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This paper describes an implementation of the L-BFGS method designed to deal with two
adversarial situations. The first occurs in distributed computing environments where some of
the computational nodes devoted to the evaluation of the function and gradient are unable to
return results on time. A similar challenge occurs in a multi-batch approach in which the data
points used to compute function and gradients are purposely changed at each iteration to
accelerate the learning process. Difficulties arise because L-BFGS employs gradient differences
to update the Hessian approximations, and when these gradients are computed using different
data points the updating process can be unstable. This paper shows how to perform stable
quasi-Newton updating in the multi-batch setting, studies the convergence properties for both
convex and nonconvex functions, and illustrates the behavior of the algorithm in a distributed
computing platform on binary classification logistic regression and neural network training
problems that arise in machine learning.
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1. Introduction

It is common in machine learning to encounter optimization problems involving tens of
millions of training examples and millions of variables. To deal with the demands of time,
storage and processing power imposed by such applications, high performance implemen-
tations of stochastic gradient and batch quasi-Newton methods have been developed; see
e.g., [2, 4, 23, 24, 65, 73, 76]. In this paper we study a batch approach based on the
L-BFGS method [48, 58] that strives to reach the right balance between efficient learning
and productive parallelism.

At present, due to its fast learning properties and low per-iteration cost, the preferred
method for very large scale applications is the stochastic gradient (SG) method [14, 67],
and its variance-reduced and accelerated variants [25, 34, 35, 41, 42, 47, 56, 57, 68]. These
methods are implemented either in an asynchronous manner (e.g., using a parameter
server in a distributed setting) or following a synchronous mini-batch approach that
exploits parallelism in the gradient evaluations [8, 30, 43, 65, 66, 72]. A drawback of the
asynchronous approach is that it cannot use large batches, as this would cause updates to
become too dense and compromise the stability and scalability of the method [49, 65]. As
a result, the algorithm spends more time in communication as compared to computation.

This work substantially extends [5] published at the Neural Information Processing Systems (NeurIPS) conference

in 2016.
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On the other hand, using a synchronous mini-batch approach one can achieve a near-
linear decrease in the number of SG iterations as the mini-batch size is increased, up
to a certain point after which the increase in computation is not offset by the faster
convergence [72].

An alternative to SG-type methods are batch methods, such as L-BFGS [58], because
they parallelize well and are able to achieve high training accuracy. Batch methods allow
for more computation per node, so as to achieve a better balance with the communication
costs [4, 75]; however, batch methods are not as efficient learning algorithms as SG
methods in a sequential setting [15, 33]. To benefit from both types of methods, some
high performance machine learning systems implement both types of methods [2, 24],
and algorithms that transition from the stochastic to the batch regime [9, 11, 18, 27]
have also received attention recently.

The goal of this paper is to propose a single method that selects a sizeable subset
(batch) of the training data to compute a step and changes this batch at every iteration
to improve the learning abilities of the method. In order to differentiate it from the mini-
batch approach used in conjunction with the SG method, which employs a very small
subset of the training data, we call this the multi-batch approach. In this regime it is
natural to employ a quasi-Newton method, as incorporating second-order information im-
poses little computational overhead and improves the stability and speed of the method.
However, the multi-batch approach can cause difficulties to quasi-Newton methods as
these methods employ gradient differences to update the Hessian approximations.

More specifically, in this paper we study how to design a robust multi-batch imple-
mentation of the limited-memory version of the classical BFGS method [16, 26, 29, 70]—
which we call the multi-batch L-BFGS method—in the presence of two adverse situations
[5, 36, 37, 61, 62]. The first occurs in parallel implementations when some of the com-
putational nodes devoted to the evaluation of the function and gradient are unable to
return results on time, i.e., in the presence of faults. This amounts to using different data
points to evaluate the function and gradient at the beginning and the end of the iteration,
which can be harmful to quasi-Newton methods since they employ gradient differences to
update Hessian approximations. A similar challenge occurs in a multi-batch approach in
which the data points used to compute the function and gradient are purposely changed
at each iteration (or every several iterations) to accelerate the learning process. The main
objective of this paper is to show that stable quasi-Newton updating can be achieved in
these settings without incurring extra computational cost or special synchronization.
The key is to perform quasi-Newton updating based on the overlap between consecutive
batches. The only restriction is that this overlap should not be insignificant, something
that can be expected, or easily enforced, in most situations.

Recently, several stochastic quasi-Newton (SQN) methods have been proposed; see e.g.,
[5, 12, 19, 21, 31, 38, 52, 69, 74]. The methods enumerated above differ in three major
aspects: (i) the update rules for the curvature (correction) pairs and the Hessian approx-
imation, (ii) the frequency of updating, and (iii) the required extra computational cost
and synchronization required. Our method is different from these methods predominantly
due to the fact that it does not modify the BFGS update equations or the form of the
curvature pairs, and does not require extra (gradient) computations. Additionally, our
method is designed to work in a distributed settings with faults, in which faults occur
randomly and sample consistency cannot be assumed, and as such several SQN methods
are not suitable.

We analyze the convergence properties of the multi-batch L-BFGS method using a
fixed step length strategy, as well as a diminishing step length strategy, on both strongly
convex and nonconvex problems. This is appropriate in our setting, as using a fixed step
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length approach is popular in practice, and facilitates the study of the stability of quasi-
Newton updating in a distributed setting. For strongly convex functions, we show that
the algorithm converges, at a linear rate, to an approximate solution whose accuracy
depends on the variance of the gradients and the step length. In the nonconvex setting,
we show that if cautious BFGS updating is employed, the expected value of the average
norm-squared of the gradient is bounded.

We present numerical experiments on a plethora of problems that arise in machine
learning and deep learning. We first illustrate the robustness of our proposed approach
on binary classification logistic regression problems on a distributed computing platform
with faults and in the serial multi-batch setting. The results indicate that the proposed
method achieves a good balance between computation and communication costs. More-
over, we present results on neural network training tasks that illustrate that when larger
batch-size is used, our algorithm is competitive with the state-of-the-art. Finally, we
demonstrate the strong and weak scaling properties of the proposed method.

The paper is organized as follows. In Section 2 we describe the multi-batch L-BFGS
method in detail. In Section 3 we provide convergence analyses for the proposed method
for strongly convex and nonconvex functions. Numerical results that illustrate the prac-
tical performance and robustness of the multi-batch L-BFGS method are reported in
Section 4. Finally, in Section 5 we provide some concluding remarks.

2. A Multi-Batch Quasi-Newton Method

Ideally, in supervised learning, one seeks to minimize expected risk, defined as

R(w) =

∫
Ω
f(w;x, y)dP (x, y) = E[f(w;x, y)], (2.1)

where (x, y) are input-output pairs, f : Rd → R is the composition of a prediction
function (parametrized by w) and a loss function, and Ω is the space of input-output
pairs endowed with a probability distribution P (x, y). Since the distribution P is typically
not known, one approximates (2.1) by the empirical risk

F (w) =
1

n

n∑
i=1

f(w;xi, yi)
def
=

1

n

n∑
i=1

fi(w),

where (xi, yi), for i = 1, . . . , n, denote the training examples, also referred to as data
points or samples. The training problem consists of finding an optimal choice of the
parameters w ∈ Rd with respect to F , i.e., to compute a solution of the problem

min
w∈Rd

F (w) =
1

n

n∑
i=1

fi(w). (2.2)

In a pure batch approach, one applies a gradient-based method to the deterministic
optimization problem (2.2). In this regime, a popular method is L-BFGS [48, 58]. When
n is large, it is natural to parallelize the computation of F and ∇F by assigning the
evaluation of component functions fi, or subsets of the component functions, to different
processors. If this is done on a distributed computing platform, it is possible for some
of the computational nodes, dedicated to a portion of the evaluation of the objective
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function and the gradient, to be slower than the rest. In this case, the contribution
of the slow (or unresponsive) computational nodes could potentially be ignored given
the stochastic nature of the true objective function (2.1). However, this leads to an
inconsistency in the objective function and gradient at the beginning and at the end of
the iteration, which can be detrimental to quasi-Newton methods, as mentioned above.
Hence, we seek to develop a fault-tolerant version of the batch L-BFGS method that is
capable of dealing with slow or unresponsive computational nodes.

A similar challenge arises in a multi-batch implementation of the L-BFGS method in
which only a subset of the data is used to compute the gradient at every iteration. We
consider a method in which the dataset is randomly divided into a number of batches
and the minimization is performed with respect to a different batch at every iteration.
Specifically, at the k-th iteration the algorithm chooses Sk ⊂ {1, . . . , n}, computes

FSk(wk) =
1

|Sk|
∑
i∈Sk

fi (wk) , gSk

k = ∇FSk(wk) =
1

|Sk|
∑
i∈Sk

∇fi (wk) , (2.3)

and takes a step along the direction −Hkg
Sk

k , where Hk is an approximation to
∇2F (wk)

−1. Allowing the sample Sk to change freely at every iteration gives this ap-
proach flexibility and is beneficial to the learning process. Note, we refer to Sk as the
sample of training points, even though Sk only indexes those points.

The case of unresponsive computational nodes and the multi-batch regime are similar
in nature, i.e., the samples Sk used change from one iteration to the next. The main
difference is that node failures create unpredictable changes to the samples, whereas a
multi-batch method has control over the sample generation. In either case, the algorithm
employs a stochastic approximation to the gradient and can no longer be considered
deterministic. We must, however, distinguish our setting from that of the classical SG
method, which employs small mini-batches. Our algorithm operates with much larger
batches so that distributing the computation of the function and gradient is beneficial,
and the compute time is not overwhelmed by communication costs. This gives rise to
gradients with relatively small variance and justifies the use of a second-order method
such as L-BFGS.

The robust implementation of the L-BFGS method, proposed in [5], is based on the
following observation: The difficulties created by the use of a different sample Sk at each
iteration can be circumvented if consecutive samples Sk and Sk+1 have an overlap, so
that

Ok = Sk ∩ Sk+1 6= ∅.

One can then perform stable quasi-Newton updating by computing gradient differences
based on this overlap, i.e., by defining

yk+1 = gOk

k+1 − gOk

k , sk+1 = wk+1 − wk, (2.4)

in the notation given in (2.3), and using this correction pair (yk, sk) in the BFGS update.
When the overlap set Ok is not too small, yk is a useful approximation of the curvature
of the objective function along the most recent displacement, and leads to a productive
quasi-Newton step. This observation is based on an important property of Newton-like
methods, namely that there is much more freedom in choosing a Hessian approximation
than in computing the gradient [3, 10, 17, 50]. More specifically, a smaller sample Ok can
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be employed for updating the inverse Hessian approximation Hk, than for computing the
batch gradient gSk

k used to define the search direction −Hkg
Sk

k . In summary, by ensuring
that unresponsive nodes do not constitute the vast majority of all compute nodes in a
fault-tolerant parallel implementation, or by exerting a small degree of control in the
creation of the samples Sk in the multi-batch regime, one can design a robust method
that naturally builds upon the fundamental properties of BFGS updating.

We should mention that a commonly used fix for ensuring stability of quasi-Newton
updating in machine learning is to enforce gradient consistency [52, 69], i.e., to use the
same sample Sk to compute gradient evaluations at the beginning and the end of the
iteration, at the cost of double gradient evaluations. Another popular remedy is to use the
same batch Sk for multiple iterations [55], alleviating the gradient inconsistency problem
at the price of slower convergence. In this paper, we assume that such sample consistency
is not possible (the fault-tolerant case) or desirable (the multi-batch regime), and wish
to design and analyze an implementation of L-BFGS that imposes minimal restrictions
in the changes of the sample.

