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STOCHASTIC POLYNOMIAL OPTIMIZATION

JIAWANG NIE, LIU YANG, AND SUHAN ZHONG

Abstract. This paper studies stochastic optimization problems with polyno-
mials. We propose an optimization model with sample averages and perturba-
tions. The Lasserre type Moment-SOS relaxations are used to solve the sample
average optimization. Properties of the optimization and its relaxations are
studied. Numerical experiments are presented.

1. Introduction

Stochastic optimization is about functions that depend on random variables. A
typical stochastic optimization problem is

(1.1) min
x∈K

f(x) := E[F (x, ξ)]

where F : Rn × R
r → R is a function in (x, ξ). The variable ξ is a random vector,

and the decision variable x ∈ R
n is required to be contained in a set K ⊆ R

n. In
(1.1), the symbol E denotes the expectation of a function in the random vector
ξ. Frequently used methods for solving stochastic optimization are often based on
sample average approximation (SAA). We refer to [5, 8, 17, 24, 25, 33, 35, 36, 38,
39, 41] for related work on stochastic optimization. The SAA methods use sample
averages to approximate the expectation function f(x), transforming the stochastic
optimization into deterministic optimization. Many classical SAA methods assume
the objective functions are convex and are based on evaluations of gradients or
subgradients. They can also be applied to nonconvex problems, however, the global
optimality may not be guaranteed. There exists relatively less work on nonconvex
stochastic optimization [1, 9, 10]. Generally, nonconvex stochastic optimization
problems are computationally challenging, because the deterministic case is already
difficult.

This paper discusses the special case of stochastic polynomial optimization, i.e.,
F (x, ξ) is a polynomial function in x andK is a semialgebraic set defined by polyno-
mials. When F does not depend on ξ, this is the case of polynomial optimization.
The Lasserre type Moment-SOS relaxations are efficient and reliable for solving
polynomial optimization [20, 23]. When F depends on the random vector ξ, the
objective f(x) is the expectation of F (x, ξ) with respect to ξ. Hence, f(x) is still a
polynomial. When the distribution of ξ is known explicitly (e.g, Gaussian, Poisson,
etc), the objective f can be expressed by integral formula. However, when the
distribution of ξ is not known exactly, or its density function is too complicated
for evaluating the expectation, it is not practical to get an explicit formula for f .
In most methods for stochastic optimization, the objective f is approximated by
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sample averages. In this article, we discuss how to use the efficient Moment-SOS
relaxation for solving stochastic optimization with sample average approximation.

In stochastic polynomial optimization, we assume that

F (x, ξ) :=
∑

α=(α1,...,αn)

cα(ξ)x
α1

1 · · ·xαn

n

is a polynomial in x ∈ R
n. Here, each coefficient cα(ξ) is a measurable function in

ξ. The feasible set K is assumed to be in the form

(1.2) K := {x ∈ R
n : g1(x) ≥ 0, . . . , gm(x) ≥ 0},

for given polynomials g1, . . . , gm in x ∈ R
n. For each x, F (x, ξ) is a measurable

function in ξ. So the objective f(x) := E[F (x, ξ)] is also a polynomial. The
stochastic optimization can be expressed as

(1.3)

{

min f(x) := E
[

F (x, ξ)
]

s.t. g1(x) ≥ 0, . . . , gm(x) ≥ 0.

The coefficients of the polynomial f are typically not known explicitly, because the
true distribution of ξ is usually not known exactly. However, they can be estimated
by sample average approximation. In applications, we can generate samples of
ξ, say, N random samples ξ(1), ξ(2), ..., ξ(N). The expectation function f(x) =
E[F (x, ξ)] can be approximated by the sample average

fN(x) :=
1

N

N
∑

k=1

F (x, ξ(k)).

If each sample ξ(k) obeys the same distribution of ξ, then E[fN (x)] = f(x). Fur-
thermore, when all ξ(k) are independently identically distributed (i.i.d.), the Law
of Large Numbers (LLN) (see [15]) implies that

fN (x) → f(x) as N → ∞,

with probability one and under some regularity conditions. The resulting sample
average approximation for (1.3) is

(1.4)

{

min fN (x)
s.t. g1(x) ≥ 0, . . . , gm(x) ≥ 0.

This is also a polynomial optimization problem. It can be solved globally by the
Lasserre type Moment-SOS hierarchy of relaxations [18].

Sample average approximation methods have good statistical properties. For
convenience, denote by ϑ∗, ϑN the optimal values of (1.3) and (1.4) respectively, and
denote by S, SN their optimizer sets respectively. Assume that: i) f is continuous
and S is nonempty; ii) there is a compact set C ⊆ R

n such that S ⊆ C and fN
converges uniformly to f on C, with probability one; iii) for all N large enough,
∅ 6= SN ⊆ C. Then, it can be shown (see [39]) that ϑN −→ ϑ∗ and dist(SN , S) −→ 0
1 as N → ∞, with probability one. Moreover, if ξ(1), ξ(2), ..., ξ(N) are independently
identically distributed as ξ is, then E[ϑN ] ≤ E[ϑN+1] ≤ v∗. That is, as the sample
size Z increases, the sample average optimization gives better approximation for

1For sets A,B ⊆ R
n, their distance is defined as

dist(A,B) := max

{

sup
x∈A

inf
y∈B

‖x− y‖, sup
x∈B

inf
y∈A

‖x− y‖

}

.
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(1.3). We refer to [39] for more details about the convergence of the sample average
optimization.

When F (x, ξ) is a polynomial in x, the sample average approximation (1.4) is also
a polynomial optimization problem. The Lasserre type Moment-SOS relaxations
can be applied to solve it. However, the following concerns need to be addressed:

• For given samples ξ(1), . . . , ξ(N), the optimizer set SN of (1.4) may (or
may not) be far away from the optimizer set S of (1.3). For instance, it
is possible that (1.3) is bounded from below and has a global minimizer,
while (1.4) is unbounded from below and has no global minimizers.

