
Optimization of Triangular Networks with Spatial Constraints

Valentin R. Koch∗ and Hung M. Phan †

April 03, 2019

Abstract

A common representation of a three dimensional object in computer applications, such as graph-
ics and design, is in the form of a triangular mesh. In many instances, individual or groups of trian-
gles in such representation need to satisfy spatial constraints that are imposed either by observation
from the real world, or by concrete design specifications of the object. As these problems tend to
be of large scale, choosing a mathematical optimization approach can be particularly challenging.
In this paper, we model various geometric constraints as convex sets in Euclidean spaces, and find
the corresponding projections in closed forms. We also present an interesting idea to successfully
maneuver around some important nonconvex constraints while still preserving the intrinsic nature
of the original design problem. We then use these constructions in modern first-order splitting
methods to find optimal solutions.

AMS Subject Classification: Primary 26B25, 65D17; Secondary 49M27, 52A41, 90C25.

Keywords: alignment constraint, convex optimization, Douglas–Rachford splitting, maximum slope,
minimum slope, oriented slope, projection methods.

1 Introduction and Motivation

The notation in the paper is fairly standard and follows largely [3]. R denotes the set of real numbers.
By “x := y”, or equivalently “y =: x”, we mean that “x is defined by y”. The assignment operators
are denoted by “←−” and “−→”. The angle between two vectors ~n and ~q is denoted by ∠(~n, ~q). The
cross product of ~n1 and ~n2 in R3 is denoted by ~n1 × ~n2.

1.1 Abstract Problem Formulation

Throughout the paper, we assume that n ∈ {3, 4, . . .} and X = Rn with standard inner product 〈·, ·〉
and induced norm ‖ · ‖. Assume that G = (V0, E0) is a given triangular mesh on R2 where V0 is the
set of vertices and E0 is the set of (undirected) edges, i.e.,

V0 :=
{
pi := (pi1, pi2) ∈ R2

∣∣ i ∈ {1, 2, . . . , n}
}
,

E0 ⊆
{
pipj ≡ pjpi

∣∣ pi, pj ∈ V0

}
.

∗Design and Creation Products (DCP), Autodesk, Inc. Email: valentin.koch@autodesk.com
†Department of Mathematical Sciences, Kennedy College of Sciences, University of Massachusetts Lowell, MA 01854,

USA. E-mail: hung phan@uml.edu

1

ar
X

iv
:1

81
1.

04
72

1v
2

 [
m

at
h.

O
C

]
 4

 A
pr

 2
01

9

From G, we can derive the set of triangles of the mesh as follows

T0 :=
{

∆ = (pipjpk)
∣∣ {pipj , pjpk, pkpi} ⊆ E0

}
.

We first aim to

(1a) find a vector z = (z1, . . . , zn) ∈ X
such that the points

(1b) {Pi := (pi1, pi2, zi)}i∈{1,...,n} satisfy a given set of constraints.

Clearly, the points {Pi}i∈{1,...,n} also form a corresponding triangular mesh S in three dimensions.
Therefore, if there is no confusion, we will also use E0, V0, T0 to denote the sets of vertices, edges, and
triangles of the three dimensional mesh.

Several types of constraints for triangular meshes are listed below:

• interval constraints: For a given subset I of {1, 2, . . . , n}, for all i ∈ I, the entries zi must lie
in a given interval of R.

• edge slope constraints: For a given subset E of the edges E0, and for every edge PiPj ∈ E,
the slope

sij :=
zi − zj√

(pi1 − pj1)2 + (pi2 − pj2)2

must lie in a given subset of R.

• edge alignment constraints: For a given pair of edges PiPj , PmPn ∈ E0, the edges must have
the same slope sij = smn.

• surface alignment constraints: For a given pair of triangles ∆i,∆j ∈ T0 the normal vectors
~n∆i and ~n∆j must be parallel.

• surface orientation constraints: For a given subset T of the triangles T0 and for each triangle
∆ ∈ T , there is a given set of vectors Q∆ ⊂ R3 such that for each ~q ∈ Q∆, the angle between
the normal vector ~n∆ and ~q must lie in a given subset θ~q of [0, π].

Suppose there are J constraints imposed on a model. For j ∈ {1, 2, . . . , J}, we denote by Cj the
set of all points that satisfies the j-th constraint. Thus, (1) can be written in the mathematical form

(2) find a point x ∈ C :=
⋂

j∈{1,2,...,J}

Cj ,

which we refer to as feasibility problem. Moreover, of the infinitude of possible solutions for (2), one
may be particularly interested in those that are optimal in some sense. For instance, it could be
desirable to find a solution that minimizes the slope change between adjacent triangles, a solution
that minimizes the volume between the initial triangles and the triangles in the final solution, or
variants and combinations thereof. If more than one objective function is of interest, it is common to
additively combine these functions, perhaps by scaling the functions based on their different levels of
importance. In summary, our goal is to solve the problem

(3) min F (z) subject to z ∈ C :=
⋂

j∈{1,2,...,J}

Cj ,

where F may be a sum of (scaled) objective functions. The function F is typically nonsmooth which
prevents the use of standard optimization methods.

2

1.2 Computer-Aided Design for Architecture and Civil Engineering Structures

The abstract problem formulation in Section 1.1 has some concrete applications in computational
surface generation of triangular meshes. In particular, in Computer-Aided Design (CAD), triangular
meshes are widely used in various engineering disciplines. For example, in architecture and civil
engineering, existing and finished ground surfaces are represented by triangulated irregular networks.
Slopes are relevant in the context of drainage, in both, civil engineering (transportation structures),
and architecture (roof designs), as well as in the context of surface alignments such as solar farms,
embankment dams, and airport infrastructure layouts.

A concrete problem that arises in civil engineering design is the grading of a parking lot. Within
a given area, the engineer has to define grading slopes such that the parking lot fits within existing
structures, the drainage requirements on the lot are met, and safety and comfort is taken into account.
Besides these requirements, the engineer would like to change the existing surface as little as possible,
in order to save on earthwork costs.

(a) Parking A (b) Parking B (c) Roundabout

Figure 1: Drainage schemes for various engineering structures.

Consider Figure 1. The triangular mesh in Figure 1a represents the existing ground of a planned
parking lot. The engineer would like the water to drain away from the building, and along the blue
drain lines into the four corners. Red lines indicate where the triangle edges need to be aligned. In
Figure 1b, the engineer would like to study a different scheme, where the drainage happens in parallel,
on either side of the building. Lastly, Figure 1c represents the triangular mesh of existing ground for
a roundabout, where a minimum slope is required from the inner circle to the outer one, and water
needs to drain from the road at the top along the outer circle to the roads on either side at the bottom.

1.3 Objective and Outline of This Paper

This paper aims to provide a framework for modeling practical design problems using geometric
constraints in three dimensions. These problems can then be solved by iterative optimization methods.
This involves the introduction and computation of projection/proximity operators of new constraints
and objective functions. Once all required formulas are accomplished, they will be used in iterative
optimization methods to obtain the solutions.

The paper is organized as follows. Section 2 contains an overview of iterative methods that will
be employed. From Section 3 to Section 6, we derive the projection operators of the above spatial
constraints in closed forms. Particularly in Section 6, we present an interesting idea to modify certain
nonconvex constraints into convex ones that retain the intrinsic nature of the original design problem.
To the best of our knowledge, this is the first methodology to successfully maneuver around such

3

nonconvexity. Utilizing these constructions, we include in Section 7 some optimization problems of
interest. Finally, we present the numerical experiment in Section 8 and some remarks in Section 9.

2 Methods Overview

2.1 Projections onto Constraint Sets

A constraint set C ⊆ X is the collection of all feasible data points, i.e., points that satisfy some
requirements. Suppose the given data point z ∈ X is not feasible (i.e., z 6∈ C), we aim to modify z
so that the newly obtained point x is feasible (i.e., x ∈ C); and we would like to do it with minimal
adjustment on z. This task can be achieved by using the projection onto C. Recall that the projection
of z onto C, denoted by PC z, is the solution of the optimization problem

PC z = argmin
x∈C

‖z − x‖ =
{
x ∈ C

∣∣ ‖z − x‖ = min
y∈C
‖z − y‖

}
.