2.1 Specification of the Method

Let us begin by considering a robust implementation of the multi-batch BFGS method
and then consider its limited memory version. At the k-th iteration, the multi-batch
BFGS algorithm chooses a set Sk ⊂ {1, . . . , n} and computes a new iterate by the
formula

wk+1 = wk − αkHkg
Sk

k , (2.5)

where αk is the step length, gSk

k is the batch gradient (2.3) and Hk is the inverse BFGS
Hessian matrix approximation that is updated at every iteration by means of the formula

Hk+1 = V T
k HkVk + ρksks

T
k , ρk =

1

yTk sk
, Vk = 1− ρkyksTk .

To compute the correction vectors (sk, yk), we determine the overlap set Ok = Sk ∩Sk+1

consisting of the samples that are common at the k-th and k+ 1-st iterations. We define

gOk

k = ∇FOk(wk) =
1

|Ok|
∑
i∈Ok

∇fi (wk) ,

and compute the correction pairs as in (2.4). This completely specifies the algorithm,
except for the choice of step length αk; in this paper we consider constant and diminishing
step lengths.

In the limited memory version, the matrix Hk is defined at each iteration as the result
of applying m BFGS updates to a multiple of the identity matrix, using a set of m
correction pairs {si, yi} kept in storage. The memory parameter m is typically in the
range 2 to 20. When computing the search direction (matrix-vector product) in (2.5)
it is not necessary to form the dense matrix Hk since one can obtain this product via
the two-loop recursion [59], using the m most recent correction pairs. Employing this
mechanism, the search direction can be computed in O(d) floating operations, where d
is the number of variables. After the step has been computed, the oldest pair (sj , yj) is
discarded and the new curvature pair is stored.
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(b) Multi-batch sampling

Figure 1. Sample and Overlap formation for two adversarial situations.

A pseudo-code of the multi-batch limited-memory BFGS algorithm is given in Algo-
rithm 1, and depends on several parameters. The parameter r denotes the fraction of

samples in the dataset used to define the gradient, i.e., r = |S|
n . The parameter o denotes

the length of overlap between consecutive samples, and is defined as a fraction of the

number of samples in a given batch S, i.e., o = |O|
|S| .

Algorithm 1 Multi-Batch L-BFGS

Input: w0 (initial iterate), m (memory parameter), r (batch, fraction of n), o (overlap,
fraction of batch), k ← 0 (iteration counter).

1: Create initial batch S0

2: for k = 0, 1, 2, ... do
3: Calculate the search direction pk = −Hkg

Sk

k
4: Choose a step length αk > 0
5: Compute wk+1 = wk + αkpk
6: Create the next batch Sk+1

7: Compute the curvature pairs sk+1 = wk+1 − wk and yk+1 = gOk

k+1 − gOk

k
8: Replace the oldest pair (si, yi) by sk+1, yk+1 (if m pairs stored, else just add)
9: end for

2.2 Sample Generation

The fault-tolerant and multi-batch settings differ in the way the samples Sk and Ok are
formed (Lines 1 & 6, Algorithm 1). In the former, sampling is done automatically as a
by-product of the nodes that fail to return a computation (gradient evaluation). In the
latter, the samples Sk and Ok used at every iteration are purposefully changed in order
to accelerate the learning process, thus sampling is user controlled. In either setting,
independent sampling can be achieved; a necessary condition to establish convergence
results. We first describe the fault-tolerant setting, and then propose two sampling strate-
gies that can be employed in the multi-batch setting. Let T = {(xi, yi), for i = 1, . . . , n}
denote the training set.
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Fault-Tolerant Consider a distributed implementation in which slave nodes read the
current iterate wk from the master node, compute a local gradient on a subset of the
dataset, and send it back to the master node for aggregation in the calculation (2.3).
Given a time (computational) budget, it is possible for some nodes to fail to return
a result. The schematic in Figure 1(a) illustrates the gradient calculation across two
iterations, k and k + 1, in the presence of faults. Here, B is the total number of slave
nodes, Bi for i = 1, ..., B denote the batches of data that each slave node i receives
(T = ∪iBi), and ∇̃f(w) is the gradient calculation using all nodes that responded within
the preallocated time.

Let Jk ⊂ {1, 2, ..., B} and Jk+1 ⊂ {1, 2, ..., B} be the set of indices of all nodes that
returned a gradient at the k-th and k + 1-st iterations, respectively. Using this notation
Sk = ∪j∈Jk

Bj and Sk+1 = ∪j∈Jk+1
Bj , and we define Ok = ∪j∈Jk∩Jk+1

Bj . The simplest
implementation in this setting preallocates the data on each compute node, requiring
minimal data communication, i.e., only one data transfer. In this case, the samples Sk
are independent if node failures occur randomly. On the other hand, if the same set of
nodes fail, then the sample creation will be biased, which is harmful both in theory and
in practice. One way to ensure independent sampling is to shuffle and redistribute the
data to all nodes after every iteration or after a certain number of iterations.

Multi-Batch Sampling In the multi-batch setting several strategies can be employed,
with the only restriction that consecutive batches Sk and Sk+1 should, to a certain
degree, overlap. We propose two sampling strategies: (i) overlaps Ok are forced in the
sample creation process, (ii) the overlapping set Ok is subsampled from the batch Sk. In
practice the two strategies perform on par, however, there is a subtle difference. In the
second strategy the batches are sampled independently, something that is not true for the
strategy in which overlapping samples are forced. The independent sampling strategy of
course does not come for free as this strategy incurs an increase in computational cost per
iteration. However, as mentioned above, the overlapping set Ok need not be very large,
and thus the increase in cost is negligible as compared to the rest of the computation.
We now describe the two approaches in more detail.

Figure 1(b) illustrates the sample creation process in the first strategy. The dataset
is shuffled and batches are generated by collecting subsets of the training set, in order.
Every set (except S0) is of the form Sk = {Ok−1, Nk, Ok}, where Ok−1 and Ok are the
overlapping samples with batches Sk−1 and Sk+1 respectively, and Nk are the samples
that are unique to batch Sk. After each pass through the dataset, the samples are reshuf-
fled, and the procedure described above is repeated. In our implementation samples are
drawn without replacement, guaranteeing that after every epoch (pass over the whole
dataset) all samples are used. This strategy has the advantage that it requires no extra
computation in the evaluation of gOk

k and gOk

k+1, but the samples Sk are not independent.
The second sampling strategy is simpler and requires less control. At every iteration

k, a batch Sk is created by randomly selecting |Sk| elements from {1, . . . n}. The set Ok
is then formed by randomly selecting |Ok| elements from Sk (subsampling). Note, in this
sampling strategy the samples Ok need not be in the set Sk+1. This strategy is slightly
more expensive since gOk

k+1 requires extra computation, but if the overlap is small this
cost is not significant.

7
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3. Convergence Analysis

In this Section, we analyze the convergence properties of the multi-batch L-BFGS method
(Algorithm 1) when applied to the minimization of strongly convex and nonconvex ob-
jective functions, using a fixed step length strategy, as well as a diminishing step length
strategy. We assume that the goal is to minimize the empirical risk F (2.2), but note that
a similar analysis could be used to study the minimization of the expected risk (2.1).

3.1 Strongly Convex case

Due to the stochastic nature of the multi-batch approach, every iteration of Algorithm 1
employs a gradient that contains errors that do not converge to zero. Therefore, by using
a fixed step length strategy one cannot establish convergence to the optimal solution w?,
but only convergence to a neighborhood of w? [53]. Nevertheless, this result is of interest
as it reflects the common practice of using a fixed step length and decreasing it only if
the desired testing error has not been achieved. It also illustrates the tradeoffs that arise
between the size of the batch and the step length.

In our analysis, we make the following assumptions about the objective function and
the algorithm.

Assumptions A

(1) F is twice continuously differentiable.

(2) There exist positive constants λ̂ and Λ̂ such that λ̂I � ∇2FO(w) � Λ̂I for all w ∈ Rd
and all sets O ⊂ {1, 2, . . . , n} of length |O| = o · r · n.

(3) There exist constants γ ≥ 0 and η ≥ 1 such that ES
[
‖∇FS(w)‖2

]
≤ γ2+η‖∇F (w)‖2

for all w ∈ Rd and all sets S ⊂ {1, 2, . . . , n} of length |S| = r · n.
(4) The samples S are drawn independently and ∇FS(w) is an unbiased estimator of

the true gradient ∇F (w) for all w ∈ Rd, i.e., ES [∇FS(w)] = ∇F (w).

Note that Assumption A.2 implies that the entire Hessian ∇2F (w) also satisfies

λI � ∇2F (w) � ΛI, ∀w ∈ Rd, (3.1)

for some constants λ,Λ > 0. Assuming that every subsampled function FO(w) is strongly
convex is not unreasonable as a regularization term is commonly added in practice when
that is not the case.

We begin by showing that the inverse Hessian approximations Hk generated by the
multi-batch L-BFGS method have eigenvalues that are uniformly bounded above and
away from zero. The proof technique used is an adaptation of that in [19].

Lemma 3.1 If Assumptions A.1 & A.2 hold, there exist constants 0 < µ1 ≤ µ2 such
that the inverse Hessian approximations {Hk} generated by Algorithm 1 satisfy

µ1I � Hk � µ2I, for k = 0, 1, 2, . . .

Proof. Instead of analyzing the inverse Hessian approximation Hk, we study the Hessian
approximation Bk = H−1

k . In this case, the limited memory quasi-Newton updating
formula is given as follows:

8
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(1) Set B
(0)
k =

yTk yk
sTk yk

I and m̃ = min{k,m}; where m is the memory in L-BFGS.

(2) For i = 0, ..., m̃− 1 set j = k − m̃+ 1 + i and compute

B
(i+1)
k = B

(i)
k −

B
(i)
k sjs

T
j B

(i)
k

sTj B
(i)
k sj

+
yjy

T
j

yTj sj
.

(3) Set Bk+1 = B
(m̃)
k .

The curvature pairs sk and yk are updated via the following formulae

yk+1 = gOk

k+1 − gOk

k , sk+1 = wk+1 − wk. (3.2)

A consequence of Assumption A.2 is that the eigenvalues of any sub-sampled Hessian
(|O| samples) are bounded above and away from zero. Utilizing this fact, the convexity
of component functions and the definitions (3.2), we have

yTk sk ≥
1

Λ̂
‖yk‖2 ⇒ ‖yk‖2

yTk sk
≤ Λ̂. (3.3)

On the other hand, strong convexity of the sub-sampled functions, the consequence of
Assumption A.2 and definitions (3.2), provide a lower bound,

yTk sk ≤
1

λ̂
‖yk‖2 ⇒ ‖yk‖2

yTk sk
≥ λ̂. (3.4)

Combining the upper and lower bounds (3.3) and (3.4)

λ̂ ≤ ‖yk‖
2

yTk sk
≤ Λ̂. (3.5)

The above proves that the eigenvalues of the matrices B
(0)
k =

yTk yk
sTk yk

I at the start of the

L-BFGS update cycles are bounded above and away from zero, for all k. We now use a
Trace-Determinant argument to show that the eigenvalues of Bk are bounded above and
away from zero. Let tr(B) and det(B) denote the trace and determinant of matrix B,
respectively, and set ji = k − m̃+ i. The trace of the matrix Bk+1 can be expressed as,

tr(Bk+1) = tr
(
B

(0)
k

)
− tr

m̃∑
i=1

(
B

(i−1)
k sjis

T
ji
B

(i−1)
k

sTjiB
(i−1)
k sji

)
+ tr

m̃∑
i=1

yjiy
T
ji

yTjisji

≤ tr
(
B

(0)
k

)
+

m̃∑
i=1

‖yji‖2
yTjisji

≤ tr
(
B

(0)
k

)
+ m̃Λ̂ ≤ C1, (3.6)

for some positive constant C1, where the inequalities above are due to (3.5), and the

fact that the eigenvalues of the initial L-BFGS matrix B
(0)
k are bounded above and away

from zero.