• The sample average fN (x) is only an approximation for the objective f(x).
Usually, the optimizer sets of (1.3) and (1.4) are not exactly same. There-
fore, the sample average approximation (1.4) does not need to be solved
exactly. However, we still expect that the optimizer set SN of (1.4) (if it is
nonempty) is a good approximation for the optimizer set S of (1.3), though
they might be very different. Generally, the optimizer set S can not be
determined exactly, unless the objective f(x) can be determined exactly.

To address the above concerns, we propose the following perturbation sample
average approximation (PSAA) model

(1.5)

{

min fN (x) + ǫ‖[x]2d‖
s.t. g1(x) ≥ 0, . . . , gm(x) ≥ 0,

where d is the smallest integer such that

2d ≥ max{deg(fN ), deg(g1), . . . , deg(gm)}

and [x]2d is the vector of monomials in x and with degrees at most 2d (see (2.1)).
The norm ‖ · ‖ is the standard Euclidean norm. We use the Lasserre type Moment-
SOS relaxation of degree 2d for solving (1.5). A small parameter ǫ > 0 is often
selected, for (1.5) to approximate (1.3) well. In this article, we discuss properties
of (1.5), as well as its Moment-SOS relaxations. The perturbation term ǫ‖[x]2d‖
plays an important role in sample average approximation. The paper is organized
as follows. We review some basics for polynomial optimization in Section 2. The
properties of the perturbed sample average optimization (1.5) are discussed in Sec-
tion 3. The numerical experiments are given in Section 4.

2. Preliminaries

Notation. The symbols N,R denote the set of nonnegative integers and real num-
bers, respectively. For given x ∈ R

n and a real scalar r > 0, B(x, r) denotes the
closed ball in R

n centered at x with radius r, under the standard Euclidean norm.
For a real symmetric matrix X , we write X � 0 (resp., X ≻ 0) by meaning that X
is positive semidefinite (resp., positive definite). The symbol R[x] := R[x1, . . . , xn]
denotes the ring of polynomials with real coefficients and in x := (x1, . . . , xn).
For a polynomial f , deg(f) refers to its total degree. For a tuple of polynomials
p = (p1, p2, . . . , pm), deg(p) refers to the maximum of the degrees of pi. For a
degree d, R[x]d stands for the space of all real polynomials in x and of degrees no
more than d. For a nonnegative integer vector α = (α1, ..., αn) ∈ N

n, denote

|α| := α1 + · · ·+ αn, xα := xα1

1 · · ·xαn

n .
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For convenience, denote the monomial power set

N
n
d := {α ∈ N

n : |α| ≤ d}.

For a degree k, [x]k denotes the vector of all monomials of degrees at most k,
ordered in the graded lexicographic ordering, i.e.,

(2.1) [x]k :=
[

1 x1 · · · xn x2
1 x1x2 · · · xk

n

]T
.

(The superscript T denotes the transpose of a vector or matrix.) For t ∈ R, ⌈t⌉
denotes the smallest integer greater than or equal to t. For a function p(ξ) in a
random vector ξ, E[p(ξ)] stands for the expectation of p(ξ), with respect to the
distribution of ξ.

A polynomial σ is said to be a sum of squares (SOS) if σ = s21 + s22 + · · · + s2k,
for some k ∈ N and polynomials s1, s2, ..., sk ∈ R[x]. Clearly, if σ is SOS and has
degree 2d, then each si must have degree at most d. We use Σ[x] to denote the cone
of all SOS polynomials, and Σ[x]2d to denote the truncation of SOS polynomials
in R[x]2d. Checking whether a polynomial is SOS or not can be done by solving a
semidefintie program [18, 31].

For a tuple g := (g1, . . . , gm) of polynomials in R[x], its quadratic module is the
set

Q(g) := Σ[x] + g1 · Σ[x] + · · ·+ gm · Σ[x].

The 2d-th truncation of Q(g) is

Q(g)2d := Σ[x]2d + g1 · Σ[x]2d−deg(g1) + · · ·+ gm · Σ[x]2d−deg(gm).

It clearly holds the nesting relation of containment

· · · ⊆ Q(g)2d ⊆ Q(g)2d+2 ⊆ · · ·Q(g).

Indeed, each Q(g)2d is a convex cone of the space R[x]2d. The tuple g determines
the semialgebraic set in (1.2). Obviously, if f ∈ Q(g), then f ≥ 0 on K. To
ensure f ∈ Q(g), we often require f > 0 on K. The quadratic module Q(g) is
said to be archimedean if there exists a single polynomial p ∈ Q(g) such that the
inequality p(x) ≥ 0 defines a compact set in R

n. If Q(g) is archimedean, then the
set K must be compact. The converse is not necessarily true. However, if K is
compact (say, K ⊆ B(0, R) for some radius R), one can always enforce Q(g) to be
archimedean by adding the redundant polynomial R2 −‖x‖2 to the tuple g. When
Q(g) is archimedean, if f > 0 on K, then we must have f ∈ Q(g). This conclusion
is referred to Putinar’s Positivstellensatz, which was shown in [34]. Interestingly,
when f ≥ 0 on K, we still have f ∈ Q(g), under some optimality conditions [28].

For a given dimension n and degree d, denote by R
N

n

d the space of real vectors
that are indexed by α ∈ N

n
d , i.e.,

R
N

n

d := {y = (yα)α∈Nn

d
: yα ∈ R}.

Each vector in R
N

n

d is called a truncated multi-sequence (tms) of degree d. A tms
y ∈ R

N
n

d gives the linear functional Ry acting on R[x]d as

(2.2) Ry

(

∑

α∈Nn

d

fαx
α
)

:=
∑

α∈Nn

d

fαyα.

