 〈vi, x〉, vi) ∈ R

d+1
∣∣ i ∈ I

}
,

df(x) = co
{
(bj − f(x) + 〈wj , x〉, wj) ∈ R

d+1
∣∣ j ∈ J

}
.

(26)
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Then, as it is easy to see, for any x,∆x ∈ R
d+1 one has

f(x+∆x)− f(x) = f(x +∆x) + f(x+∆x)− (f(x) + f(x))

= max
i∈I

(ai + 〈vi, x+∆x〉) + min
j∈J

(bj + 〈wj , x+∆x〉) − (f(x) + f(x))

= max
i∈I

(ai − f(x) + 〈vi, x〉+ 〈vi,∆x〉)

+ min
j∈J

(bj − f(x) + 〈wj , x〉+ 〈wj ,∆x〉)

= max
(a,v)∈df(x)

(a+ 〈v,∆x〉) + min
(b,w)∈df(x)

(b+ 〈w,∆x〉). (27)

Furthermore, for any x ∈ R
d one has

max
(a,v)∈df(x)

a = max
i∈I

(ai + 〈vi, x〉) − f(x) = f(x)− f(x) = 0, (28)

and, similarly, min(b,w)∈df(x) b = 0. Thus, the pair Df(x) = [df(x), df(x)] is a
codifferential of f at x. On the other hand, codifferential is defined as a local
approximation of a nonsmooth function, while equality (27) holds true for all
x,∆x ∈ R

d+1, i.e. globally.

Definition 4.3. The pair Df = [df, df ] defined by (26) is called a global codif-
ferential mapping (or simply global codifferential) of the function f (associated
with the DC decomposition f = f − (−f)). The multifunction df is called a

global hypodifferential of f , while the multifunction df is called a global hyper-
differential of f .

Note that a global codifferential mapping of a piecewise affine function is
not unique, since there exists infinitely many DC decompositions of a piecewise
affine function of the form (24). Let us also point out that a global codifferential
mapping of a piecewise affine function was first implicitly utilised by Polyakova
in [32].

With the use of the codifferential calculus [9, 13, 14] one can obtain some
simple calculus rules for global codifferentials of piecewise affine functions.

Proposition 4.4. Let fm : Rd → R, m ∈ M = {1, . . . , p}, be piecewise affine
functions of the form fm = f

m
+ fm, where

f
m
(x) = max

i∈Im
(ami + 〈vmi, x〉), fm(x) = min

j∈Jm

(bmj + 〈wmj , x〉),

and Im = {1, . . . , lm}, Jm = {1, . . . , sm}. Let also Dfm be the global cod-
ifferential mapping of the function fm associated with the DC decomposition
fm = f

m
− (fm), m ∈ M , and let f : Rd → R be a given function. Then the

following statements hold true:

1. if f(x) = a + 〈v, x〉, then both Df(·) ≡ [{(0, v)}, {(0, 0)}] and Df(·) ≡
[{(0, 0)}, {(0, v)}] are global codifferential mappings of the function f ;

2. if f = f1 + c for some c ∈ R, then Df = Df1;

3. if f = λf1, then Df = [λdf1, λdf1] in the case λ ≥ 0, and Df =
[λdf1, λdf1] in the case λ < 0;
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4. if f =
∑p

m=1 fm, then Df = [
∑p

m=1 dfm,
∑p

m=1 dfm];

5. if f = maxm∈M fm, then

Df(·) =
[
co

{
(fm(·)−f(·), 0)+dfm(·)−

∑

k 6=m

dfk(·)
∣∣∣∣ m ∈ M

}
,

p∑

m=1

dfm(·)
]

is a global codifferential mapping of f ;

6. if f = minm∈M fm, then

Df(·) =
[ p∑

m=1

dfm(·), co
{
(fm(·)−f(·), 0)+dfm(·)−

∑

k 6=m

dfk(·)
∣∣∣∣ m ∈ M

}]

is a global codifferential mapping of f .

Proof. 1. Define

f ′(x) = a+ 〈v, x〉, f ′
(x) = 0, f ′′(x) = 0, f

′′
(x) = a+ 〈v, x〉.

Then f = f ′ − (−f
′
) and f = f ′′ − (−f

′′
) are two DC decompositions of the

function f . Applying the definition of global codifferential (26) one gets that
Df(·) = [{(0, v)}, {(0, 0)}] is a global codifferential of f associated with the first
DC decomposition, while Df(·) = [{(0, 0)}, {(0, v)}] is a global codifferential of
f associated with the second DC decomposition.
2. Define

f(x) = f
1
(x) + c = max

i∈I1
(a1i + c+ 〈v1i, x〉), f(x) = f1(x).

Then f = f − (−f(x)) is a DC decomposition of the function f . Applying the
definition of global codifferential (26), and the fact that

(a1i + c− f(x) + 〈v1i, x〉, v1i) = (a1i − f
1
(x) + 〈v1i, x〉, v1i),

one gets that df(x) = df1(x) and df(x) = df1(x), i.e. Df = Df1 is a global
codifferential of f associated with the DC decomposition f = f − (−f) defined
above.
3. Let λ ≥ 0. Define f(x) = λf

1
(x) and f(x) = λf1(x). Then f = λf1 = f−(−f)

is a DC decomposition of the function f . By definition

f(x) = max
i∈I1

(λa1i + 〈λv1i, x〉), f(x) = min
j∈J1

(λb1i + 〈λw1i, x〉).