9



August 28, 2019 Optimization Methods & Software Multi-Batch˙L-BFGS

Using a result due to [63], the determinant of the matrix Bk+1 generated by the multi-
batch L-BFGS method can be expressed as,

det(Bk+1) = det
(
B

(0)
k

) m̃∏
i=1

yTjisji

sTjiB
(i−1)
k sji

= det
(
B

(0)
k

) m̃∏
i=1

yTjisji

sTjisji

sTjisji

sTjiB
(i−1)
k sji

≥ det
(
B

(0)
k

)( λ̂

C1

)m̃
≥ C2, (3.7)

for some positive constant C2, where the above inequalities are due to the fact that the

largest eigenvalue of B
(i)
k is less than C1 and Assumption A.2.

The trace (3.6) and determinant (3.7) inequalities derived above imply that the largest
eigenvalues of all matrices Bk are bounded from above, uniformly, and that the smallest
eigenvalues of all matrices Bk are bounded away from zero, uniformly. �

Before we present the main theorem for the multi-batch L-BFGS method that employs
constant step lengths, we state one more intermediate Lemma that bounds the distance
between the function value at any point w ∈ Rd and the optimal function value with
respect to the norm of the gradient squared.

Lemma 3.2 Let Assumptions A.1 & A.2 hold, and let F ? = F (w?), where w? is the
minimizer of F . Then, for all w ∈ Rd,

2λ(F (w)− F ?) ≤ ‖∇F (w)‖2.

Proof. As a result of Assumptions A.1, A.2 and (3.1), for all x, y ∈ Rd

F (x) ≤ F (y) +∇F (y)T (x− y) +
1

2λ
‖∇F (y)−∇F (x)‖2;

see [54, Chapter 2.1.3]. Let x = w and y = w?

F (w) ≤ F ? +∇F (w?)T (w − w?) +
1

2λ
‖∇F (w)−∇F (w?)‖2

≤ F ? +
1

2λ
‖∇F (w)‖2.

Re-arranging the above expression yields the desired result. �

Utilizing Lemmas 3.1 and 3.2, we show that the multi-batch L-BFGS method with a
constant step length converges linearly to a neighborhood of the optimal solution.

Theorem 3.3 Suppose that Assumptions A.1-A.4 hold, and let F ? = F (w?), where w?

is the minimizer of F . Let {wk} be the iterates generated by Algorithm 1, where αk = α
satisfies

0 < α ≤ µ1

µ2
2ηλ

, (3.8)

10
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and w0 is the starting point. Then for all k ≥ 0,

E
[
F (wk)− F ?

]
≤
(
1− αµ1λ

)k
[F (w0)− F ?] +

[
1− (1− αµ1λ)k

] αµ2
2γ

2Λ

2µ1λ

k→∞−−−→ αµ2
2γ

2Λ

2µ1λ
.

Proof. We have that

F (wk+1) = F (wk − αHk∇FSk(wk))

≤ F (wk) +∇F (wk)
T (−αHk∇FSk(wk)) +

Λ

2
‖αHk∇FSk(wk)‖2

≤ F (wk)− α∇F (wk)
THk∇FSk(wk) +

α2µ2
2Λ

2
‖∇FSk(wk)‖2, (3.9)

where the first inequality arises due to (3.1), and the second inequality arises as a con-
sequence of Lemma 3.1. Taking the expectation (over Sk) of equation (3.9)

ESk
[F (wk+1)] ≤ F (wk)− α∇F (wk)

THk∇F (wk) +
α2µ2

2Λ

2
ESk

[
‖∇FSk(wk)‖2

]
≤ F (wk)− αµ1‖∇F (wk)‖2 +

α2µ2
2Λ

2

(
γ2 + η‖∇F (w)‖2

)
= F (wk)− α

(
µ1 −

αµ2
2ηΛ

2

)
‖∇F (wk)‖2 +

α2µ2
2γ

2Λ

2
(3.10)

≤ F (wk)−
αµ1

2
‖∇F (wk)‖2 +

α2µ2
2γ

2Λ

2
(3.11)

where the first inequality makes use of Assumption A.4, the second inequality arises due
to Lemma 3.1 and Assumption A.3 and the third inequality is due to the step length
(3.8). Since F is λ-strongly convex, we can substitute the result of Lemma 3.2 in (3.11),

ESk
[F (wk+1)] ≤ F (wk)−

αµ1

2
‖∇F (wk)‖2 +

α2µ2
2γ

2Λ

2

≤ F (wk)− αµ1λ[F (wk)− F ?] +
α2µ2

2γ
2Λ

2
. (3.12)

Let

φk = E[F (wk)− F ?], (3.13)

where the expectation is over all batches S0, S1, ..., Sk−1 and all history starting with w0.
Equation (3.12) can be expressed as,

φk+1 ≤ (1− αµ1λ)φk +
α2µ2

2γ
2Λ

2
. (3.14)

Since the step length is chosen according to (3.8) we deduce that 0 ≤ (1− αµ1λ) < 1.

11
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Subtracting αµ2
2γ

2Λ
2µ1λ

from either side of (3.14) yields

φk+1 −
αµ2

2γ
2Λ

2µ1λ
≤ (1− αµ1λ)φk +

α2µ2
2γ

2Λ

2
− αµ2

2γ
2Λ

2µ1λ

= (1− αµ1λ)

[
φk −

αµ2
2γ

2Λ

2µ1λ

]
. (3.15)

Recursive application of (3.15) yields

φk −
αµ2

2γ
2Λ

2µ1λ
≤ (1− αµ1λ)k

[
φ0 −

αµ2
2γ

2Λ

2µ1λ

]
,

and thus,

φk ≤ (1− αµ1λ)kφ0 +
[
1− (1− αµ1λ)k

] αµ2
2γ

2Λ

2µ1λ
.

Finally using the definition of φk (3.13) with the above expression yields the desired
result

E [F (wk)− F ?] ≤ (1− αµ1λ)k [F (w0)− F ?] +
[
1− (1− αµ1λ)k

] αµ2
2γ

2Λ

2µ1λ
.

�

The bound provided by this theorem has two components: (i) a term decaying linearly
to zero, and (ii) a term identifying the neighborhood of convergence. Note, a larger step
length yields a more favorable constant in the linearly decaying term, at the cost of
an increase in the size of the neighborhood of convergence. We consider these tradeoffs
further in Section 4, where we also note that larger batch sizes increase the opportunities
for parallelism and improve the limiting accuracy in the solution, but slow down the
learning abilities of the algorithm. We should also mention that unlike the first-order
variant of the algorithm (Hk = I), the step length range prescribed by the multi-batch
L-BFGS method depends on µ1 and µ2, the smallest and largest eigenvalues of the L-
BFGS Hessian approximation. In the worst-case, the presence of the matrix Hk can
make the limit in Theorem 3.3 significantly worse than that of the first-order variant
if the update has been unfortunate and generates ill-conditioned matrices. We should
note, however, such worst-case behavior is almost never observed in practice for BFGS
updating.

One can establish convergence of the multi-batch L-BFGS method to the optimal so-
lution w? by employing a sequence of step lengths {αk} that converge to zero according
to the schedule proposed by [67]. However, that provides only a sub-linear rate of con-
vergence, which is of little interest in our context where large batches are employed and
some type of linear convergence is expected. In this light, Theorem 3.3 is more relevant
to practice; nonetheless, we state the theorem here for completeness, and, for brevity,
refer the reader to [19, Theorem 3.2] for more details and the proof.

12
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Theorem 3.4 Suppose that Assumptions A.1-A.4 hold, and let F ? = F (w?), where w?

is the minimizer of F . Let {wk} be the iterates generated by Algorithm 1 with

αk =
β

k + 1
and β >

µ1

µ2
2ηλ

,

starting from w0. Then for all k ≥ 0,

E [F (wk)− F ?] ≤
Q(β)

k + 1
,

where Q(β) = max
{

µ2
2β

2γ2Λ
2(2µ1λβ−1) , F (w0)− F ?

}
.

Theorem 3.4 shows that, for strongly convex functions, the multi-batch L-BFGS
method with an appropriate schedule of diminishing step lengths converges to the op-
timal solution at a sub-linear rate. We should mention that another way to establish
convergence to the optimal solution for the multi-batch L-BFGS method is to employ
variance reduced gradients [25, 35, 42, 47, 56, 57, 68]. In this setting, one can establish
linear convergence to the optimal solution using constant step lengths. We defer the
analysis of the multi-batch L-BFGS method that employs variance reduced gradients to
a different study [6].

3.2 Nonconvex case

The BFGS method is known to fail on nonconvex problems [22, 51]. Even for L-BFGS,
which makes only a finite number of updates at each iteration, one cannot guarantee
that the Hessian approximations have eigenvalues that are uniformly bounded above
and away from zero. To establish convergence of the (L-)BFGS method in the nonconvex
setting several techniques have been proposed including cautious updating [46], modified
updating [45] and damping [64]. Here we employ a cautious strategy that is well suited
to our particular algorithm; we skip the Hessian update, i.e., set Hk+1 = Hk, if the
curvature condition

yTk sk ≥ ε‖sk‖2 (3.16)

is not satisfied, where ε > 0 is a predetermined constant. On the other hand, sufficient
curvature is guaranteed when the updates are not skipped. Using said mechanism, we
show that the eigenvalues of the Hessian matrix approximations generated by the multi-
batch L-BFGS method are bounded above and away from zero (Lemma 3.5). The analysis
presented in this section is based on the following assumptions.

Assumptions B

(1) F is twice continuously differentiable.
(2) The gradients of F are Λ-Lipschitz continuous for all w ∈ Rd; the gradients of FS

are ΛS-Lipschitz continuous for all w ∈ Rd and all sets S ⊂ {1, 2, . . . , n} of length
|S| = r ·n; and, the gradients of FO are ΛO-Lipschitz continuous for all w ∈ Rd and
all sets O ⊂ {1, 2, . . . , n} of length |O| = o · r · n.

(3) The function F (w) is bounded below by a scalar F̂ .

13
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(4) There exist constants γ ≥ 0 and η ≥ 1 such that ES
[
‖∇FS(w)‖2

]
≤ γ2+η‖∇F (w)‖2

for all w ∈ Rd and all sets S ⊂ {1, 2, . . . , n} of length |S| = r · n.
(5) The samples S are drawn independently and ∇FS(w) is an unbiased estimator of

the true gradient ∇F (w) for all w ∈ Rd, i.e., ES [∇FS(w)] = ∇F (w).

Similar to the strongly convex case, we first show that the eigenvalues of the L-BFGS
Hessian approximations are bounded above and away from zero.

Lemma 3.5 Suppose that Assumptions B.1 & B.2 hold. Let {Hk} be the inverse Hessian
approximations generated by Algorithm 1, with the modification that the inverse Hessian
approximation update is performed only when (3.16) is satisfied, for some ε > 0, else
Hk+1 = Hk. Then, there exist constants 0 < µ1 ≤ µ2 such that

µ1I � Hk � µ2I, for k = 0, 1, 2, . . .