It is well known that if C is nonempty, closed, and convex1, then PC z is singleton, see, for example,
[21, Theorem 2.10].

2.2 Proximity Operators

Suppose f : X → (−∞,+∞] is a proper convex lower semicontinuous function2 and x is a given point
in X. Then it is well known (see [3, Section 12.4]) that the function

X → (−∞,+∞] : y 7→ f(y) + 1
2‖x− y‖2

has a unique minimizer, which we will denote by Proxf (x). The induced operator Proxf : X → X
is called the proximal mapping or proximity operator of f (see [19]). Note that if f is the indicator
function of a set C (the indicator function ιC is defined by ιC(x) = 0 if x ∈ C and ιC(x) = +∞
otherwise), then Proxf = PC . Thus, proximity operators are generalizations of projections.

2.3 Iterative Methods for Optimization Problems

Iterative optimization methods are often used for solving (3), which may require the computations of
proximity and projection operators for the functions and constraint sets involved.

It turns out that all spatial constraints encountered in our settings are convex and closed. Hence,
their projections always exist and are unique. Moreover, we also successfully obtain explicit formulas
for these projections. In the coming sections, we will make the formulas as convenient as possible
for software implementation. As we will make proximity operators available for several types of
objective functions, any iterative optimization methods that utilize proximity operators, for example,
[7, 8, 13, 18], can be used to solve the corresponding problems. Let us describe one such method, the
Douglas–Rachford (DR) splitting algorithm. The DR algorithm emerged from the field of differential
equations [14], and was later made widely applicable in other areas thanks to the seminal work [18].

To formulate DR algorithm, we first use indicator functions to convert (3) into

(4) min F (x) + ιC1 + ιC2 + · · ·+ ιCJ
subject to x ∈ X.

1C is convex if for all x, y ∈ C and λ ∈ [0, 1], we have (1− λ)x+ λy ∈ C
2See, e.g., [20] and [3] for relevant materials in convex analysis

4

So, it suffices to present DR for the following general optimization problem

(5) min
m∑

i=1

fi(x) subject to x ∈ X,

where each fi is a proper convex lower semicontinuous function on X. The DR operates in the product
space X := Xm with inner product 〈x,y〉 :=

∑m
i=1 〈xi, yi〉 for x = (xi)

m
i=1 and y = (yi)

m
i=1. Set the

starting point x0 = (z, . . . , z) ∈ X, where z ∈ X. Given xk = (xk,1, . . . , xk,m) ∈ X, we compute

(6a)

(6b)

(6c)

xk :=
1

m

m∑

i=1

xk,i,

∀i ∈ {1, . . . ,m} : xk+1,i := xk,i − xk + Proxγfi(2xk − xk,i),
then update xk+1 := (xk+1,1, . . . , xk+1,m).

Then the sequence (xk)k∈N converges to a solution of (5). We note that (xk)k∈N and (xk)k∈N are
referred to as governing and monitored sequences, respectively.

It is worth mentioning that when all fi’s are indicator functions of the constraints (thus, all prox-
imity operators become projections), then (5) becomes a pure feasibility problem

(7) find a point x ∈ C :=
⋂

j∈{1,2,...,J}

Cj .

Therefore, all optimization methods that work for (5) can also be used for (7). Nevertheless, it is
worth mentioning that there are many iterative projection methods that are specifically designed for
feasibility problems. At the first glance, it might be tempting to solve such problem by finding the
projection onto the intersection C directly. However, this is often not possible due to the complexity
of C. A workaround is to utilize the projection PCj onto each constraint, if the explicit formula is
available. Then with an initial point, one can iteratively execute the projections PCj ’s to derive a
solution for (7). Let z0 ∈ X be the initial data point. The following are two simplest instances among
iterative projection methods (see [3, 10, 12] and the references therein)

• cyclic projections: Given zk, we update zk+1 := Tzk where T := PCJ
PCJ−1

· · ·PC2 PC1 .

• parallel projections: Given zk, we update zk+1 := Tzk where T := 1
J

(
PC1 + PC2 + · · ·+PCJ

)
.

In addition, when projection methods succeed (see [11] for some interesting examples), they have
various attractive features: they are easy to understand, simple for implementation and maintenance,
and sometime can be very fast. We refer the readers to [2, 4, 10, 12] for more comprehensive discussions
on projection methods.

3 Projections onto Linear Constraints

By linear constraints, we refer to any constraint on the triangular mesh that can be represented by a
system of linear equalities and inequalities. Indeed, this class includes several important constraints
in design problems. In this section, we will analyze those constraints and their projectors.

5

3.1 Interval Constraint

Similar to [4, Section 2.2], we assume that I is a subset of {1, 2, . . . , n} and (li)i∈I , (ui)i∈I ∈ RI are
given. Define

Y :=
{
z = (z1, z2, . . . , zn) ∈ X

∣∣ ∀i ∈ I : li ≤ zi ≤ ui
}
.

Then one can readily check that Y is closed and convex. The following explicit formula is for the
projection onto Y , whose proof is straightforward, thus, omitted.

PY : X → X : (z1, z2, . . . , zn) 7→ (x1, x2, . . . , xn),

where xi =

{
max{li,min{ui, zi}}, i ∈ I,
zi, i ∈ {1, 2, . . . , n}r I.

3.2 Edge Minimum Slope Constraint

Let Pi = (pi1, pi2, zi) and Pj = (pj1, pj2, zj). The designer may require that the (directional) slope from
Pj to Pi must be no less than a threshold level sij . More specifically, since the value pi1, pi2, pj1, pj2
are fixed, we can write this constraint as

zi − zj ≥ αij := sij

√
(pi1 − pj1)2 + (pi2 − qj2)2,

which we will call the edge minimum slope constraint. This constraint is a linear inequality, thus, con-
vex. The projection formula onto this type of constraint can be derived analogously to [4, Section 2.3].

3.3 Low Point Constraint

Definition 3.1 (low point). A point Pj = (pj1, pj2, zj) on the mesh is called a low point if each
point Pi = (pi1, pi2, zi) connected to Pj satisfies the edge minimum slope constraint

zi − zj ≥ αi := si

√
(pi1 − pj1)2 + (pi2 − qj2)2,

where all si ∈ R are given.

We can treat low point constraint as a single constraint even though it is the intersection of finitely
many edge slope constraints. The following result shows how to project onto this constraint. First,
we need a simple lemma

Lemma 3.2. Let a, b ∈ R and k ≥ 1. Assume that ka ≤ b+ (k − 1) max{a, b}. Then a ≤ b.

Proof. By assumption, we must have either ka ≤ b + (k − 1)a or ka ≤ b + (k − 1)b, and any one of
them readily implies a ≤ b. �

Theorem 3.3 (projection onto a low point constraint). Let α2, . . . , αm ∈ R. Define the set

E :=
{

(x1, . . . , xm) ∈ Rm
∣∣ ∀i ∈ {2, . . . ,m} : xi − x1 ≥ αi

}
.

Let z := (z1, . . . , zm) ∈ Rm. Let δ1 := z1 and let δ2 ≤ δ3 ≤ · · · ≤ δm be the values {zi−αi}i∈{2,...,m} in
nondecreasing order. Let k be the largest number in {1, . . . ,m} such that δk ≤ (δ1 + · · ·+ δk)/k. Then
the projection x := (x1, x2, . . . , xm) := PE z is given by

x1 = (δ1 + · · ·+ δk)/k and ∀i ∈ {2, . . . ,m} : xi = max{x1, zi − αi}+ αi.

6

Proof. First, x is the solution of

(8a)

(8b)

min (x1 − z1)2 + . . .+ (xm − zm)2

s.t x1 − xi + αi ≤ 0, i ∈ {2, . . . ,m}.

Let y := (y1, . . . , ym) where y1 = x1 and yi := xi − αi for i ∈ {2, . . . ,m}. Without relabeling, we may
assume δi = zi − αi for all i ∈ {2, . . . ,m}. Then (8) becomes

(9a)

(9b)

min ϕ(y) := (y1 − δ1)2 + . . .+ (ym − δm)2

s.t gi(y) := y1 − yi ≤ 0, i ∈ {2, . . . ,m}.

