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Abstract

This paper documents a computational implementation of a projection and rescaling
algorithm for finding most interior solutions to the pair of feasibility problems

find x ∈ L ∩ Rn+ and find x̂ ∈ L⊥ ∩ Rn+,

where L denotes a linear subspace in Rn and L⊥ denotes its orthogonal complement. The
projection and rescaling algorithm is a recently developed method that combines a basic
procedure involving only low-cost operations with a periodic rescaling step. We give a
full description of a MATLAB implementation of this algorithm and present multiple sets
of numerical experiments on synthetic problem instances with varied levels of condition-
ing. Our computational experiments provide promising evidence of the effectiveness of the
projection and rescaling algorithm.

Our MATLAB code is publicly available. Furthermore, the simplicity of the algorithm
makes a computational implementation in other environments completely straightforward.

1 Introduction

The projection and rescaling algorithm [14] is a recent polynomial-time algorithm designed
for solving the polyhedral feasibility problem

find x ∈ L ∩ Rn++, (1)

where L denotes a linear subspace in Rn.
The projection and rescaling algorithm works by combining two building blocks, namely

a basic procedure and a rescaling step as follows. Let PL : Rn → L denote the orthogonal
projection onto L. Within a bounded number of low-cost iterations, the basic procedure
finds z ∈ Rn++ such that either

PLz ∈ Rn++ (2)

or

‖(PLz)+‖1 ≤
1

2
‖z‖∞, (3)
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where (PLz)
+ = max{0, PLz}. If (2) holds, then x = PLz ∈ L ∩ Rn++ is a solution to the

original problem (1). On the other hand, if (3) holds and zi = ‖z‖∞ then for every feasible
solution x to (1) we have

xi ≤
1

‖z‖∞
〈z, x〉 =

1

‖z‖∞
〈z, PLx〉 =

1

‖z‖∞
〈PLz, x〉 ≤

1

‖z‖∞
‖(PLz)+‖1 · ‖x‖∞ ≤

1

2
‖x‖∞.

In other words, if (3) holds and zi = ‖z‖∞ then all solutions x to (1) have small i-th
component. The rescaling step takes D := I + eie

T
i and transforms problem (1) into the

following equivalent rescaled problem:

find x ∈ D(L) ∩ Rn++. (4)

Observe that the solutions to the rescaled problem (4) are in one-to-one correspondence
with the solutions to (1) via doubling of the i-th component.

As it is easy to see and detailed in [14], when D is as above, the rescaled problem (4) is
better conditioned than (1) in the following sense. If L ∩ Rn++ 6= ∅ then δ(D(L) ∩ Rn++) =
2δ(L ∩ Rn++) where δ(L ∩ Rn++) is the following condition measure of the problem (1):

δ(L ∩ Rn++) := max


n∏
j=1

xj : x ∈ L ∩ Rn++, ‖x‖∞ = 1

 . (5)

By convention δ(L ∩ Rn++) = −∞ when L ∩ Rn++ = ∅. Observe that δ(L ∩ Rn++) ≤ 1 is
a measure of the most interior solution to (1). As detailed in [14], it follows that when
L ∩ Rn++ 6= ∅, the projection and rescaling algorithm finds a solution to (1) in at most
log2(1/δ(L∩Rn++)) rounds of basic procedure and rescaling step. Furthermore, each round
of basic procedure and rescaling step requires a number of elementary operations that is
bounded by a low-degree polynomial (quadratic or cubic) on n.

The above projection and rescaling algorithm was originally proposed by Chubanov [4,
5] and is in the same spirit as other rescaling methods in [1, 8, 13]. In addition to [14],
a number of articles [6, 7, 9, 10, 11, 12, 15] have proposed new algorithmic developments
by extending the projection and rescaling templates introduced in [1, 4, 5, 13]. However,
despite their interesting theoretical guarantees, there has been limited work on the com-
putational effectiveness of the projection and rescaling algorithm as well as other methods
based on rescaling. As far as we know, only the articles by Li et al. [11] and by Roos [15]
report numerical results on implementations of some variants of Chubanov’s projection and
rescaling algorithm.

This paper documents a MATLAB implementation of an enhanced version of the pro-
jection and rescaling algorithm from [14]. Our work differs from [11, 15] in several ways.
Unlike the algorithms in [11, 15], our main algorithm solves both feasibility problems L∩Rn+
and L⊥ ∩ Rn+ in a symmetric fashion. We also perform and report a significantly larger
set of computational experiments in higher level of detail. We compare, via numerous
experiments, the performance of several possible schemes for the basic procedure. We pro-
vide full descriptions of the algorithms that we implement. The MATLAB code for our
implementation is publicly available at the following website:

http://www.andrew.cmu.edu/user/jfp/epra.html

All of the numerical experiments reported in this paper can be easily replicated and
verified via the above code. Furthermore, since our MATLAB code is a verbatim imple-
mentation of the algorithms described in the sequel, it is straightforward to replicate our
implementation in other numerical computing environments such as R, python, or Julia.
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Algorithm 1, the main algorithm in our implementation, incorporates the following
enhancements to the original Projection and Rescaling Algorithm in [14]:

1. Let L⊥ denote the orthogonal complement of L. Algorithm 1 finds most interior
solutions to the problems

find x ∈ L ∩ Rn+, (6)

and
find x̂ ∈ L⊥ ∩ Rn+. (7)

That is, Algorithm 1 terminates with points in the relative interiors of L ∩ Rn+ and
L⊥ ∩ Rn+. In particular, if (6) is strictly feasible then Algorithm 1 finds a point in
L∩Rn++. Likewise, if (7) is strictly feasible then Algorithm 1 finds a point in L⊥∩Rn++.