Hence with the use of (26) and the fact that

(λa1i − f(x) + 〈λv1i, x〉, λv1i) = λ(a1i − f
1
(x) + 〈v1i, x〉, v1i) (29)

one gets that df = λdf1 and df = λdf1, i.e. Df = [λdf1, λdf1] is a global
codifferential of f associated with the DC decomposition f = f − (−f) defined
above.

Let now λ < 0. Define f(x) = λf1(x) and f(x) = λf
1
(x). Then taking into

account the fact the negative of a convex function is a concave function and
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vice versa one obtains that f = λf1 = f − (−f) is a DC decomposition of the
function f . By definition one has

f(x) = max
j∈J1

(λb1j + 〈λw1j , x〉), f(x) = min
i∈I1

(λa1i + 〈λv1i, x〉)

(recall that λ < 0). Hence applying (26) and the fact that

(λb1j − f(x) + 〈λw1j , x〉, λw1j) = λ(b1j − f1(x) + 〈w1j , x〉, w1j)

one obtains that df = λdf1 and df = λdf1, i.e. Df = [λdf1, λdf1] is a global
codifferential of f associated with the DC decomposition f = f − (−f) defined
above.
4. Define

f(x) =

p∑

m=1

f
m
(x), f(x) =

p∑

m=1

fm(x). (30)

Then f = f− (−f) is a DC decomposition of the function f due to the fact that
the sum of convex/concave functions is a convex/concave function. Note that

f(x) =

p∑

m=1

max
i∈Im

(ami+〈vmi, x〉) = max
(i1,...,ip)∈I1×...×Ip

( p∑

m=1

amim+
〈 p∑

m=1

vmim , x
〉)

,

and a similar equality holds true for f(x). Hence with the use of (26), and the
fact that

( p∑

m=1

amim − f(x) +
〈 p∑

m=1

vmim , x
〉
,

p∑

m=1

vmim

)

=

p∑

m=1

(
amim − f

m
(x) + 〈vmim , x〉, vmim

)

one obtains that df(x) =
∑p

m=1 dfm(x) and df(x) =
∑p

m=1 dfm(x), i.e. Df =
[
∑p

m=1 dfm,
∑p

m=1 dfm] is a global codifferential of f associated with the DC
decomposition f = f − (−f) defined by (30).
5. Define

f(x) = max
m∈M

(
f
m
(x) −

∑

k 6=m

fm(x)
)
, f(x) =

p∑

m=1

fm(x). (31)

Note that the function f is convex, since the maximum and the sum of con-

vex functions is convex, while the function f is concave as the sum of concave
functions. By definition

f(x) = max
m∈M

fm(x) = max
m∈M

(
f
m
(x) + fm(x)

)
.

Adding and subtracting
∑p

m=1 fm one obtains that

f(x) = max
m∈M

(
f
m
(x) −

∑

k 6=m

fm(x)
)
+

p∑

m=1

fm(x) = f(x) + f(x),
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i.e. f = f − (−f) is a DC decomposition of the function f . Let us compute the
global codifferential of f associated with this DC decomposition.

From the proof of part (4) it follows that df(x) =
∑p

m=1 dfm(x) (cf. (30)
and (31)). Let us compute the global hypodifferential. By definition one has

f(x) = max
m∈M

(
f
m
(x)−

∑

k 6=m

fm(x)
)

= max
m∈M

(
max
im∈Im

(amim + 〈vmim , x〉)−
∑

k 6=m

min
jm
k

∈Jk

(bkjm
k
+ 〈wkjm

k
, x〉

)

= max
(
amim −

∑

k 6=m

bkjm
k
+
〈
vmim −

∑

k 6=m

wkjm
k
, x

〉)
,

where the last maximum is taken over all im ∈ Im, jmk ∈ Jk, and k,m ∈ M .
Hence and from (26) it follows that the first coordinate of a vector from df(x)
has the form

amim −
∑

k 6=m

bkjm
k
− f(x) +

〈
vmim −

∑

k 6=m

wkjm
k
, x

〉
.

Adding and subtracting f
m
(x)−∑

k 6=m fk(x), and taking into account the fact
that

f
m
(x)−

∑

k 6=m

fk(x) − f(x) = f
m
(x) + fm(x)−

p∑

k=1

fk(x) − f(x)

= fm(x)− f(x)− f(x) = fm(x) − f(x)

one obtains that

amim −
∑

k 6=m

bkjm
k
− f(x) +

〈
vmim −

∑

k 6=m

wkjm
k
, x

〉

=
(
fm(x)−f(x)

)
+
(
amim−f

m
(x)+〈vmim , x〉

)
−
∑

k 6=m

(
bkjm

k
−fk(x)+〈wkjm

k
, x〉

)
.

Hence with the use of (26) one gets that

df(x) = co
{
(fm(x) − f(x), 0) +

(
amim − f

m
(x) + 〈vmim , x〉, vmim

)

−
∑

k 6=m

(
bkjm

k
−fk(x)+ 〈wkjm

k
, x〉, wkjm

k

) ∣∣∣ im ∈ Im, jmk ∈ Jk, k ∈ M, m ∈ M
}
.