To find the (unique) solution, we use Lagrange multipliers: there exist λ2, . . . , λm, such that

(10a)

(10b)

(1/2)∇ϕ(y) + λ2∇g2(y) + . . .+ λm∇gm(y) = 0,

∀i ∈ {2, . . . ,m} : λigi(y) = 0, λi ≥ 0, gi(y) ≤ 0.

Then (10a) implies
(y1 − δ1) + λ2 + · · ·+ λm = 0

∀i ∈ {2, . . . ,m} : (yi − δi)− λi = 0.

So y1 ≤ δ1 because λ2, . . . , λm ≥ 0. By substitution, we get

(11) y1 + y2 + . . .+ ym = δ1 + δ2 + . . .+ δm.

Also, (10b) reads as, for each i ∈ {2, . . . ,m},

0 = λigi(y) = (yi − δi)(y1 − yi), yi − δi ≥ 0, and y1 − yi ≤ 0.

It follows that either yi = δi ≥ y1 or y1 = yi ≥ δi, i.e.,

(12) ∀i ∈ {2, . . . ,m} : yi = max{y1, δi}.

Substituting (12) into (11) yields

(13) δ1 + · · ·+ δm = y1 + max{y1, δ2}+ · · ·+ max{y1, δm}.

So for all j ∈ {1, . . . ,m}, (13) implies

(14) δ1 + · · ·+ δm ≥ y1 + · · ·+ y1︸ ︷︷ ︸
j terms

+δj+1 + · · ·+ δm =⇒ y1 ≤
δ1 + · · ·+ δj

j
.

Next, let k be the largest number in {1, . . . ,m} that satisfies

(15) δk ≤
δ1 + · · ·+ δk

k
.

The number k is well defined since at least (15) is true for k = 1. Now we claim that

(16) y1 =
δ1 + · · ·+ δk

k

by considering two cases.

7

Case 1: k = m. Using (15), (13), and δ2 ≤ δ3 ≤ · · · ≤ δm, we have

mδm ≤ δ1 + · · ·+ δm = y1 + max{y1, δ2}+ · · ·+ max{y1, δm}
≤ y1 + (m− 1) max{y1, δm}.

Then Lemma 3.2 implies δm ≤ y1. Using this in (13), we derive δ1 + · · ·+ δm = my1 which is (16).

Case 2: k < m. By the choice of k, we have
δ1+···+δk+1

k+1 < δk+1, which implies

δ1 + · · ·+ δk
k

< δk+1.

Combining with (14), we conclude that y1 < δk+1. Using y1 < δk+1 and (15) in (13), we obtain

kδk + δk+1 + · · ·+ δm ≤ (δ1 + · · ·+ δk) + δk+1 + · · ·+ δm

= y1 + max{y1, δ2}+ · · ·+ max{y1, δm}
= y1 + max{y1, δ2}+ · · ·+ max{y1, δk}︸ ︷︷ ︸

k − 1 terms

+δk+1 + · · ·+ δm

≤ y1 + (k − 1) max{y1, δk}+ δk+1 + · · ·+ δm.

This implies
kδk ≤ y1 + (k − 1) max{y1, δk}.

Again, Lemma 3.2 implies δk ≤ y1. Now using δk ≤ y1 < δk+1 in (13), we have

δ1 + · · ·+ δm = ky1 + δk+1 + · · ·+ δm, which implies (16).

So, (16) is true. Finally, we compute yi’s from (12) and (16), then use them to derive xi’s. �

3.4 Edge Alignment Constraint

On the triangular mesh, the designer may want a constant slope on a particular path, in which case we
say the path is “aligned”. Such a path is sometimes called a feature line. To formulate this constraint,
suppose the feature line is given by adjacent points A1, A2, . . . , Am on the triangular mesh where
Ai = (ai1, ai2, xi) ∈ R3. For AiAi+1, the length of its “shadow” on the xy-plane is the euclidean
distance

(17) δi := ‖(ai+1,1, ai+1,2)− (ai,1, ai,2)‖ =
√

(ai+1,1 − ai,1)2 + (ai+1,2 − ai,2)2.

Define also

(18) t1 := 0 , t2 := δ1 , t3 := δ1 + δ2 , . . . , tm := δ1 + · · ·+ δm−1.

Then the alignment constraint is written as

(19) ∀i ∈ {1, . . . , m− 2} : (xi+1 − xi)/(ti+1 − ti) = (xi+2 − xi+1)/(ti+2 − ti+1).

Theorem 3.4 (projection onto an edge alignment constraint). Suppose the points (ai1, ai2) ∈
R2 with i ∈ {1, . . . ,m}, forms a path in R2. Let δi and ti be given respectively by (17) and (18). Let
F be the set of points (x1, . . . , xm) ∈ Rm such that (19) is satisfied.

Let z = (z1, . . . , zm) ∈ Rm. Then the projection PF z ∈ Rm is given by

∀i ∈ {1, . . . ,m} : (PF z)i = f(ti) = α+ βti.

where f(t) = α+ βt is the least squares line for the points (ti, zi) ∈ R2, i ∈ {1, . . . ,m}.

8

Proof. First, F is convex since all constraints in (19) are linear. Next, we consider the points (ti, zi)
in R2. The problem is to find (x1, . . . , xm) such that the points (ti, xi) are aligned and

‖x− z‖2 =
m∑

i=1

(xi − zi)2 is minimized.

This is the least squares problem for the points (ti, zi). The proof is complete. �

3.5 Surface Alignment Constraint

The designer may want to patch several adjacent triangles on the mesh into a single polygon, in
which case we say that these triangles are “aligned”. This is equivalent to requiring all vertices of the
triangles to lie on the same plane. So we have the following result.

Theorem 3.5 (projection onto a surface alignment constraint). Let (ai1, ai2), i ∈ {1, . . . ,m} be
a collection of points in R2 that are not on the same line. Let F be the set of all points (x1, . . . , xm) ∈
Rm such that the points {(ai1, ai2, xi)}i∈{1,...,m} lie on the same plane in R3. Let z = (z1, . . . , zm) ∈ Rm.
Then the projection PF z ∈ Rm is given by

∀i ∈ {1, . . . ,m} :
(

PF z
)
i

= f(ai1, ai2) = α+ βai1 + γai2,

where f(t1, t2) = α+βt1+γt2 is the least squares plane for the points (ai1, ai2, zi) ∈ R3, i ∈ {1, . . . ,m}.

Proof. Clearly, F is a convex set. Let x := (x1, . . . , xm) = PF z, then x minimizes

‖x− z‖2 =

m∑

i=1

|xi − zi|2

subject to the constraint that (ai1, ai2, xi), i ∈ {1, . . . ,m}, lie on the same plane in R3. Thus, it is
equivalent to finding the least squares plane f : R2 → R for the points (ai1, ai2, zi), i ∈ {1, . . . ,m},
which has unique solution since these points are not on the same line. The conclusion follows. �

4 Projections onto General Surface Slope Constraints

Surface slope constraints are any requirement imposed on the slope of a triangle. In this section, we
provide a general setup for projections onto such constraints.

4.1 Normal Vector and Surface Slope Constraint

Let (e1, e2, e3) be the standard basis of R3. Given three points P1 = (p11, p12, h1), P2 = (p21, p22, h2),
and P3 = (p31, p32, h3) in R3, the normal vector to the plane P1P2P3 is the cross product

(20) ~n =



p11 − p31

p12 − p32

h1 − h3


×



p21 − p31

p22 − p32

h2 − h3


 =:



a1

b1
t1


×



a2

b2
t2


 =



b1t2 − b2t1
a2t1 − a1t2
a1b2 − a2b1


 ,

where the new variables a1, a2, b1, b2, t1, t2 are defined correspondingly, e.g., a1 := p11− p31, etc. Also,
we always assume that the “shadows” of P1, P2, P3 on xy-plane (p11, p12), (p21, p22), (p31, p32) are not
on the same line. Thus, a1b2 − a2b1 6= 0.

9

So we can rescale and use

~n =

(
b1t2 − b2t1
a1b2 − a2b1

,− a1t2 − a2t1
a1b2 − a2b1

, 1

)
.