Unlike the Projection and Rescaling Algorithm in [14] and the algorithms in [4, 5, 11],
Algorithm 1 requires no prior feasibility assumptions about (6) or (7).

2. We enforce an upper bound on the size of the entries of the diagonal rescaling matrices
maintained throughout Algorithm 1. The upper bound achieves two major goals.
First, it prevents numerical overflow. Second, it yields a natural criteria to determine
when the algorithm has found points in the relative interiors of L∩Rn+ and L⊥ ∩Rn+.

3. In contrast to the rescaling step in the original Projection and Rescaling Algorithm
that rescales L only in one direction at each round, the rescaling step in Algorithm 1
performs a more aggressive rescaling along all directions that can improve the con-
ditioning of the problem. This enhancement is fairly similar to a multiple direction
rescaling step introduced by Lourenço et al [12]. It is also similar in spirit to an idea
proposed by Roos [15] to obtain sharper rescaling via a modified basic procedure.

The first two enhancements above enable Algorithm 1 to apply without the kind of
feasibility assumption required by the original Projection and Rescaling Algorithm, namely
that L∩Rn++ 6= ∅ or L⊥ ∩Rn++ 6= ∅ and without concerns about numerical overflow due to
excessively large rescaling. On the flip side, the correct termination of Algorithm 1 readily
follows from the results in [14] only when one of conditions L∩Rn++ 6= ∅ or L⊥ ∩Rn++ 6= ∅
holds and U is sufficiently large. Although our numerical experiments demonstrate that
Algorithm 1 correctly terminates in the majority of the cases, a formal proof of correct
termination in the case when both L∩Rn++ = ∅ and L⊥ ∩Rn++ = ∅ is not known yet. The
natural conjecture is that Algorithm 1 correctly terminates when U is sufficiently large.
We will tackle this interesting theoretical question in some future work.

The basic procedure is the main building block of Algorithm 1. We make a separate
comparison of the performance of the following four different schemes for the basic pro-
cedure proposed in [14]: perceptron, von Neumann, von Neumann with away-steps, and
smooth perceptron schemes. These four schemes are described in Algorithm 2 through
Algorithm 5 below. According to the theoretical results established in [14], the first three
of these schemes have similar convergence rates while Algorithm 5 (the smooth perceptron
scheme) has a faster convergence rate but each main iteration of this scheme is computation-
ally more expensive. Section 3.2 describes various numerical experiments that compare the
performance of the four schemes. The experiments consistently demonstrate that indeed
Algorithm 5 has the best performance by a wide margin. Therefore, we use Algorithm 5
as the basic procedure within Algorithm 1. Section 3.3 describes results on various nu-
merical experiments that test the performance of Algorithm 1. Our results demonstrate
the significant advantage of using aggressive rescaling and confirm a similar observation
by Chubanov [5, Section 4.2]. They also provide promising evidence that Algorithm 1 can
solve instances of moderate size.
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The two main sections of the paper are organized as follows. In Section 2 we describe
our enhanced version of the projection and rescaling algorithm. This section also recalls
four different schemes for the basic procedure proposed in [14]. In Section 3 we present
several sets of numerical experiments. To generate interesting problem instances, we devise
a procedure to generate problem instances with arbitrary level of conditioning. We perform
several numerical experiments to compare the different schemes for the basic procedure. We
also perform a number of experiments to test the effectiveness of the enhanced projection
and rescaling algorithm.

2 Enhanced projection and rescaling algorithm

2.1 Main algorithm

Algorithm 1 below describes an enhanced version of the Projection and Rescaling Algorithm
from [14]. The algorithm relies on the following characterization of the relative interiors of
L ∩ Rn+ and L⊥ ∩ Rn+ for a linear subspace L ⊆ Rn. The characterization in Proposition 1
is a consequence of the classical Goldman-Tucker partition theorem as detailed in [3].

Proposition 1 Let L ⊆ Rn be a linear subspace. Then there exists a unique partion
B ∪N = {1, . . . , n} such that

ri (L ∩ Rn+) = {x ∈ L ∩ Rn+ : xi > 0 for all i ∈ B},

and
ri (L⊥ ∩ Rn+) = {x̂ ∈ L⊥ ∩ Rn+ : x̂i > 0 for all i ∈ N}.

In particular, x ∈ ri (L ∩ Rn+) and x̂ ∈ ri (L⊥ ∩ Rn+) if and only if x ∈ L, x̂ ∈ L⊥, and

xB > 0, xN = 0 and x̂N > 0, x̂B = 0. (8)

Observe that B = {1, . . . , n} and N = ∅ when L ∩ Rn++ 6= ∅. Similarly, B = ∅ and
N = {1, . . . , n} when L⊥ ∩Rn++ 6= ∅. In both of these cases we shall say that the partition
(B,N) is trivial. We shall say that the partition (B,N) is non-trivial otherwise, that is,
when B 6= ∅ and N 6= ∅.

Each main iteration of Algorithm 1 applies the following steps. First, apply the basic
procedure to D(L) ∩ Rn+ and D̂(L⊥) ∩ Rn+ for some diagonal rescaling matrices D and D̂.
Next, identify a potential partition (B,N) and terminate if the basic procedures yield x ∈ L
and x̂ ∈ L⊥ satisfying (8). Otherwise, update the rescaling matrices D and D̂ and proceed
to the next main iteration: Apply the basic procedure to D(L)∩Rn+ and D̂(L⊥)∩Rn+, etc.