The Ry is called a Riesz functional. For f ∈ R[x]d and y ∈ R
N

n

d , we denote

(2.3) 〈f, y〉 := Ry(f).
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The tms y ∈ R
N

n

d is said to admit a representing measure supported in a set T ⊆ R
n

if there exists a Borel measure µ, supported in T , such that yα =
∫

xαdµ for all
α ∈ N

n
d . This is equivalent to that 〈f, y〉 =

∫

f(x)dµ for all f ∈ R[x]d. Such µ is
called a T -representing measure for y. We refer to [7, 12, 29] for recent work on
truncated moment problems.

For a polynomial p ∈ R[x]2d, the dth localizing matrix of p associated to a tms

y ∈ R
N

n

2d , is the symmetric matrix L
(d)
p [y] such that

(2.4) vec(a)T
(

L(d)
p [y]

)

vec(b) = Ry(pab)

for all polynomials a, b ∈ R[x]t, with t = d− ⌈deg(p)/2⌉. In the above, the vec(a)
denotes the coefficient vector of the polynomial a. For instance, when n = 3 and

p = x1x2 − x3
3, for y ∈ R

N
3

6 , we have

L(3)
p [y] =









y110 − y003 y210 − y103 y120 − y013 y111 − y004
y210 − y103 y310 − y203 y220 − y113 y211 − y104
y120 − y013 y220 − y113 y130 − y023 y121 − y014
y111 − y004 y211 − y104 y121 − y014 y112 − y005









.

For the special case of constant one polynomial p = 1, L
(d)
1 [y] is reduced to the

so-called moment matrix

(2.5) Md[y] := L
(d)
1 [y].

The columns and rows of L
(d)
p [y], as well as Md[y], are labelled by α ∈ N

n with

2|α|+ deg(p) ≤ 2d. For instance, for n = 3 and y ∈ R
N

3

4 , we have

M2[y] =

































y000 y100 y010 y001 y200 y110 y101 y020 y011 y002
y100 y200 y110 y101 y300 y210 y201 y120 y111 y102
y010 y110 y020 y011 y210 y120 y111 y030 y021 y012
y001 y101 y011 y002 y201 y111 y102 y021 y012 y003
y200 y300 y210 y201 y400 y310 y301 y220 y211 y202
y110 y210 y120 y111 y310 y220 y211 y130 y121 y112
y101 y201 y111 y102 y301 y211 y202 y121 y112 y103
y020 y120 y030 y021 y220 y130 y121 y040 y031 y022
y011 y111 y021 y012 y211 y121 y112 y031 y022 y013
y002 y102 y012 y003 y202 y112 y103 y022 y013 y004

































.

Suppose g := (g1, . . . , gm) is a tuple of polynomials in R[x]2d. Consider the cone
of tms of degree 2d

(2.6) S (g)2d :=
{

y ∈ R
N

n

2d

∣

∣

∣Md[y] � 0, L(d)
g1

[y] � 0, . . . , L(d)
gm

[y] � 0
}

.

It is a closed convex cone in R
N

n

2d . Consider the projection map:

(2.7) π : RN
n

2d → R
n, y 7→ u = (ye1 , . . . , yen).

Let K be the semialgebraic set as in (1.2), then

(2.8) K ⊆ π
(

S (g)2d ∩ {y0 = 1}
)

.

This is because for each u ∈ K, the tms y := [u]2d belongs to S (g)2d and π(y) =
u. Therefore, the linear section {y0 = 1} of the cone S (g)2d is a lifted convex
relaxation of the set K. The cone S (g)2d and the quadratic module Q(g)2d are
dual to each other. This is because 〈f, y〉 ≥ 0 for all f ∈ Q2d(g) and y ∈ S (g)2d.
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We refer to [20, 23, 30] for these basic properties. Interestingly, the containment in
(2.8) is an equality when the polynomials gi are SOS-concave [11].

There exists much work for polynomial optimization. The Lasserre type Moment-
SOS hierarchy of relaxations were introduced in [18]. The Moment-SOS hierarchy
was proved to have finite convergence under some optimality conditions [16, 19, 28].
The flat extension or flat truncation condition can be used to certify its convergence
[7, 13, 26]. For unconstrained optimization, the performance of the standard SOS
relaxations was studied in [31, 32]. For the special case of finite feasible sets, the
convergence was studied in [21, 22, 27]. We refer to [3, 20, 23, 37] for more detailed
introductions to polynomial optimization.

3. The sample average optimization

Let ξ(1), . . . , ξ(N) be given samples for the random vector ξ. Consider the sample
average function

fN(x) :=
1

N

N
∑

k=1

F (x, ξ(k)).

When F (x, ξ) is a polynomial in x ∈ R
n, fN (x) is also a polynomial in x. We

assume that the feasible set K is given as in (1.2), for a tuple g := (g1, . . . , gm) of
polynomials. Let d be the degree:

(3.1) d =
⌈1

2
max{deg(fN ), deg(g1), . . . , deg(gm)}

⌉

.

Instead of solving (1.4) directly, we propose to solve the sample average optimization
with perturbation

(3.2)

{

min fN (x) + ǫ‖[x]2d‖
s.t. g1(x) ≥ 0, . . . , gm(x) ≥ 0,

for a small parameter ǫ > 0. The Lasserre type moment relaxation can be applied

to solve (3.2). Recall the notation [x]2d, Md[y], L
(d)
gi [y] as in Section 2. Observe

that

fN(x) = 〈fN , [x]2d〉, Md

[

[x]2d
]

� 0, L(d)
gi

[

[x]2d
]

� 0

for all x ∈ K and all i = 1, . . . ,m. If we replace the monomial vector [x]2d by a
tms y ∈ R

N
n

2d , then (3.2) is relaxed to the following convex optimization

(3.3)







min 〈fN , y〉+ ǫ‖y‖

s.t. Md[y] � 0, L
(d)
gi [y] � 0 (i = 1, . . . ,m),

y0 = 1, y ∈ R
N

n

2d .