(32)

From the fact that by definition

(
amim − f

m
(x) + 〈vmim , x〉, vmim

)
∈ dfm(x),

(
bkjm

k
− fk(x) + 〈wkjm

k
, x〉, wkjm

k

)
∈ dfk(x)

it follows that

df(x) ⊆ co
{
(fm(x) − f(x), 0) + dfm(x)−

∑

k 6=m

dfk(x)
∣∣∣ m ∈ M

}
. (33)
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To prove the converse inclusion fix m ∈ M , and note that taking the convex
hull in (32) only over im ∈ Im one obtains that

(fm(x)− f(x), 0) + dfm(x)−
∑

k 6=m

(
bkjm

k
− fk(x) + 〈wkjm

k
, x〉, wkjm

k

)
⊆ df(x).

Now, taking consecutively the convex hull over all jmk ∈ Jk for each k 6= m one
gets that

(fm(x) − f(x), 0) + dfm(x)−
∑

k 6=m

dfk(x) ⊆ df(x).

Finally, taking the convex hull over all m ∈ M one obtains that the inclusion
opposite to (33) is valid, which implies the desired result.
6. Define

f(x) =

p∑

m=1

f
m
(x), f(x) = min

m∈M

(
fm(x) −

∑

k 6=m

f
m
(x)

)
.

Clearly, the function f is convex, while the function f is concave. By definition

f(x) = min
m∈M

fm(x) = min
m∈M

(
f
m
(x) + fm(x)

)
.

Adding and subtracting
∑p

m=1 fm
one obtains that

f(x) =

p∑

m=1

fm + min
m∈M

(
fm(x) −

∑

k 6=m

f
m
(x)

)
= f(x) + f(x),

i.e. f = f−(−f) is a DC decomposition of the function f . Computing the global
codifferential of the function f associated with this DC decomposition in the
same way as in part (5) one obtains the required result (alternatively, one can
rewrite f = −maxm∈M (−fm), and consecutively apply part (3) with λ = −1,
part (5), and part (3) with λ = −1 again to obtain exactly the same result).

Remark 4.2. (i) Note that with the use of the proposition above one can compute
DC decomposition (24) of a piecewise affine function (see [1] for more details).
Namely, suppose that a global codifferentialDf(0) of f at zero is known, df(0) =
co{(ai, vi) | 1 ≤ i ≤ l}, and df(0) = co{(bj, wj) | 1 ≤ j ≤ s}. Applying (27)
with x = 0 one obtains that

f(∆x)− f(0) = max
(a,v)∈df(0)

(a+ 〈v,∆x〉) + min
(b,w)∈df(0)

(b+ 〈w,∆x〉)

= max
1≤i≤l

(ai + 〈vi,∆x〉) + min
1≤j≤s

(bj + 〈wj ,∆x〉).

Define

f(x) = max
1≤i≤l

(ai + f(0) + 〈vi, x〉), f(x) = min
1≤j≤s

(bj + 〈wj , x〉). (34)

Then f = f − (−f) is a DC decomposition of the function f , i.e. there is a one-
to-one correspondence between DC decompositions and global codifferentials of
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piecewise affine functions. Let us also note that from the definition of global
codifferential (26), and the equality

(ai − f(y) + 〈vi, y〉, vi) = (ai − f(x) + 〈vi, x〉, vi) + (f(x)− f(y) + 〈vi, y − x〉, 0)
it follows that

df(y) =
{
(a+ f(x) − f(y) + 〈v, y − x〉, v) ∈ R

d+1
∣∣ (a, v) ∈ df(x)

}
(35)

for all x, y ∈ R
d, and a similar equality holds true for df(·). Thus, one can easily

compute Df(y) for any y, if Df(x) for some x is known.
(ii) It should be mentioned that the proposition above allows one to compute a
global codifferential of a piecewise affine function f without computing its DC
decomposition. Nevertheless, in order to avoid rather lengthy computations at
every point x it seems most reasonable to compute Df(0) first, then compute a
DC decomposition of f with the use of (34), and, finally, utilise (35) to compute
Df(x) at any point x ∈ R

d.
(iii) Let us note that the proper choice of a global codifferential of the affine
function a+ 〈v, x〉 allows one to simplify the computation of a global codifferen-
tial of a piecewise affine function. The first global codifferential from part (1) of
Prop. 4.4 is more suitable for the computation of a global codifferential of the
maximum of affine functions, while the second one is more suitable in the case
of the minimum. Indeed, if f = max1≤i≤l fi, where fi(x) = ai + 〈vi, x〉, then
applying part (5) of Prop. 4.4 one obtains

df(x) = co
{
(ai + 〈vi, x〉 − f(x), vi)

∣∣ 1 ≤ i ≤ l
}
, df(x) = {(0, 0)}

for Dfi(·) = [{(0, vi)}, {(0, 0)}], while

df(x) = co
{(

ai+〈vi, x〉−f(x),−
∑

k 6=i

vk

) ∣∣∣ 1 ≤ i ≤ l
}
, df(x) =

{(
0,

l∑

i=1

vi

)}

for Dfi(·) = [{(0, 0)}, {(0, vi)}].
Let us derive new global optimality conditions for a piecewise affine function

in terms of its global codifferential.