To prevent numerical overflow, Algorithm 1 caps the entries of the rescaling matrices
D and D̂ by some pre-specified upper bound U . This upper bound naturally determines a
numerical threshold to verify if the algorithm has found solutions in the relative interiors
of L∩Rn+ and L⊥ ∩Rn+. More precisely, Algorithm 1 will terminate with points x ∈ L and
x̂ ∈ L⊥ satisfying the following approximation of (8):

xB > 0, ‖xN‖∞ ≤
1

U
‖x‖∞ and x̂N > 0, ‖x̂B‖∞ ≤

1

U
‖x̂‖∞.
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Algorithm 1 Enhanced Projection and Rescaling Algorithm (EPRA)

1 (Initialization)
Let D := I and D̂ := I.
Let P := PL and P̂ := PL⊥ .
Let U > 0 be a pre-specified upper bound on the rescaling matrices D and D̂.

2 (Basic Procedure)
Find z 	 0 such that either Pz > 0 or ‖(Pz)+‖1 ≤ 1

2
‖z‖∞.

Find ẑ 	 0 such that either P̂ ẑ > 0 or ‖(P̂ ẑ)+‖1 ≤ 1
2
‖ẑ‖∞.

3 (Partition identification)
Let x := D−1Pz and x̂ := D̂−1P̂ ẑ.
Let B := {i : |x̂i| < 1

U
‖x̂‖∞} and N := {i : |xi| < 1

U
‖x‖∞}.

4 if (B,N) partitions {1, . . . , n} then
HALT and return x ∈ ri (L ∩ Rn+), x̂ ∈ ri (L⊥ ∩ Rn+) end if

5 (Rescaling step)
Let e := (z/‖(Pz)+‖1 − 1)

+
, D := min ((I + diag(e))D,U) and P := PD(L).

Let ê :=
(
ẑ/‖(P̂ ẑ)+‖1 − 1

)+

, D̂ := min
(

(I + diag(ê))D̂, U
)

and P̂ := PD̂(L⊥).

Go back to step 2.

2.2 Basic procedure

Let P : Rn → Rn be the orthogonal projection onto a linear subspace of Rn and ε ∈ (0, 1).
The goal of the basic procedure is to find a non-zero z ∈ Rn+ such that either Pz > 0
or ‖(Pz)+‖1 ≤ ε‖z‖∞. We choose ε = 1/2 when the basic procedure is used within
Algorithm 1. We next recall the four schemes for the basic procedure proposed in [14].
Algorithm 2 describes the simplest of these schemes, namely the perceptron scheme. In
the algorithms below ∆n−1 denote the standard simplex in Rn ,that is,

∆n−1 = {x ∈ Rn+ : ‖x‖1 = 1}.

Algorithm 2 Perceptron Scheme

1 Pick z0 ∈ ∆n−1, and t := 0.
2 while Pzt ≯ 0 and ‖(Pzt)+‖1 > ε‖zt‖∞ do

Pick u ∈ ∆n−1 such that 〈u, Pzt〉 ≤ 0.
Let zt+1 :=

(
1− 1

t+1

)
zt + 1

t+1
u.

t := t+ 1.
3 end while

Algorithm 3 describes the second basic procedure scheme, namely the von Neumann
scheme. This scheme is a greedy variant of the perceptron scheme. This algorithm relies
on the following mapping

u(v) := argmin
u∈∆n−1

〈u, v〉 .

At each iteration, Algorithm 3 chooses zt+1 as the convex combination of zt and u(Pzt)
that minimizes ‖Pzt+1‖2.
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Algorithm 3 Von Neumann Scheme

1 Pick z0 ∈ ∆n−1, and t := 0.
2 while Pzt ≯ 0 and ‖(Pzt)+‖1 > ε‖zt‖∞ do

Let u = u(Pzt) and zt+1 := zt + θ(u− zt) where

θt = argmin
θ∈[0,1]

‖P (zt + θ(u− zt))‖2
2 =

‖Pzt‖2
2 − 〈u, Pzt〉

‖Pzt‖2
2 + ‖Pu‖2

2 − 2 〈u, Pzt〉
.

t := t+ 1.
3 end while

Algorithm 4 describes the third basic procedure scheme, namely the von Neumann with
away steps scheme, which in turn is a variant of the von Neumann scheme. Algorithm 4
relies on the following construction. Define the support of a current iterate z as S(z) :=
{i ∈ {1, . . . , n} : zi > 0}. At each main iteration Algorithm 4 chooses between two different
kinds of steps: regular steps as in Algorithm 3 and away steps that decrease the weight on
a component of z belonging to S(z). The away steps are computed via the mapping

v(z) := argmax
v∈∆n−1
S(v)⊆S(z)

〈v, Pz〉 .

Algorithm 4 Von Neumann with Away Steps Scheme

1 Pick z0 ∈ ∆n−1, and t := 0.
2 while Pzt ≯ 0 and ‖(Pzt)+‖1 > ε‖zt‖∞ do

Let u = u(Pzt) and v = v(zt).
if ‖Pzt‖2 − 〈u, Pzt〉 > 〈v, Pzt〉 − ‖Pzt‖2 then (regular step)

a := u− zt; θmax = 1,
else (away step)

a := zt − v; θmax = 〈v,z〉
1−〈v,z〉 .

endif
Let zt+1 := zt + θa where

θ = argmin
θ∈[0,θmax]

‖P (zt + θa)‖2 = min

{
θmax,−

〈zt, Pa〉
‖Pa‖2

}
t := t+ 1.

