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Computation of second-order directional stationary points for group1

sparse optimization2

Dingtao Peng · Xiaojun Chen3

4

Abstract We consider a nonconvex and nonsmooth group sparse optimization problem5

where the penalty function is the sum of compositions of a folded concave function and6

the ℓ2 vector norm for each group variable. We show that under some mild conditions a7

first-order directional stationary point is a strict local minimizer that fulfils the first-order8

growth condition, and a second-order directional stationary point is a strong local minimizer9

that fulfils the second-order growth condition. In order to compute second-order directional10

stationary points, we construct a twice continuously differentiable smoothing problem and11

show that any accumulation point of the sequence of second-order stationary points of the12

smoothing problem is a second-order directional stationary point of the original problem. We13

give numerical examples to illustrate how to compute a second-order directional stationary14

point by the smoothing method.15
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1 Introduction19

Let x = (x⊤
1 , · · · ,x⊤

𝐾)⊤ ∈ R𝑛 with x𝑖 = (𝑥𝑖(1), · · · , 𝑥𝑖(𝑑𝑖))
⊤ ∈ R𝑑𝑖 , 𝑑𝑖 ≥ 1,

𝐾∑︀
𝑖=1

𝑑𝑖 = 𝑛. We20

consider the following optimization problem21

min
x∈R𝑛

𝑓(x) := ℒ(x) +
𝐾∑︁
𝑖=1

𝜙(‖x𝑖‖), (1.1)

where ℒ : R𝑛 → R is a twice continuously differentiable function, and 𝜙 : R+ → R+22

is a concave penalty function satisfying the following properties: (i) 𝜙 is locally Lipschitz23

continuous and non-decreasing on [0,∞) with 𝜙(0) = 0 and 𝜙(𝑡) > 0 for 𝑡 > 0; (ii) 𝜙′(0+) >24

0. Throughout this paper, ‖ · ‖ denotes the ℓ2 vector norm.25
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In practice, many loss functions are twice continuously differentiable, for example, square

loss function ℒ(x) = 1
2𝑚‖𝐴x − 𝑏‖2, exponential loss function ℒ(x) = 1

𝑚

𝑚∑︀
𝑗=1

exp(−𝑏𝑗(a
⊤
𝑗 x)),

and logistic loss function

ℒ(x) = − 1

𝑚

𝑚∑︁
𝑗=1

{︀
𝑏𝑗 log(1 + exp(−a⊤𝑗 x)) + (1− 𝑏𝑗) log(1 + exp(a⊤𝑗 x))

}︀
,

where b ∈ R𝑚, 𝐴 = (a1, · · · ,a𝑚)⊤ ∈ R𝑚×𝑛.26

Problem (1.1) is called group sparse optimization due to the group structure in its vari-27

able. When 𝐾 = 𝑛 and 𝑑1 = · · · = 𝑑𝑛 = 1, problem (1.1) reduces to the standard sparse28

optimization which is aimed to find a sparse solution to minimize the function ℒ(x). Sparse29

optimization has attracted considerable attention in signal processing, machine learning and30

statistics in recent years. To yield a sparse solution, a penalty term is often used. Tibshirani31

[28] suggested using the ℓ1 penalty to obtain a sparse vector of regression coefficients in linear32

regression problem, which results in a convex optimization problem, called Lasso, and can33

be solved by many efficient algorithms. However, Fan and Li [12,13] pointed out that the34

solution of the ℓ1 penalized optimization does not possess some good statistical properties35

such as unbiasedness and oracle property. Fan and Li [12,13] then proposed a folded concave36

penalty and showed that there exists a local solution with the desired statistical properties37

for the resulting non-convex optimization. Till now, many specific folded concave penalty38

functions are widely used in signal reconstruction, image restoration, and variable selection,39

for example, logarithm penalty [12], fraction penalty [25], hard thresholding penalty (HT-40

P) [6,20], capped ℓ1 penalty (CapL1) [36], minimax concave penalty (MCP) [35], smoothly41

clipped absolute deviation (SCAD) [12].42

Although there exist some local minimizers with good statistical properties for a folded43

concave penalized optimization, how to find such local minimizers has not been addressed44

satisfactorily. Fan, Xue and Zou [14] proposed a local linear approximation algorithm to45

obtain an oracle solution with an initial point being sufficiently close to the true solution. In46

[23], the authors developed a concept of subspace second-order optimality which is related47

to subspace optimality in [3,4,9,10], and showed that under some conditions the station-48

ary point of subspace second-order optimality can be an oracle solution with high prob-49

ability. In 1985, Yuan [33] studied convergence of trust region algorithms to a first-order50

d(irectional)-stationary point of nonsmooth optimization. Recently, [1,26] adopted a first-51

order d(irectional)-stationary point for optimality, and showed that a first-order d-stationary52

point must be one of other stationary points using the first-order information of the objec-53

tive function. Moreover, [7,27] proposed the concept of second-order directional derivatives54

and the concept of second-order d(irectional)-stationary points, and showed that under some55

mild conditions second-order d-stationary points can fulfil the second-order growth condition.56

However, how to compute second-order directional derivatives and second-order d-stationary57

points is unknown for problem (1.1).58

Group sparse problem was studied by many authors, e.g., see [11,15,16,17,18,19,24,59

30,32,34,37]. It has wide applications in statistics, machine learning, and computational60

biology such as joint covariate selection [16,17,34,37], multi-task learning [19,32], and gene61

finding [15,24]. Most of the literatures use group ℓ1 penalty which yields group Lasso model.62

Huang and Zhang [17] showed that group Lasso is superior to standard Lasso for strongly63

group-sparse signals. In consideration of the good performance of folded concave penalties64

comparing to ℓ1 penalty for standard sparse optimization, some authors used group folded65

concave penalties such as group SCAD [5,22,29], group MCP [5,22,29], ℓ𝑞(ℓ𝑝) (0 ≤ 𝑞 ≤ 1 ≤66
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𝑝) [15] and ℓ0(ℓ2) [19] for group sparse problems. However, these works only used first-order67

information of objective functions which is weaker than second-order information.68

In this paper, we will provide a deep analysis of the second-order directional stationarity69

for folded concave penalized group sparse optimization. Our main contributions are presented70

as follows.71

In Section 2, by virtue of an explicit formula for computing the directional derivative of72

the objective function, we show that under some mild conditions a first-order d-stationary73

point of problem (1.1) is a strict local minimizer that fulfils the first-order growth condition.74

In Section 3, we provide an explicit formula for computing the second-order directional75

derivative, and show that under some mild conditions a second-order d-stationary point of76

problem (1.1) is a strong local minimizer that fulfils the second-order growth condition.77

Moreover, we establish lower bounds of the ℓ2 vector norm of nonzero groups of second-78

order d-stationary points of problem (1.1). These lower bounds are important for theoretical79

analysis and numerical algorithms.80

In Section 4, we construct a twice continuously differentiable smoothing approximation for81

the nonsmooth objective function in problem (1.1), and show that any accumulation point82

of the sequence of second-order stationary points of the smoothing problem is a second-83

order d-stationary point of the original problem. This result provides a theoretic basis for84

computing second-order d-stationary points of problem (1.1) using the gradient and Hessian85

of the smoothing function.86

Notations. For any ̂︀x ∈ R𝑛 and the groups ̂︀x1, · · · , ̂︀x𝐾 , denote87

𝐼(̂︀x) := {𝑖 ∈ {1, · · · ,𝐾} : ‖̂︀x𝑖‖ ≠ 0}, 𝐽𝑖(̂︀x) := {𝑗 ∈ {1, · · · , 𝑑𝑖} : ̂︀𝑥𝑖(𝑗) ̸= 0} for 𝑖 ∈ 𝐼(̂︀x),
𝑖 /∈ 𝐼(̂︀x) if 𝑖 ∈ {1, · · · ,𝐾} ∖ 𝐼(̂︀x), 𝑗 /∈ 𝐽𝑖(̂︀x) if 𝑖 ∈ 𝐼(̂︀x) and 𝑗 ∈ {1, · · · , 𝑑𝑖} ∖ 𝐽𝑖(̂︀x),