Theorem 4.5. Let f : Rd → R be a piecewise affine function of the form (24),
Df be its global codifferential mapping, and x∗ ∈ R

d be a given point. Suppose
also that f is bounded below, and for any j ∈ J define zj = (bj − f(x∗) +
〈wj , x

∗〉, wj) ∈ df(x∗), and
{
(aj , vj)

}
= argmin

{
‖(a, v)‖2

∣∣ (a, v) ∈ df(x∗) + zj
}
. (36)

Then x∗ is a point of global minimum of the function f if and only if for any
j ∈ J , one has aj ≥ 0 or, equivalently, for any j ∈ J either 0 ∈ df(x∗) + zj or
aj > 0.

Proof. Applying equality (27) with x = x∗ and ∆x = x− x∗, and the definition
of global codifferential (26) one obtains that

f(x)− f(x∗) = max
(a,v)∈df(x∗)

(a+ 〈v, x− x∗〉)

+ min
j∈J

(bj − f(x∗) + 〈wj , x
∗〉+ 〈wj , x− x∗〉)

= min
j∈J

max
(a,v)∈df(x∗)

(
a+ bj − f(x∗) + 〈wj , x

∗〉+ 〈v + wj , x− x∗〉
)
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for all x ∈ R
d. Hence for any x ∈ R

d one has

f(x)− f(x∗) = min
j∈J

max
(a,v)∈df(x∗)+zj

(a+ 〈v, x− x∗〉) = min
j∈J

gj(x), (37)

where gj(x) = max(a,v)∈df(x∗)+zj (a + 〈v, x〉). Therefore, x∗ is point of global
minimum of f if and only if for any j ∈ J the function gj is nonnegative.
Note that each function gj is bounded below due to the facts that gj(x) ≥
f(x) − f(x∗) for all x ∈ R

d (see (37)), and f is bounded below. Consequently,
applying Lemma 4.1 and Corollary 4.2 to the functions gj one obtains the desired
result.

The necessary and sufficient conditions for global optimality in terms of
global codifferential from Theorem 4.5 along with the proof of Lemma 4.1 allow
one to get a new perspective on the method of codifferential descent. As it was
noted above, a function is codifferentiable if and only if its increment can be
locally approximated by a DC function. In most applications a codifferential of
a nonsmooth function is a pair of convex polytopes, i.e. the increment of this
function can be locally approximated by a piecewise affine function. In a sense,
in each iteration of the method of codifferential descent one verifies whether the
global optimality conditions from Theorem 4.5 are satisfied for a local piecewise
affine approximation of the objective function, and then utilises the “global
descent” directions −vj of the approximation (see (36) and the proof of the first
part of Lemma 4.1) as search directions for the objective function. In the case
when the objective function itself is piecewise affine, and its global codifferential
mapping is known, one can propose a natural modification of the MCD in which
instead of performing the line search one utilises the first component of the
vector (aj , vj) in order to define the step size.

4.2 The method of global codifferential descent

Let f : Rd → R be a piecewise affine function of the form (24), and Df be its
global codifferential mapping (see (26)). For any x ∈ R

d and j ∈ J denote

zj(x) = (bj − f(x) + 〈wj , x〉, wj) ∈ df(x), (38)
{
(aj(x), vj(x))

}
= argmin

{
‖(a, v)‖2

∣∣ (a, v) ∈ df(x) + zj(x)
}
. (39)

Suppose that x is not a point of global minimum of the function f , and choose an
arbitrary j ∈ J . Applying the necessary and sufficient condition for a minimum
of a convex function on a convex set [15, Proposition II.2.1] one obtains that

aj(x)(a − aj(x)) + 〈vj(x), v − vj(x)〉 ≥ 0 ∀(a, v) ∈ df(x) + zj(x).

If aj(x) < 0, then dividing this inequality by aj(x), taking the maximum over
all (a, v) ∈ df(x) + zj(x), and applying (37) one obtains

f

(
x+

1

aj(x)
vj(x)

)
− f(x) ≤ − 1

|aj(x)|
‖(aj(x), vj(x))‖2 < 0. (40)

If aj(x) = 0, but vj(x) 6= 0, then 〈v,−vj(x)〉 ≤ −‖vj(x)‖2 for any (a, v) ∈
df(x) + zj(x), which with the use of (37) implies that

f(x− αvj(x)) − f(x) ≤ max
(a,v)∈df(x)+zj(x)

a− α‖vj(x)‖2, (41)
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and the function f is unbounded below. Thus, if aj(x) = 0, and f is bounded
below, then vj(x) = 0.

Finally, if aj(x) > 0, then the set df(x)+zj(x) is of no use to the optimization
process. Indeed, by Lemma 4.1 one has

max
(a,v)∈df(x)+zj(x)

(a+ 〈v, y〉) ≥ 0 ∀y ∈ R
d. (42)

Applying (37) one gets that

f(y)− f(x) = min
k∈J

max
(a,v)∈df(x)+zk(x)

(a+ 〈v, y − x〉) ∀y ∈ R
d.