If we define

(21)

(
t1
t2

)
=:

(
a1 b1
a2 b2

)(
u
v

)
⇐⇒

(
u
v

)
:=

1

a1b2 − a2b1

(
b2 −b1
−a2 a1

)(
t1
t2

)
,

then ~n = (−u,−v, 1). Obviously, surface slope constraints depend solely on the normal vector ~n.
Thus, we can represent a surface slope constraint as

g(u, v) ≤ 0.

An important case of such constraints is the surface orientation constraint below.

Definition 4.1 (surface orientation constraint). Let ∆ be a triangle with normal vector ~n =
(−u,−v, 1) ∈ R3 as above. Let ~q = (q1, q2, q3) ∈ R3 r {0} be a unit vector and θ be an angle in [0, π],
the constraint

∠(~n, ~q) ≤ θ, or equivalently, cos∠(~n, ~q) ≥ cos θ,

is called the surface orientation constraint specified by the pair (~q, θ).

In Section 4.2, we develop the general framework for projection onto surface orientation constraint.
Then in Sections 5 and 6 respectively, we will consider two special surface orientation constraints: the
surface maximum slope constraint and the surface oriented minimum slope constraint.

4.2 Projection onto a Surface Slope Constraint

Consider a single triangle determined by three points Q1 = (p11, p12, w1), Q2 = (p21, p22, w2), and
Q3 = (p31, p32, w3) in R3. Without loss of generality, we can assume

w1 + w2 + w3 = 0.

Projecting onto a slope constraint is to find the new heights h1, h2, h3 that is a solution to the problem

min
(h1,h2,h3)∈R3

‖(h1, h2, h3)− (w1, w2, w3)‖2

subject to the triangle P1P2P3 satisfies a given slope constraint,

where P1 = (p11, p12, h1), P2 = (p11, p12, h2), and P3 = (p11, p12, h3).

Defining ai, bi, ti, u, v as in (20) and (21), we have h1 = a1u+ b1v + h3 and h2 = a2u+ b2v + h3, i.e.,

(22)



h1

h2

h3


 =



a1 b1 1
a2 b2 1
0 0 1





u
v
h3


 .

Suppose also the slope constraint on the triangle P1P2P3 is written as g(u, v) ≤ 0. Then the projection
problem is converted to

(23a)

(23b)

min
(u,v,h3)∈R3

φ(u, v, h3) :=

∥∥∥∥∥∥



a1 b1 1
a2 b2 1
0 0 1





u
v
h3


−



w1

w2

w3



∥∥∥∥∥∥

2

subject to g(u, v) ≤ 0.

10

Next, suppose further changing variables is necessary, for instance, (u, v) is replaced by the new
variables (û, v̂) under a linear transformation

(
û
v̂

)
:= Q

(
u
v

)
, where Q is an invertible matrix.

Then (23) is equivalent to

(24a)

(24b)

min
(û,v̂,h3)∈R3

∥∥∥∥∥∥



â1 b̂1 1

â2 b̂2 1
0 0 1





û
v̂
h3


−



w1

w2

w3



∥∥∥∥∥∥

2

subject to ĝ(û, v̂) := g(u, v) ≤ 0,

where

(
â1 b̂1
â2 b̂2

)
:=

(
a1 b1
a2 b2

)
Q−1. That means we can treat (24) as (23) with new coefficients âi, b̂i

and constraint function ĝ.

Next, we will simplify the model (23) further. Since (23b) does not involve h3, we can convert
problem (23) into two variables (u, v) as follows: first, set the derivative of φ with respect to h3 to
zero

∇h3φ = 2
(
1 1 1

)




a1 b1 1
a2 b2 1
0 0 1





u
v
h3


−



w1

w2

w3






= 2 [(a1 + a2)u+ (b1 + b2)v − 3h3 − (w1 + w2 + w3)] = 0.

Since w1 + w2 + w3 = 0, we obtain

(26) h3 = −(1/3)
[
(a1 + a2)u+ (b1 + b2)v

]
.

Substituting (26) into (23a), we have

(27a)

(27b)

φ(u, v, h3) =

∥∥∥∥∥∥



a1 a2 1
a2 b2 1
0 0 1






1 0
0 1

−a1+a2
3 − b1+b2

3



(
u
v

)
−




w1

w2

−(w1 + w2)



∥∥∥∥∥∥

2

=:
1

9

[
1

2

(
u v

)(A C
C B

)(
u
v

)
−
(
wa wb

)(u
v

)
+ Z

]

where Z is some constant independent of (u, v) and

(28a)

(28b)

(28c)

A := 2(a2
1 + a2

2 − a1a2) > 0, B := 2(b21 + b22 − b1b2) > 0,

C := 2a1b1 + 2a2b2 − a1b2 − a2b1, and

(
wa wb

)
:= 3

(
w1 w2

)(a1 b1
a2 b2

)
.

Thus, (23) is equivalent to the problem

(29a)

(29b)

min
(u,v)∈R2

ϕ(u, v) :=
1

2

(
u v

)(A C
C B

)(
u
v

)
−
(
wa wb

)(u
v

)

subject to g(u, v) ≤ 0.

As long as we can find the solution (u, v), we can obtain (h1, h2, h3) by using (26) and (22). In the
case new variables û, v̂ are used, we will use the corresponding coefficients (âi, b̂i, û, v̂) in place of
(ai, bi, u, v). Finally, we show that ϕ(u, v) is strictly convex.

11

Lemma 4.2. Suppose a1, a2, b1, b2 ∈ R such that a1b2 − a2b1 6= 0. Define A,B,C by (28a)–(28b).

Then

(
A C
C B

)
� 0. Consequently, the function ϕ(u, v) in problem (29) is strictly convex.

Proof. Note from (27) that

(
A C
C B

)
= MTM where M :=



a1 a2 1
a2 b2 1
0 0 1






1 0
0 1

−a1+a2
3 − b1+b2

3


. Since

a1b2 − a2b1 6= 0, M has full column rank, which implies MTM is positive definite. It follows that ϕ is
strictly convex. �

5 Projections onto Surface Maximum Slope Constraints

Adopting the notation in Section 4.1, we let P1P2P3 be a triangle in R3 with normal vector ~n =
(−u,−v, 1). In certain cases, it is required that the angle between ~n and a given direction ~q must not
exceed a given threshold. For example, suppose P1P2P3 represents the desired ground, that cannot
be too steep with respect to gravity, i.e., the slope of the plane P1P2P3 must not exceed a threshold
s := smax ∈ R+. Then the angle between ~n and e3 := (0, 0, 1) must satisfy ∠(~n, e3) ≤ tan−1(s), which
is equivalent to

(30a)

(30b)

cos∠(~n, e3) =
〈~n, e3〉
‖~n‖ ≥ cos(tan−1(s)) =

1√
1 + s2

⇐⇒ 1√
u2 + v2 + 1

≥ 1√
1 + s2

⇐⇒ u2 + v2 − s2 ≤ 0.

Definition 5.1 (surface maximum slope constraint). We call (30) the surface maximum slope
constraint with maximum slope s. This is a special case of surface orientation constraint where
(~q, θ) = (e3, tan−1(s)) (see Section 1.1).

Using the general model (29), we convert the projection onto surface maximum slope constraint to

(31a)

(31b)

min
(u,v)∈R2

ϕ(u, v) =
1

2

(
u v

)(A C
C B

)(
u
v

)
−
(
wa wb

)(u
v

)

subject to u2 + v2 − s2 ≤ 0,

where A,B,C,wa, wb are given by (28). Rescaling by (u, v, wa, wb) ←−
(
u
s ,

v
s ,

wa
s ,

wb
s

)
, we obtain an

equivalent problem

(32a)

(32b)

min
(u,v)∈R2

ϕ(u, v) =
1

2

(
u v

)(A C
C B

)(
u
v

)
−
(
wa wb

)(u
v

)

subject to g(u, v) := u2 + v2 − 1 ≤ 0.

This problem can be solved by several ways including numerical methods. For example, (32) is a special
case of trust region subproblem which can be solved by means of generalized eigenvalue problems [1].

As this is a projection problem that is needed in iterative optimization methods, it is desirable
to have a closed form solution. Thus, in the rest of this section, we will aim to find such solution
via Lagrange multipliers, also known as Karush-Kuhn-Tucker (KKT) conditions, see [16, 17] or [6,
Theorem 11.5], and Ferrari’s method for quartic equations [15].