Proof. Similar to the proof of Lemma 3.1, we study the direct Hessian approximation
Bk = H−1

k . The curvature pairs sk and yk are updated via the following formulae

yk+1 = gOk

k+1 − gOk

k , sk+1 = wk+1 − wk.

The skipping mechanism (3.16) provides both an upper and lower bound on the quantity
‖yk‖2
yTk sk

, which in turn ensures that the initial L-BFGS Hessian approximation is bounded

above and away from zero. The lower bound is attained by repeated application of
Cauchy’s inequality to condition (3.16). We have from (3.16) that

ε‖sk‖2 ≤ yTk sk ≤ ‖yk‖‖sk‖ ⇒ ‖sk‖ ≤
1

ε
‖yk‖,

from which it follows that

sTk yk ≤ ‖sk‖‖yk‖ ≤
1

ε
‖yk‖2 ⇒ ‖yk‖2

sTk yk
≥ ε. (3.17)

The upper bound is attained by the Lipschitz continuity of sample gradients (Assumption
B.2),

yTk sk ≥ ε‖sk‖2 ≥ ε
‖yk‖2
Λ2
O

⇒ ‖yk‖2
sTk yk

≤ Λ2
O

ε
. (3.18)

Combining (3.17) and (3.18),

ε ≤ ‖yk‖
2

yTk sk
≤ Λ2

O

ε
.

The above proves that the eigenvalues of the matrices B
(0)
k =

yTk yk
sTk yk

I at the start of the

L-BFGS update cycles are bounded above and away from zero, for all k. The rest of the
proof follows the same Trace-Determinant argument as in the proof of Lemma 3.1, the
only difference being that the last inequality in (3.7) comes as a result of the cautious
update strategy. �

14
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We now follow the analysis in [13, Chapter 4] to establish the following result about
the behavior of the gradient norm for the multi-batch L-BFGS method with a cautious
update strategy.

Theorem 3.6 Suppose that Assumptions B.1-B.5 hold. Let {wk} be the iterates gener-
ated by Algorithm 1, with the modification that the inverse Hessian approximation update
is performed only when (3.16) is satisfied, for some ε > 0, else Hk+1 = Hk, where αk = α
satisfies

0 < α ≤ µ1

µ2
2ηλ

,

and w0 is the starting point. Then, for all k ≥ 0,

E

[
1

τ

τ−1∑
k=0

‖∇F (wk)‖2
]
≤ αµ2

2γ
2Λ

µ1
+

2[F (w0)− F̂ ]

αµ1τ

τ→∞−−−→ αµ2
2γ

2Λ

µ1
.

Proof. Starting with (3.11) and taking the expectation over all batches S0, S1, ..., Sk−1

and all history starting with w0 yields

φk+1 − φk ≤ −
αµ1

2
E‖∇F (wk)‖2 +

α2µ2
2γ

2Λ

2
, (3.19)

where φk = E[F (wk)]. Summing (3.19) over the first τ iterations

τ−1∑
k=0

[φk+1 − φk] ≤ −
αµ1

2

τ−1∑
k=0

E‖∇F (wk)‖2 +
τ−1∑
k=0

α2µ2
2γ

2Λ

2

= −αµ1

2
E

[
τ−1∑
k=0

‖∇F (wk)‖2
]

+
α2µ2

2γ
2Λτ

2
. (3.20)

The left-hand-side of the above inequality is a telescoping sum

τ−1∑
k=0

[φk+1 − φk] = φτ − φ0 = E[F (wτ )]− F (w0) ≥ F̂ − F (w0).

Substituting the above expression into (3.20) and rearranging terms

E

[
τ−1∑
k=0

‖∇F (wk)‖2
]
≤ αµ2

2γ
2Λτ

µ1
+

2[F (w0)− F̂ ]

αµ1
.

Dividing the above equation by τ completes the proof. �

This result bounds the average norm of the gradient of F after the first τ−1 iterations,
and shows that, in expectation, the iterates spend increasingly more time in regions
where the objective function has a small gradient. Under appropriate conditions, we can
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establish a convergence rate for the multi-batch L-BFGS method with cautious updates
to a stationary point of F , similar to the results proven for the SG method [28]. For
completeness we state and prove the result.

Theorem 3.7 Suppose that Assumptions B.1-B.5 hold. Let {wk} be the iterates gener-
ated by Algorithm 1, with the modification that the inverse Hessian approximation update
is performed only when (3.16) is satisfied, for some ε > 0, else Hk+1 = Hk. Let

αk = α =
c√
τ
, c =

√
2(F (w0)− F̂ )

µ2
2γ

2Λ
, δ(α) = µ1 −

αµ2
2ηΛ

2
,

where τ > c2µ4
2η

2Λ2

4µ2
1

, and w0 is the starting point. Then,

min
0≤k≤τ−1

E
[
‖∇F (wk)‖2

]
≤
√

2(F (w0)− F̂ )µ2
2γ

2Λ

δ(α)2τ
.

Proof. Starting with (3.10), we have

ESk
[F (wk+1)] ≤ F (wk)− α

(
µ1 −

αµ2
2ηΛ

2

)
‖∇F (wk)‖2 +

α2µ2
2γ

2Λ

2

= F (wk)− αδ(α)‖∇F (wk)‖2 +
α2µ2

2γ
2Λ

2
, (3.21)

where δ(α) = µ1 − αµ2
2ηΛ
2 . We require that this quantity is greater than zero, δ(α) > 0;

this discussion is deferred to the end of the proof.
Taking an expectation over all batches S0, S1, ..., Sk−1 and all history starting with w0,

and rearranging (3.21) yields

E
[
‖∇F (wk)‖2

]
≤ 1

αδ(α)
E[F (wk)− F (wk+1)] +

αµ2
2γ

2Λ

2δ(α)
.

Summing over k = 0, ..., τ − 1 and dividing by τ

min
0≤k≤τ−1

E
[
‖∇F (wk)‖2

]
≤ 1

τ

τ−1∑
k=0

E
[
‖∇F (wk)‖2

]
≤ 1

αδ(α)τ
E[F (w0)− F (wτ )] +

αµ2
2γ

2Λ

2δ(α)

≤ 1

αδ(α)τ
[F (w0)− F̂ ] +

αµ2
2γ

2Λ

2δ(α)

≤ 1

δ( c√
τ
)c
√
τ

[F (w0)− F̂ ] +
cµ2

2γ
2Λ

2δ( c√
τ
)
√
τ
.

The first inequality holds because the minimum value is less than the average value, and
the third inequality holds because F̂ ≤ F (xτ ) (Assumption B.3). The last expression
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comes as a result of using the definition of the step length, α = c√
τ
. Setting

c =

√
2(F (w0)− F̂ )

µ2
2γ

2Λ
, (3.22)

yields the desired result.
We now comment on the quantity δ(α) that first appears in (3.21), and that is required

to be positive. To ensure that δ(α) > 0, the step length must satisfy, α < 2µ1

µ2
2ηΛ . Since

the explicit form of the step length is α = c√
τ
, where c is (3.22), we require that

α =
c√
τ
<

2µ1

µ2
2ηΛ

. (3.23)

In order to ensure that (3.23) holds, we impose that

τ >
c2µ4

2η
2Λ2

4µ2
1

=
(F (w0)− F̂ )µ2

2η
2Λ

2γ2µ2
1

.

�

The result of Theorem 3.7 establishes a sub-linear rate of convergence, to a stationary
point of F , for the multi-batch L-BFGS method on nonconvex objective functions. The
result is somewhat strange as it requires a priori knowledge of τ , the total number of
iteration. In practice, one would use αk = 1√

k
, which would result in a O( 1√

k
) convergence

rate.

4. Numerical Results

We present numerical experiments on several problems that arise in machine learning,
such as logistic regression binary classification and neural network training, in order to
evaluate the performance of the proposed multi-batch L-BFGS method. The experiments
verify that the proposed method is robust, competitive and achieves a good balance
between computation and communication in the distributed setting. In Section 4.1, we
evaluate the performance of the multi-batch L-BFGS method on binary classification
tasks in both the multi-batch and fault-tolerant settings. In Section 4.2, we demonstrate
the performance of the multi-batch L-BFGS method on neural network training tasks,
and compare against some of the state-of-the-art methods. Finally, in Section 4.3, we
illustrate the strong and weak scaling properties of the multi-batch L-BFGS method.

4.1 Logistic Regression

In this section, we focus on logistic regression problems; the optimization problem can
be stated as:

min
w∈Rd

F (w) =
1

n

n∑
i=1

log
(

1 + e−y
i(wTxi)

)
+
σ

2
‖w‖2,

where (xi, yi)ni=1 denote the training examples and σ = 1
n is the regularization parameter.
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Figure 2. webspam dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing
sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used ↵ 2 {1, 0.1},

r 2 {1%, 5%, 10%} and o = 20%. Bottom part: we used ↵ = 1, r = 1% and o 2 {5%, 10%, 30%}. Solid lines show
average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16

MPI processes.
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Figure 3. webspam dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used

↵ = 0.1 and p 2 {0.1, 0.3, 0.5}. Solid lines show average performance, and dashed lines show worst and best

performance, over 10 runs (per algorithm). K = 16 MPI processes.

SGD achieves similar accuracy as the robust L-BFGS method and at a similar rate, at
the cost of n communications per epoch versus 1

r(1�o) communications per epoch. Figure

2 also indicates that the robust L-BFGS method is not too sensitive to the size of the
overlap. Similar behavior was observed on other datasets, in regimes where r · o was not
too small; see Appendix A.1.

Figure 3 shows a comparison of the proposed robust multi-batch L-BFGS method and
the multi-batch L-BFGS method that does not enforce sample consistency (L-BFGS) in
the presence of faults. In these experiments, p denotes the probability that a single node
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Figure 2. webspam dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing

sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used α ∈ {1, 0.1},
r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and o ∈ {5%, 10%, 30%}. Solid lines show
average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16

MPI processes.

We present numerical results that evaluate the performance of the proposed robust
multi-batch L-BFGS scheme (Algorithm 1) in both the multi-batch (Figure 2) and fault
tolerant (Figure 3) settings, on the webspam dataset2. We compare our proposed method
(Robust L-BFGS) against three methods: (i) multi-batch L-BFGS without enforcing
sample consistency (L-BFGS), where gradient differences are computed using different

samples, i.e., yk = g
Sk+1

k+1 − gSk

k ; (ii) multi-batch gradient descent (Gradient Descent),
which is obtained by setting Hk = I in Algorithm 1; and, (iii) serial SGD (SGD), where
at every iteration one sample is used to compute the gradient. We run each method
with 10 different random seeds, and, where applicable, report results for different batch
(r) and overlap (o) sizes. In Figures 2 and 3 we show the evolution of the norm of the
gradient in terms of epochs.

In the multi-batch setting, the proposed method is more stable than the standard L-
BFGS method; this is especially noticeable when r is small. On the other hand, serial
SGD achieves similar accuracy as the robust L-BFGS method and at a similar rate, at
the cost of n communications per epoch versus 1

r(1−o) communications per epoch. Figure

2 also indicates that the robust L-BFGS method is not too sensitive to the size of the

2LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Figure 2. webspam dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing
sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used ↵ 2 {1, 0.1},

r 2 {1%, 5%, 10%} and o = 20%. Bottom part: we used ↵ = 1, r = 1% and o 2 {5%, 10%, 30%}. Solid lines show
average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16
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Figure 3. webspam dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used

↵ = 0.1 and p 2 {0.1, 0.3, 0.5}. Solid lines show average performance, and dashed lines show worst and best

performance, over 10 runs (per algorithm). K = 16 MPI processes.