From (42) it follows that for any y such that f(y) < f(x) the minimum in this
equality cannot be achieved for k = j. Therefore

f(y)− f(x) = min
k∈J\{j}

max
(a,v)∈df(x)+zk(x)

(a+ 〈v, y − x〉)

for any y ∈ R such that f(y) < f(x). In other words, the index j and the
corresponding vector (bj , wj) are not needed to compute f(y) for any y ∈ R

d

satisfying the inequality f(y) < f(x).
Let us prove an even stronger statement. Namely, let us show that if aj(x) ≥

0 for some x ∈ R
d, then the index j can be discarded from consideration.

Lemma 4.6. Let f : Rd → R be a piecewise affine function of the form (24),
and Df be its global codifferential mapping. Suppose that f is bounded below,
and for some j ∈ J and x ∈ R

d one has aj(x) ≥ 0. Then aj(y) ≥ 0 for any
y ∈ R

d such that f(y) ≤ f(x).

Proof. For any ∆y, y ∈ R
d denote

gj(∆y, y) = max
(a,v)∈df(y)+zj(y)

(a+ 〈v,∆y〉).

Applying (27) and (26) one gets that

f(y +∆y)− f(y) = max
(a,v)∈df(y)

(a+ 〈v,∆y〉) + min
(b,w)∈df(y)

(b + 〈w,∆y〉)

≤ max
(a,v)∈df(y)

(a+ 〈v,∆y〉) + bj − f(y) + 〈wj , y〉+ 〈wj ,∆y〉 = gj(∆y, y).

for any ∆y, y ∈ R
d. Hence taking into account the fact that f is bounded

below one obtains that the function g(·, y) is bounded below for any y ∈ R
d.

Furthermore, note that by the definition of df(·) and zj(·) (see (26) and (38))
one has

gj(∆y, y) = max
i∈I

(
ai + 〈vi, y〉 − f(y) + 〈vi,∆y〉+ bj + 〈wj , y〉 − f(y) + 〈wj ,∆y〉

)

(43)
for all ∆y, y ∈ R

d.
From Corollary 4.2 and the fact that aj(x) ≥ 0 it follows that the function

g(·, x) is nonnegative. Hence with the use of (43) one obtains that for any
∆x ∈ R

d there exists i ∈ I such that

ai + 〈vi, x〉 − f(x) + 〈vi,∆x〉+ bj + 〈wj , x〉 − f(x) + 〈wj ,∆x〉 ≥ 0.
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Algorithm 3: The method of global codifferential descent (MGCD).

Step 1. Choose a starting point x0 ∈ R
d, and set M = J = {1, . . . , s}

and n := 0.
Step 2. Compute df(xn) and zj(xn) for all j ∈ M .
Step 3. For any j ∈ M compute (aj(xn), vj(xn)) ∈ R

d+1 by solving

min ‖(a, v)‖2 s.t. (a, v) ∈ df(xn) + zj(xn).

If aj(xn) ≥ 0, then M := M \ {j}.
Step 4. If M = ∅, then stop. Otherwise, compute j(n) ∈ M by solving

min
j∈M

f

(
xn +

1

aj(xn)
vj(xn)

)
.

Set xn+1 = xn + [aj(n)(xn)]
−1vj(n)(xn), and n := n+ 1, and go to

Step 2.

Setting ∆x = y−x+∆y, and taking into account the fact that f(x) = f(x)+f(x)

by definition (see (24) and (25)) one gets that for any ∆y, y ∈ R
d there exists

i ∈ I such that

ai + 〈vi, y〉+ 〈vi,∆y〉+ bj + 〈wj , y〉+ 〈wj ,∆y〉 ≥ f(x).

Subtracting f(y) = f(y) + f(y) from both sides of this inequality one obtains

that for any y,∆y ∈ R
d there exists i ∈ I such that

ai + 〈vi, y〉 − f(y) + 〈vi,∆y〉+ bj + 〈wj , y〉 − f(y) + 〈wj ,∆y〉 ≥ f(x)− f(y).

Taking the maximum over all i ∈ I, and applying (43) one gets that gj(∆y, y) ≥
f(x) − f(y) for all ∆y, y ∈ R

d. Hence the function gj(·, y) is nonnegative for
any y such that f(y) ≤ f(x), which by Corollary 4.2 and the definition of aj(y)
(see (39)) implies that aj(y) ≥ 0 for all such y.

Now, we can introduce a modification of the method of codifferential descent
for minimizing piecewise affine functions of the form (24), which we call the
method of global codifferential descent (MGCD). The scheme of this method is
given in Algorithm 3.

Let a sequence {xn} be generated by the MGCD. Observe that from (40)
it follows that for any n ∈ N either f(xn+1) < f(xn) or M = ∅. Hence, in
particular, if aj(xn) ≥ 0 for some j ∈ J and n ∈ N, then

aj(xk) ≥ 0 ∀k ≥ n (44)

by Lemma 4.6. Therefore, if the MGCD terminates in an iteration n (i.e. M = ∅
for some n ∈ N), then aj(xn) ≥ 0 for all j ∈ J , which by Theorem 4.5 implies
that xn is a point of global minimum of the function f . Below, we prove that
the MGCD always terminates in a finite number of steps, i.e. it finds a global
minimizer of a nonconvex piecewise affine function in a finite number of steps.