3 end while

Algorithm 5 describes the fourth basic procedure scheme, namely the smooth perceptron
scheme, which in turn is a variant of the the perceptron scheme that relies on the following
smooth version of the mapping u(·). Let ū ∈ ∆n−1 be fixed. For µ > 0 let

uµ(v) := argmin
u∈∆n−1

{
〈u, v〉+

µ

2
‖u− ū‖2

}
.
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Algorithm 5 Smooth Perceptron Scheme

1 Let u0 := ū; µ0 = 2; z0 := uµ0(Pu0); and t := 0.
2 while Pzt ≯ 0 and ‖(Pzt)+‖1 > ε‖zt‖∞ do

θt := 2
t+3

ut+1 := (1− θt)ut + θtzt + θ2
t uµt(Put)

µt+1 := (1− θt)µt
zt+1 := (1− θt)zt + θtuµt+1(Put+1)
t := t+ 1.

3 end while

3 Numerical experiments

This section describes various sets of numerical experiments that test the Enhanced Projec-
tion and Rescaling Algorithm described as Algorithm 1 above. We also performed numeri-
cal experiments to compare the four schemes for the basic procedure, namely Algorithm 2
through Algorithm 5 on suitably generated instances.

3.1 Schemes to construct challenging instances

We should note that except for the case when the dimension of the subspace L is about
half the dimension of the ambient space Rn, a naive approach to generate random instances
yields results of limited interest. More precisely, suppose L ⊆ Rn is a random subspace
generated via L = ker(A) where the entries of A ∈ Rm×n are independently drawn from a
standard normal distribution. From a classical result on coverage processes by Wendel [16,
Equation (1)] it follows that

P(L⊥ ∩ Rn++ 6= ∅) = 21−n
m−1∑
k=0

(
n− 1

k

)
and P(L ∩ Rn++ 6= ∅) = 21−n

n−1∑
k=m

(
n− 1

k

)
. (9)

In particular, (9) implies that if n is even and dim(L) = n −m = n/2 then L ∩ Rn++ 6= ∅
with probability 0.5. Furthermore, (9) implies that if dim(L) = n − m � n/2 then
L ∩ Rn++ 6= ∅ with high probability. Similarly, (9) implies that if dim(L) = n −m � n/2
then L⊥ ∩ Rn++ 6= ∅ with high probability. The identity (9) also suggests that when
L ⊆ Rn is a random subspace and dim(L) is far enough from n/2 then with high probability
max{δ(L∩Rn++), δ(L⊥∩Rn++)} is bounded away from zero as there is extra room for either
L or L⊥ to cut deep inside Rn++. The latter fact can be rigorously stated and justified,
albeit in somewhat technical terms, by using the machinery on coverage processes and
probabilistic analysis of condition numbers developed by Bürgisser et al [2]. Our numerical
experiments confirm that indeed most random instances L with either dim(L) � n/2 or
dim(L) � n/2 are easily solvable without rescaling (see Table 9 in Section 3). Therefore
such random instances are not particularly interesting.

We next describe schemes to generate collections of more interesting and challenging
instances. First, we describe how to generate random subspaces L ⊆ Rn such that L ∩
Rn++ 6= ∅ with a controlled condition measure δ(L ∩ Rn++). We subsequently describe how
to generate random subspaces L ⊆ Rn such that both L∩Rn+ and L⊥∩Rn+ have non-trivial
relative interiors.
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Proposition 2 Let x̄ ∈ Rn++ and ū ∈ Rn+ be such that ‖x̄‖∞ = 1, ‖ū‖1 = n and ūj = 0

whenever x̄j < 1 for j = 1, . . . , n. Let A =
[
a1 · · · am

]T
∈ Rm×n be such that a1 =

ū − X̄−11 and 〈aj , x̄〉 = 0 for j = 2, . . . ,m where X̄ ∈ Rn×n is a diagonal matrix with
elements of x̄ spread across the diagonal and 1 ∈ Rn is the vector of ones. Then for
L = ker(A) := {x ∈ Rn : Ax = 0} we have

x̄ = argmax


n∏
j=1

xj : x ∈ L ∩ Rn++, ‖x‖∞ = 1

 .

In particular, L ∩ Rn++ 6= ∅ and δ(L ∩ Rn++) =
∏n
j=1 x̄j .

Proof: It suffices to show that

x̄ = argmax
x

{
ln

(
n∏
i=1

xi

)
: x ∈ L ∩ Rn++, ‖x‖∞ = 1

}

= argmax
x

{
ln

(
n∏
i=1

xi

)
: x ∈ L ∩ Rn++, ‖x‖∞ ≤ 1

}
. (10)

The conditions on the rows of A readily ensure that x̄ ∈ L ∩ Rn++. Thus x̄ is a feasible
solution to (10). Since ζ = X̄−11 is the gradient of the objective function in (10) at x̄, to
show that x̄ is optimal it suffices to show that 〈ζ, x− x̄〉 ≤ 0 for any feasible solution to (10).
Take x ∈ L ∩ Rn++ with ‖x‖∞ ≤ 1. Since x ∈ L, we have

〈
X̄−11− ū, x

〉
= 〈a1, x〉 = 0.