12

First, due to Lemma 4.2, (32) is the problem of minimizing a strictly convex quadratic function
ϕ(u, v) over a closed, bounded, convex set in R2. Thus, there exists a unique solution. To solve (32),
we start by finding the vertex (u0, v0) of ϕ(u, v), which is the unique solution of

∇ϕ(u, v) =

(
A C
C B

)(
u
v

)
−
(
wa
wb

)
= 0.

Now we check if the vertex (u0, v0) is inside or outside the feasible region:

Case 1: g(u0, v0) ≤ 0 (inside). Then (u0, v0) is the solution of (32).

Case 2: g(u0, v0) > 0 (outside). Then ∇ϕ(u, v) 6= 0 for all g(u, v) ≤ 0. Observe that for each value
η ≥ 0, the level set ϕ(u, v) = η is an ellipse in R2 whose center is the vertex (u0, v0) (see Figure 2).

u

v

(u0, v0)

∇g

∇g

∇φ

∇φ

g(
u,
v)
=
0

(u1, v1)

(u2, v2)

Figure 2: Level sets of ϕ(u, v) vs. feasible region.

Hence, the tangent point of the unit circle g(u, v) = 0 and the smallest elliptical level set of ϕ that
intersects the circle (see Figure 2), denoted by (u1, v1), is the unique solution of the minimization
problem (32); and any tangent point of the unit circle g(u, v) = 0 and the largest elliptical level set
of ϕ that intersects the circle (see Figure 2), denoted by (u2, v2), is a solution of the maximization
problem

max
(u,v)∈R2

ϕ(u, v) subject to g(u, v) ≤ 0.

Based on this observation, there exist Lagrange multipliers λ1 ≥ 0 and λ2 ≤ 0 such that (u1, v1, λ1)
and (u2, v2, λ2) satisfy the Lagrange multipliers system

(33a)

(33b)

∇ϕ(u, v) + λ
2∇g(u, v) = 0,

u2 + v2 − 1 = 0.

Note that ∇ϕ(u1, v1) 6= 0 and ∇ϕ(u2, v2) 6= 0, so we must have λ1 > 0 and λ2 < 0. Moreover, since the
minimization problem has a unique solution, we therefore conclude that the system (33) must possess
a unique solution (u1, v1, λ1) with λ1 > 0, and at least a solution (u2, v2, λ2) with λ2 < 0.

In summary, Case 2 reduces to finding the unique solution (u, v, λ) of (33) with λ > 0. First, (33a)
yields

(34)

(
A+ λ C
C B + λ

)(
u
v

)
=

(
wa
wb

)
.

13

By Lemma 4.2 and the assumption that λ > 0, the matrix in (34) is positive definite. It follows that
(34) has a unique solution

(35a)

(35b)

u =
wa(B + λ)− wbC

(A+ λ)(B + λ)− C2
=

λwa + waB − wbC
λ2 + (A+B)λ+AB − C2

,

v =
wb(A+ λ)− waC

(A+ λ)(B + λ)− C2
=

λwb + wbA− waC
λ2 + (A+B)λ+AB − C2

,

Next, substituting u and v into (33b) yields

[λ2 + (A+B)λ+AB − C2]2 = [waλ+ (waB − wbC)]2 + [wbλ+ (wbA− waC)]2

= (w2
a + w2

b)λ
2 + 2(w2

aB + w2
bA− 2wawbC)λ

+ (waB − wbC)2 + (wbA− waC)2.

Defining the constants accordingly, we rewrite as

(λ2 +R1λ+R2)2 = R3λ
2 + 2R4λ+R5.

One can simply solve this equation by the classic Ferrari’s method for quartic equations [9]. Never-
theless, since there is a unique positive λ, we will find its explicit formula following Ferrari’s technique.
We introduce a real variable y

(36a)

(36b)

(λ2 +R1λ+R2 + y)2 = R3λ
2 + 2R4λ+R5 + 2(λ2 +R1λ+R2)y + y2

= (R3 + 2y)λ2 + 2
(
R4 +R1y

)
λ+R5 + 2R2y + y2.

We choose y such that the right hand side is a perfect square in λ. Thus, the right hand side must
have zero discriminant

[R4 +R1y]2 − (R3 + 2y)(R5 + 2R2y + y2) = 0

⇐⇒ − 2y3 + [R2
1 −R3 − 4R2]y2 + [2R1R4 − 2R2R3 − 2R5]y +R2

4 −R3R5 = 0.

This is a cubic equation in y, so we use Cardano’s method [9] to find one real solution y0. Then (36)
becomes

(37)
(
λ2 +R1λ+R2 + y0

)2
= (R3 + 2y0)

(
λ+

R4 +R1y0

R3 + 2y0

)2

.

As discussed above, this equation must have at least one positive and one negative solutions. Next,
we solve for the (unique) positive λ:

Case 2a: R3 + 2y0 < 0. Then λ = −(R4 +R1y0)/(R3 + 2y0) must be the unique solution, which is
a contradiction. Thus, this case cannot happen.

Case 2b: R3 + 2y0 = 0. Then y0 = −R3/2 and λ2 +R1λ+R2 + y0 = 0. So

λ = 1
2

(
−R1 ±

√
R2

1 − 4R2 + 2R3

)
.

Since there is only one positive λ, we take λ =
(
−R1 +

√
R2

1 − 4R2 + 2R3

)
/2.

Case 2c: R3 + 2y0 > 0. Define r :=
√
R3 + 2y0. Then (37) becomes

(λ2 +R1λ+R2 + y0)2 =
(
λr + R4+R1y0

r

)2
.

14

This leads to two quadratic equations in λ

(38) λ2 + (R1 ± r)λ+
(
R2 + y0 ± R4+R1y0

r

)
= 0.

Now if R4 + R1y0 = 0, then (38) consists of two quadratic equations that have constant term R2 +
y0. Thus, it yield an even number (possibly none) of positive solutions. Therefore, we must have
R4 + R1y0 6= 0. Moreover, we must take the equation with negative constant term. So we set
r ←− r · sgn(R4 +R1y0) and take only the equation

λ2 + (R1 − r)λ+
(
R2 + y0 − R4+R1y0

r

)
= 0.

It follows that the positive λ is

λ = 1
2

(
r −R1 +

√
(r −R1)2 − 4

(
R2 + y0 − R4+R1y0

r

))
.

Next, we obtain u and v from (35) and then rescale variables (u, v) ←− (su, sv). Finally, we obtain
(h1, h2, h3) by using (26) and (22).

6 Projections onto Surface Oriented Minimum Slope Constraints

6.1 Motivation from a Nonconvex Constraint

Let P1P2P3 be a triangle with the normal vector ~n = (−u,−v, 1) as in Section 4.1. In some cases,
it is required that the angle ∠(~n, ~q) ≥ α for some given vector ~q and number α. This happens, for
example, if P1P2P3 must have a slope at least s := smin ∈ R+. In this case, the angle between ~n and
e3 = (0, 0, 1) satisfies

(39a)

(39b)

(39c)

∠(~n, e3) ≥ tan−1(s)

⇔ cos∠(~n, e3) = 〈~n, e3〉/‖~n‖ ≤ cos(tan−1(s)) = 1/
√

1 + s2

⇔ 1√
u2 + v2 + 1

≤ 1√
1 + s2

⇔ u2 + v2 − s2 ≥ 0.

We refer to (39) as the surface minimum slope constraint with minimum slope s. This is clearly a non-
convex constraint in (u, v). Despite the projection onto this constraint is still available, nonconvexity
may prevent iterative methods from convergence. It is worth to mention that similar minimum slope
constraints are also critical in road design problem [4], which is again nonconvex and thus, somewhat
hinders the theoretical analysis. Therefore, we will next present a novel idea to modify this constraint
in a way such that minimum slope is preserved.

6.2 The Surface Oriented Minimum Slope Constraint

Condition (39a) implies the angle between ~n and the xy-plane satisfies

(40) ∠(~n, xy-plane) ≤ (π/2)− tan−1(s).

In some cases, it is reasonable to align the plane P1P2P3 toward a given location/direction. For
instance, in civil engineering drainage, the designer may want to direct the water to certain drains.