[∇ℒ(̂︀x)]𝑖 := ([∇ℒ(̂︀x)]𝑖(1), · · · , [∇ℒ(̂︀x)]𝑖(𝑑𝑖))
⊤, ∇ℒ(̂︀x) := ([∇ℒ(̂︀x)]⊤1 , · · · , [∇ℒ(̂︀x)]⊤𝐾)⊤,

where ̂︀𝑥𝑖(𝑗) ∈ R denotes the 𝑗th entry in ̂︀x𝑖 and [∇ℒ(̂︀x)]𝑖(𝑗) denotes the 𝑗th entry in [∇ℒ(̂︀x)]𝑖.88

2 First-order d-stationary points89

This section provides the local optimality and some properties of first-order d-stationary90

points of problem (1.1).91

2.1 Local optimality of first-order d-stationary points92

Let us introduce the concept of first-order d-stationary points [1,7,26,27].93

Definition 2.1 ̂︀x ∈ R𝑛 is called a first-order d-stationary point of problem (1.1) if the94

directional derivative satisfies95

𝑓 ′(̂︀x;x− ̂︀x) := lim
𝑡↓0

𝑓(̂︀x+ 𝑡(x− ̂︀x))− 𝑓(̂︀x)
𝑡

≥ 0, ∀ x ∈ R𝑛. (2.1)

According to [1,26], first-order d-stationary points are sharper than lifted stationary96

points, critical points, and C-stationary points for the local optimality. It is known that97

first-order d-stationary points have the following locally optimal properties.98
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Theorem 2.2 Let 𝑓 : R𝑛 → R be locally Lipschitz continuous and directionally differentiable99

at ̂︀x ∈ R𝑛. The following two statements hold:100

(i) If ̂︀x is a local minimizer of 𝑓 , then ̂︀x is a first-order d-stationary point of 𝑓 .101

(ii) ̂︀x is a strict local minimizer that fulfils the first-order growth condition, i.e., there102

exists a neighborhood 𝒲 of ̂︀x and a positive number 𝛿 such that103

𝑓(x) ≥ 𝑓(̂︀x) + 𝛿‖x− ̂︀x‖, ∀ x ∈ 𝒲, (2.2)

if and only if ̂︀x satisfies that104

𝑓 ′(̂︀x;x− ̂︀x) > 0, ∀ x ∈ R𝑛 ∖ {̂︀x}. (2.3)

If 𝑓 is differentiable at x, then 𝑓 ′(x; z) = ⟨∇𝑓(x), z⟩. Inequality (2.3) does not hold105

at any differentiable point of 𝑓 , but it may hold at some non-differentiable points of 𝑓 .106

Many local minimizers of problem (1.1) are non-differentiable points of 𝑓 , which makes107

conclusion (ii) of Theorem 2.2 very interesting. For example, let 𝑓(𝑡) = 𝑡2+log(1+ |𝑡|), then108

𝑓 ′(0; 𝑠) = |𝑠| > 0 (𝑠 ̸= 0), and 𝑓(𝑡) ≥ |𝑡| for any 𝑡 ∈ R.109

To have a clear presentation, we denote the ℓ2 vector norm as a function110

𝑚(u) := ‖u‖ =

⎛⎝ 𝑑𝑖∑︁
𝑗=1

𝑢2
𝑗

⎞⎠ 1
2

, ∀ u ∈ R𝑑𝑖 , 𝑖 ∈ {1, · · · ,𝐾}. (2.4)

Although the dimensions of the vectors may be different, we believe that it will not cause111

any confusion according to the context.112

Since 𝑚(u) is differentiable at all points except u = 0, we have that for any u,w ∈ R𝑑𝑖 ,113

𝑚′(u;w) = lim
𝑡↓0

‖u+ 𝑡w‖ − ‖u‖
𝑡

=

⎧⎨⎩ ‖w‖, if u = 0,
⟨u,w⟩
‖u‖

, if u ̸= 0.
(2.5)

2.2 First-order d-stationary points of problem (1.1)114

In this subsection, we use an explicit formula of directional derivative to provide sufficient115

and necessary conditions for first-order d-stationary points of problem (1.1).116

Our analysis is based on a difference-of-convex (DC) form of the penalty function so that117

the directional derivative of the objective function in (1.1) can be explicitly expressed.118

Assumption (A1): The penalty function 𝜙 : R+ → R+ is a DC function given by119

𝜙(𝑡) , 𝑔(𝑡)− ℎ(𝑡), with ℎ(𝑡) , max
1≤𝜈≤𝜈

{ℎ𝜈(𝑡)} for some integer 𝜈 ≥ 1, (2.6)

where 𝑔 and ℎ𝜈 (1 ≤ 𝜈 ≤ 𝜈) are convex and differentiable in 𝑡 ∈ (0,∞) with 𝑔′(0) := 𝑔′(0+)120

and ℎ′
𝜈(0) := ℎ′

𝜈(0+) for 1 ≤ 𝜈 ≤ 𝜈.121

Consequently, our group sparse optimization model (1.1) is rewritten as122

min
x∈R𝑛

𝑓(x) := ℒ(x) +
𝐾∑︁
𝑖=1

[︀
𝑔(‖x𝑖‖)− ℎ(‖x𝑖‖)

]︀
. (2.7)

From the literatures (e.g., [1,21]), we know that several folded concave penalty functions123

can be formulated as DC functions satisfying Assumption (A1), such as logarithm penalty,124

fraction penalty, CapL1, HTP, MCP and SCAD. In particular, as given in [1] we have the125

following expressions:126
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CapL1: 𝜙CapL1(𝑡) = 𝑔CapL1(𝑡)− ℎCapL1(𝑡) with

𝑔CapL1(𝑡) =
𝜆𝑡

𝛼
, ℎCapL1(𝑡) = max

{︂
0,

𝜆𝑡

𝛼
− 𝜆

}︂
, (𝛼 > 0, 𝜆 > 0);

MCP: 𝜙MCP(𝑡) = 𝑔MCP(𝑡)− ℎMCP(𝑡) with

𝑔MCP(𝑡) = 𝜆𝑡, ℎMCP(𝑡) =

{︃
𝑡2

2𝛼 , if 0 ≤ 𝑡 ≤ 𝛼𝜆,

𝜆𝑡− 𝛼𝜆2

2 , if 𝑡 > 𝛼𝜆,
(𝛼 > 1, 𝜆 > 0);

SCAD: 𝜙SCAD(𝑡) = 𝑔SCAD(𝑡)− ℎSCAD(𝑡) with

𝑔SCAD(𝑡) = 𝜆𝑡, ℎSCAD(𝑡) =

⎧⎪⎨⎪⎩
0, if 0 ≤ 𝑡 ≤ 𝜆,

(𝑡−𝜆)2

2(𝛼−1) , if 𝜆 < 𝑡 ≤ 𝛼𝜆,

𝜆𝑡− (𝛼+1)𝜆2

2 , if 𝑡 > 𝛼𝜆,

(𝛼 > 2, 𝜆 > 0).

Theorem 2.3 Under Assumption (A1), the directional derivative of the objective function127

𝑓 in (1.1) has the following form128

𝑓 ′(̂︀x;x− ̂︀x) = ⟨∇ℒ(̂︀x),x− ̂︀x⟩+ 𝐾∑︁
𝑖=1

𝑔′(‖̂︀x𝑖‖)𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)

−
𝐾∑︁
𝑖=1

max
𝜈𝑖∈𝒜𝑖(̂︀x𝑖)

ℎ′
𝜈𝑖
(‖̂︀x𝑖‖)𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) (2.8)

with 𝒜𝑖(̂︀x𝑖) = {𝜈𝑖 ∈ {1, · · · , 𝜈} : ℎ𝜈𝑖
(‖̂︀x𝑖‖) = ℎ(‖̂︀x𝑖‖)} and129

𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) =

{︃
‖x𝑖‖, if 𝑖 ̸∈ 𝐼(̂︀x),

⟨̂︀x𝑖,x𝑖−̂︀x𝑖⟩
‖̂︀x𝑖‖ , if 𝑖 ∈ 𝐼(̂︀x𝑖).

(2.9)

Proof Under Assumption (A1), problem (1.1) can be written as (2.7). Since ℎ : R+ → R+130

and 𝑚 : R𝑑𝑖 → R+ are both convex, ℎ ∘ 𝑚 : R𝑑𝑖 → R+ is directionally differentiable.131

According to the chain rule for directional derivatives and the differentiability of each ℎ𝜈 ,132

for 𝑖 = 1, · · · ,𝐾, we have133

(ℎ ∘𝑚)′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) = ℎ′(‖̂︀x𝑖‖;𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)) = max
𝜈𝑖∈𝒜𝑖(̂︀x𝑖)

ℎ′
𝜈𝑖
(‖̂︀x𝑖‖) 𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖).