SGD achieves similar accuracy as the robust L-BFGS method and at a similar rate, at
the cost of n communications per epoch versus 1

r(1�o) communications per epoch. Figure

2 also indicates that the robust L-BFGS method is not too sensitive to the size of the
overlap. Similar behavior was observed on other datasets, in regimes where r · o was not
too small; see Appendix A.1.

Figure 3 shows a comparison of the proposed robust multi-batch L-BFGS method and
the multi-batch L-BFGS method that does not enforce sample consistency (L-BFGS) in
the presence of faults. In these experiments, p denotes the probability that a single node
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Figure 3. webspam dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used

α = 0.1 and p ∈ {0.1, 0.3, 0.5}. Solid lines show average performance, and dashed lines show worst and best

performance, over 10 runs (per algorithm). K = 16 MPI processes.

overlap. Similar behavior was observed on other datasets, in regimes where r · o was not
too small; see [7, Section A.1].

Figure 3 shows a comparison of the proposed robust multi-batch L-BFGS method and
the multi-batch L-BFGS method that does not enforce sample consistency (L-BFGS) in
the presence of faults. In these experiments, p denotes the probability that a single node
(MPI process) will not return a gradient evaluated on local data within a given time
budget. We illustrate the performance of the methods for α = 0.1 and p ∈ {0.1, 0.3, 0.5}.
We observe that the robust implementation is not affected much by the failure probability
p. Similar behavior was observed on other datasets; see [7, Section A.2].

4.2 Neural Networks

In this section, we study the performance of the multi-batch L-BFGS method3 on Neural
Network tasks, on the MNIST and CIFAR10/CIFAR100 datasets4. Table 1 summarizes
the network architectures that we used; see [7, Section B] for more details. The first
problem is convex; all other problems are nonconvex.

Table 1. Structure of Neural Networks.

Network Type # of layers d Ref.

MNIST MLC fully connected (FC) 1 7.8k [44]
MNIST DNN (SoftPlus) conv+FC 4 1.1M [1]
MNIST DNN (ReLU) conv+FC 4 1.1M [1]
CIFAR10 LeNet conv+FC 5 62.0k [44]
CIFAR10 VGG11 conv+batchNorm+FC 29 9.2M [71]
CIFAR100 VGG11 conv+batchNorm+FC 29 9.2M [71]

MLC = Multiclass Linear Classifier

We implemented our algorithm in PyTorch [60] and compare against popular and
readily available algorithms: (i) SGD [67], and (ii) Adam [40]. We denote our proposed
method as LBFGS in the figures in this section. Note, we implemented our method
with the cautious updating strategy, and For each method, we conducted a grid search
to find the best learning rate α ∈ {20, 2−1, . . . , 2−10}, and also investigated the effect
of different batch sizes |S| ∈ {50, 100, 200, 500, 1000, 2000, 4000}; see [7, Section B] for
detailed experiments with all batch sizes. For the multi-batch L-BFGS method we also

3Code available at: https://github.com/OptMLGroup/Multi-Batch_L-BFGS.
4MNIST available at: http://yann.lecun.com/exdb/mnist/. CIFAR10/CIFAR100 available at: https://www.cs.
toronto.edu/~kriz/cifar.html.
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Figure 4. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of the training and testing
accuracy for the best parameter setting for each method and problem. Top right: MNIST Multiclass Linear
Classifier; Top middle: MNIST DNN (SoftPlus); Top Right: MNIST DNN (ReLU); Bottom left: CIFAR10 LeNet;
Bottom middle: CIFAR10 VGG11; Bottom right: CIFAR100 VGG11.

investigated the e↵ect of history length m 2 {1, 2, 5, 10, 20}. The overlap used in our
proposed method was 20% of the batch, o = 0.20.

The authors in [34] observed that the widely used Barzilai-Borwein-type scaling
sT

k yk

yT
k yk

I

of the initial Hessian approximation may lead to quasi-Newton updates that are not
stable when small batch sizes are employed, especially for deep neural training tasks,
and as such propose an Agadrad-like scaling of the initial BFGS matrix. To obviate this
instability, we implement a variant of the multi-batch L-BFGS method (LBFGS2) in
which we scale the initial Hessian approximations as ↵I. We ran experiments with both
scaling strategies and the overall results were similar. Therefore, in the figures in this
section we only show results for the latter strategy.

Figure 4 illustrates the evolution of the training accuracy (dashed lines) and testing
accuracy (solid lines) for the best parameter settings for each method over the first
20 epochs of training. By best parameter settings we mean the run that achieved the
highest training accuracy within 20 epochs. One can make several observations. First, it
appears that the multi-batch L-BFGS method is competitive with the first-order methods
on all training problems, except for CIFAR10 LeNet, in terms of both training and
testing accuracy. Second, for almost all problems, the best runs of the multi-batch L-
BFGS method use larger batch sizes than the first-order methods. Third, the benefits of
incorporating second-order information are not as apparent in these nonconvex problems
as compared to the problems presented in Section 4.1. We attribute this to two things: (1)
nonconvex problems are hard, and (2) quasi-Newton methods are better are capturing
curvature information for convex problems.

We now investigate the e↵ect of the batch size. In Figure 5 we show the evolution of
the training/testing accuracy for di↵erent batch sizes |S| 2 {50, 500, 4000} for three of
the problems. For a complete set of results, see Appendix B. Overall, one can observe
that for small batch sizes, the multi-batch L-BFGS variants perform worse than the first
order methods. However, when large batches are employed (a regime that is favorable
foe GPU computing), the multi-batch L-BFGS method performs on par with the other
methods. Moreover, it appears that the performance of the multi-batch L-BFGS methods
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Figure 4. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of the training and testing
accuracy for the best parameter setting for each method and problem. Top right: MNIST Multiclass Linear

Classifier; Top middle: MNIST DNN (SoftPlus); Top Right: MNIST DNN (ReLU); Bottom left: CIFAR10 LeNet;
Bottom middle: CIFAR10 VGG11; Bottom right: CIFAR100 VGG11.

investigated the effect of history length m ∈ {1, 2, 5, 10, 20}. The overlap used in our
proposed method was 20% of the batch, o = 0.20.

The authors in [38] observed that the widely used Barzilai-Borwein-type scaling
sTk yk
yTk yk

I

of the initial Hessian approximation may lead to quasi-Newton updates that are not
stable when small batch sizes are employed, especially for deep neural training tasks,
and as such propose an Agadrad-like scaling of the initial BFGS matrix. To obviate this
instability, we implement a variant of the multi-batch L-BFGS method (LBFGS2) in
which we scale the initial Hessian approximations as αI. We ran experiments with both
scaling strategies and the overall results were similar. Therefore, in the figures in this
section we only show results for the latter strategy.

Figure 4 illustrates the evolution of the running maximum of the training accuracy
(dashed lines) and testing accuracy (solid lines) for the best parameter settings for each
method over the first 20 epochs of training. By best parameter settings we mean the
run that achieved the highest training accuracy within 20 epochs. One can make several
observations. First, it appears that the multi-batch L-BFGS method is competitive with
the first-order methods on all training problems, except for CIFAR10 LeNet, in terms
of both training and testing accuracy. Second, for half of the problems (three out of
six), the best runs of the multi-batch L-BFGS method use larger batch sizes than the
first-order methods. Of course, this benefit is not as clear on the neural network training
problems as it is in the logistic regression problems. Third, the benefits of incorporating
second-order information are not as apparent in these nonconvex problems as compared
to the problems presented in Section 4.1. We attribute this to two things: (1) nonconvex
problems are hard, and (2) quasi-Newton methods are better are capturing curvature
information for convex problems.

We now investigate the effect of the batch size. In Figure 5 we show the evolu-
tion of the running maximum of the training/testing accuracy for different batch sizes
|S| ∈ {50, 500, 4000} for three of the problems. For a complete set of results, see [7,
Section B]. Overall, one can observe that for small batch sizes, the multi-batch L-BFGS

20
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Figure 5. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of the training and testing
accuracy for di↵erent batch sizes (|S| 2 {50, 500, 4000}). Top row: MNIST Multiclass Linear Classifier; Middle

row: MNIST DNN (ReLU); Bottom row: CIFAR10 VGG11.

is less a↵ected by the size of the batch.
In order to understand why the multi-batch L-BFGS method does not perform well

for small batches, we looked at two diagnostic measures: (i) the angle between the true

gradient curvature vector yd and subsampled gradient curvature vector ys ( hys,ydi
kyskkydk); and

(ii) the ratio of subsampled gradient curvature vector to true gradient curvature vector
( ys

yd
). These measures indicate how informative the curvature information captured by

the multi-batch L-BFGS method really is. Values close to 1 (dashed red lines) are ideal
for both measures. We chose 3 di↵erent points (the starting point, a point after 3 epochs
of Adam, and a point after 10 epochs of Adam). From those points we took a gradient de-
scent step with su�ciently small step length, and computed the true gradient curvature
vector (yd). We also computed 100 di↵erent stochastic variants of the gradient curvature
vector (ys) using di↵erent batch sizes (|S| 2 {50, 100, 200, 500, 1000, 2000, 4000}), and
calculated the values of the two metrics. We illustrate the results in Figure 6; see Ap-
pendix B for more results. Several observations can be drawn from this figure. First, not
surprisingly, the metrics improve (get closer to 1) as the batch size increases. Second, for
the convex case, the metrics perform as expected both close and far from the solution; as
a result (su�ciently) good curvature information is captured and the method performs
well. On the other hand, for the nonconvex problems, the metrics indicate that, especially
for small batch sizes, the curvature information captured can be terrible.
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Figure 5. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of the training and testing
accuracy for different batch sizes (|S| ∈ {50, 500, 4000}). Top row: MNIST Multiclass Linear Classifier; Middle

row: MNIST DNN (ReLU); Bottom row: CIFAR10 VGG11.

variants perform worse than the first order methods. However, when large batches are
employed (a regime that is favorable foe GPU computing), the multi-batch L-BFGS
method performs on par with the other methods. Moreover, it appears that on several
problems the performance of the multi-batch L-BFGS method is less affected by the size
of the batch, i.e., the variability in the final training and testing error (after 20 epochs) in
terms of batch size is smaller for the multi-batch L-BFGS method than for the stochastic
first-order methods; see also [7, Section B].

In order to understand why the multi-batch L-BFGS method does not perform well
for small batches, we looked at two diagnostic measures: (i) the angle between the true

gradient curvature vector yd and subsampled gradient curvature vector ys ( 〈ys,yd〉‖ys‖‖yd‖); and

(ii) the ratio of subsampled gradient curvature vector to true gradient curvature vector
( ysyd ). These measures indicate how informative the curvature information captured by

the multi-batch L-BFGS method really is. Values close to 1 (dashed red lines) are ideal
for both measures. We chose 3 different points (the starting point, a point after 3 epochs
of Adam, and a point after 10 epochs of Adam). From those points we took a gradient
descent step with sufficiently small step length, and computed the true gradient curvature
vector (yd). We also computed 100 different stochastic variants of the gradient curvature
vector (ys) using different batch sizes (|S| ∈ {50, 100, 200, 500, 1000, 2000, 4000}), and
calculated the values of the two metrics. We illustrate the results in Figure 6; see [7,
Section B] for more results. Several observations can be drawn from this figure. First,

21
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Figure 6. Multi-batch L-BFGS diagnostic metrics for di↵erent batch sizes |S| 2
{50, 100, 200, 500, 1000, 2000, 4000}. Top row: angle between the true gradient curvature vector yd and

subsampled gradient curvature vector ys (
hys,ydi

kyskkydk ); Bottom row: ratio of subsampled gradient curvature vector

to true gradient curvature vector ( ys
yd

). Left column: MNIST Multiclass Linear Classifier; Middle column: MNIST

DNN (ReLU); Right column: CIFAR10 VGG11.