15

Suppose we want P1P2P3 inclined towards a unit direction ~q = (q1, q2, 0) ∈ R3. Then we can fulfill
(40) by requiring ∠(~n, ~q) ≤ π

2 − tan−1(s), i.e.,

cos∠(~n, ~q) = 〈~n, ~q〉/‖~n‖ ≥ cos
(
π
2 − tan−1(s)

)
= s/

√
1 + s2,

Substituting ~n = (−u,−v, 1) and ~q = (q1, q2, 0), we obtain −q1u−q2v√
u2+v2+1

≥ s√
1+s2

, which is equivalent to

(41) q1u+ q2v < 0, u2 + v2 + 1− 1+s2

s2
(q1u+ q2v)2 ≤ 0.

Hence, we arrive at the following definition.

Definition 6.1 (surface oriented minimum slope constraint). We call (41) the surface oriented
minimum slope constraint specified by (~q, s), where ~q = (q1, q2, 0) ∈ R3 is a unit vector and s ∈ R++

is the minimum slope.

Definition 6.1 is a special case of the surface orientation constraint in Section 1.1 where (~q, θ) =
(~q, π2−tan−1(s)). It is worth mentioning that the constraint (41) not only guarantees surface minimum
slope but also generates a convex feasible set.

6.3 The Projection onto (41)

By employing Section 4.2, the projection onto the surface oriented minimum slope constraint is given
by the solution to the problem

min
(u,v)∈R2

(a1u+ b1v + h3 − w1)2 + (a2u+ b2v + h3 − w2)2 + (h3 − w3)2

subject to (41).

Again, we first simplify this problem. Define Q :=

(
q1 q2

q2 −q1

)
where (q1, q2, 0) is the unit direction

vector that defines the constraint (41). Then Q2 = Id, which implies Q = QT = Q−1. Next, we change
variables (

û
v̂

)
:= Q

(
u
v

)
=

(
q1u+ q2v
q2u− q1v

)
⇔

(
u
v

)
= Q

(
û
v̂

)
=

(
q1û+ q2v̂
q2û− q1v̂

)
.

Then the second inequality in (41) becomes

(q1û+ q2v̂)2 + (q2û− q1v̂)2 + 1−
(

1 +
1

s2

)
û2 =

(
− 1

s2

)
û2 + v̂2 + 1 ≤ 0.

Thus, (41) becomes

(42) û < 0, v̂2 − û2

s2
+ 1 ≤ 0.

Following Section 4.2, we change coefficients (without relabeling)

(43)

(
a1 a2

b1 b2

)
←− Q

(
a1 a2

b1 b2

)
,

and obtain an equivalent problem

(44) min
(û,v̂)∈R2

1

2

(
û v̂

)(A C
C B

)(
û
v̂

)
−
(
wa wb

)(û
v̂

)
subject to (42).

16

where A,B,C,wa, wb are defined by (28) with the new coefficients a1, a2, b1, b2 from (43). Next, we

change variables by (u, v,A,B,wb)←−
(
û
s , v̂, sA,

B
s ,

wb
s

)
, then (44) is equivalent to

(45a)

(45b)

min
(u,v)∈R2

ϕ(u, v) =
1

2

(
u v

)(A C
C B

)(
u
v

)
−
(
wa wb

)(u
v

)

subject to g1(u, v) := u < 0, g2(u, v) := v2 − u2 + 1 ≤ 0.

Since all matrices in (43) are nonsingular, the new coefficients a1, a2, b1, b2 satisfy a1b2 − a2b1 6= 0,
which implies that ϕ(u, v) is strictly convex by Lemma 4.2. The feasible set (45b) is the left half of a
hyperbola, thus, also a convex region (see Figure 3). Therefore, (45) is the problem of minimizing a
strictly convex quadratic function over a closed convex region, which must yield a unique solution.

Similar to Section 5, we now will present a way to solve (45) by Lagrange multipliers. First, we
find the vertex (u0, v0) of ϕ(u, v), which is the unique solution of

∇ϕ(u, v) =

(
A C
C B

)(
u
v

)
−
(
wa
wb

)
= 0.

Case 1: (u0, v0) is feasible, i.e., u0 < 0 and g2(u0, v0) ≤ 0. Then clearly (u0, v0) is the unique
solution of (45).

Case 2: (u0, v0) is not feasible. Then the unique solution (u1, v1) of (45) is the tangent point of the
left branch hyperbola curve C :=

{
(u, v)

∣∣ u < 0, v2 − u2 + 1 = 0
}

and the smallest level set of ϕ(u, v)
that intersects C, which is an ellipse centered at (u0, v0). Figure 3 illustrates two possible scenarios.

u

v

feasible set
{
g2(u, v) ≤ 0

u < 0

{
g2(u, v) ≤ 0

u > 0

(u0 , v0)

(u1, v1)

(u2, v2)

(a) g2(u0, v0) > 0.

u

v

feasible set
{
g2(u, v) ≤ 0

u < 0

{
g2(u, v) ≤ 0

u > 0

(u0, v0)(u1, v1) (u2, v2)

(b) g2(u0, v0) ≤ 0 and u0 > 0.

Figure 3: Level sets of ϕ(u, v) vs. feasible region.

In both cases, we see that g1(u, v) = u < 0 is always an inactive constraint. Therefore, the Lagrange
multipliers system reduces to

(46a)

(46b)

∇ϕ(u, v) + λ
2∇g2(u, v) = 0,

g2(u, v) = v2 − u2 + 1 = 0.

Utilizing Figure 3, we conclude the following:

17

If g2(u0, v0) > 0 (see Figure 3a), then (46) must have a unique solution (u1, v1, λ1) with λ1 > 0 and
u1 < 0, and a unique solution (u2, v2, λ2) with λ2 > 0 and u2 > 0.

If g2(u0, v0) ≤ 0 and g1(u0, v0) = u0 > 0 (see Figure 3b), then (46) must have a unique solution
(u1, v1, λ1) with λ1 > 0 and u1 < 0. Also, (46) must have at least one solution (u2, v2, λ2) with λ2 < 0.

In summary, Case 2 reduces to finding the solution (u1, v1, λ1) of (46) where λ1 > 0 and u1 < 0.
It then follows that (u1, v1) is the unique solution of (45). First, (46a) is

(47)

(
A− λ C
C B + λ

)(
u
v

)
=

(
wa
wb

)
.

Define
D := (A− λ)(B + λ)− C2 = −λ2 + (A−B)λ+ (AB − C2),

Du := wa(B + λ)− wbC = λwa + waB − wbC,
Dv := wb(A− λ)− waC = −λwb + (wbA− waC).

Suppose D 6= 0, then u = Du/D and v = Dv/D. Substituting into (46b) yields

[
λ2 + (B −A)λ+ (C2 −AB)

]2
=
(
λwa + waB − wbC

)2 −
[
λwb + (waC − wbA)

]2

=
(
w2
a − w2

b

)
λ2 + 2

(
w2
aB + w2

bA− 2wawbC
)
λ

+ (waB − wbC)2 − (waC − wbA)2.

By defining the constants accordingly, we rewrite the above identity as

(λ2 +R1λ+R2)2 = R3λ
2 + 2R4λ+R5.

Again, one can analyze this equation analogously to Section 5. However, complication arises since
there are possibly more than one positive λ’s. Instead, we expand

λ4 + 2R1λ
3 + (R2

1 + 2R2 −R3)λ2 + 2(R1R2 −R4)λ+R2
2 −R5 = 0,

and use the classic Ferrari’s method for quartic equation. Next, for each λ > 0, we solve (47) as
follows.

Case 2a: D 6= 0. Then we simply compute u = Du/D and v = Dv/D.

Case 2b: D = 0. If either Du 6= 0 or Dv 6= 0, then (47) has no solution (u, v). So we now consider
the remaining case that Du = Dv = 0. Then from (47) and (46b), we have

Cu+ (B + λ)v = wb,

v2 − u2 + 1 = 0.

Since B > 0 and λ > 0, the first equation implies v = (wb − Cu)/(B + λ). So the second one becomes
(wb − Cu)2 − (B + λ)2u2 + (B + λ)2 = 0, i.e.,

(51)
[
C2 − (B + λ)2

]
u2 − 2wbCu+ [w2

b + (B + λ)2] = 0.