It is a semidefinite program, with a norm function in the objective. The relaxation
(3.3) is said to be tight if its optimal value is the same as that of (3.2). In this paper,
we choose ‖ · ‖ to be the standard Euclidean norm, but any other kind of vector
norms can also be used. The equality constraint y0 = 1 means that the first entry
of y is equal to one. The set of all y satisfying linear matrix inequalities in (3.3)
is just the cone S (g)2d, defined as in (2.6). The cone S (g)2d and the truncated
quadratic module Q(g)2d are dual to each other. Therefore, the Lagrange function
for (3.3) is

L(y, q, γ) = 〈fN , y〉+ ǫ‖y‖ − 〈q, y〉 − γ(y0 − 1)
= 〈fN − q − γ, y〉+ ǫ‖y‖+ γ,
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for dual variables q ∈ Q(g)2d and γ ∈ R. The function L(y, q, γ) has a finite
minimum value for y ∈ R

N
n

2d if and only if

‖vec(fN − q − γ)‖ ≤ ǫ,

for which case the minimum value is γ. (The vec(p) denotes the coefficient vector
of p.) Therefore, the dual optimization problem of (3.3) is

(3.4)







max γ
s.t. fN − p− γ ∈ Q(g)2d,

‖vec(p)‖ ≤ ǫ, p ∈ R[x]2d.

Because the sample average fN (x) is only an approximation for f(x), it is possible
that there is no scalar γ such that fN −γ ∈ Q(g)2d. The perturbation term ǫ‖y‖ in
(3.3) motivates us to find the maximum γ such that fN − p− γ ∈ Q(g)2d, for some
polynomial p whose coefficient vector has a small norm. This leads to the following
algorithm.

Algorithm 3.1. Generate samples ξ(1), . . . , ξ(N), according to the distribution of
ξ. Choose a small perturbation parameter ǫ > 0.

Step 1 Compute the sample average fN = N−1
∑N

k=1 F (x, ξ(k)).
Step 2 Solve the semidefinite relaxation problem (3.3). If (3.3) is infeasible, in-

crease the value of ǫ (e.g., let ǫ := 2ǫ), until (3.3) has a minimizer, which
we denote as y∗.

Step 3 Let u = π(y∗), where π is the projection map in (2.7), or equivalently, let

u = (y∗e1 , . . . , y
∗

en
).

Output u as a candidate minimizer for the sample average optimization
with perturbation (3.2), and stop.

For ǫ > 0, the minimizer of the relaxation (3.3) is always unique (if it exists),
because its objective is strictly convex. Our numerical experiments demonstrate
that Algorithm 3.1 is efficient for solving (3.2).

Theorem 3.2. Assume that u∗ is a minimizer of (3.2) and y∗ is a minimizer of
(3.3). Then, for ǫ > 0, the relaxation (3.3) is tight if and only if rankMd[y

∗] = 1.
In particular, for the case rankMd[y

∗] = 1, the point u = π(y∗) is a minimizer of
(3.2).

Proof. Let ϑ1, ϑ2 be optimal values of (3.2) and (3.3) respectively.
“⇐” It is clear that ϑ1 ≥ ϑ2. If rankMd[y

∗] = 1, then for u = π(y∗) one can
show that Md[y

∗] = [u]d([u]d)
T . Hence, y∗ = [u]2d, 〈fN , y∗〉 = fN (u), and each

gi(u) ≥ 0 (see [13, 26]). So, u is a feasible point of (3.2) and

ϑ1 ≤ fN (u) + ǫ‖[u]2d‖ = 〈fN , y∗〉+ ǫ‖y∗‖ = ϑ2.

Therefore, ϑ1 = ϑ2, u is a minimizer of (3.2), and the relaxation (3.3) is tight.
“⇒” Let ỹ := [u∗]2d, then fN(u∗) = 〈fN , ỹ〉 and ‖[u∗]2d‖ = ‖ỹ‖. If the relaxation

(3.3) is tight, then ϑ1 = ϑ2 and ỹ is a minimizer of (3.3). For ǫ > 0, the objective
of (3.3) is strictly convex, so its minimizer must be unique. Hence, ỹ = y∗ and

Md[y
∗] = Md[ỹ] = [u∗]d([u

∗]d)
T .

Therefore, rankMd[y
∗] = rankMd[ỹ] = 1. �
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When the sample average fN (x) is unbounded from below on the feasible set K,
the moment relaxation (3.3) might still be unbounded from below if ǫ > 0 is small.
However, if ǫ > 0 is big, then (3.3) must be feasible and has a minimizer. Indeed,
we have the following theorem.

Theorem 3.3. Suppose the feasible set K has nonempty interior. If ǫ > 0 is big,
both (3.3) and (3.4) have optimizers and their optimal values are the same.

Proof. When K has nonempty interior, the quadratic module Q(g)2d is a closed
cone (see [23, Theorem 3.49]) and the cone S (g)2d has nonempty interior. For
instance, let ν be the Gaussian measure, then the tms

ŷ :=
1

ν(K)

∫

K

[x]2ddν(x)

is an interior point of the cone S (g)2d. In other words, Md[ŷ] ≻ 0 and all L
(d)
gi [ŷ] ≻

0. This is because
∫

K
p2dν > 0 and

∫

K
gip

2dν > 0 for all nonzero polynomials p.
Moreover, ŷ0 = 1. The convex relaxation (3.3) is strictly feasible (i.e., there is a
feasible y such that each matrix in (3.3) is positive definite). When ǫ > 0 is big,
the SOS relaxation (3.4) is also strictly feasible. For instance, for the choice

ǫ > ‖fN − [x]Td [x]d‖, p̂ = fN − [x]Td [x]d, γ̂ = 0,

we have that

fN − p̂− γ̂ = [x]Td [x]d ∈ int
(

Σ[x]2d

)

⊆ int
(

Q(g)2d

)

.