Figure 7. Relative slow-down of computational time to

compute gradients for di↵erent batch-sizes compared to

the computational time to compute gradients with batch-
size 1.

We should note that using a large batch
size is not a bottleneck for current high-
performance computing hardware, on the
contrary, using small batch sizes leads to
under-utilization of computational hard-
ware and in fact hinders the ability to par-
allelize the methods. Figure 7 illustrates
this phenomenon; we show the average
computational time of a gradient evalua-
tion (over 1,000 evaluations) for di↵erent
batch sizes ranging from 1 to 4096 relative
to the computational time of the compu-
tation of the gradient using a single data
point. The computation was performed on
an NVIDIA Tesla K80 GPU using Py-
Torch. It is clear that for the Multiclass
Linear classification task, the compute time of a single gradient is roughly the same as
the compute time of a gradient based on a batch of size 1024, whereas for the larger
training tasks, the compute time of the gradients appear constant up to batch sizes of
roughly 128.
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Figure 6. Multi-batch L-BFGS diagnostic metrics for different batch sizes |S| ∈
{50, 100, 200, 500, 1000, 2000, 4000}. Top row: angle between the true gradient curvature vector yd and

subsampled gradient curvature vector ys (
〈ys,yd〉
‖ys‖‖yd‖ ); Bottom row: ratio of subsampled gradient curvature vector

to true gradient curvature vector ( ys
yd

). Left column: MNIST Multiclass Linear Classifier; Middle column: MNIST

DNN (ReLU); Right column: CIFAR10 VGG11.

not surprisingly, the metrics improve (get closer to 1) as the batch size increases. Second,
for the convex case, the metrics perform as expected both close and far from the solution;
as a result (sufficiently) good curvature information is captured and the method performs
well. On the other hand, for the nonconvex problems, the metrics indicate that, especially
for small batch sizes, the curvature information captured can be terrible.
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Figure 7. Relative slow-down of computational time to

compute gradients for different batch-sizes compared to
the computational time to compute gradients with batch-
size 1.

We should note that using a large batch
size is not a bottleneck for current high-
performance computing hardware, on the
contrary, using small batch sizes leads to
under-utilization of computational hard-
ware and in fact hinders the ability to par-
allelize the methods. Figure 7 illustrates
this phenomenon; we show the average
computational time of a gradient evalu-
ation (over 1,000 evaluations) for differ-
ent batch sizes ranging from 1 to 4096
relative to the computational time of the
computation of the gradient using a sin-
gle data point. The computation was per-
formed on an NVIDIA Tesla K80 GPU
using PyTorch. It is clear that for the Mul-
ticlass Linear classification task, the com-
pute time of a single gradient is roughly the same as the compute time of a gradient based
on a batch of size 1024, whereas for the larger training tasks, the compute time of the
gradients appear constant up to batch sizes of roughly 128. We should note however that
their is a risk of decreased generalization when increasing the batch size, unless other
strategies such as modifying the step size or regularization are used; see e.g., [32, 39].
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4.3 Scaling of the Multi-Batch L-BFGS Implementation

In this section, we study the strong and weak scaling properties of the robust multi-batch
L-BFGS method on artificial data. For various values of batch size (r) and nodes (K),
we measure the time needed to compute a gradient (Gradient) and the time needed to
compute and communicate the gradient (Gradient+C), as well as, the time needed to
compute the L-BFGS direction (L-BFGS) and the associated communication overhead
(L-BFGS+C). The function of which we are computing the gradient is logistic regression.
The L-BFGS direction is computed using the Vector-Free L-BFGS implementation [20].
We should note that the time to compute the gradient, which of course is required for
computing the L-BFGS direction, is not included in L-BFGS and L-BFGS+C. We report
the extra time to compute the L-BFGS step, after having computed the gradient. Thus,
the goal of this section is to show that the time needed to compute the L-BFGS direction
is insignificant compared to the cost of computing the gradient, which is needed in any
case to run first-order methods.

Strong Scaling
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Figure 8. Strong scaling of robust multi-
batch L-BFGS on a problem with artificial

data; n = 107 and d = 104. Each sample has

160 non-zero elements (dataset size 24GB).

Figure 8 depicts the strong scaling properties of the
multi-batch L-BFGS method, for different batch
sizes (r) and nodes (K = 1, 2, ..., 128). For this
task, we generate a dataset with n = 107 samples
and d = 104 dimensions, where each sample has
160 randomly chosen non-zero elements (dataset
size 24GB). One can observe that as the number of
nodes (K) is increased, the compute times for the
gradient and the L-BFGS direction decrease. How-
ever, when communication time is considered, the
combined cost increases slightly as K is increased.
Notice that for large K, even when r = 10%
(i.e., 10% of all samples processed in one iteration,
∼18MB of data), the amount of local work is not
sufficient to overcome the communication cost.

Weak Scaling – Fixed Problem Dimension, Increasing Data Size
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Figure 9. Weak scaling of robust multi-batch
L-BFGS on a problem with artificial data; n =
107 and d = 104. Each sample has 10 ·K non-

zero elements (size of local problem 1.5GB).

In order to illustrate the weak scaling proper-
ties of the algorithm, we generate a data-matrix
X ∈ Rn×d (n = 107, d = 104), and compute the
gradient and the L-BFGS direction on a shared
cluster with different number of MPI processes
(K = 1, 2, ..., 128). Each sample has 10·K non-zero
elements, thus for any K the size of local problem is
roughly 1.5GB (for K = 128 size of data 192GB).
Effectively, the dataset size (n) is held fixed, but
the sparsity of the data decreases as more MPI pro-
cesses are used. The compute time for the gradient
is almost constant, this is because the amount of
work per MPI process (rank) is almost identical;
see Figure 9. On the other hand, because we are
using a Vector-Free L-BFGS implementation [20]
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for computing the L-BFGS direction, the amount of time needed for each node to com-
pute the L-BFGS direction decreases as K is increased. However, increasing K does lead
to larger communication overhead, and as such the overall time needed to compute and
communicate the L-BFGS direction increases slightly as K is increased. For K = 128
(192GB of data) and r = 10%, almost 20GB of data are processed per iteration in less
than 0.1 seconds, which implies that one epoch would take around 1 second.

Increasing Problem Dimension, Fixed Data Size and K
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Figure 10. Scaling of robust multi-batch L-
BFGS on a problem with artificial data; n =

107, increasing d and K = 8 MPI pro-

cesses. Each sample had 200 non-zero ele-
ments (dataset size 29GB).

In this experiment, we investigate the effect of a
change in the dimension (d) of the problem on the
computation of the gradient and the L-BFGS di-
rection. We fix the size of data (29GB) and the
number of MPI processes (K = 8), and generate
data with n = 107 samples, where each sample has
200 non-zero elements. Figure 10 shows that in-
creasing the dimension d has a mild effect on the
computation time of the gradient, while the effect
on the time needed to compute the L-BFGS direc-
tion is more apparent. However, if communication
time is taken into consideration, the time required
for the gradient computation and the L-BFGS di-
rection computation increase as d is increased. We
should note that the results presented in Figure 10
are not surprising; there is minimal change in performance (in terms of the gradient
computation) as dimension increases, since the number of nonzero elements is fixed and
sparse matrix operations are emplyed.

5. Final Remarks

In this paper, we assumed that sample consistency is not possible (fault-tolerant setting)
or desirable (multi-batch setting), and described a novel and robust variant of the L-BFGS
method designed to deal with two adversarial situations. The success of the algorithm
relies on the fact that gradient differences need not be computed on the full batch, rather
a small subset can be used alleviating the need for double function evaluations while still
maintaining useful curvature information. The method enforces a small degree of control
in the sampling process and avoids the pitfalls of using inconsistent gradient differences
by performing quasi-Newton updating on the overlap between consecutive samples.

Our numerical results indicate that provided the overlap is not too small, the proposed
method is efficient in practice on machine learning tasks such as binary classification
logistic regression and neural network training. The experiments presented in this paper
show that the empirical performance of the method matches that predicted by the theory
for both strongly convex and nonconvex functions. Specifically, in the strongly convex
case the multi-batch L-BFGS method with a constant step length converges to a neigh-
borhood of the solution at a linear rate, and in the nonconvex case the iterates produced
by the multi-batch L-BFGS method converge to a neighborhood of a stationary point.

Of course, the development, both theoretical and practical, of stochastic quasi-Newton
methods is far from complete, and there are many interesting directions that can and
should be investigated. Theoretical analysis that would suggest the batch size and overlap
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size would be of great interest in practice. Moreover, an investigation of the multi-batch L-
BFGS method that employs variance reduced gradients in lieu of the stochastic gradients
could have both theoretical and practical advantages. Finally, a stochastic line search that
could work in conjunction with the multi-batch L-BFGS method would be novel both
algorithmically and theoretically, and would most probably make the method even more
competitive in practice.
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nonconvex optimization, arXiv:1705.07261 (2017).

[58] J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of computation 35
(1980), pp. 773–782.

[59] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed., Springer New York, 1999.
[60] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,

and A. Lerer, Automatic differentiation in pytorch (2017).
[61] J. Pei, B. Cheng, X. Liu, P.M. Pardalos, and M. Kong, Single-machine and parallel-machine serial-

batching scheduling problems with position-based learning effect and linear setup time, Annals of
Operations Research 272 (2019), pp. 217–241.

[62] J. Pei, J. Wei, B. Liao, X. Liu, and P.M. Pardalos, Two-agent scheduling on bounded parallel-batching
machines with an aging effect of job-position-dependent, Annals of Operations Research (2019), pp.
1–33.

[63] M.J. Powell, Some global convergence properties of a variable metric algorithm for minimization
without exact line searches, Nonlinear programming 9 (1976), pp. 53–72.

[64] M.J. Powell, Algorithms for nonlinear constraints that use lagrangian functions, Mathematical pro-
gramming 14 (1978), pp. 224–248.

[65] B. Recht, C. Re, S. Wright, and F. Niu, Hogwild: A lock-free approach to parallelizing stochastic
gradient descent, in Advances in Neural Information Processing Systems 24, 2011, pp. 693–701.

[66] S.J. Reddi, A. Hefny, S. Sra, B. Poczos, and A.J. Smola, On variance reduction in stochastic gradient
descent and its asynchronous variants, in Advances in Neural Information Processing Systems 28,
2015, pp. 2647–2655.

[67] H. Robbins and S. Monro, A stochastic approximation method, The annals of mathematical statistics
(1951), pp. 400–407.

[68] M. Schmidt, N. Le Roux, and F. Bach, Minimizing finite sums with the stochastic average gradient,
Mathematical Programming (2016), pp. 1–30.

[69] N.N. Schraudolph, J. Yu, and S. Günter, A Stochastic Quasi-Newton Method for Online Convex
Optimization., in Proceedings of the 10th International Conference on Artificial Intelligence and
Statistics, Vol. 7, 2007, pp. 436–443.

[70] D.F. Shanno, Conditioning of quasi-Newton methods for function minimization, Mathematics of
computation 24 (1970), pp. 647–656.