If the discriminant (wbC)2 − (C2 − (B + λ)2)(w2
b + (B + λ)2) ≥ 0, then we obtain two solutions u.

Since there is a unique pair (u, v) with u < 0, the quadratic equation (51) must yield one positive and
one negative solutions

u =
wbC ±

√
(wbC)2 − (C2 − (B + λ)2)(w2

b + (B + λ)2)

C2 − (B + λ)2
,

18

and we must also have C2 − (B + λ)2 < 0. Therefore, the negative solution u is

u =
wbC +

√
(wbC)2 − (C2 − (B + λ)2)(w2

b + (B + λ)2)

C2 − (B + λ)2
.

Next, among all (u, v)’s, choose the unique pair with u < 0. Then rescale variables u ←− su.
Finally, we obtain (h1, h2, h3) by (26) and (22).

7 Curvature Minimization

In some design problems, the designer may wish to construct a surface that is as “smooth” as possible.
This problem is referred to as minimizing the curvature between adjacent triangles in the mesh. In
this section, we will address this problem.

P4

P1

P2

P3

~n1 ~n2

Figure 4: Curvature between two triangles.

Given the points Pi = (pi1, pi2, hi), i =
1, 2, 3, 4, so that they form two adjacent tri-
angles ∆1 = P1P2P4 and ∆2 = P2P3P4 (see
Figure 4).

Define ai := pi1 − p41 and bi := pi2 − p42, for i = 1, 2, 3. Then the respective normal vectors are

~n1 =




a1

b1
h1 − h4


×




a2

b2
h2 − h4


 =



−b2h1 + b1h2 + (b2 − b1)h4

a2h1 − a1h2 + (a1 − a2)h4

a1b2 − a2b1


 ,

~n2 =




a2

b2
h2 − h4


×




a3

b3
h3 − h4


 =



−b3h2 + b2h3 + (b3 − b2)h4

a3h2 − a2h3 + (a2 − a3)h4

a2b3 − a3b2


 .

We rescale and obtain

~n1 =

(−b2h1 + b1h2 + (b2 − b1)h4

a1b2 − a2b1
,
a2h1 − a1h2 + (a1 − a2)h4

a1b2 − a2b1
, 1

)
,

~n2 =
(−b3h2 + b2h3 + (b3 − b2)h4

a2b3 − a3b2
,
a3h2 − a2h3 + (a2 − a3)h4

a2b3 − a3b2
, 1
)
.

The curvature can be represented by the difference between ~n1 and ~n2, i.e.,

~δ12 := ~δ∆1∆2 = ~n1 − ~n2 =:

(
〈u, h〉
〈v, h〉

)
,

where h := (h1, h2, h3, h4), u := (u1, u2, u3, u4), v := (v1, v2, v3, v4),

(52a)

(52b)

(52c)

(52d)

u1 = −b2/(a1b2 − a2b1) , u2 = b1/(a1b2 − a2b1) + b3/(a2b3 − a3b2) ,

u3 = −b2/(a2b3 − a3b2) , u4 = −(u1 + u2 + u3) ,

v1 = a2/(a1b2 − a2b1) , v2 = −a1/(a1b2 − a2b1)− a3/(a2b3 − a3b2) ,

v3 = a2/(a2b3 − a3b2) , v4 = −(v1 + v2 + v3).

19

So for each pair (∆i,∆j) of adjacent triangles, we find the corresponding vectors hij =

(hij1 , h
ij
2 , h

ij
3 , h

ij
4) ∈ R4, uij , vij ∈ R4, and compute the corresponding curvature ~δij =

(〈uij , hij〉 , 〈vij , hij〉). We then aim to minimize all the curvatures between adjacent triangles. Thus,
we arrive at the objective

G1,∗(x) :=
∑

all triangle pairs (∆i,∆j)

‖~δij‖∗

where ‖ · ‖∗ can be either 1-norm or max-norm in R2. For 1-norm, the objective is

(53) G1,1(x) =
∑

all triangle pairs (∆i,∆j)

| 〈uij , hij〉 |+ | 〈vij , hij〉 |.

For max-norm, the objective is

(54) G1,∞(x) =
∑

all triangle pairs (∆i,∆j)

max{| 〈uij , hij〉 |, | 〈vij , hij〉 |}.

Remark 7.1 (simplified computations for symmetric cases). Suppose the two dimensional
mesh satisfies the following symmetry: for every adjacent triangles P1P2P4 and P2P3P4, there exists
t ∈ R such that −−−→

P4P1 +
−−−→
P4P3 = t

−−−→
P4P2.

Then it follows that (a1, b1) + (a3, b3) = t(a2, b2). So we can deduce a1b2 − a2b1 = a2b3 − a3b2. From
(52), we have

u =
−b2

a1b2 − a2b1

(
1,−t, 1, t− 2

)
and v =

a2

a1b2 − a2b1

(
1,−t, 1, t− 2

)
,

i.e., u and v are parallel. This simplifies the computations for (53) and (54).

Since our optimization methods require proximity operators, we will derive the necessary formulas.
It is sometimes convenient to compute the proximity operator Proxf via the proximity operator of
its Fenchel conjugate f∗, which is defined by f∗ : X → R : x∗ 7→ supx∈X

(
〈x∗, x〉 − f(x)

)
. Indeed, if

γ > 0, then (see, e.g., [3, Theorem 14.3(ii)])

∀x ∈ X : x = Proxγf (x) + γ Proxγ−1f∗(γ
−1x).

We also recall a useful formula from [5, Lemma 2.3]: if f : X → R is convex and positively homoge-
neous, α > 0, w ∈ X, and h : X → R : x 7→ αf(x− w), then

Proxh(x) = w + αProxf

(x− w
α

)
= x− αProxf∗

(x− w
α

)
.

Theorem 7.2. Let {ui}i∈I be a system of finitely many vectors in Rn, and

f : Rn → R : x→ max
i∈I
{| 〈ui, x〉 |}.

Then f∗ = ιD where D := conv
⋃
i∈I{ui,−ui}. Consequently, Proxf = Id−PD.

Proof. Suppose x∗ ∈ D, then we can express

x∗ =
∑

i∈I
λiui where

∑

i∈I
|λi| ≤ 1.

20

It follows that for all x ∈ X,

〈x∗, x〉 − f(x) =
∑

i∈I
λi 〈ui, x〉 −max

i∈I
| 〈ui, x〉 | ≤

(∑

i∈I
λi − 1

)
max
i∈I
| 〈ui, x〉 | ≤ 0.

So, f∗(x∗) = sup
x∈X

[
〈x∗, x〉−f(x)

]
≤ 0. Notice that equality happens if we set x = 0. Thus, f∗(x∗) = 0.

Now suppose x∗ 6∈ D. Since D is nonempty, closed, and convex, the classic separation theorem
implies that there exists x ∈ X such that

〈x∗, x〉 > 〈u, x〉 for all u ∈ D.

This leads to 〈x∗, x〉 − f(x) > 0. Since f is homogeneous, we have

f∗(x∗) ≥ 〈x∗, λx〉 − f(λx)→ +∞ as λ→ +∞.

So f∗(x∗) = +∞. Therefore, we can conclude that f∗ = ιD. �

Finally, Examples 7.3 and 7.4 provide the necessary formulas to compute the proximity operators
of the objectives in (53) and (54), respectively.

Example 7.3. Given α > 0, a vector u ∈ Rn r {0} and the function

f : Rn → R : x 7→ α| 〈u, x〉 |.

By Theorem 7.2, the proximity operator of f is

Proxf = Id−PD where D := [−αu, αu].

The explicit projection onto D is given by (see [5, Theorem 2.7])

PD x = min
{

1,max
{
− 1,

〈αu, x〉
‖αu‖2

}}
αu = min

{
α,max

{
− α, 〈u, x〉‖u‖2

}}
u.

Example 7.4. Given two vectors u, v ∈ Rn and

f(x) : Rn → R : x 7→ max{| 〈u, x〉 |, | 〈v, x〉 |}.

By Theorem 7.2, the proximity operator of f is

Proxf = Id−PD where D := conv{u, v,−u,−v}.

In general, ProxD is the projection onto a parallelogram in Rn.