At first, let us explain the idea behind the proof of this result, which also
illuminates the way each step of the MGCD is performed. Suppose for the sake
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df(xn)

a

v

0

∂f(xn)

(an, vn)

df(xn+1)

a

v

0

Figure 1: The transformation of the global codifferential over one step of the
MGCD: df(xn) (left figure) and df(xn+1) (right figure). Note that all points
shift only horizontally, i.e. along the a-axis (see (26)).

of simplicity that the function f is convex (i.e. f(x) ≡ {0}, see (25)). The
hypodifferential df(xn) is a convex polytope in R

d+1. By (28) one has a ≤ 0 for
any (a, v) ∈ df(xn), and max(a,v)∈df(xn) a = 0. Thus, the set {(a, v) ∈ R

d+1 |
a = 0}∩ df(xn) is a nonempty face of df(xn) (by (41) this face is proper, i.e. it
does not coincide with df(xn), since otherwise f is unbounded below). We call
it the active face of the polytope df(xn). It is easy to see that the subdifferential
∂f(xn) is exactly the set of those v for which (0, v) belongs to the active face of
df(xn).

The point

{(an, vn)} = argmin
{
‖(a, v)‖

∣∣∣ (a, v) ∈ df(xn)
}

(45)

lies on a face F of df(xn), which is not active, since otherwise, f is unbounded
below by (41). When one performs one iteration of the MGCD, the polytope
df(xn) transforms, and, as we will show in the proof below, the face F becomes
the active face of the polytope df(xn+1). Thus, the projection (an, vn) belongs
to a face of the hypodifferential, which becomes active on the next iteration
(see Fig. 1).

Bearing these observations in mind one can prove the finite convergence
of the MGCD by showing that in a finite number of iterations the projection
(an, vn) belongs to a face of df(xn) that intersects the axis {(a, 0) ∈ R

d+1 |
a ∈ R}. Then 0 ∈ ∂f(xn+1), and the proof is complete. In the case, when the
function f is not convex, a similar argument allows one to prove that in a finite
number of iterations an index j(n) is discarded. Repeating the same argument s
times one can verify that in a finite number of iterations all indices are discarded,
and the MGCD terminates.
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Theorem 4.7. Let f : Rd → R be a bounded below piecewise affine function.
Then f attains a global minimum, and the MGCD finds a point of global mini-
mum of this function in a finite number of steps.

Proof. Let {xn} be a possibly infinite sequence generated by the MGCD for the
function f . Denote an = aj(n)(xn) and vn = vj(n)(xn), where the index j(n) is
computed on Step 4 of the MGCD. Note that this definition of (an, vn) coincides
with (45), if f(x) ≡ 0, since in this case zj(x) ≡ 0 for all j (see Steps 3 and 4 of
the MGCD, (25) and (38)).

From Theorem 4.5 it follows that if xn is not a global minimizer of f , then
there exists j ∈ J such that aj(xn) < 0, and

f(xn+1) ≤ f

(
xn +

1

aj(xn)
vj(xn)

)
≤ f(xn)−

1

|aj(xn)|
∥∥(aj(xn), vj(xn))

∥∥2

= f(xn)− |aj(xn)| −
1

|aj(xn)|
‖vj(xn)‖2

(46)

(see (40) and Step 4 of the MGCD). Note that

−|aj(xn)| −
1

|aj(xn)|
‖vj(xn)‖2 ≤

{
−1, if |aj(xn)| ≥ 1,

−‖vj(xn)‖2, otherwise.

Hence, if xn is a not a point of global minimum of f , then

f(xn+1)− f(x0) ≤ −
n∑

k=0

(
|ak|+

1

|ak|
∥∥vk

∥∥2
)

≤ −
n∑

k=0

min
{
1, ‖vk‖2

}
. (47)

Denote by E the family of all convex sets C ⊂ R
d such that 0 /∈ C, and

C = co{vi1 , . . . , vik}+ wj

for some i1, . . . , ik ∈ I, 1 ≤ k ≤ l, and j ∈ J , where the vectors vi and wj are
from the DC decomposition of the function f (see (24)). Clearly, E is a finite
family of compact convex sets, and θ = minC∈E minv∈C ‖v‖2 > 0.

Denote f∗ = infx∈Rd f(x) > −∞, and n∗ = ⌊(f(x0) − f∗)/min{θ, 1}⌋ + 1
(here ⌊t⌋ is the greatest integer less than or equial to t ∈ R). From (47) it follows
that there exists n ≤ n∗ such that either the MGCD terminates at the step n
or an < 0 and ‖vn‖2 < θ.

Suppose that xn is not a global minimizer of f . By definition (an, vn) belongs
to the convex polytope df(xn) + zj(n)(xn) (see Step 3 of the MGCD). Any
convex polytope is equal to the disjoint union of the relative interiors of its
faces, i.e. the relative interiors of all faces of a convex polytope are pairwise
disjoint, and the polytope is equal to the union of these relative interiors (see [38],
p. 61). Therefore, (an, vn) belongs to the relative interior relintF of a face F of
df(xn) + zj(n)(xn).