Since ℒ and 𝑔 are differentiable, we obtain the directional derivative at ̂︀x for x− ̂︀x in (2.8).134

�135

The following lemma shows that at any first-order d-stationary point of (1.1), the entries136

of the gradient of the loss function ℒ for 𝑖 ∈ 𝐼(̂︀x) can be presented by the derivatives of 𝑔137

and ℎ𝜈𝑖 .138

Lemma 2.4 Suppose Assumption (A1) holds. Let ̂︀x ∈ R𝑛 be a first-order d-stationary point139

of problem (1.1). Then for 𝑖 ∈ 𝐼(̂︀x), we have140

[∇ℒ(̂︀x)]𝑖(𝑗) = 0, ∀ 𝑗 /∈ 𝐽𝑖(̂︀x), (2.10)

and141

|[∇ℒ(̂︀x)]𝑖(𝑗)| = |𝑔′(‖̂︀x𝑖‖)− ℎ′
𝜈𝑖
(‖̂︀x𝑖‖)| · |̂︀𝑥𝑖(𝑗)|

‖̂︀x𝑖‖
, ∀ 𝑗 ∈ 𝐽𝑖(̂︀x), ∀ 𝜈𝑖 ∈ 𝒜𝑖(̂︀x𝑖). (2.11)
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Proof From Theorem 2.3, we have142

⟨∇ℒ(̂︀x),x− ̂︀x⟩+ 𝐾∑︁
𝑖=1

[︀
𝑔′(‖̂︀x𝑖‖)− ℎ′

𝜈𝑖
(‖̂︀x𝑖‖)

]︀
𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)

≥ ⟨∇ℒ(̂︀x),x− ̂︀x⟩+ 𝐾∑︁
𝑖=1

𝑔′(‖̂︀x𝑖‖)𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)−
𝐾∑︁
𝑖=1

max
𝜈𝑖∈𝒜𝑖(̂︀𝑥𝑖)

ℎ′
𝜈𝑖
(‖̂︀x𝑖‖)𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)

≥ 0, ∀ x ∈ R𝑛, (2.12)

where 𝜈𝑖 ∈ 𝒜𝑖(̂︀x𝑖), 𝑖 = 1, . . . ,𝐾, and 𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) is given by (2.9). It is obvious that143

inequality (2.12) also holds for any x ∈ 𝒳 (̂︀x) := {x ∈ R𝑛 : x𝑖 = 0 whenever 𝑖 /∈ 𝐼(̂︀x) }. This144

combining with formula (2.9) yields that145

∑︁
𝑖∈𝐼(̂︀x)

⟨
[∇ℒ(̂︀x)]𝑖 + [︀𝑔′(‖̂︀x𝑖‖)− ℎ′

𝜈𝑖
(‖̂︀x𝑖‖)

]︀
‖̂︀x𝑖‖

̂︀x𝑖,x𝑖 − ̂︀x𝑖

⟩
≥ 0, ∀ x ∈ 𝒳 (̂︀x).

According to the arbitrariness of x ∈ 𝒳 (̂︀x), we obtain146

[∇ℒ(̂︀x)]𝑖 + 𝑔′(‖̂︀x𝑖‖)− ℎ′
𝜈𝑖
(‖̂︀x𝑖‖)

‖̂︀x𝑖‖
̂︀x𝑖 = 0, ∀ 𝑖 ∈ 𝐼(̂︀x). (2.13)

Therefore, we have147

[∇ℒ(̂︀x)]𝑖(𝑗) = 0, ∀ 𝑖 ∈ 𝐼(̂︀x), 𝑗 /∈ 𝐽𝑖(̂︀x),
and148

|𝑔′(‖̂︀x𝑖‖)− ℎ′
𝜈𝑖
(‖̂︀x𝑖‖)| · |̂︀𝑥𝑖(𝑗)|

‖̂︀x𝑖‖
= |[∇ℒ(̂︀x)]𝑖(𝑗)|, ∀ 𝑖 ∈ 𝐼(̂︀x), 𝑗 ∈ 𝐽𝑖(̂︀x).

The conclusion is obtained. �149

By applying Lemma 2.4 to CapL1, MCP and SCAD, we can get the following lower150

bounds of the ℓ2 vector norm of nonzero groups of first-order d-stationary points, whose151

proof is omitted.152

Corollary 2.5 Suppose there exists a nondecreasing function 𝐶 : R→ R+ such that ‖∇ℒ(x)‖153

≤ 𝐶(ℒ(x)) for any x ∈ R𝑛. Let ̂︀x ∈ R𝑛 be a first-order d-stationary point of problem (1.1),154

and x0 ∈ R𝑛 be a point such that ℒ(̂︀x) ≤ ℒ(x0), then the following statements hold:155

(i) For CapL1, if 𝜆
𝛼 > 𝐶(ℒ(x0)), then either ‖̂︀x𝑖‖ = 0 or ‖̂︀x𝑖‖ ≥ 𝛼, 𝑖 = 1, · · · ,𝐾.156

(ii) For MCP, if 𝜆 > 𝐶(ℒ(x0)), then either ‖̂︀x𝑖‖ = 0 or ‖̂︀x𝑖‖ ≥ 𝛼𝜆 − 𝛼 · 𝐶(ℒ(x0)) > 0,157

𝑖 = 1, · · · ,𝐾.158

(iii) For SCAD, if 𝜆 > 𝐶(ℒ(x0)), then either ‖̂︀x𝑖‖ = 0 or ‖̂︀x𝑖‖ ≥ 𝛼𝜆−(𝛼−1)·𝐶(ℒ(x0)) >159

𝜆, 𝑖 = 1, · · · ,𝐾.160

Remark 2.6 The existence of the nondecreasing function 𝐶 : R→ R+ means that the norm161

of the gradient ∇ℒ(x) can be bounded by the function value ℒ(x) via 𝐶(·). This condition162

can be easily satisfied, for example, for the square loss function ℒ(x) = 1
2𝑚‖𝐴x−𝑏‖2, 𝐶(𝑡) =163

‖𝐴‖2
√︁

2
𝑚 𝑡 meets the requirements since164

‖∇ℒ(x)‖ =
1

𝑚
‖𝐴⊤(𝐴x− 𝑏)‖ ≤ ‖𝐴‖2

𝑚
‖𝐴x− 𝑏‖ = ‖𝐴‖2

√︂
2

𝑚
ℒ(x).
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When 𝜙 is the difference of two differentiable convex functions in (0,∞), such as 𝜙MCP
165

and 𝜙SCAD, we have the following corollary, which will be used in Theorem 4.5 to derive the166

consistency of the second-order stationary point.167

Corollary 2.7 Suppose Assumption (A1) holds with 𝜈 = 1, that is, 𝜙 = 𝑔 − ℎ where 𝑔, ℎ168

are both convex and differentiable in (0,∞). Let ̂︀x ∈ R𝑛 be a first-order d-stationary point169

of problem (1.1), then the following statements hold:170

(i) 𝑓 ′(̂︀x;x− ̂︀x) = ∑︀
𝑖/∈𝐼(̂︀x)

[︁
⟨[∇ℒ(̂︀x)]𝑖,x𝑖⟩+ 𝜙′(0)‖x𝑖‖

]︁
for any x ∈ R𝑛.171

(ii) ‖[∇ℒ(̂︀x)]𝑖‖ ≤ 𝜙′(0) whenever 𝑖 /∈ 𝐼(̂︀x).172

(iii) 𝑓 ′(̂︀x;x− ̂︀x) = 0 implies x𝑖 = 0 whenever 𝑖 /∈ 𝐼(̂︀x) and ‖[∇ℒ(̂︀x)]𝑖‖ < 𝜙′(0).173

Proof (i) From Theorem 2.3, 𝑓 ′(̂︀x;x− ̂︀x) has the following form174

𝑓 ′(̂︀x;x− ̂︀x) = ∑︁
𝑖∈𝐼(̂︀x)

⟨
[∇ℒ(̂︀x)]𝑖 + [︀𝑔′(‖̂︀x𝑖‖)− ℎ′(‖̂︀x𝑖‖)

]︀
‖̂︀x𝑖‖

̂︀x𝑖,x𝑖 − ̂︀x𝑖

⟩

+
∑︁

𝑖/∈𝐼(̂︀x)
[︁
⟨[∇ℒ(̂︀x)]𝑖,x𝑖⟩+ (𝑔′(0)− ℎ′(0))‖x𝑖‖

]︁
. (2.14)