8 Experiments

With the formulas for proximity and projection operators, we are ready to apply iterative methods
to solve feasibility and optimization problems. In particular, we present an application to the civil
engineer problem in Section 1.2 which is part of our motivation.

Experiment setup: In each of the three problems outlined in Figure 1, we aim to minimize the surface
curvature using the objective function (53), and subject to the requirements that: the maximum slope
of all triangles does not exceed 4%; each triangle must incline toward its closest drain line (marked in

21

blue) with minimum slope of 0.5%; and the triangle edges (marked in red) must be aligned. The DR
algorithm (6) will be used and it will stop when distance between two consecutive governing iterations
are less than the tolerance ε = 0.001 and the monitored iteration meets all constrained with (same)
tolerance ε.

Results: In Figures 5, 6, and 7, we show the solutions after various iterations of the DR algorithm.
Triangles colored in red violate the design constraints (maximum and/or minimum slopes), whereas
triangles in green satisfy the constraints. Below the surfaces are the contours, which become more
regular with increasing iterations due to curvature minimization objective.

yx

0

0.05

0.1

0.15

0.2

15

20

0

5

10

15

20

10

5

0

0.25

0.3

k=0

(a) Starting conditions.

yx

0

0.05

0.1

0.15

0.2

0.25

5

10

15

20

0

5

0

10

15

20

k=20

(b) At k = 20

yx

0

0.05

0.1

0.15

0.2

0.25

5

0

10

15

20

0

5

10

15

20

k=40

(c) At k = 40

yx

0.25

0

0.05

0.1

0.15

0.2

10

15

20

0

5

5

0

10

15

20

k=2200

(d) Final solution.

Figure 5: Grading design for a parking lot with corner drainage.

9 Conclusion

The manipulation of triangle meshes has many applications in computer graphics and computer-aided
design. The paper presents a general framework for triangular design problems with spatial constraints.
In particular, we model several important constraints and costs in suitable forms so that projection

22

yx

0

0.05

0.1

0.15

0.2

15

20

0

5

10

15

20

10

5

0

0.25

0.3

k=0

(a) Starting conditions.

yx

0

0.05

0.1

0.15

0.2

0.25

0.3

10

15

20

0

5

10

15

20
5

0

k=15

(b) At k = 15

x

10

5

15

20

0

0

0

y

0.05

0.1

0.15

0.2

0.25

0.3

k=100

5

10

15

20

(c) At k = 100

yx

0

0.05

0.1

0.15

0.2

0.25

0.3

10

15

20

0

5

10

15

20
5

0

k=2000

(d) Final solution.

Figure 6: Grading design for a parking lot with side drainage.

and proximity operators can be computed explicitly. With the help of iterative splitting methods,
we are able to solve some complex design problems on these triangular meshes. Therefore, modeling
constraints and their proximity operators, and using them in modern first-order optimization methods
can be a successful approach to solve large-scale problems in industry and science.

Acknowledgement

This research is partially supported by Autodesk, Inc. The authors are grateful to the Editors and two
anonymous referees for their constructive suggestions that allow us to improve the original presentation.

References

[1] S. Adachi, S. Iwata, Y. Nakatsukasa, and A. Takeda, Solving the trust-region subproblem by a
generalized eigenvalue problem, SIAM Journal on Optimization 27 (2017), 269–291.

23

yx

0

1

2

3

5

0

-5

-10

-15

10

15 -15

-10

-5

0

5

10

k=0

(a) Starting conditions.

yx

0

1

2

3

10

15 -15

-10

-5

0

5

10

0

-5

5

-10

-15

k=10

(b) At k = 10

yx

0

1

2

3

0

-5

5

10

15 -15

-10

-5

0

5

10
-10

-15

k=20

(c) At k = 20

yx

0

1

2

3

0

-5

-10

-15

5

10

15 -15

-10

-5

0

5

10

k=3536

(d) Final solution.

Figure 7: Grading design for a roundabout.

[2] H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility prob-
lems, SIAM Review 38 (1996), 367–426.

[3] H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert
spaces, second edition, CMS Books in Mathematics, Springer, New York (2017).

[4] H.H. Bauschke and V.R. Koch, Projection methods: Swiss army knives for solving feasibility and
best approximation problems with halfspaces, Infinite products of operators and their applications,
Contemporary Mathematics (2015) 636, 1–40.

[5] H.H. Bauschke, V.R. Koch, and H.M. Phan, Stadium norm and Douglas-Rachford splitting: a
new approach to road design optimization, Operations Research 64 (2016), 201–218.

[6] A. Beck, Introduction to Nonlinear Optimization: Theory, Algorithms and Applications with
Matlab, MOS-SIAM Series on Optimization 19, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA; Mathematical Optimization Society (MOS), Philadelphia, PA (2014).

24

[7] R.I. Boţ, E.R. Csetnek, and A. Heinrich, A primal-dual splitting algorithm for finding zeros of
sums of maximal monotone operators, SIAM Journal on Optimization 23 (2013), 2011–2036.

[8] L.M. Briceño Arias and P.L. Combettes, A monotone + skew splitting model for composite
monotone inclusions in duality, SIAM Journal on Optimization 21 (2011), 1230–1250.

[9] G. Cardano, The great art or the rules of algebra, The M.I.T. Press, Cambridge, Massa.-London
(1968), translated from the Latin and edited by T. Richard Witmer.

[10] A. Cegielski, Iterative methods for fixed point problems in Hilbert spaces, Lecture Notes in Math-
ematics 2057, Springer, Heidelberg (2012).

[11] Y. Censor, W. Chen, P.L. Combettes, R. Davidi, and G.T. Herman, On the effectiveness of pro-
jection methods for convex feasibility problems with linear inequality constraints, Computational
Optimization and Applications 51 (2012), 1065–1088.

[12] Y. Censor and S.A. Zenios, Parallel optimization: Theory, algorithms, and applications, Numeri-
cal Mathematics and Scientific Computation, Oxford University Press, New York (1997).

[13] P.L. Combettes and J.-C. Pesquet, A proximal decomposition method for solving convex varia-
tional inverse problems, Inverse Problems 24 (2008), 065014 (27pp).

[14] J. Douglas and H.H. Rachford, On the numerical solution of heat conduction problems in two and
three space variables, Transactions of the American Mathematical Society 82 (1956), 421–439.

[15] R. Irving, Beyond the quadratic formula, The Mathematical Association of America, Washington
DC (2010).

[16] W. Karush, Minima of functions of several variables with inequalities as side conditions, ProQuest
LLC, Ann Arbor, MI (1939), Thesis (SM)–The University of Chicago.

[17] H.W. Kuhn and A.W. Tucker, Nonlinear programming, Proceedings of the Second Berkeley Sym-
posium on Mathematical Statistics and Probability (1950), 481–492, University of California Press,
Berkeley and Los Angeles (1951).

[18] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM
Journal on Numerical Analysis 16 (1979), 964–979.

[19] J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bulletin de la Société Mathématique
de France, 93 (1965), 273–299.

[20] R.T. Rockafellar, Convex analysis, Princeton University Press, Princeton, NJ, (1970).

[21] A. Ruszczyński, Nonlinear optimization, Princeton University Press, Princeton, NJ (2006).

25

	1 Introduction and Motivation
	1.1 Abstract Problem Formulation
	1.2 Computer-Aided Design for Architecture and Civil Engineering Structures
	1.3 Objective and Outline of This Paper

	2 Methods Overview
	2.1 Projections onto Constraint Sets
	2.2 Proximity Operators
	2.3 Iterative Methods for Optimization Problems

	3 Projections onto Linear Constraints
	3.1 Interval Constraint
	3.2 Edge Minimum Slope Constraint
	3.3 Low Point Constraint
	3.4 Edge Alignment Constraint
	3.5 Surface Alignment Constraint

	4 Projections onto General Surface Slope Constraints
	4.1 Normal Vector and Surface Slope Constraint
	4.2 Projection onto a Surface Slope Constraint

	5 Projections onto Surface Maximum Slope Constraints
	6 Projections onto Surface Oriented Minimum Slope Constraints
	6.1 Motivation from a Nonconvex Constraint
	6.2 The Surface Oriented Minimum Slope Constraint
	6.3 The Projection onto (41)

	7 Curvature Minimization
	8 Experiments
	9 Conclusion