Therefore 〈ζ, x− x̄〉 =
〈
X̄−11, x

〉
− n ≤ 〈ū, x〉 − ‖ū‖1‖x‖∞ ≤ 0. The last two steps follow

from ‖ū‖1 = n and Hölder’s inequality respectively. �
Proposition 2 readily suggests a scheme to generate subspaces L ⊆ Rn such that the

condition measure δ(L ∩ Rn++) is positive but as small as we wish: pick x̄ ∈ Rn++ with
‖x̄‖∞ = 1 and generate ū ∈ Rn+, A ∈ Rm×n, and L = ker(A) as in Proposition 2. We next
explain how Proposition 2 can be further leveraged to generate L ⊆ Rn so that both L∩Rn+
and L⊥∩Rn+ have non-trivial relative interiors. Suppose (B,N) is a partition of {1, . . . , n}
and

A =

[
ABB ANB

0 ANN

]
(11)

is such that LB = ker(ABB) ⊆ RB and LN = Im(AT
NN ) ⊆ RN satisfy LB ∩ RB++ 6= ∅

and LN ∩ RN++ 6= ∅. If ANN is full row-rank then it readily follows that the subspaces
L = ker(A) and L⊥ = Im(AT) satisfy

ri (L ∩ Rn+) = {x ∈ L ∩ Rn+ : xi > 0 for all i ∈ B}

and
ri (L⊥ ∩ Rn+) = {x̂ ∈ L⊥ ∩ Rn+ : x̂i > 0 for all i ∈ N}.

Hence we can generate subspaces L ⊆ Rn such that both L ∩ Rn+ and L⊥ ∩ Rn+ have
non-trivial relative interiors by proceeding as follows. First, choose a partition (B,N) of
{1, . . . , n}. Next, use the construction suggested by Proposition 2 to generate full row-rank
matrices ABB, ANN such that ker(ABB) ∩ RB++ 6= ∅ and Im(AT

NN ) ∩ RN++ 6= ∅. Finally let
L = ker(A) where A is of the form (11) for some ANB of appropriate size.
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3.2 Comparison of basic procedure schemes

The computational experiments summarized in this section compare the performance of
the four schemes for the basic procedure, namely Algorithm 2 through Algorithm 5. We
implemented these algorithms in MATLAB and ran them on collections of instances defined
by L = ker(A), for A ∈ Rm×n. We used the QR-factorization to obtain the orthogonal
projection mappings P = PL and P̂ = PL⊥ .

We performed two main sets of experiments. The first set of experiments contains
instances L = ker(A) where the entries of A ∈ Rm×n are independently drawn from a
standard normal distribution and m = n/2 for n = 200, 500, 1000, 2000. When m signifi-
cantly differs from n/2, random instances generated in this way are uninteresting as they
can easily be solved by any of the four schemes. The second set of experiments contains
more challenging instances L = ker(A) where A ∈ Rm×n is generated via the procedure
suggested by Proposition 2 for n = 1000, m = 100, 200, 800, 900. More precisely, we gener-
ated x̄ ∈ Rn++ as follows. First, we set a random chunk of its entries uniformly at random
between 0 and 0.001. Second, we set remaining entries uniformly at random distributed
between 0 and 1. Third, we scaled the entries of x̄ to obtain ‖x̄‖∞ = 1. Once we generated
x̄ in this fashion, we generated A ∈ Rm×n as in Proposition 2.

Table 1 through Table 4 summarize the results on various sets of experiments. Each
row corresponds to a set of 1000 instances. To keep the number of iterations and CPU time
manageable, we enforced an upper bound of 10000 iterations for all four schemes. The first
two columns in each table indicate the size of A ∈ Rm×n. The other columns display three
numbers for each of the four schemes: the average number of iterations, the average CPU
time, and the success rate on the batch of 1000 instances of size m by n. The success rate
is the proportion of instances on which the scheme terminates normally before reaching
the upper bound of 10000 iterations.

Table 1 and Table 2 display the results for the first set of experiments when m = n/2
and A ∈ Rm×n is randomly generated without any control on the conditioning of L∩Rn++.
Table 3 and Table 4 display similar summaries for the second set of experiments where we
generate A ∈ Rm×n so that L∩Rn++ has a controlled condition measure via the procedure
suggested by Proposition 2. The tables summarize results for two values of ε: ε = 10−1

(large), and ε = 10−4 (small).

Table 1: Results for naive random instances, large ε (ε = 10−1), and 10000 iteration
limit

m n perceptron VN VNA smooth

100 200 (6956.28, 0.27, 0.74) (5070.41, 0.26, 0.69) (3021.73, 0.23, 0.95) (27.04, 0.03, 1)

250 500 (9963.91, 0.85, 0.02) (9207.1, 0.26, 0.2) (8737.9, 0.23, 0.38) (43.88, 0.13, 1)

500 1000 (10000, 8.67, 0) (9981.29, 8.84, 0.01) (9992.46, 14.3, 0.01) (58.50, 0.42, 1)

1000 2000 (10000, 34.72, 0) (10000, 35.54, 0) (10000, 67.24, 0) (80.21, 1.42, 1)
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Table 2: Results for naive random instances, small ε (ε = 10−4), and 10000 iteration
limit

m n perceptron VN VNA smooth

100 200 (8236.2, 0.33, 0.35) (5395.1, 0.28, 0.67) (5861, 0.45, 0.66) (123.6, 0.14, 1)

250 500 (9981.9, 0.94, 0.01) (9258.1, 0.99, 0.2) (9518.5, 1.64, 0.16) (231.8, 0.64, 1)

500 1000 (10000, 8.28, 0) (9973.7, 8.39, 0.01) (9988.5, 13.57, 0.01) (337.64, 2.15, 1)

1000 2000 (10000, 35.61, 0) (10000, 36.34, 0) (10000, 68.71, 0) (465.94, 7.87, 1)

Table 3: Results for controlled condition instances, large ε (ε = 10−1), and 10000
iteration limit

m n perceptron VN VNA smooth

100 1000 (9134.38, 0.88, 0.32) (8519.12, 8.48, 0.25) (3329.84, 6.27, 1) (130.77, 0.30, 1)