With the use of the necessary and sufficient condition for a minimum of a
convex function on a convex set [15, Proposition II.2.1] one obtains that

ana+ 〈vn, v〉 ≥ ‖(an, vn)‖2 ∀(a, v) ∈ df(xn) + zj(n)(xn), (48)
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and this inequality turns into an equality when (a, v) = (an, vn). By [38,
Prop. 2.3] the face F is itself a polytope. Consequently, applying the char-
acterization of relative interior points of a convex polytope [38, Lemma 2.9] and
the fact that (an, vn) ∈ relintF one gets that

ana+ 〈vn, v〉 = ‖(an, vn)‖2 ∀(a, v) ∈ F (49)

Note also that the face F is a polytope whose vertices are vertices of df(xn) +
zj(n)(xn) as well [38, Prop. 2.3]. Therefore

F = co{(air + 〈vir , xn〉 − f(xn), vir ) | 1 ≤ r ≤ k}+ zj(n)(xn)

for some i1, . . . , ik ∈ I and 1 ≤ k ≤ l (see (26)). From the definition of θ, and
the facts that (an, vn) ∈ F and ‖vn‖2 < θ it follows that F ∩ (R× {0}) 6= ∅.

Introduce the convex function

gn(x) = max
(a,v)∈df(xn+1)+zj(n)(xn+1)

(a+ 〈v, x〉). (50)

Let us verify that 0 ∈ ∂gn(0). Indeed, by the definition of zj(x) (see (38)) one
has

zj(n)(xn+1) =
(
bj(n) − f(xn+1) + 〈wj(n), xn+1〉, wj(n)

)

= zj(n)(xn) +
(
f(xn)− f(xn+1) + 〈wj(n), xn+1 − xn〉, 0

)
.

Similarly, by (35) one has

df(xn+1) =
{
(a+f(xn)−f(xn+1)+〈v, xn+1−xn〉, v) ∈ R

d+1
∣∣ (a, v) ∈ df(xn)

}

Consequently, applying the equality f(x) = f(x) + f(x) (see (24) and (25)) one
obtains that

df(xn+1) + zj(n)(xn+1)

=
{
(a+ 〈v, xn+1 − xn〉 − f(xn+1) + f(xn), v)

∣∣ (a, v) ∈ df(xn) + zj(n)(xn)
}
.

Therefore

gn(0) = max
(a,v)∈df(xn)+zj(n)(xn)

(a+ 〈v, xn+1 − xn〉)− f(xn+1) + f(xn).

Hence taking into account (48), (49), and the facts that xn+1−xn = a−1
n vn and

an < 0 one gets that

gn(0) =
1

an
‖(an, vn)‖2 − f(xn+1) + f(xn) ≥ 0, (51)

where the last inequality follows from (46). Furthermore, the maximum in the
definition of gn(0) is attained at the points (a + 〈v, xn+1 − xn〉 − f(xn+1) +
f(xn), v) with (a, v) ∈ F . Consequently, one has {v | ∃(a, v) ∈ F} ⊆ ∂gn(0),
which implies that 0 ∈ ∂gn(0) (since F ∩ (R × {0}) 6= ∅), i.e. 0 is the point of
global minimum of the function gn(x). Hence and from (51) it follows that the
function gn is nonnegative. Taking into account (50), and applying Corollary 4.2
one obtains that aj(n)(xn+1) ≥ 0 (see Step 3 of the MGCD). Therefore the index
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j(n) is discarded by the MGCD, and by Lemma 4.6 one has aj(n)(xk) ≥ 0 for
all k ≥ n+ 1.

Thus, there exists n1 ≤ n∗ such that the MGCD discards the index j(n1) in
the (n1 +1)th iteration. Recall that n∗ = ⌊(f(x0)− f∗)/min{θ, 1}⌋+1. Taking
into account (47) one obtains that there exists n2 ≤ n1 + n∗ ≤ 2n∗ such that
either the MGCD terminates at the n2th iteration or an2 < 0, and ‖vn2‖2 < θ.
Arguing in the same way as above one can easily verify that the MGCD discards
the index j(n2) in the (n2+1)th iteration, and aj(n2)(xk) ≥ 0 for all k ≥ n2+1.
Repeating the same argument s times one obtains that the MGCD discards all
indices from the set M in at most sn∗ iterations, and, thus, terminates in a
finite number of steps. Furthermore, if MGCD terminates at an nth iteration,
then, as it was pointed out above (see (44)), by Lemma 4.6 one has aj(xn) ≥ 0
for all j ∈ J , which with the use of Theorem 4.5 implies that xn is a point of
global minimum of the function f , and the proof is complete.

Remark 4.3. Note that the theorem above is valid for any method generating a
sequence {xn} such that for all n ∈ N one has f(xn+1) ≤ f(xn) and

f(xn+1) ≤ f

(
xn +

1

aj(xn)
vj(xn)

)
∀j ∈ J : aj(xn) < 0. (52)

Indeed, let

j(n) ∈ argmin

{
f

(
xn +

1

aj(xn)
vj(xn)

) ∣∣∣∣ j ∈ J : aj(xn) < 0

}
,

and denote (an, vn) = (aj(n)(xn), vj(n)(xn)). Taking into account (46) it is easy
to see that there exists n ≤ n∗ such that either the method terminates at the
nth iteration or an < 0 and ‖vn‖2 < θ, where n∗ and θ are defined in the proof
of Theorem 4.7. Denote yn = xn + a−1

n vn. Arguing in the same way as in the
proof of Theorem 4.7 one can check that aj(n)(yn) ≥ 0, which with the use of
Lemma 4.6 and inequality (52) implies that aj(n)(xn+1) ≥ 0. Furthermore, from
(46) and (52) it follows that f(xk+1) < f(xk) for all k ∈ N such that xk is not
a global minimizer of f . Therefore, applying Lemma 4.6 again one obtains that
aj(n)(xk) ≥ 0 for all k ≥ n+ 1. Repeating the same argument s times one can
easily verify that there exists n ≤ sn∗ such that aj(xk) ≥ 0 for all k ≥ n+1 and
for all j ∈ J , which with the use of Theorem 4.5 implies the required result.