Since ̂︀x is a first-order d-stationary point of problem (1.1), equation (2.13) holds with ℎ𝜈𝑖 = ℎ.175

Hence (2.14) can be simplified as176

𝑓 ′(̂︀x;x− ̂︀x) = ∑︁
𝑖/∈𝐼(̂︀x)

[︁
⟨[∇ℒ(̂︀x)]𝑖,x𝑖⟩+ 𝜙′(0)‖x𝑖‖

]︁
,

where 𝜙′(0) = 𝑔′(0)− ℎ′(0) > 0.177

(ii) Since ̂︀x is a first-order d-stationary point of problem (1.1), 𝑓 ′(̂︀x;x − ̂︀x) ≥ 0 for all178

x ∈ R𝑛, that is,179

𝑓 ′(̂︀x;x− ̂︀x) = ∑︁
𝑖/∈𝐼(̂︀x)

[︁
⟨[∇ℒ(̂︀x)]𝑖,x𝑖⟩+ 𝜙′(0)‖x𝑖‖

]︁
≥ 0, ∀ x ∈ R𝑛. (2.15)

For each fixed 𝑖 /∈ 𝐼(̂︀x), if we take x̆𝑖 = −[∇ℒ(̂︀x)]𝑖 and the other entries of x̆ are all zeros,180

then we get181

𝑓 ′(̂︀x; x̆− ̂︀x) = ‖[∇ℒ(̂︀x)]𝑖‖ · [︁𝜙′(0)− ‖[∇ℒ(̂︀x)]𝑖‖]︁ ≥ 0. (2.16)

If ‖[∇ℒ(̂︀x)]𝑖‖ = 0, then ‖[∇ℒ(̂︀x)]𝑖‖ = 0 < 𝜙′(0). If ‖[∇ℒ(̂︀x)]𝑖‖ > 0, then from (2.16), we182

obtain 𝜙′(0) ≥ ‖[∇ℒ(̂︀x)]𝑖‖.183

(iii) It follows from (i), (ii) and Cauchy-Schwartz inequality that184

𝑓 ′(̂︀x;x− ̂︀x) = ∑︁
𝑖/∈𝐼(̂︀x)

[︁
⟨[∇ℒ(̂︀x)]𝑖,x𝑖⟩+ 𝜙′(0)‖x𝑖‖

]︁
≥
∑︁

𝑖/∈𝐼(̂︀x)
[︁
𝜙′(0)− ‖[∇ℒ(̂︀x)]𝑖‖]︁‖x𝑖‖ ≥ 0.

Hence, if 𝑓 ′(̂︀x;x− ̂︀x) = 0, it must hold that ‖x𝑖‖ = 0 whenever 𝑖 /∈ 𝐼(̂︀x) and ‖[∇ℒ(̂︀x)]𝑖‖ <185

𝜙′(0). �186
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3 Second-order d-stationary points187

In this section, we provide second-order optimality conditions for problem (1.1) using second-188

order directional derivatives.189

3.1 Local optimality of second-order d-stationary points190

Second-order directional derivatives for nonsmooth functions have been studied by many191

authors (e.g., see [2,7,27,31]) with different definitions for one direction or two directions. In192

this paper, we use the definition of the second-order directional derivative for one direction in193

[7,27] to define the second-order d-stationary point of problem (1.1). We show that second-194

order d-stationary points of problem (1.1) are local minimizers fulfilling the second-order195

growth condition under some mild conditions.196

Definition 3.1 [7,27] Let 𝜃 : R𝑛 → R be a locally Lipschitz continuous and directionally197

differentiable function, and ̂︀x, z ∈ R𝑛. If the limit198

lim
y→z, 𝑡↓0

𝜃(̂︀x+ 𝑡y)− 𝜃(̂︀x)− 𝑡𝜃′(̂︀x;y)
1
2 𝑡

2
(3.1)

exists, it is called the second-order directional derivative of 𝜃 at ̂︀x for z, denoted by 𝜃(2)(̂︀x; z).199

If for every z ∈ R𝑛, 𝜃(2)(̂︀x; z) exists, 𝜃 is called twice directionally differentiable at ̂︀x.200

Indeed, to say that limit (3.1) exists and equals 𝜃(2)(̂︀x; z) is to say that whenever x𝜈

converges to ̂︀x from the direction of z, in the sense that [x𝜈 − ̂︀x]/𝑡𝜈 → z for some choice of
𝑡𝜈 ↓ 0, one has

𝜃(x𝜈)− 𝜃(̂︀x)− 𝜃′(̂︀x;x𝜈 − ̂︀x)
1
2(𝑡

𝜈)2
→ 𝜃(2)(̂︀x; z).

Clearly, if limit (3.1) exists, then201

𝜃(2)(̂︀x; z) = lim
𝑡↓0

𝜃(̂︀x+ 𝑡z)− 𝜃(̂︀x)− 𝑡𝜃′(̂︀x; z)
1
2 𝑡

2
.

It is obvious that if 𝜃 is twice directionally differentiable at ̂︀x, then for any z ∈ R𝑛 there202

exists 𝛿 > 0 such that203

𝜃(̂︀x+ 𝑡y) = 𝜃(̂︀x) + 𝑡𝜃′(̂︀x;y) + 1

2
𝑡2𝜃(2)(̂︀x; z) + 𝑜(𝑡2), ∀ 𝑡 ∈ (0, 𝛿) and ∀ y ∈ 𝒩 (z, 𝛿),

and particularly204

𝜃(̂︀x+ 𝑡z) = 𝜃(̂︀x) + 𝑡𝜃′(̂︀x; z) + 1

2
𝑡2𝜃(2)(̂︀x; z) + 𝑜(𝑡2), ∀ 𝑡 ∈ (0, 𝛿).

Moreover, if 𝜃 is twice differentiable at ̂︀x, then205

𝜃(2)(̂︀x; z) = ⟨∇2𝜃(̂︀x)z, z⟩, ∀ z ∈ R𝑛.

From [7,27], we also know that if 𝜃 is convex and twice directionally differentiable at ̂︀x,206

then207

𝜃(2)(̂︀x; z) ≥ 0, ∀ z ∈ R𝑛.

For a vector-valued function 𝛷 : R𝑛 → R𝑚 with component functions 𝛷𝑖 for 𝑖 = 1, · · · ,𝑚,208

𝛷(2)(x; z) is defined to be the 𝑚-vector with components 𝛷
(2)
𝑖 (x; z) for 𝑖 = 1, · · · ,𝑚.209
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Lemma 3.2 Let 𝜚 : R𝑚 → R be locally Lipschitz continuous at 𝛷(x) ∈ R𝑚, and 𝛷 : R𝑛 →210

R𝑚 be locally Lipschitz continuous at x ∈ R𝑛, then the composite function 𝜃 = 𝜚∘𝛷 : R𝑛 → R211

is twice directionally differentiable at x under either one of the following three conditions:212

(a) 𝜚 is semismoothly differentiable at 𝛷(x) (i.e., 𝜚 is differentiable near 𝛷(x) and ∇𝜚 is213

semismooth at 𝛷(x)), and 𝛷 is twice directionally differentiable at x.214

(b) 𝜚 is twice directionally differentiable at 𝛷(x) and 𝛷 is piecewise affine near x.215

(c) 𝜚 is piecewise affine near 𝛷(x) and 𝛷 is twice directionally differentiable at x.216

Moreover, we have, for all z ∈ R𝑛,217

𝜃(2)(x; z) = 𝛷′(x; z)⊤(∇𝜚)′(𝛷(x);𝛷′(x; z)) +∇𝜚(𝛷(x))⊤𝛷(2)(x; z), if (a) holds; (3.2)
218

𝜃(2)(x; z) = 𝜚(2)(𝛷(x);𝛷′(x; z)), if (b) holds; (3.3)

and219

𝜃(2)(x; z) = 𝜚′(𝛷(x);𝛷(2)(x; z)), if (c) holds. (3.4)

Proof Conclusions (3.2) and (3.3) have been proved in [7, Prop. 3.2]. It is easy to prove220

conclusion (3.4) under condition (c) by noting that 𝜚′(u;v) exists and 𝜚(2)(u;v) = 0 at any221

point u for any direction v when 𝜚 is piecewise affine. �222

Definition 3.3 [7] Let 𝜃 : R𝑛 → R be twice directionally differentiable at ̂︀x ∈ R𝑛. ̂︀x is223

called a second-order d-stationary point of 𝜃 if ̂︀x is a first-order d-stationary point of 𝜃, and224

for any z ∈ R𝑛,225

𝜃′(̂︀x; z) = 0 implies 𝜃(2)(̂︀x; z) ≥ 0.