[71] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition,
arXiv:1409.1556 (2014).

27



August 28, 2019 Optimization Methods & Software Multi-Batch˙L-BFGS
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Appendix A. Extended Numerical Results - Real Datasets - Logistic
Regression

In this section, we present further numerical results on binary classification logistic re-
gression problems, on the datasets listed in Table A1, in both the multi-batch and fault-
tolerant settings. Note, that some of the datasets are too small, and thus, there is no
reason to run them on a distributed platform; however, we include them as they are part
of the standard benchmarking datasets.

Table A1. Datasets and basic statistics. All datasets are available at https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/binary.html.

Dataset nnn ddd Size (MB) K

ijcnn 91,701 22 14 4
cov 581,012 54 68 4
news20 19,996 1,355,191 134 4
rcvtest 677,399 47,236 1,152 16
url 2,396,130 3,231,961 2,108 16
kdda 8,407,752 20,216,830 2,546 16
kddb 19,264,097 29,890,095 4,894 16
webspam 350,000 16,609,143 23,866 16
splice-site 50,000,000 11,725,480 260,705 16

We focus on logistic regression classification; the objective function is given by

min
w∈Rd

F (w) =
1

n

n∑
i=1

log
(

1 + e−y
i(wTxi)

)
+
σ

2
‖w‖2,

where (xi, yi)ni=1 denote the training examples and σ = 1
n is the regularization parameter.

A.1 Extended Numerical Results - Multi-Batch Setting

For the experiments in this section (Figures A1-A9), we ran four methods:

• (Robust L-BFGS) robust multi-batch L-BFGS (Algorithm 1),
• (L-BFGS) multi-batch L-BFGS without enforcing sample consistency; gradient differ-

ences are computed using different samples, i.e., yk = g
Sk+1

k+1 − gSk

k ,
• (Gradient Descent) multi-batch gradient descent; obtained by setting Hk = I in Algo-

rithm 1,
• (SGD) serial SGD; at every iteration one sample is used to compute the gradient.

In Figures A1-A9 we show the evolution of ‖∇F (w)‖ for different step lengths α, and for
various batch (|S| = r ·n) and overlap (|O| = o · |S|) sizes. Each Figure (A1-A9) consists
of 10 plots that illustrate the performance of the methods with the following parameters:

• Top 3 plots: α = 1, o = 20% and r = 1%, 5%, 10%
• Middle 3 plots: α = 0.1, o = 20% and r = 1%, 5%, 10%
• Bottom 4 plots: α = 1, r = 1% and o = 5%, 10%, 20%, 30%
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Figure A1. ijcnn1 dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing

sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used ↵ 2 {1, 0.1},
r 2 {1%, 5%, 10%} and o = 20%. Bottom part: we used ↵ = 1, r = 1% and o 2 {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 4

MPI processes.
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Figure A1. ijcnn1 dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing
sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used α ∈ {1, 0.1},
r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and o ∈ {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 4
MPI processes.
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Figure A2. cov dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing

sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used ↵ 2 {1, 0.1},
r 2 {1%, 5%, 10%} and o = 20%. Bottom part: we used ↵ = 1, r = 1% and o 2 {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 4

MPI processes.
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Figure A2. cov dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing

sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used α ∈ {1, 0.1},
r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and o ∈ {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 4

MPI processes.
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Figure A3. news20 dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing
sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used ↵ 2 {1, 0.1},
r 2 {1%, 5%, 10%} and o = 20%. Bottom part: we used ↵ = 1, r = 1% and o 2 {5%, 10%, 30%}. Solid lines show
average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 4
MPI processes.
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Figure A3. news20 dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing
sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used α ∈ {1, 0.1},
r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and o ∈ {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 4
MPI processes.
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Figure A4. rcvtest dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing

sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used ↵ 2 {1, 0.1},
r 2 {1%, 5%, 10%} and o = 20%. Bottom part: we used ↵ = 1, r = 1% and o 2 {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16

MPI processes.
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Figure A4. rcvtest dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing
sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used α ∈ {1, 0.1},
r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and o ∈ {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16
MPI processes.
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Figure A5. url dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing sample

consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used ↵ 2 {1, 0.1}, r 2
{1%, 5%, 10%} and o = 20%. Bottom part: we used ↵ = 1, r = 1% and o 2 {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16

MPI processes.
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Figure A5. url dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing sample
consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used α ∈ {1, 0.1}, r ∈
{1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and o ∈ {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16
MPI processes.
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Figure A6. kdda dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing

sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used ↵ 2 {1, 0.1},
r 2 {1%, 5%, 10%} and o = 20%. Bottom part: we used ↵ = 1, r = 1% and o 2 {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16

MPI processes.
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Figure A6. kdda dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing
sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used α ∈ {1, 0.1},
r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and o ∈ {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16
MPI processes.
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Figure A7. kddb dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing

sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used ↵ 2 {1, 0.1},
r 2 {1%, 5%, 10%} and o = 20%. Bottom part: we used ↵ = 1, r = 1% and o 2 {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16

MPI processes.
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Figure A7. kddb dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing
sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used α ∈ {1, 0.1},
r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and o ∈ {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16
MPI processes.
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Figure 2. webspam dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing
sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used ↵ 2 {1, 0.1},

r 2 {1%, 5%, 10%} and o = 20%. Bottom part: we used ↵ = 1, r = 1% and o 2 {5%, 10%, 30%}. Solid lines show
average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16

MPI processes.
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Figure 3. webspam dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used

↵ = 0.1 and p 2 {0.1, 0.3, 0.5}. Solid lines show average performance, and dashed lines show worst and best

performance, over 10 runs (per algorithm). K = 16 MPI processes.

SGD achieves similar accuracy as the robust L-BFGS method and at a similar rate, at
the cost of n communications per epoch versus 1

r(1�o) communications per epoch. Figure

2 also indicates that the robust L-BFGS method is not too sensitive to the size of the
overlap. Similar behavior was observed on other datasets, in regimes where r · o was not
too small; see Appendix A.1.

Figure 3 shows a comparison of the proposed robust multi-batch L-BFGS method and
the multi-batch L-BFGS method that does not enforce sample consistency (L-BFGS) in
the presence of faults. In these experiments, p denotes the probability that a single node

18

Figure A8. webspam dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without enforcing

sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used α ∈ {1, 0.1},
r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and o ∈ {5%, 10%, 30%}. Solid lines show

average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm). K = 16

MPI processes.
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Figure A9. splice-cite dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without en-

forcing sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used
↵ 2 {1, 0.1}, r 2 {1%, 5%, 10%} and o = 20%. Bottom part: we used ↵ = 1, r = 1% and o 2 {5%, 10%, 30%}. Solid

lines show average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm).

K = 16 MPI processes. (No Serial SGD experiments due to memory limitations of our cluster.)
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Figure A9. splice-cite dataset. Comparison of Robust L-BFGS, L-BFGS (multi-batch L-BFGS without en-

forcing sample consistency), Gradient Descent (multi-batch Gradient method) and SGD. Top part: we used

α ∈ {1, 0.1}, r ∈ {1%, 5%, 10%} and o = 20%. Bottom part: we used α = 1, r = 1% and o ∈ {5%, 10%, 30%}. Solid
lines show average performance, and dashed lines show worst and best performance, over 10 runs (per algorithm).

K = 16 MPI processes. (No Serial SGD experiments due to memory limitations of our cluster.)
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A.2 Extended Numerical Results - Fault-Tolerant Setting

If we run a distributed algorithm, for example on a shared computer cluster, then we may
experience delays. Such delays can be caused by other processes running on the same
compute node, node failures and/or for other reasons. As a result, given a computational
(time) budget, these delays may cause nodes to fail to return a value. To illustrate this
behavior, and to motivate the robust fault-tolerant L-BFGS method, we run a simple
benchmark MPI code on two different environments:

• Amazon EC2 – Amazon EC2 is a cloud system provided by Amazon. It is expected
that if load balancing is done properly, the execution time will have small noise; how-
ever, the network and communication can still be an issue. (4 MPI processes)

• Shared Cluster – On our shared cluster, multiple jobs run on each node, with some
jobs being more demanding than others. Even though each node has 16 cores, the
amount of resources each job can utilize changes over time. In terms of communication,
we have a GigaBit network. (11 MPI processes, running on 11 nodes)

We run a simple code on the cloud/cluster, with MPI communication. We generate two
matrices A,B ∈ Rn×n, then synchronize all MPI processes and compute C = A ·B using
the GSL C-BLAS library. The time is measured and recorded as computational time.
After the matrix product is computed, the result is sent to the master/root node using
asynchronous communication, and the time required is recorded. The process is repeated
3000 times.

August 22, 2018 Optimization Methods & Software multi˙OMS

A.2 Extended Numerical Results - Fault-Tolerant Setting
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(time) budget, these delays may cause nodes to fail to return a value. To illustrate this
behavior, and to motivate the robust fault-tolerant L-BFGS method, we run a simple
benchmark MPI code on two di↵erent environments:

• Amazon EC2 – Amazon EC2 is a cloud system provided by Amazon. It is expected
that if load balancing is done properly, the execution time will have small noise; how-
ever, the network and communication can still be an issue. (4 MPI processes)

• Shared Cluster – On our shared cluster, multiple jobs run on each node, with some
jobs being more demanding than others. Even though each node has 16 cores, the
amount of resources each job can utilize changes over time. In terms of communication,
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We run a simple code on the cloud/cluster, with MPI communication. We generate two
matrices A, B 2 Rn⇥n, then synchronize all MPI processes and compute C = A ·B using
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After the matrix product is computed, the result is sent to the master/root node using
asynchronous communication, and the time required is recorded. The process is repeated
3000 times.
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Figure A10. Distribution of Computation and Communication Time for Amazon EC2 and Shared Cluster. Figures
show worst and best time, average time and 10% and 90% quantiles. Amazon Cloud EC: 4 MPI processes; Shared

Cluster: 11 MPI processes.

The results of the experiment described above are captured in Figure A10. As expected,
on the Amazon EC2 cloud, the matrix-matrix multiplication takes roughly the same time
for all replications and the noise in communication is relatively small. In this example
the cost of communication is negligible when compared to the cost of computation. On
our shared cluster, one cannot guarantee that all resources are exclusively used for a
specific process, and thus, the computation and communication time is considerably
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Figure A10. Distribution of Computation and Communication Time for Amazon EC2 and Shared Cluster. Figures

show worst and best time, average time and 10% and 90% quantiles. Amazon Cloud EC: 4 MPI processes; Shared
Cluster: 11 MPI processes.

The results of the experiment described above are captured in Figure A10. As expected,
on the Amazon EC2 cloud, the matrix-matrix multiplication takes roughly the same time
for all replications and the noise in communication is relatively small. In this example
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the cost of communication is negligible when compared to the cost of computation. On
our shared cluster, one cannot guarantee that all resources are exclusively used for a
specific process, and thus, the computation and communication time is considerably
more stochastic and unbalanced. In some cases, the difference between the minimum
and maximum computation and communication times vary by an order of magnitude or
more. Hence, on such a platform a fault-tolerant algorithm that only uses information
from nodes that return an update within a preallocated budget is a natural choice.