Observe that from (40) it follows that condition (52) is satisfied for the orig-
inal version of method of codifferential descent with µ = +∞ and dµf(x) =
{zj(x) | j ∈ J}, which implies that the MCD also finds a point of global mini-
mum of a piecewise affine function in a finite number of steps.

Note that the MGCD discards those (bj , wj) which no longer provide in-
formation about descent directions of the function f , while the MCD keeps
using all points (bj , wj). Sometimes directions vj(xn) such that aj(xn) ≥ 0
might provide some global information to the optimization method (i.e. f(xn) >
minα>0 f(xn−αvj(xn)); however, this effect seems to be purely random, and it
is reasonable to discard those j ∈ J for which aj(xn) ≥ 0.

Let us finally note that it is unclear which version of the method of codif-
ferential descent (the MCD or the MGCD) is better for minimizing piecewise
affine functions in terms of overall performance. Further research and extensive
numerical experiments are needed to answer this question. In particular, it is
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interesting to find a sharp upper bound on the number of iterations of these
methods. However, these questions lie outside the scope of this article, and we
leave them as open problems for future research.

At the end of the paper, let us give a simple example demonstrating how one
can compute a global codifferential mapping of a piecewise affine function with
the use of Proposition 4.4, and how the MGCD can escape a local minimum,
and find a point of global minimum in just one iteration.

Example 4.8. Let d = 2, and

f(x) = min
{
max{|x1|, |x2|}, 1 + max{2|x1 − 2|, |x2 − 2|}

}
.

Set x0 = (2, 2). It is easily seen that x0 is a point of local minimum of the
function f , while a global minimum is attained at the point x∗ = (0, 0). Our
aim is to apply the MGCD with the starting point x0 to the function f . Instead
of computing a DC decomposition of the function f of the form (24), and then
applying (26) in order to find Df(x0), we will compute a global codifferential
Df(x0) directly with the use of Proposition 4.4 (see Remark 4.2).

Let us compute Df(x0). Define

g1(x) = max{|x1|, |x2|}, g2(x) = 1 +max{2|x1 − 2|, |x2 − 2|}.

With the use of parts (1), (2) and (5) of Proposition 4.4 one obtains

dg1(x0) = co







0
1
0


 ,



−4
−1
0


 ,



0
0
1


 ,



−4
0
−1





 , dg1(x0) = {0},

dg2(x0) = co







0
2
0


 ,




0
−2
0


 ,



0
0
1


 ,




0
0
−1





 , dg2(x0) = {0}.

Taking into account the fact that f(x) = min{g1(x), g2(x)}, and applying
part (6) of Proposition 4.4 one gets that df(x0) = dg1(x0) + dg2(x0), i.e.

df(x0) = co

{

0
3
0


 ,



−4
1
0


 ,



0
2
1


 ,



−4
2
−1


 ,




0
−1
0


 ,



−4
−3
0


 ,




0
−2
1


 ,



−4
−2
−1


 ,



0
1
1


 ,



−4
−1
1


 ,



0
0
2


 ,



−4
0
0


 ,




0
1
−1


 ,



−4
−1
−1


 ,



0
0
0


 ,



−4
0
−2



}
.

One also has

df(x0) = co







1
0
0


 + dg1(x0)− dg2(x0), dg2(x0)− dg1(x0)





= co







1
2
0


 ,




1
−2
0


 ,



1
0
1


 ,




1
0
−1


 ,




0
−1
0


 ,



4
1
0


 ,




0
0
−1


 ,



4
0
1





 .

Let us apply the MGCD. Solving the problem

min ‖(a, v)‖2 subject to (a, v) ∈ df(x0) + zi(x0)
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(Step 3 of the MGCD), one can check that for z1(x0) = (1, 2, 0)T ∈ df(x0) one
has

(a1(x0), v1(x0)) ≈ (−0.1111, 0.2222, 0.2222).

Thus, a1(x0) < 0, and x0 is not a point of global minimum of f by Theorem 4.5.
Furthermore, one has x1 = x0 + [a1(x0)]

−1v1(x0) = (0, 0) = x∗, i.e. the MGCD
finds a point of global minimum of the function f in just one step.

5 Conclusions

In this paper we analysed the performance of the method of codifferential de-
scent in the case when the objective function is either convex or piecewise affine.
We proved that in the convex case this method has the iteration complexity
bound O(ε−1), provided the objective function satisfies some natural regularity
assumptions, which in the smooth case are reduced to the Lipschitz continuity of
the gradient. We also proposed a modification of the MCD for minimizing non-
convex piecewise affine function, and demonstrated that the modified method
as well as the MCD itself find a global minimizer of a nonconvex piecewise affine
function in a finite number of steps. The proof of this result is largely based on
new global optimality conditions for piecewise affine functions obtained in this
article.
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