In the above, int denotes the interior of a set. Therefore, for big ǫ > 0, both (3.3)
and (3.4) have strictly feasible points. By the strong duality theorem (see [2, 4]),
they have the same optimal value and they both achieve the optimal value, i.e.,
they have optimizers. �

In applications, however, we often choose a small ǫ > 0, because we expect
that (3.2) is a good approximation for (1.4). In (3.3), the value of ǫ affects the
performance of (3.3). When ǫ > 0 is too small, (3.3) might be unbounded from
below and has no minimizers. If ǫ > 0 is big, (3.3) might give a loose approximation
for (1.4). For efficiency, we often anticipate the smallest value of ǫ such that (3.3)
is bounded from below and has a minimizer. When K has nonempty interior, the
relaxation (3.3) is strictly feasible, i.e., there exists ŷ such that all the matrices

Md[ŷ] and L
(d)
gi [ŷ] are positive definite. Therefore, the strong duality holds between

(3.3) and (3.4). To ensure that (3.3) is solvable (i.e., it has a minimizer), the dual
optimization problem (3.4) needs to be feasible. Consider the optimization problem

(3.5)







ǫ∗ := min ‖vec(p)‖
s.t. fN − p− γ ∈ Q(g)2d,

γ ∈ R, p ∈ R[x]2d.

The above is a convex optimization problem with semidefinite constraints. In com-
putational practice, we often choose ǫ > 0 in a heuristic way, e.g., ǫ = 10−2. If such
ǫ is not enough, we can increase its value until (3.3) performs well.
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4. Numerical Experiments

This section gives numerical experiments of applying Algorithm 3.1 to solve
stochastic polynomial optimization. The computation is implemented in MATLAB
R2018a, in a Laptop with CPU 8th Generation Intel Core i5-8250U and RAM 16
GB. The moment relaxation (3.3) is solved by the software GloptiPoly 3 [14],
which calls the semidefinite program solver SeDuMi [40]. The computational results
are displayed with four decimal digits. We use “PSAA” to denote the perturbation
sample average approximation model (3.2). Its relaxation (3.3) is said to be solvable
if it has a minimizer y∗. For such a case, let u be the point given in Step 3 of
Algorithm 3.1, i.e., u = π(y∗). Otherwise, (3.3) is said to be not solvable and we
use “n.a.” to indicate the relevant values are not available. We use fmin and v∗

to denote the optimal value and the minimizer of (1.3) respectively. The symbol ξ̄
stands for the sample average of the random vector ξ ∈ R

r, while ξ̄i refers to its
ith entry:

ξ̄ =
1

N

N
∑

k=1

ξ(k), ξ̄i =
1

N

N
∑

k=1

ξ
(k)
i , i = 1, · · · , r.

In our numerical examples, we use the following classical distributions for random
variables (see [6]; let δa denote the Dirac function supported at a):

• Ber(p) denotes the Bernoullian distribution with success probability p,
whose density function is (1 − p) · δ0 + p · δ1.

• Geo(p) denotes the geometric distribution with success probability p, whose
density function is

∑

∞

n=0(1 − p)np · δn.
• P(λ) denotes the Poisson distribution with parameter λ > 0, whose density

function is
∑

∞

n=0 e
−λ λn

n! · δn.
• U(a, b), with a < b, denotes the uniform distribution on [a, b].
• N (µ, P ) denotes the normal distribution with the expectation µ and co-
variance matrix P .

Example 4.1. Consider the stochastic optimization problem

(4.1)
min
x∈R4

f(x) := E[G(x) +H(x, ξ)]

s.t. x1 − 1 ≥ 0, x2 − 1/2 ≥ 0, x3 − 1/3 ≥ 0, x4 − 1/4 ≥ 0,

where

G(x) = (x2
1 − 2x2

2)
2 + x3(2x

2
3 − 3x1x2 + x2

4)(x
2
4 − 3x1x2)− x4x

3
3(2x

3
1 − x3

3),

H(x, ξ) = ξ1x
5
3 + ξ2x

6
1x4, ξ1 ∼ U(0, 2), ξ2 ∼ U(0, 2).

We have E(ξ1) = E(ξ2) = 1. The constraining polynomial tuple is

g = (x1 − 1, x2 − 1/2, x3 − 1/3, x4 − 1/4).

The feasible set K is a polyhedron and the exact objective is

f = (x2
1 − 2x2

2)
2 + x3(x

2
3 − 3x1x2 + x2

4)
2 + x4(x

3
1 − x3

3)
2 ∈ Q(g)8.

For the optimization (1.3), the optimal value and the minimizer are

fmin = 8.4455e− 07, v∗ = (1.0031, 0.7093, 1.0031, 1.0622).

Since the approximation polynomial fN is uniquely determined by ξ̄1 and ξ̄2, we can
pick some typical sample averages to explore the performance of our optimization
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model (3.2) and its relaxation (3.3). For instance, we consider the samples of ξ
such that

|ξ̄1 − E(ξ1)| = |ξ̄2 − E(ξ2)| = 10−2.

There are four cases of the signs:

I : ξ̄1 − E(ξ1) > 0, ξ̄2 − E(ξ2) > 0, II : ξ̄1 − E(ξ1) < 0, ξ̄2 − E(ξ2) > 0,
III : ξ̄1 − E(ξ1) < 0, ξ̄2 − E(ξ2) < 0, IV : ξ̄1 − E(ξ1) > 0, ξ̄2 − E(ξ2) < 0.