According to [7, Theorem 1] and [27, Theorem 13.24], if 𝜃 is twice directionally dif-226

ferentiable, then second-order d-stationary points of 𝜃 have the following locally optimal227

properties.228

Proposition 3.4 Let 𝜃 : R𝑛 → R be twice directionally differentiable at ̂︀x ∈ R𝑛. The229

following two statements hold:230

(i) If ̂︀x ∈ R𝑛 is a local minimizer of 𝜃, then ̂︀x is a second-order d-stationary point of 𝜃.231

(ii) ̂︀x ∈ R𝑛 is a strong local minimizer of 𝜃, i.e., there exist a neighborhood 𝒲 of ̂︀x and232

a scalar 𝛿 > 0 such that233

𝜃(x) ≥ 𝜃(̂︀x) + 𝛿‖x− ̂︀x‖2, ∀ x ∈ 𝒲,

if and only if ̂︀x is a first-order d-stationary point of 𝜃 and satisfies that for any ̂︀x ̸= x ∈ R𝑛,234

𝜃′(̂︀x;x− ̂︀x) = 0 implies 𝜃(2)(̂︀x;x− ̂︀x) > 0.

In the following parts, we will use the second-order directional derivative of ℓ2 vector235

norm function. Recall that 𝑚(u) = ‖u‖, and that236

𝑚′(u;v) = lim
𝑡↓0

‖u+ 𝑡v‖ − ‖u‖
𝑡

=

{︃
‖v‖, if u = 0,
⟨u,v⟩
‖u‖ , if u ̸= 0,

∀ u,v ∈ R𝑑𝑖 .

It is easy to know that 𝑚(·) is twice differentiable at all points except u = 0, and that237

𝑚(2)(u;w) = lim
v→w, 𝑡↓0

‖u+ 𝑡v‖ − ‖u‖ − 𝑡𝑚′(u;v)
1
2 𝑡

2

=

{︃
0, if u = 0,

(‖u‖‖w‖)2−|⟨u,w⟩|2
‖u‖3 , if u ̸= 0,

∀ u,w ∈ R𝑑𝑖 . (3.5)
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3.2 Second-order sufficient and necessary conditions for problem (1.1)238

To study second-order d-stationary points of problem (1.1), we need the following assump-239

tion.240

Assumption (A2) The penalty function 𝜙 : R+ → R+ is a DC function given by241

𝜙(𝑡) , 𝑔(𝑡)− ℎ(𝑡), (3.6)

where 𝑔 is affine in 𝑡 ∈ [0,∞) with 𝑔′(0) := 𝑔′(0+), and ℎ is convex and semismoothly242

differentiable in 𝑡 ∈ (0,∞) with ℎ′(0) := ℎ′(0+).243

We can easily check that several folded concave penalty functions satisfy Assumption244

(A2), such as logarithm penalty, fraction penalty, HTP, MCP and SCAD.245

In general the second-order directional derivative of a function is not easy to compute.246

The following lemma provides an explicit formula for computing the second-order directional247

derivative of the objective function of problem (1.1).248

Lemma 3.5 Under Assumption (A2), the second-order directional derivative of the objective249

function 𝑓 in (1.1) has the following form250

𝑓 (2)(̂︀x;x− ̂︀x) = ⟨∇2ℒ(̂︀x)(x− ̂︀x),x− ̂︀x⟩+ 𝐾∑︁
𝑖=1

[︁
𝑔′(‖̂︀x𝑖‖)− ℎ′(‖̂︀x𝑖‖)

]︁
𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖)

−
𝐾∑︁
𝑖=1

𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)𝐻
′(‖̂︀x𝑖‖;𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)), (3.7)

where 𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) is given by (2.9),251

𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) =

{︃
0, if 𝑖 ̸∈ 𝐼(̂︀x),

(‖x𝑖−̂︀x𝑖‖‖̂︀x𝑖‖)2−|⟨̂︀x𝑖,x𝑖−̂︀x𝑖⟩|2
‖̂︀x𝑖‖3 , if 𝑖 ∈ 𝐼(̂︀x), (3.8)

and 𝐻(𝑡) := ℎ′(𝑡) for any 𝑡 ∈ [0,+∞).252

Proof Since ℒ is twice continuously differentiable, ℒ(2)(̂︀x;x− ̂︀x) = ⟨∇2ℒ(̂︀x)(x− ̂︀x),x− ̂︀x⟩.253

Since 𝑔 is affine in [0,∞) with 𝑔′(0) = 𝑔′(0+), (𝑔 ∘𝑚)′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) = 𝑔′(‖̂︀x𝑖‖)𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖),254

𝑔(2)(‖̂︀x𝑖‖;𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)) = 0. By Lemma 3.2,255

(𝑔 ∘𝑚)(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) = 𝑔′(‖̂︀x𝑖‖)𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) + 𝑔(2)(‖̂︀x𝑖‖;𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖))𝑚
′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)

= 𝑔′(‖̂︀x𝑖‖)𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖)

for 𝑖 = 1, · · · ,𝐾.256

Since ℎ is semismoothly differentiable in (0,∞) with ℎ′(0) = ℎ′(0+), ℎ is twice direction-257

ally differentiable and (ℎ ∘𝑚)′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) = ℎ′(‖̂︀x𝑖‖)𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖). By Lemma 3.2,258

(ℎ ∘𝑚)(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) = ℎ′(‖̂︀x𝑖‖)𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) + ℎ(2)(‖̂︀x𝑖‖;𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖))𝑚
′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)

= ℎ′(‖̂︀x𝑖‖)𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) +𝐻 ′(‖̂︀x𝑖‖;𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖))𝑚
′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)

for 𝑖 = 1, · · · ,𝐾.259

Then we have260

𝑓 (2)(̂︀x;x− ̂︀x) = ⟨∇2ℒ(̂︀x)(x− ̂︀x),x− ̂︀x⟩+ 𝐾∑︁
𝑖=1

[︁
𝑔′(‖̂︀x𝑖‖)− ℎ′(‖̂︀x𝑖‖)

]︁
𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖)

−
𝐾∑︁
𝑖=1

𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)𝐻
′(‖̂︀x𝑖‖;𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)),

where 𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) and 𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) are given by (2.5) and (3.5) respectively. �261
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From Definition 3.3, Proposition 3.4 and Lemma 3.5, we obtain the following theorem.262

Theorem 3.6 Suppose Assumption (A2) holds and ̂︀x ∈ R𝑛 is a first-order d-stationary point263

of problem (1.1), then the following two statements hold with 𝑓 ′(̂︀x;x− ̂︀x) and 𝑓 (2)(̂︀x;x− ̂︀x)264

given by (2.8) and (3.7) respectively.265

(i) ̂︀x is a second-order d-stationary point of problem (1.1) if and only if for any x ∈ R𝑛,266

𝑓 ′(̂︀x;x− ̂︀x) = 0 implies 𝑓 (2)(̂︀x;x− ̂︀x) ≥ 0.267

(ii) ̂︀x is a strong local minimizer of problem (1.1) if and only if for any ̂︀x ̸= x ∈ R𝑛,268

𝑓 ′(̂︀x;x− ̂︀x) = 0 implies 𝑓 (2)(̂︀x;x− ̂︀x) > 0.269

The following theorem shows that the second-order directional derivative at a second-270

order d-stationary point can be simplified and is nonnegative on a special set.271

Theorem 3.7 Under Assumption (A2), let ̂︀x ∈ R𝑛 be a second-order d-stationary point of272

problem (1.1), and273

𝒳 (̂︀x) = {x ∈ R𝑛 : x𝑖 = 0 whenever 𝑖 /∈ 𝐼(̂︀x)}, (3.9)

then for any x ∈ 𝒳 (̂︀x),274

⟨∇2ℒ(̂︀x)(x− ̂︀x),x− ̂︀x⟩+ ∑︁
𝑖∈𝐼(̂︀x)

[︁
(𝑔 ∘𝑚)(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖)− (ℎ ∘𝑚)(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖)

]︁
≥ 0,

where for 𝑖 ∈ 𝐼(̂︀x),275

(𝑔 ∘𝑚)(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) = 𝑔′(‖̂︀x𝑖‖)𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖),

(ℎ ∘𝑚)(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) = 𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)𝐻
′(‖̂︀x𝑖‖;𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖))

+ℎ′(‖̂︀x𝑖‖)𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖),

𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) =
⟨̂︀x𝑖,x𝑖 − ̂︀x𝑖⟩

‖̂︀x𝑖‖
,

𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) =
(‖x𝑖 − ̂︀x𝑖‖‖̂︀x𝑖‖)2 − |⟨̂︀x𝑖,x𝑖 − ̂︀x𝑖⟩|2

‖̂︀x𝑖‖3
,

𝐻(𝑡) = ℎ′(𝑡) for any 𝑡 ∈ (0,∞).