200 1000 (9649.15, 8.02, 0.21) (8645.91, 7.35, 0.26) (5005.64, 8.12, 0.98) (140.21, 0.27, 1)

800 1000 (3383.55, 2.86, 0.87) (9798.34, 8.33, 0.03) (6566.22, 10.61, 0.7) (220.53, 0.42, 1)

900 1000 (2156.34, 1.92, 0.99) (9842.71, 8.71, 0.03) (1429.66, 2.43, 1) (198.58, 0.39, 1)

Table 4: Results for controlled condition instances, small ε (ε = 10−4), and 10000
iteration limit

m n perceptron VN VNA smooth

100 1000 (9961.9, 8.26, 0) (9926.9, 16.06, 0.01) (9934.6, 16.01, 0.01) (9463.5, 17.65, 0.16)

200 1000 (9952.6, 8.74, 0.01) (9942.1, 16.95, 0.01) (9950.1, 16.95, 0.01) (9579.9, 19.16, 0.13)

800 1000 (9964.52, 8.94, 0) (9961.16, 17.15, 0) (9967.6, 17.15, 0) (8557.5, 17.05, 0.75)

900 1000 (9939.5, 8.80, 0.01) (9915.7, 16.94, 0.01) (9939.1, 16.94, 0.01) (7537.2, 14.85, 0.97)

When ε is large (Table 1 and Table 3), the algorithms often stop when the condition
‖(Pz)+‖1 ≤ ε‖z‖∞ is satisfied. Not surprisingly, when ε is small (Table 2 and Table 4), the
basic procedures more often stop when Pz > 0 and require a larger number of iterations
and longer CPU time. Also as expected, when the instances become larger, they become
more challenging and more iterations are needed to find a feasible solution.

Our numerical experiments for large ε demonstrate that the smooth perceptron scheme
is faster both in number of iterations and in terms of CPU time than any of the other three
schemes. The experiments also suggest that when enforcing the 10000 iteration limit the
perceptron, von Neumann, and von Neumann with away steps are comparable in terms of
number of iterations and CPU time. Given the evidence in favor of the smooth perceptron
scheme, we use this method within the Enhanced Projection and Rescaling Algorithm.

We note that the numerical experiments for small ε in Table 4 confirm that the scheme
for generating challenging instances indeed yields instances that are difficult to solve for all
schemes and thus provide an interesting testbed for the Enhanced Projection and Rescaling
Algorithm.
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The low success rates in some of the entries in Table 1 through Table 4 reveal that
for many instances the upper limit of 10000 iterations is reached by the perceptron, von
Neumann, and von Neumann with away steps schemes. Thus for additional robustness
check, we also performed some extra sets of experiments without any limit on the number
of iterations. The results are summarized in Table 5 and Table 6. We ran fewer instances
and used ε = 10−1 to keep the experiments manageable. (Some schemes run for over several
million iterations in some instances.) The last four columns of Table 5 and Table 6 report
only the average number of iterations and average CPU times since all instances are run
until successful termination without iteration limit. Each row corresponds to a set of 100
instances except for the last row for m = 1000, n = 2000. In this case we only ran 20
instances due to time limitations. Without iteration limit, some of these instances take
multiple hours of CPU time.

The results in these two tables further confirm that the smooth perceptron scheme is
faster both in number of iterations and in terms of CPU time than any of the other three
schemes. Furthermore, the additional experiments suggest that without iteration limit the
von Neumann scheme usually requires the highest number of iterations.

Table 5: Results for naive random instances, large ε (ε = 10−1), and no iteration
limit

m n perceptron VN VNA smooth

100 200 (8780.80, 0.31) (24453.42, 1.11) (3054.96, 0.22) (66.7, 0.008)

250 500 (62807.14, 11.8) (565958.64, 112.7) (22853.18, 8.13) (122.18, 0.06)

500 1000 (267348.4, 227.73) (2301999.2, 2017.9) (91897.2, 151.3) (177.0,0.34)

1000 2000 (856072.0, 2739.47) (717508.8, 2331.06) (162726.9, 1010.66) (226.6, 1.6)

Table 6: Results for controlled condition instances, large ε (ε = 10−1), and no
iteration limit

m n perceptron VN VNA smooth

100 1000 (14982.34, 15.64) (47942.98, 51.68) (3585.23, 6.97 ) (127.93, 0.29)

200 1000 (16037.40, 16.67) (57652.07, 62.43) (5152.81, 9.87) (146.49, 0.33)

800 1000 (9157.77, 8.8) (892550.84, 905.88) (7243.26, 13.11) (220.8, 0.47)

900 1000 (1975.82, 1.93) (692402.25, 695.27) (1410.76, 2.46) (199.8, 0.43)

3.3 Performance of the Enhanced Projection and Rescal-
ing Algorithm

This section describes the performance of Algorithm 1 on two main sets of problem in-
stances. The first set contains instances of L = ker(A) for A ∈ Rm×n with L ∩ Rn++ 6= ∅
generated via the approach based on Proposition 2 as described in Section 3.1. The second
set of instances L = ker(A) is also generated via a similar approach but ensuring that
both ri (L ∩ Rn+) 6= {0} and ri (L⊥ ∩ Rn+) 6= {0}. Most of these instances are sufficiently
challenging that they cannot be solved by the basic procedure (via the smooth perceptron
scheme) without rescaling.
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We ran Algorithm 1 with U = 1010 in all of our experiments. Table 7 displays the
results for the first set of instances L = ker(A) with L ∩ Rn++ 6= ∅. Each row corresponds
to a set of 500 instances of A ∈ Rm×n for m and n as indicated in the first two columns.
The other three columns display the average number of rescaling iterations, average total
number of basic procedure iterations, and average CPU time for each set of 500 instances.
Furthermore, we note that Algorithm 1 successfully solves all instances, that is, it termi-
nates with a point x ∈ L ∩ Rn++. It is noteworthy that the number of rescaling iterations
ranges from 9 to 15 across instances of different sizes. To further illustrate this interesting
fact, Figure 1 plots the number of rescaling iterations for some sets of instances.