We solve the optimization model (3.2) for each case. The computational results are
reported in Table 1. The PSAA model (3.2) has clear advantages for cases III and
IV, when they are compared to the unperturbed case (i.e, ǫ = 0). It gives reliable
optimizers, while the classical SAA model (1.4) does not return good ones.

Table 1. Performance of PSAA for Example 4.1

ǫ 0 10−4 10−3 10−2 10−1

I

solvable? yes yes yes yes yes
time(sec.) 1.13 1.34 1.23 1.23 1.23

|〈fN , y∗〉 − fN(u)| 1.29e-06 6.41e-07 2.38e-07 1.30e-07 4.75e-08
|〈fN , y∗〉 − fmin| 2.05e-02 2.05e-02 2.07e-02 3.41e-02 3.33e-01

II

solvable? yes yes yes yes yes
time(sec.) 1.12 1.29 1.23 1.21 1.22

|〈fN , y∗〉 − fN(u)| 9.15e-07 6.41e-07 2.06e-07 1.27e-07 1.53e-08
|〈fN , y∗〉 − fmin| 4.84e-04 4.86e-04 6.91e-04 1.38e-02 3.13e-01

III

solvable? no yes yes yes yes
time(sec.) 2.14 2.78 1.40 1.16 1.15

|〈fN , y∗〉 − fN(u)| n.a. 1.13e+03 7.50e-08 1.25e-07 8.22e-09
|〈fN , y∗〉 − fmin| n.a. 7.14e+05 3.85e-02 7.00e-03 2.94e-01

IV

solvable? no yes yes yes yes
time(sec.) 2.19 2.79 1.40 1.14 1.16

|〈fN , y〉 − fN (u)| n.a. 1.35e+03 1.89e-07 1.26e-07 1.54e-08
|〈fN , y〉 − fmin| n.a. 6.52e+05 4.73e-04 1.32e-02 3.14e-01

Example 4.2. Consider the stochastic polynomial optimization

min
x∈R4

f(x) := E[F (x) +H(x, ξ)]

s.t. x1x3 + 1 ≥ x2
2 + x2

4, x2x3 − x1x4 + 2 ≥ 0,

x3
1 + x3

2 + x3
3 + x3

4 ≤ 8,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,

(4.2)

where

G(x) = x2
1x

2
2 + x2

2x
2
3 + (1 − x2x3)

2 + (3− x1x4)
2 + x1x2x3x4,

H(x, ξ) = ξ1x1x
2
2x3 + ξ2x

2
2x

2
4,

ξ ∼ N

([

−0.41
−2.50

]

,

[

1 0
0 1

])

.

If f(x) is evaluated exactly, the optimal value and the minimizer of (1.3) are

fmin = 1.0655, v∗ = (1.5829, 0.6427, 0.9316, 1.4358).
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As in Example 4.1, we explore the performance of (3.2)-(3.3) for the following cases
of samples:

I : ξ̄1 = E(ξ1)− 10−2, ξ̄2 = E(ξ2)− 10−2,

II : ξ̄1 = E(ξ1)− 10−2, ξ̄2 = E(ξ2),

III : ξ̄1 = E(ξ1), ξ̄2 = E(ξ2)− 10−2.

The computational results are reported in Table 2. The PSAA model (3.2) performs
better than the classical SAA model (1.4) (i.e. ǫ = 0). For all these cases, (3.2)
gives more reliable optimizers. Moreover, solving the relaxation (3.3) costs less
computational time for cases I and II.

Table 2. Performance of PSAA for Example 4.2

ǫ 0 10−4 10−3 10−2

I

solvable? yes yes yes yes
time(sec.) 0.37 0.29 0.15 0.26

|〈fN , y∗〉 − fN (u)| 1.81e+05 1.29e-08 5.28e-09 9.53e-09
|〈fN , y∗〉 − fmin| 1.81e+05 1.48e-02 1.48e-02 1.47e-02

II

solvable? yes yes yes yes
time(sec.) 0.23 0.12 0.14 0.12

|〈fN , y∗〉 − fN (u)| 1.87e+05 1.29e-08 5.61e-09 9.64e-09
|〈fN , y∗〉 − fmin| 1.87e+05 6.13e-03 6.12e-03 6.12e-03

III

solvable? yes yes yes yes
time(sec.) 0.12 0.13 0.10 0.09

|〈fN , y∗〉 − fN (u)| 5.58e-02 1.29e-08 5.61e-09 9.70e-09
|〈fN , y∗〉 − fmin| 1.40e-02 8.56e-03 8.56e-03 8.55e-03

Example 4.3. Consider the stochastic optimization

min
x∈R2

E
{

F (x, ξ) = ξ1x
4
1x

2
2 + ξ2x

2
1x

4
2 − ξ3x1x

3
2 + ξ4x1x2

}

s.t. 0 ≤ x1 ≤ 2, x1 + x2 ≤ 4, x1x2 ≤ 8,
(4.3)

where

ξ ∼ N

















1
1
3
1









,









1 0.1 0.3 0.2
0.1 1 0.4 0.3
0.3 0.4 1 0.2
0.2 0.3 0.2 1

















.

The exact objective f(x) = E[F (x, ξ)] can be evaluated as

f(x) = x4
1x

2
2 + x2

1x
4
2 − 3x1x

3
2 + x1x2.

For the optimization (1.3), its optimal value and minimizer are

fmin = −27.8444, v∗ = (0.3442, 3.6558).

For convenience, we use “ξ̄ = E(ξ) + o(10−3)” to denote a random sample average
of size N = 1000 with error in the order of 10−3. Consider two cases:

I : ξ̄ = E(ξ), II : ξ̄ = E(ξ) + o(10−3).