Proof Since ̂︀x is a second-order d-stationary point of problem (1.1), it is also a first-order276

d-stationary point of problem (1.1), which means277

⟨∇ℒ(̂︀x),x− ̂︀x⟩+ 𝐾∑︁
𝑖=1

(︀
𝑔′(‖̂︀x𝑖‖)− ℎ′(‖̂︀x𝑖‖)

)︀
𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) ≥ 0, ∀ x ∈ R𝑛.

By the same argument in the proof of (2.13), we have278

[∇ℒ(̂︀x)]𝑖 + 𝑔′(‖̂︀x𝑖‖)− ℎ′(‖̂︀x𝑖‖)
‖̂︀x𝑖‖

̂︀x𝑖 = 0, ∀ 𝑖 ∈ 𝐼(̂︀x).
Therefore, we get279 ∑︁

𝑖∈𝐼(̂︀x)
⟨
[∇ℒ(̂︀x)]𝑖 + 𝑔′(‖̂︀x𝑖‖)− ℎ′(‖̂︀x𝑖‖)

‖̂︀x𝑖‖
̂︀x𝑖,x𝑖 − ̂︀x𝑖

⟩
= 0, ∀ x ∈ R𝑛. (3.10)

For any x ∈ 𝒳 (̂︀x), by (2.9), (3.10) and direct computation, we obtain280

⟨∇ℒ(̂︀x),x− ̂︀x⟩+ 𝐾∑︁
𝑖=1

(︀
𝑔′(‖̂︀x𝑖‖)− ℎ′(‖̂︀x𝑖‖)

)︀
𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) = 0,
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that is, 𝑓 ′(̂︀x;x− ̂︀x) = 0, which together with that ̂︀x is a second-order d-stationary point of281

problem (1.1) yields that 𝑓 (2)(̂︀x;x − ̂︀x) ≥ 0. From (2.9), (3.8) and x ∈ 𝒳 (̂︀x), we have that282

for 𝑖 ̸∈ 𝐼(̂︀x), 𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) = 𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) = 0, and that for 𝑖 ∈ 𝐼(̂︀x),283

𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖) =
⟨̂︀x𝑖,x𝑖 − ̂︀x𝑖⟩

‖̂︀x𝑖‖
,

𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) =
(‖x𝑖 − ̂︀x𝑖‖‖̂︀x𝑖‖)2 − |⟨̂︀x𝑖,x𝑖 − ̂︀x𝑖⟩|2

‖̂︀x𝑖‖3
,

(𝑔 ∘𝑚)(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) = 𝑔′(‖̂︀x𝑖‖)𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖),

(ℎ ∘𝑚)(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖) = 𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖)𝐻
′(‖̂︀x𝑖‖;𝑚′(̂︀x𝑖;x𝑖 − ̂︀x𝑖))

+ℎ′(‖̂︀x𝑖‖)𝑚(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖),

where 𝐻(𝑡) = ℎ′(𝑡) for any 𝑡 ∈ (0,∞). Hence we get284

⟨∇2ℒ(̂︀x)(x− ̂︀x),x− ̂︀x⟩+ ∑︁
𝑖∈𝐼(̂︀x)

[︁
(𝑔 ∘𝑚)(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖)− (ℎ ∘𝑚)(2)(̂︀x𝑖;x𝑖 − ̂︀x𝑖)

]︁
= 𝑓 (2)(̂︀x;x− ̂︀x) ≥ 0.

The proof is finished. �285

3.3 Lower bound theory of second-order d-stationary points286

In this subsection, we analyze the lower bound of the ℓ2 vector norm of nonzero groups of287

second-order d-stationary points of problem (1.1). We will see that the second-order lower288

bounds are tighter than the corresponding first-order lower bounds. At first, we give a useful289

lemma which provides an upper bound for the second-order directional derivative of the290

penalty function ℎ at any second-order d-stationary point.291

Lemma 3.8 Under Assumption (A2), let ̂︀x ∈ R𝑛 be a second-order d-stationary point of292

problem (1.1), then293

⟨∇2
𝑖ℒ(̂︀x)̂︀x𝑖, ̂︀x𝑖⟩ ≥ ‖̂︀x𝑖‖2 ·max{𝐻 ′(‖̂︀x𝑖‖; 1),−𝐻 ′(‖̂︀x𝑖‖;−1)}, ∀ 𝑖 ∈ 𝐼(̂︀x),

where ∇2
𝑖ℒ(x) denotes the principal submatrix of ∇2ℒ(x) corresponding to the group x𝑖.294

Proof For each fixed 𝑖 ∈ 𝐼(̂︀x), let x1,x2 ∈ R𝑛 be taken as

x1
𝑖′ =

{︂
2̂︀x𝑖, if 𝑖

′ = 𝑖,̂︀x𝑖′ , if 𝑖′ ̸= 𝑖,
x2
𝑖′ =

{︂
0, if 𝑖′ = 𝑖,̂︀x𝑖′ , if 𝑖

′ ̸= 𝑖.

Then it is easy to check that x1,x2 ∈ 𝒳 (̂︀x) which has been defined by (3.9). By Theorem295

3.7, we have296

⟨∇2ℒ(̂︀x)(x𝜂 − ̂︀x),x𝜂 − ̂︀x⟩+ ∑︁
𝑖′∈𝐼(̂︀x)

[︁
(𝑔 ∘𝑚)(2)(̂︀x𝑖′ ;x

𝜂
𝑖′ − ̂︀x𝑖′)− (ℎ ∘𝑚)(2)(̂︀x𝑖′ ;x

𝜂
𝑖′ − ̂︀x𝑖′)

]︁
≥ 0, 𝜂 = 1, 2, (3.11)
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where, according to the definitions of x1 and x2 as well as formulas (2.9) and (3.8),297

⟨∇2ℒ(̂︀x)(x𝜂 − ̂︀x),x𝜂 − ̂︀x⟩ = ⟨∇2
𝑖ℒ(̂︀x)̂︀x𝑖, ̂︀x𝑖⟩, 𝜂 = 1, 2,

𝑚′(̂︀x𝑖′ ;x
1
𝑖′ − ̂︀x𝑖′) =

{︂
‖̂︀x𝑖‖, if 𝑖′ = 𝑖,
0, if 𝑖′ ̸= 𝑖,

𝑚′(̂︀x𝑖′ ;x
2
𝑖′ − ̂︀x𝑖′) =

{︂
−‖̂︀x𝑖‖, if 𝑖′ = 𝑖,
0, if 𝑖′ ̸= 𝑖,

𝑚(2)(̂︀x𝑖′ ;x
𝜂
𝑖′ − ̂︀x𝑖′) = 0, ∀ 𝑖′ = 1, · · · ,𝐾, 𝜂 = 1, 2,

(𝑔 ∘𝑚)(2)(̂︀x𝑖′ ;x
𝜂
𝑖′ − ̂︀x𝑖′) = 𝑔′(‖̂︀x𝑖′‖)𝑚(2)(̂︀x𝑖′ ;x

𝜂
𝑖′ − ̂︀x𝑖′) = 0, 𝜂 = 1, 2,

(ℎ ∘𝑚)(2)(̂︀x𝑖′ ;x
𝜂
𝑖′ − ̂︀x𝑖′) = 𝑚′(̂︀x𝑖′ ;x

𝜂
𝑖′ − ̂︀x𝑖′)𝐻

′(‖̂︀x𝑖′‖;𝑚′(̂︀x𝑖′ ;x
𝜂
𝑖′ − ̂︀x𝑖′))

+ℎ′(‖̂︀x𝑖′‖)𝑚(2)(̂︀x𝑖′ ;x
𝜂
𝑖′ − ̂︀x𝑖′)

= 𝑚′(̂︀x𝑖′ ;x
𝜂
𝑖′ − ̂︀x𝑖′)𝐻

′(‖̂︀x𝑖′‖;𝑚′(̂︀x𝑖′ ;x
𝜂
𝑖′ − ̂︀x𝑖′)), 𝜂 = 1, 2,

𝐻(𝑡) = ℎ′(𝑡) for any 𝑡 ∈ (0,∞).