Table 7: Algorithm 1 on controlled condition instances with L ∩ Rn++ 6= ∅

m n
Average # of rescaling

iterations
Average total # of

iterations
Average CPU time

(in seconds)

100 200 9.51 712.38 0.076

250 500 11.03 1419.98 0.76

100 1000 7.97 1843.74 4.48

200 1000 9.00 1954.73 4.41

500 1000 11.92 2487.47 5.49

800 1000 13.08 4026.00 6.69

900 1000 11.63 4184.90 6.64

1000 2000 12.18 4318.48 35.76

Table 8 and Figure 2 display similar results for the second set of instances with both
ri (L ∩ Rn+) 6= ∅ and ri (L⊥ ∩ Rn+) 6= ∅. To accommodate for a wide and flexible range of
dimensions of ri (L ∩Rn+) 6= ∅ and ri (L⊥ ∩Rn+) 6= ∅, for each fixed value of n we construct
A ∈ Rm×n and L = ker(A) with varying values of m. For this second set of instances we
also report the success rate, that is, the percentage of instances where the the partition
(B,N) is correctly identified. The algorithm succeeds in identifying this partition for most
instances. In the rare cases when this is not the case, failure occurs because either B or N
are small and Algorithm 1 terminates with a point that is either in L⊥∩Rn++ or in L∩Rn++

within roundoff error. The experiments show that on this second set of instances a higher
number of rescaling iterations is usually necessary. This is somewhat expected as these
instances include the extra difficulty of finding a non-trivial partition (B,N) of {1, . . . , n}.
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Figure 1: Number of rescaling iterations for controlled condition instances L with
L ∩ Rn++ 6= ∅.

Table 8: Algorithm 1 on instances with ri (L ∩ Rn+) 6= {0} and ri (L⊥ ∩ Rn+) 6= {0}

n
Average

m

Average #
of rescaling
iterations

Average total #
of iterations

Average
CPU time

(in seconds)

Success
rate

100 51.21 16.16 657.01 0.075 0.946

200 100.55 17.27 1031.45 0.12 0.974

500 249.64 17.60 1763.59 1.09 0.984

800 405.86 17.72 2269.69 3.52 0.998

1000 499.72 17.76 2625.84 6.73 0.994

2000 1006.93 17.59 3752.04 47.07 0.994

To further illustrate the partition and the solutions found by Algorithm 1, Figure 3
and Figure 4 plot the coordinates of the points x and x̂ found by Algorithm 1 for two
representative instances of dimension n = 1000 and n = 2000 respectively. The two plots
in the first row of Figure 3 and Figure 4 show the components of the points x = (xB, xN ) and
x̂ = (x̂B, x̂N ) returned by Algorithm 1 for an instance of size n = 1000 and for an instance
of size n = 2000. The set B is {1, . . . , 424} in the first instance and it is {1, . . . , 1137}
in the second instance. The large red circle in the plots show the size of B. For scaling
purposes, in both instances the vectors x and x̂ are normalized so that ‖x‖∞ = ‖x̂‖∞ = 1.
As Figure 3 and Figure 4 show, in both cases the solutions x and x̂ satisfy the conditions
in (8).
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Figure 2: Number of rescaling iterations for instances L with ri (L ∩ Rn+) 6= {0} and
ri (L⊥ ∩ Rn+) 6= {0}.
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Figure 3: Coordinates of x ∈ L ∩ Rn+ and x̂ ∈ L⊥ ∩ Rn+ found by Algorithm 1 for
some L ⊆ Rn and n = 1000.
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Figure 4: Coordinates of x ∈ L ∩ Rn+ and x̂ ∈ L⊥ ∩ Rn+ found by Algorithm 1 for
some L ⊆ Rn and n = 2000.

3.4 Other experiments

We also performed experiments to assess the effect of rescaling along multiple directions,
as in Algorithm 1, versus rescaling only along one direction, as in the original Projection
and Rescaling Algorithm in [14]. More precisely, we compare the performance of Algo-
rithm 1 versus the modification obtained by changing the update on D and D̂ in Step 5 to

D = min ((I + diag(ei))D,U) and D̂ = min
(

(I + diag(ej)) D̂, U
)

where i and j are such

that for zi = ‖z‖∞ and ẑj = ‖ẑ‖∞. In most instances the modified version that rescales
along one direction failed to find a solution within a reasonable number (a hundred) of
rescaling iterations. We note that [14, Section 6] provides a closed-form formula to update
the projection matrix P at low cost after rescaling along one direction. The formula can be
extended to handle multiple rescaling directions. However, the formula is computationally
attractive only when the number of rescaling directions is small because it requires com-
puting the spectral decomposition of a matrix with rank equal to the number of rescaling
directions. Our numerical experiments indicate that even using the closed-form formula
in [14] does not compensate for the additional number of iterations required by the modified
version of Algorithm 1 with a single rescaling direction.