The numerical results are reported in Table 3. The PSAA model (3.2) gives a better
optimizer than the unperturbed one, for both cases.
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Table 3. Performance of PSAA for Example 4.3

ǫ 0 10−4 10−3

I

solvable? yes yes yes
time(sec.) 0.17 0.13 0.12

|〈fN , y∗〉 − fN (u)| 1.86e+03 4.18e-06 3.55e-06
|〈fN , y∗〉 − fmin| 3.44e+01 2.09e-04 2.30e-02

II

solvable? yes yes yes
time(sec.) 0.13 0.14 0.16

|〈fN , y∗〉 − fN (u)| 1.85e+03 4.17e-06 3.56e-06
|〈fN , y∗〉 − fmin| 3.44e+01 1.29e-02 9.87e-03

Example 4.4. Consider the stochastic polynomial optimization

min
x∈R3

f(x) := E[G(x) +H(x, ξ)]

s.t. x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, 1− 1Tx ≥ 0,
(4.4)

where

G(x) = x4
1 + x1x2x3 + x3(1 − x2

1 − x2
2),

H(x, ξ) = 2ξ1x
4
2 − 4ξ1x

2
1x

2
2 − ξ2x1x2,

ξ1 ∼ Ber(0.5), ξ2 ∼ Geo(0.5).

The feasible set K is a simplex, which is compact and satisfies the archimedean
condition. For all samples ξ(i), the sample average fN (x) is bounded from below
on K and it has a minimizer. For this example, E(ξ1) = 0.5 and E(ξ2) = 2, so

f(x) = (x2
1 − x2

2)
2 + x3(1 − x2

1 − x2
2)− x1x2(2− x3).

The optimal value and minimizer of (1.3) are

fmin = −0.5, v∗ = (0.5, 0.5, 0).

We consider two cases of samples

I : ξ̄1 = E(ξ1) + 10−3, ξ̄2 = E(ξ2), ǫ∗ ≈ 0.001155;

II : ξ̄1 = E(ξ1), ξ̄2 = E(ξ2) + 10−3, ǫ∗ ≈ 7.5875× 10−9.

In the above, ǫ∗ is the minimum value of (3.5). The numerical results are reported

Table 4. Performance of PSAA for Example 4.4.

I

ǫ 0 0.0012 0.004 0.008
solvable? no yes yes yes
time(sec.) 0.12 0.10 0.07 0.09

|〈fN , y∗〉 − fN(u)| n.a. 5.31e-03 3.36e-04 1.09e-04
|〈fN , y∗〉 − fmin| n.a. 5.44e-03 4.61e-04 2.34e-04

II

ǫ 0 10−4 10−3 10−2

solvable? yes yes yes yes
time(sec.) 0.08 0.08 0.07 0.06

|〈fN , y∗〉 − fN(u)| 5.03e-09 1.84e-09 1.61e-09 1.86e-09
|〈fN , y∗〉 − fmin| 2.50e-04 2.50e-04 2.50e-04 2.50e-04
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in Table 4. The PSAA model (3.2) performs very well for both cases. Compared
with the classical SAA model (1.4) (i.e., ǫ = 0), it has quite clear advantages for
case I. It successfully returned a good minimizer, while (1.4) is unbounded from
below and does not return a minimizer.

Example 4.5. Consider the unconstrained stochastic optimization

(4.5) min
x∈R4

E[G(x) +H(x, ξ)]

where

ξ ∼ P(2), G(x) = (x3 − x4)
4 + (x1 + x2)

4 + x2
1 + x2

2 + x2
3 + x2

4,

H(x, ξ) = ξ − (ξ2 − 2ξ)(x1 − x4)− 2(ξ − 1)(x3 − x4)
2(x1 + x2)

2.

Evaluating the expectation, we get E(ξ) = 2,E(ξ2) = 6 and

f(x) = [(x3 − x4)
2 − (x1 + x2)

2]2 + (x1 − 1)2 + (1 + x4)
2 + x2

2 + x2
3.

The optimal value and minimizer of (1.3) are

fmin = 0, v∗ = (1, 0, 0, −1).

Approximate ξ, ξ2 by their sample averages ξ̄, s2, i.e., s2 = 1
N

∑N

k=1(ξ
(k))2. We

make samples of different sizes and compute ǫ∗ in (3.5) for each case. We focus on

Table 5. The values of ǫ∗ for Example 4.5.

I II III IV
N 500 1000 5000 10000
ξ̄ 2.11 1.96 2.01 2.02
s2 6.43 5.71 6.13 6.07
ǫ∗ 0.807543 3.3618e-10 0.073413 0.146826

cases III and IV. The computational results are reported in Table 6. The pertur-

Table 6. Performance of PSAA for Example 4.5.

III IV
ǫ 0 ǫ∗ 0.1 0 ǫ∗ 0.2

solvable? no yes yes no yes yes
time(sec.) 0.23 0.20 0.11 0.10 0.16 0.07

|〈fN , y∗〉 − fN (u)| n.a. 5.30e+01 2.02e-01 n.a. 6.47e+01 2.28e-01
|〈fN , y〉 − fmin| n.a. 5.39e+01 3.90e-01 n.a. 6.49e+01 2.96e-01

‖u− v∗‖ n.a. 3.09e-02 1.28e-01 n.a. 5.86e-02 2.73e-01

u n.a.









1.0216

0.0035

0.0035

−1.0216

















0.9102

0.0071

0.0071

−0.9102









n.a.