Therefore, by taking the above terms into inequality (3.11), we get298

⟨∇2
𝑖ℒ(̂︀x)̂︀x𝑖, ̂︀x𝑖⟩ ≥ ‖̂︀x𝑖‖ ·max{𝐻 ′(‖̂︀x𝑖‖; ‖̂︀x𝑖‖),−𝐻 ′(‖̂︀x𝑖‖;−‖̂︀x𝑖‖)}, ∀ 𝑖 ∈ 𝐼(̂︀x).

By the positive homogeneity of 𝐻 ′(‖̂︀x𝑖‖; ·) and ‖̂︀x𝑖‖ > 0, we derive the desired result. �299

Theorem 3.9 Suppose Assumption (A2) holds and there exists 𝑀 > 0 such that ‖∇2ℒ(x)‖2 ≤300

𝑀 for all x ∈ R𝑛. Let ̂︀x ∈ R𝑛 be a second-order d-stationary point of problem (1.1), then301

the following statements hold:302

(i) For MCP, if 𝑀 < 1
𝛼 , then either ‖̂︀x𝑖‖ = 0 or ‖̂︀x𝑖‖ > 𝛼𝜆, 𝑖 = 1, · · · ,𝐾.303

(ii) For SCAD, if 𝑀 < 1
𝛼−1 , then either ‖̂︀x𝑖‖ < 𝜆 or ‖̂︀x𝑖‖ > 𝛼𝜆, 𝑖 = 1, · · · ,𝐾.304

(iii)For SCAD, suppose, in addition, there exists a nondecreasing function 𝐶 : R → R+305

such that ‖∇ℒ(x)‖ ≤ 𝐶(ℒ(x)) for all x ∈ R𝑛. If there exists x0 ∈ R𝑛 satisfying ℒ(x0) ≥306

ℒ(̂︀x), 𝜙′(0) > 𝐶(ℒ(x0)), and 1
𝛼−1 > 𝑀 , then either ‖̂︀x𝑖‖ = 0 or ‖̂︀x𝑖‖ > 𝛼𝜆, 𝑖 = 1, · · · ,𝐾.307

Proof Since ‖∇2ℒ(x)‖2 ≤ 𝑀 for all x ∈ R𝑛, we have308

⟨∇2ℒ(x)z, z⟩ ≤ 𝑀‖z‖2, ∀ x, z ∈ R𝑛. (3.12)

(i) For MCP: recall that 𝐻MCP(𝑡) = (ℎMCP)′(𝑡) =

{︂
𝑡
𝛼 , if 0 ≤ 𝑡 ≤ 𝛼𝜆,

𝜆, if 𝑡 > 𝛼𝜆,
we have

(𝐻MCP)′(𝑡; 1) =

{︂
1
𝛼 , if 0 ≤ 𝑡 < 𝛼𝜆,

0, if 𝑡 ≥ 𝛼𝜆,
(𝐻MCP)′(𝑡;−1) =

{︂
− 1

𝛼 , if 0 < 𝑡 ≤ 𝛼𝜆,

0, if 𝑡 > 𝛼𝜆.

Assume, on the contrary, that 0 < ‖̂︀x𝑖‖ ≤ 𝛼𝜆, then

(𝐻MCP)′(‖̂︀x𝑖‖; 1) ≤ −(𝐻MCP)′(‖̂︀x𝑖‖;−1) =
1

𝛼
.

From Lemma 3.8 and (3.12), we have309

𝑀 ≥ −(𝐻MCP)′(‖̂︀x𝑖‖;−1) =
1

𝛼
,

which contradicts the condition 𝑀 < 1
𝛼 . Therefore, we have ‖̂︀x𝑖‖ > 𝛼𝜆 for any 𝑖 ∈ 𝐼(̂︀x).310
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(ii) For SCAD: recall that 𝐻SCAD(𝑡) = (ℎSCAD)′(𝑡) =

⎧⎨⎩
0, if 0 ≤ 𝑡 ≤ 𝜆,

𝑡−𝜆
𝛼−1 , if 𝜆 < 𝑡 ≤ 𝛼𝜆,

𝜆, if 𝑡 > 𝛼𝜆,

we have311

(𝐻SCAD)′(𝑡; 1) =

{︂
0, if 𝑡 ∈ [0, 𝜆) ∪ [𝛼𝜆,+∞),
1

𝛼−1 , if 𝑡 ∈ [𝜆, 𝛼𝜆),

(𝐻SCAD)′(𝑡;−1) =

{︂
0, if 𝑡 ∈ (0, 𝜆] ∪ (𝛼𝜆,+∞),

− 1
𝛼−1 , if 𝑡 ∈ (𝜆, 𝛼𝜆].

Assume, on the contrary, that 𝜆 ≤ ‖̂︀x𝑖‖ ≤ 𝛼𝜆, then

max{(𝐻SCAD)′(‖̂︀x𝑖‖; 1),−(𝐻SCAD)′(‖̂︀x𝑖‖;−1)} =
1

𝛼− 1
.

From Lemma 3.8 and (3.12), we have312

𝑀 ≥ 1

𝛼− 1
,

which contradicts the condition 𝑀 < 1
𝛼−1 . Therefore, we have either ‖̂︀x𝑖‖ < 𝜆 or ‖̂︀x𝑖‖ > 𝛼𝜆.313

(iii) Since ̂︀x is a second-order d-stationary point of problem (1.1), it is also a first-order314

d-stationary point of problem (1.1). Combining (ii) with Corollary 2.5 (iii), we derive the315

desired result. �316

Remark 3.10 The condition in Theorem 3.9 means that the operator ∇2ℒ(x) has an uni-317

form bound 𝑀 on R𝑛. We can easily check that ℒ(x) = 1
2𝑚‖𝐴x− 𝑏‖2 satisfies this condition318

since ‖∇2ℒ(x)‖2 = ‖𝐴⊤𝐴‖2

𝑚 =
‖𝐴‖2

2

𝑚 .319

4 Smoothing functions and consistency of stationary points320

As we have seen, first-order and second-order d-stationary points have good locally optimal321

properties. How to compute such points is an interesting and challenging problem. Smooth322

approximations are widely used in optimization and scientific computing, e.g., see [8,9,10]. In323

this section, we construct a twice continuously differentiable smoothing function of the objec-324

tive function 𝑓 of problem (1.1), and show that the first-order and second-order d-stationary325

points of problem (1.1) can be obtained via the first-order and second-order stationary points326

of the smoothing problem. We should notice that in problem (1.1), the term 𝜙(‖̂︀x𝑖‖) is a327

composite of two nonsmooth functions 𝜙 and ‖ · ‖. Using the special structure of these two328

functions, our smoothing function can be easily constructed.329

For 𝜇 ∈ (0,∞) and 𝑚(u) = ‖u‖, let330

̃︀𝑚𝜇(u) =
√︀

‖u‖2 + 𝜇, ∀ u ∈ R𝑑𝑖 , (4.1)

then ̃︀𝑚𝜇(u) is always positive and twice continuously differentiable with331

∇̃︀𝑚𝜇(u) =
u√︀

‖u‖2 + 𝜇
, ∇2 ̃︀𝑚𝜇(u) =

(‖u‖2 + 𝜇)I− uu⊤

(‖u‖2 + 𝜇)3/2
, (4.2)

and332

0 < ̃︀𝑚𝜇(u)−𝑚(u) =
√︀

‖u‖2 + 𝜇− ‖u‖ ≤ 𝜇
1
2 , (4.3)
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where I denotes the identity matrix. One can also check that ̃︀𝑚𝜇(u) satisfies the following333

three properties:334

(i) lim
v→u,𝜇↓0

̃︀𝑚𝜇(v) = 𝑚(u) for all u ∈ R𝑑𝑖 ;335

(ii) (Consistency or weak consistency of directional derivatives)336

lim
v→u,𝜇↓0

⟨∇̃︀𝑚𝜇(v),w⟩ = ⟨∇𝑚(u),w⟩ = 𝑚′(u;w), ∀ 0 ̸= u ∈ R𝑑𝑖 , ∀ w ∈ R𝑑𝑖 , (4.4)

lim sup
v→0,𝜇↓0

⟨∇̃︀𝑚𝜇(v),w⟩ = lim sup
v→0,𝜇↓0

⟨v,w⟩√︀
‖v‖2 + 𝜇

= lim sup
𝑡↓0,𝜇↓0

𝑡‖w‖2√︀
𝑡2‖w‖2 + 𝜇

= lim sup
𝑡↓0,𝜇↓0

‖w‖2√︀
‖w‖2 + 𝜇

𝑡2

= ‖w‖ = 𝑚′(0;w), ∀ w ∈ R𝑑𝑖 ; (4.5)