In Figures A11-A14 we present a comparison of the proposed robust multi-batch L-
BFGS method and the multi-batch L-BFGS method that does not enforce sample consis-
tency (L-BFGS). In these experiments, p denotes the probability that a single node (MPI
process) will not return a gradient evaluated on local data within a given time budget. We
illustrate the performance of the methods for α = 0.1 and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We
observe that the robust implementation is not affected much by the failure probability
p.
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Figure A11. rcvtest dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used
↵ = 0.1 and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and

best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A12. webspam dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used

↵ = 0.1 and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and
best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A11. rcvtest dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used
α = 0.1 and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and

best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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more stochastic and unbalanced. In some cases, the di↵erence between the minimum
and maximum computation and communication times vary by an order of magnitude or
more. Hence, on such a platform a fault-tolerant algorithm that only uses information
from nodes that return an update within a preallocated budget is a natural choice.

In Figures A11-A14 we present a comparison of the proposed robust multi-batch L-
BFGS method and the multi-batch L-BFGS method that does not enforce sample consis-
tency (L-BFGS). In these experiments, p denotes the probability that a single node (MPI
process) will not return a gradient evaluated on local data within a given time budget. We
illustrate the performance of the methods for ↵ = 0.1 and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. We
observe that the robust implementation is not a↵ected much by the failure probability
p.
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Figure A11. rcvtest dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used
↵ = 0.1 and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and

best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A12. webspam dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used

↵ = 0.1 and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and
best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A12. webspam dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used
α = 0.1 and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and

best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A13. kdda dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used
↵ = 0.1 and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and

best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A14. kddb dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used

↵ = 0.1 and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and

best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A13. kdda dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used

α = 0.1 and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and
best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A13. kdda dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used
↵ = 0.1 and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and

best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A14. kddb dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used

↵ = 0.1 and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and

best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A14. kddb dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used

α = 0.1 and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and
best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A13. kdda dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used
↵ = 0.1 and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and

best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A14. kddb dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used

↵ = 0.1 and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and

best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A14. kddb dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used

↵ = 0.1 and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and

best performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A15. url dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used ↵ = 0.1
and p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and best

performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Figure A15. url dataset. Comparison of Robust L-BFGS and L-BFGS in the presence of faults. We used α = 0.1
and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Solid lines show average performance, and dashed lines show worst and best
performance, over 10 runs (per algorithm). K = 16 MPI processes.
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Appendix B. Extended Numerical Results - Neural Networks

In this section, we present complete numerical results for the Neural Network train-
ing tasks on the MNIST5 and CIFAR10/CIFAR1006 datasets. More specifically, we
show the training and testing accuracy of the methods for all batch sizes (|S| ∈
{50, 100, 200, 500, 1000, 2000, 4000}). The tasks are summarized in Table B1, and the
details are explained below.

Table B1. Structure of Neural Networks.

Network Type # of layers d Ref.

MNIST MLC fully connected (FC) 1 7.8k [44]
MNIST DNN (SoftPlus) conv+FC 4 1.1M [1]
MNIST DNN (ReLU) conv+FC 4 1.1M [1]
CIFAR10 LeNet conv+FC 5 62.0k [44]
CIFAR10 VGG11 conv+batchNorm+FC 29 9.2M [71]
CIFAR100 VGG11 conv+batchNorm+FC 29 9.2M [71]

MLC = Multiclass Linear Classifier

• MNIST Convex: This problem was a convex problem. It is a simple neural network
with no hidden layers and soft-max cross-entropy loss function.

• MNIST DNN (SoftPlus): This network consists of two convolutional layers and
two fully connected layer. The first convolutional layer has 32 filters for each 5 × 5
patch, and the second convolutional layer has 64 filters for each 5 × 5 patch. Every
convolutional layer is followed by a 2× 2 max pooling layer. The first fully connected
layer has 1024 neurons and the second fully connected layer produces a 10 dimensional
output. We used SoftPlus activation functions. The loss function is soft-max cross-
entropy loss.

• MNIST DNN (ReLU): Same as above, but with ReLU activation functions.
• CIFAR10 LeNet: This network consists of two convolutional layers and three fully

connected layer. The first convolutional layer has 6 filters for each 5 × 5 patch, and
the second convolutional layer has 16 filters for each 5× 5 patch. Every convolutional
layer is followed by a 2× 2 max pooling layer. The first fully connected layer has 120
neurons and the second fully connected layer has 84 neurons. The last fully connected
layer produces a 10 dimensional output. The activation functions used is ReLU and
the loss function used is soft-max cross-entropy loss.

• CIFAR10 VGG11 and CIFAR100 VGG11: This is standard VGG11 network
which contains 8 convolution layers, each followed by batch-normalization and ReLU
activation functions. There are also 5 max-pooling layers and one average pooling layer.
The output of desired dimension (10 or 100) is achieve by fully connected layer. The
loss function is soft-max cross-entropy loss.

For the experiments in this section (Figures B1 and B8), we ran the following methods:

• (LFBGS) multi-batch L-BFGS with the cautious strategy: Algorithm 1 with standard

initial scaling (γkI, where γk =
sTk−1yk−1

yTk−1yk−1
) or αI initial scaling,

• (Adam) [40],
• (SGD) [67].

5Available at: http://yann.lecun.com/exdb/mnist/.
6Available at: https://www.cs.toronto.edu/~kriz/cifar.html.
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Figures B1 and B6 show the evolution of training and testing accuracy for different
batch sizes for the different neural network training tasks. Figures B7 and B8 show the
two diagnostic metrics for different batch sizes.

March 31, 2019 Optimization Methods & Software multi˙OMS

Figures B1 and B6 show the evolution of training and testing accuracy for di↵erent
batch sizes for the di↵erent neural network training tasks. Figures B7 and B8 show the
two diagnostic metrics for di↵erent batch sizes.

Figure B1. MNIST Multiclass Linear Classifier. Comparison of multi-batch L-BFGS (LBFGS),
Adam and SGD. Evolution of the training and testing accuracy for di↵erent batch sizes (|S| 2
{50, 100, 200, 500, 1000, 2000, 4000}).
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Figure B1. MNIST Multiclass Linear Classifier. Comparison of multi-batch L-BFGS (LBFGS),

Adam and SGD. Evolution of the training and testing accuracy for different batch sizes (|S| ∈
{50, 100, 200, 500, 1000, 2000, 4000}).
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Figure B2. MNIST DNN (SoftPlus). Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evo-
lution of the training and testing accuracy for di↵erent batch sizes (|S| 2 {50, 100, 200, 500, 1000, 2000, 4000}).
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Figure B2. MNIST DNN (SoftPlus). Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evo-

lution of the training and testing accuracy for different batch sizes (|S| ∈ {50, 100, 200, 500, 1000, 2000, 4000}).
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Figure B3. MNIST DNN (ReLU). Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution

of the training and testing accuracy for di↵erent batch sizes (|S| 2 {50, 100, 200, 500, 1000, 2000, 4000}).
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Figure B3. MNIST DNN (ReLU). Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution
of the training and testing accuracy for different batch sizes (|S| ∈ {50, 100, 200, 500, 1000, 2000, 4000}).
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Figure B4. CIFAR10 LeNet. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of the

training and testing accuracy for di↵erent batch sizes (|S| 2 {50, 100, 200, 500, 1000, 2000, 4000}).
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Figure B4. CIFAR10 LeNet. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of the
training and testing accuracy for different batch sizes (|S| ∈ {50, 100, 200, 500, 1000, 2000, 4000}).

47



August 28, 2019 Optimization Methods & Software Multi-Batch˙L-BFGS

March 31, 2019 Optimization Methods & Software multi˙OMS

Figure B5. CIFAR10 VGG11. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of

the training and testing accuracy for di↵erent batch sizes (|S| 2 {50, 100, 200, 500, 1000, 2000, 4000}).
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Figure B5. CIFAR10 VGG11. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of
the training and testing accuracy for different batch sizes (|S| ∈ {50, 100, 200, 500, 1000, 2000, 4000}).
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Figure B6. CIFAR100 VGG11. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of

the training and testing accuracy for di↵erent batch sizes (|S| 2 {50, 100, 200, 500, 1000, 2000, 4000}).
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Figure B6. CIFAR100 VGG11. Comparison of multi-batch L-BFGS (LBFGS), Adam and SGD. Evolution of
the training and testing accuracy for different batch sizes (|S| ∈ {50, 100, 200, 500, 1000, 2000, 4000}).
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Figure B7. Multi-batch L-BFGS diagnostic metric for di↵erent batch sizes |S| 2
{50, 100, 200, 500, 1000, 2000, 4000}. Angle between the true gradient curvature vector yd and subsampled

gradient curvature vector ys (
hys,ydi

kyskkydk ). Top right: MNIST Multiclass Linear Classifier; Top middle: MNIST

DNN (SoftPlus); Top Right: MNIST DNN (ReLU); Bottom left: CIFAR10 LeNet; Bottom middle: CIFAR10

VGG11; Bottom right: CIFAR100 VGG11.

Figure B8. Multi-batch L-BFGS diagnostic metric for di↵erent batch sizes |S| 2
{50, 100, 200, 500, 1000, 2000, 4000}. Ratio of subsampled gradient curvature vector to true gradient curva-

ture vector ( ys
yd

). Top right: MNIST Multiclass Linear Classifier; Top middle: MNIST DNN (SoftPlus); Top

Right: MNIST DNN (ReLU); Bottom left: CIFAR10 LeNet; Bottom middle: CIFAR10 VGG11; Bottom right:

CIFAR100 VGG11.
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Figure B7. Multi-batch L-BFGS diagnostic metric for different batch sizes |S| ∈
{50, 100, 200, 500, 1000, 2000, 4000}. Angle between the true gradient curvature vector yd and subsampled

gradient curvature vector ys (
〈ys,yd〉
‖ys‖‖yd‖ ). Top right: MNIST Multiclass Linear Classifier; Top middle: MNIST

DNN (SoftPlus); Top Right: MNIST DNN (ReLU); Bottom left: CIFAR10 LeNet; Bottom middle: CIFAR10
VGG11; Bottom right: CIFAR100 VGG11.
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Figure B7. Multi-batch L-BFGS diagnostic metric for di↵erent batch sizes |S| 2
{50, 100, 200, 500, 1000, 2000, 4000}. Angle between the true gradient curvature vector yd and subsampled

gradient curvature vector ys (
hys,ydi

kyskkydk ). Top right: MNIST Multiclass Linear Classifier; Top middle: MNIST

DNN (SoftPlus); Top Right: MNIST DNN (ReLU); Bottom left: CIFAR10 LeNet; Bottom middle: CIFAR10

VGG11; Bottom right: CIFAR100 VGG11.

Figure B8. Multi-batch L-BFGS diagnostic metric for di↵erent batch sizes |S| 2
{50, 100, 200, 500, 1000, 2000, 4000}. Ratio of subsampled gradient curvature vector to true gradient curva-

ture vector ( ys
yd

). Top right: MNIST Multiclass Linear Classifier; Top middle: MNIST DNN (SoftPlus); Top

Right: MNIST DNN (ReLU); Bottom left: CIFAR10 LeNet; Bottom middle: CIFAR10 VGG11; Bottom right:

CIFAR100 VGG11.
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Figure B8. Multi-batch L-BFGS diagnostic metric for different batch sizes |S| ∈
{50, 100, 200, 500, 1000, 2000, 4000}. Ratio of subsampled gradient curvature vector to true gradient curva-
ture vector ( ys

yd
). Top right: MNIST Multiclass Linear Classifier; Top middle: MNIST DNN (SoftPlus); Top

Right: MNIST DNN (ReLU); Bottom left: CIFAR10 LeNet; Bottom middle: CIFAR10 VGG11; Bottom right:
CIFAR100 VGG11.
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