Table 9 provides a summary similar to that displayed on Table 7 of the performance
of Algorithm 1 on a set of naive random instances. These instances were generated in
the same way as those used in the experiments summarized Table 1 and Table 2, namely,
L = ker(A) where the entries of A ∈ Rm×n are independently drawn from a standard normal
distribution. In contrast to the results summarized in Table 7 for controlled condition
instances, Algorithm 1 solves most instances easily without rescaling and after a much
lower number of total basic iterations. In particular, Algorithm 1 solves all naive random
instances without rescaling when m 6= n/2 and only a few instances require a small number
of rescaling steps when m = n/2. For additional illustration of the latter fact, Figure 5
plots the number of rescaling iterations for the naive random instances with m = n/2. The
last column of Table 9 shows the fraction of instances where L∩Rn++ 6= ∅. In contrast to the
controlled condition instances, this is unknown for naive random instances. The fraction
of instances where L ∩ Rn++ 6= ∅ is consistent with (9) and the subsequent discussion.
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Table 9: Algorithm 1 on naive random instances

m n
Average #
of rescaling
iterations

Average total #
of iterations

Average
CPU time

(in seconds)

Fraction of instances
with L ∩ Rn++ 6= ∅

100 200 0.496 147.094 0.0213 0.5

250 500 0.338 257.660 0.1428 0.496

100 1000 0 3.700 0.1574 1

200 1000 0 9.520 0.2008 1

500 1000 0.228 373.352 0.7646 0.502

800 1000 0 5.738 0.1175 0

900 1000 0 2.616 0.1156 0

1000 2000 0.188 602.674 4.4935 0.482

We also compared the performance of Algorithm 1 with the state-of-the-art commercial
solver CPLEX. Similar comparisons with Gurobi and MATLAB solvers are reported in [11,
15]. Consistent with the reported results in [11, 15], we observe that on average Algorithm 1
is faster than CPLEX by nearly an order of magnitude for problem instances where L =
ker(A) with A ∈ Rm×n generated naively at random as in [11, 15] and as in the set of
experiments summarized in Table 9. On the other hand, the difference in speed is about
the opposite, that is, CPLEX is nearly an order of magnitude faster when A ∈ Rm×n is
generated so that L∩Rn++ has a controlled condition measure via the procedure suggested
by Proposition 2 as in the set of experiments summarized in Table 7. We attribute this
sharp difference to the fact that the naively generated instances are generally easier and
can usually be solved within one single round of basic procedure and without the need for
rescaling even when m = n/2 as Table 9 illustrates. By contrast, instances with controlled
condition measure, such as those in the set of experiments summarized in Table 7, are
significantly more challenging and require on average ten or more rounds of basic and
rescaling steps. We note that for similarly generated instances, the numerical experiments
reported in [15] generally require several rescaling iterations when m = n/2 while our
algorithm solves most of these instances without any rescaling iterations. This difference is
likely due to the different basic procedures used in [15] and in our numerical experiments.
The rescaling method in [15] uses a variant of the von Neumann algorithm as its basic
procedure while we use the smooth perceptron scheme.

4 Concluding remarks

We have described a computational implementation and numerical experiments of an En-
hanced Projection and Rescaling algorithm for finding most interior solutions to the feasi-
bility problems

find x ∈ L ∩ Rn+ and find x̂ ∈ L⊥ ∩ Rn+,

where L denotes a linear subspace in Rn and L⊥ denotes its orthogonal complement.
Our numerical results provide promising evidence of the effectiveness of this algorithmic
approach.
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Figure 5: Number of rescaling iterations for naive random instances

The MATLAB code for our implementation is comprised of a set of MATLAB functions
with verbatim implementations of Algorithm 1 through Algorithm 5. Our MATLAB code
is publicly available at the following website

http://www.andrew.cmu.edu/user/jfp/epra.html

The tables presented in this paper were created by averaging the results obtained from
running the following MATLAB functions.

• TestSimpleBasicProcedures(m,n,N,epsilon): This is the code used to generate
and test the set of instances summarized in each row of Table 1, Table 2, and Table 5.

• TestControlledConditionBasicProcedures(m,n,N,epsilon,delta): This is the
code used to generate and test the set of instances summarized in each row of Table 3,
Table 4, and Table 6.

• TestControlledConditionRescaled(m,n,N,delta): This is the code used to gen-
erate and test the set of instances summarized in each row of Table 7.

• TestPartitionRescaled(n,N): This is the code used to generate and test the set of
instances summarized in each row of Table 8.

• TestSimpleRescaled(m,n,N): This is the code used to generate and test the set of
instances summarized in each row of Table 9. This code also compares the perfor-
mance of Algorithm 1 with a modified version that rescales along one direction only
including a more efficient update on the projection matrix after each rescaling step.

The input parameters for the above functions are as follows

• N: Number of instances. We used N = 1000 in Table 1 through Table 4, and N = 100

in Table 5 and Table 6. We used N = 500 in Table 7 through Table 9.

• m: Number of rows of A ∈ Rm×n such that L = ker(A)

• n: Dimension of the ambient space

• epsilon: Rescaling condition parameter
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• delta: Upper bound on the values of a subset of randomly chosen positive entries of
the most central solution. The smaller delta, the more ill-conditioned the problem.
We used delta = 0.001 for the experiments summarized in Table 3, Table 4, Table 6,
and Table 7.

Algorithm 1 through Algorithm 5 are implemented via the following MATLAB functions.

• MultiEPRA(A,AA,n,z0,U): This code implements Algorithm 1. Assume L = ker(A) ⊆
Rn and L⊥ = ker(AA). Use z0 as starting point for the basic procedure and U to upper
bound the rescaling matrices.

• perceptron(P,z0,epsilon): This code implements Algorithm 2.

• VN(P,z0,epsilon): This code implements Algorithm 3.

• VNA(P,z0,epsilon): This code implements Algorithm 4.

• smooth(P,u0,epsilon): This code implements Algorithm 5

.
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