0.9591

0.0059

0.0059

−0.9591

















0.8070

0.0085

0.0085

−0.8070









bation term in the PSAA model (3.2) makes a big difference for computing reliable
minimizers. The PSAA model returned minimizers that are close to the optimizer
of (1.3), while the classical SAA model (i.e., ǫ = 0) is unbounded from below and
fails to return a minimizer.
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Example 4.6. Consider the stochastic polynomial optimization

min
x∈R2

f(x) := E[G(x) +H(x, ξ)]

s.t. x1 − 1 ≥ 0, x2 ≥ 0, 2− 1Tx ≥ 0
(4.6)

where

G(x) = x4
1 + x4

2 + x1x2 − 2(x1 + x2) + 1,

H(x, ξ) = ξ3x1x2

[

ξ1x1 + ξ2x2 − (ξ1 + ξ2)x1x2

]

,

ξ ∼ N









0
0
1



 ,





1 0 1
0 1 1
1 1 3







 .

Note that E(ξ1ξ3) = E(ξ2ξ3) = 1 and the exact objective is

f = (x2
1 − x2

2)
2 + (x1x2 − 1)(x1 + x2) + (x1 − 1)(x2 − 1).

Its optimal value and minimizer are

fmin = −0.2500, v∗ = (1.0000, 0.7071).

Denote s1 :=
∑N

k=1 ξ
(k)
1 ξ

(k)
3 , s2 :=

∑N

k=1 ξ
(k)
2 ξ

(k)
3 . We make samples of different

sizes and compute ǫ∗ in (3.5) for each case. The values of ǫ∗ are given in Table 7.
We focus on cases II and III, for which the numerical results are reported in Table 8.

Table 7. The values of ǫ∗ for Example 4.6.

I II III IV
N 500 1000 5000 10000
s1 0.98 1.08 1.01 0.97
s2 1.06 0.96 1.02 0.96
ǫ∗ 0.023094 0.023094 0.017321 1.1076e-09

While the optimization (1.4) is unbounded from below via the classical SAA model,

Table 8. Performance of PSAA for Example 4.6.

II III
ǫ 0 ǫ∗ 0.05 0 ǫ∗ 0.05

solvable? no yes yes no yes yes
time(sec.) 0.06 0.21 0.06 0.06 0.13 0.05

|〈fN , y∗〉 − fN (u)| n.a. 1.13e+02 1.36e-02 n.a. 5.65e+00 6.25e-03
|〈fN , y〉 − fmin| n.a. 1.13e+02 4.21e-03 n.a. 5.65e+00 2.80e-03

‖u− v∗‖ n.a. 1.20e-03 1.85e-02 n.a. 6.08e-03 2.58e-02

u n.a.

[

1.0000

0.7059

] [

1.0000

0.6886

]

n.a.

[

1.0000

0.7010

] [

1.0000

0.6813

]

our PSAA model (3.2) provides good lower bounds and returns reliable minimizers
for all cases.
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Example 4.7. Consider the stochastic polynomial optimization

min
x∈R3

f(x) = E[F (x, ξ)]

s.t. x1 − 1 ≥ 0, x2 − 1 ≥ 0, x3 − 1 ≥ 0,

8− x1x2x3 ≥ 0

(4.7)

where ξ ∼ U(0, 2) and

F (x, ξ) = (−ξ3 + 3ξ22 − ξ)x1x2x3(x1 + x2 + x3) + (ξ3 − ξ)(x1x2 + x2x3 + x1x3).

One can see that E(ξ) = 1,E(ξ2) = 4/3, E(ξ3) = 2, and the exact objective

f = x1x2x3(x1 + x2 + x3) + x1x2 + x2x3 + x1x3.

Its optimal value and minimizer are

fmin = 6, v∗ = (1, 1, 1).

As in Examples 4.5-4.6, we approximate ξ, ξ2, ξ3 by sample averages where s2 =
∑N

k=1

(

ξ(k)
)2
, s3 =

∑N

k=1

(

ξ(k)
)3
. Several samples of different sizes are made. The

values of ǫ∗ in (3.5) are given in Table 9. We apply the classical SAA model (i.e.,

Table 9. The values of ǫ∗ for Example 4.7.

I II III
N 500 1000 5000
ξ̄ 0.99 1.03 1.00
s2 1.32 1.38 1.33
s3 1.97 2.09 1.99
ǫ∗ 0.508637 0.518810 0.508637

ǫ = 0) and the PSAA model (i.e., ǫ = ǫ∗) to cases I, II and III. The computational

Table 10. Performance of PSAA for Example 4.7.

I II III
ǫ 0 ǫ∗ 0 ǫ∗ 0 ǫ∗

solvable? yes yes yes yes yes yes
time(sec.) 0.07 0.06 0.07 0.06 0.08 0.06

|〈fN , y∗〉 − fN (u)| 7.08e+01 1.07e-06 7.08e+01 8.44e-07 7.08e+01 1.07e-06
|〈fN , y〉 − fmin| 2.07e+01 2.00e-02 2.07e+01 1.00e-02 2.07e+01 1.00e-02

‖u− v∗‖ 1.67e+00 2.97e-08 1.67e+00 2.97e-08 1.67e+00 2.97e-08

u





1.9637

1.9637

1.9630









1.0000

1.0000

1.0000









1.9631

1.9631

1.9627









1.0000

1.0000

1.0000









1.9631

1.9631

1.9627









1.0000

1.0000

1.0000





results are reported in the Table 10. The PSAA model (3.2) performs much better
than the classical SAA model (1.4), as (3.2) gives more reliable minimizers for all
cases.
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5. Conclusion

This paper proposes a sample average optimization model with a perturbation
term for solving stochastic polynomial optimization. The perturbation optimization
model performs better than the classical one without perturbations. The Lasserre
type moment relaxations are used to solve the perturbation optimization. In partic-
ular, we show that the moment relaxation is tight if and only if the moment matrix
of the minimizer is rank one. Numerical experiments demonstrated advantages of
our perturbation optimization model.
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