(iii) (Consistency or weak consistency of second-order directional derivatives)337

lim
v→u,𝜇↓0

⟨∇2 ̃︀𝑚𝜇(v)w,w⟩ = ⟨∇2𝑚(u)w,w⟩

= 𝑚(2)(u;w), ∀ 0 ̸= u ∈ R𝑑𝑖 , ∀ w ∈ R𝑑𝑖 , (4.6)

lim inf
v→0,𝜇↓0

⟨∇2 ̃︀𝑚𝜇(v)w,w⟩ = lim inf
v→0,𝜇↓0

‖v‖2‖w‖2 − (v⊤w)2 + 𝜇‖w‖2

(‖v‖2 + 𝜇)3/2

= lim inf
v→0,𝜇↓0

‖w‖2(︁
‖v‖2

𝜇2/3 + 𝜇1/3
)︁3/2

= 0 = 𝑚(2)(0;w), ∀ w ∈ R𝑑𝑖 . (4.7)

Under Assumption (A2), ℎ is semismoothly differentiable in (0,∞). If ℎ is not twice con-338

tinuously differentiable in (0,∞), for each 𝜇 > 0, let ̃︀ℎ𝜇 be a twice continuously differentiable339

function in (0,∞) such that340

lim
𝑠→𝑡,𝜇↓0

̃︀ℎ𝜇(𝑠) = ℎ(𝑡), lim
𝑠→𝑡,𝜇↓0

̃︀ℎ′
𝜇(𝑠) = ℎ′(𝑡), lim

𝑠↓0,𝜇↓0
̃︀ℎ′
𝜇(𝑠) = ℎ′(0+), (4.8)

lim inf
𝑠→𝑡,𝜇↓0

̃︀ℎ′′
𝜇(𝑠) = min{𝐻 ′(𝑡; 1),−𝐻 ′(𝑡;−1)}, and (4.9)

lim sup
𝑠→𝑡,𝜇↓0

̃︀ℎ′′
𝜇(𝑠) = max{𝐻 ′(𝑡; 1),−𝐻 ′(𝑡;−1)}. (4.10)

Note that if ℎ is twice continuously differentiable at 𝑡 > 0, then 𝐻 ′(𝑡; 1) = −𝐻 ′(𝑡;−1) =341

ℎ′′(𝑡).342

For example, in MCP,

ℎMCP(𝑡) =

{︃
𝑡2

2𝛼 , if 0 ≤ 𝑡 ≤ 𝛼𝜆,

𝜆𝑡− 𝛼𝜆2

2 , if 𝑡 > 𝛼𝜆,
= 𝜆𝑡− 𝜆

∫︁ 𝑡

0

(︁
1− 𝜏

𝛼𝜆

)︁
+
d𝜏 (𝛼 > 1, 𝜆 > 0).

Let343

̃︀ℎMCP
𝜇 (𝑡) = 𝜆𝑡− 𝜆

2

∫︁ 𝑡

0

[︃(︂(︁
1− 𝜏

𝛼𝜆

)︁2
+ 𝜇

)︂1/2

+
(︁
1− 𝜏

𝛼𝜆

)︁]︃
d𝜏, (4.11)
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then one can check that for each 𝜇 > 0, ̃︀ℎMCP
𝜇 is twice continuously differentiable in 𝑡 ∈ (0,∞)344

with345

(̃︀ℎMCP
𝜇 )′(𝑡) = 𝜆− 𝜆

2

⎡⎣(︃(︂1− 𝑡

𝛼𝜆

)︂2

+ 𝜇

)︃1/2

+

(︂
1− 𝑡

𝛼𝜆

)︂⎤⎦ ,

(̃︀ℎMCP
𝜇 )′′(𝑡) =

1

2𝛼

⎡⎣ 1− 𝑡
𝛼𝜆√︁(︀

1− 𝑡
𝛼𝜆

)︀2
+ 𝜇

+ 1

⎤⎦ ,

and satisfies the following three properties:346

(i) lim
𝑠→𝑡,𝜇↓0

̃︀ℎMCP
𝜇 (𝑠) = ℎMCP(𝑡) for all 𝑡 ∈ [0,∞);347

(ii) lim
𝑠→𝑡,𝜇↓0

(̃︀ℎMCP
𝜇 )′(𝑠) = (ℎMCP)′(𝑡) for all 𝑡 ∈ (0,∞), and lim

𝑠↓0,𝜇↓0
(̃︀ℎMCP

𝜇 )′(𝑠) = (ℎMCP)′(0+);348

(iii) For any 𝑡 ∈ (0, 𝛼𝜆)
⋃︀
(𝛼𝜆,∞),349

lim
𝑠→𝑡,𝜇↓0

(̃︀ℎMCP
𝜇 )′′(𝑠) = lim

𝑠→𝑡,𝜇↓0

1

2𝛼

⎡⎣ 1− 𝑠
𝛼𝜆√︁(︀

1− 𝑠
𝛼𝜆

)︀2
+ 𝜇

+ 1

⎤⎦
= lim

𝑠→𝑡,𝜇↓0

1

2𝛼

⎡⎣ sign(1− 𝑠
𝛼𝜆)√︁

1 + 𝜇

(1− 𝑠
𝛼𝜆)

2

+ 1

⎤⎦ =

{︂
1
𝛼 , if 0 < 𝑡 < 𝛼𝜆,

0, if 𝑡 > 𝛼𝜆,

= (𝐻MCP)′(𝑡; 1) = −(𝐻MCP)′(𝑡;−1) = (ℎMCP)′′(𝑡);

for 𝑡 = 𝛼𝜆,350

lim inf
𝑠→𝑡,𝜇↓0

(̃︀ℎMCP
𝜇 )′′(𝑠) = lim inf

𝑠→𝑡,𝜇↓0

1

2𝛼

⎡⎣ sign(1− 𝑠
𝛼𝜆)√︁

1 + 𝜇

(1− 𝑠
𝛼𝜆)

2

+ 1

⎤⎦ = 0 = (𝐻MCP)′(𝑡; 1), and

lim sup
𝑠→𝑡,𝜇↓0

(̃︀ℎMCP
𝜇 )′′(𝑠) = lim sup

𝑠→𝑡,𝜇↓0

1

2𝛼

⎡⎣ sign(1− 𝑠
𝛼𝜆)√︁

1 + 𝜇

(1− 𝑠
𝛼𝜆)

2

+ 1

⎤⎦ =
1

𝛼
= −(𝐻MCP)′(𝑡;−1).

Now, under Assumption (A2), we have a twice continuously differentiable approximation351 ̃︀𝑓𝜇(x) of the objective function 𝑓(x) in problem (1.1),352

̃︀𝑓𝜇(x) = ℒ(x) +
𝐾∑︁
𝑖=1

[︁
𝑔 ∘ ̃︀𝑚𝜇(x𝑖)− ̃︀ℎ𝜇 ∘ ̃︀𝑚𝜇(x𝑖)

]︁
,

with lim
z→x,𝜇↓0

̃︀𝑓𝜇(z) = 𝑓(x) for any x ∈ R𝑛. It should be noted that although 𝑔(‖·‖)−̃︀ℎ𝜇(‖·‖)353

is not differentiable at x𝑖 = 0, 𝑔∘ ̃︀𝑚𝜇(·)−̃︀ℎ𝜇∘ ̃︀𝑚𝜇(·) is twice continuously differentiable at any354

point x𝑖 ∈ R𝑑𝑖 since ̃︀𝑚𝜇(x𝑖) is always strictly positive for any 𝜇 > 0. Consequently, ̃︀𝑓𝜇(·) is355

twice continuously differentiable at any point x ∈ R𝑛. Thus we obtain a twice continuously356

differentiable optimization problem357

min
x∈R𝑛

̃︀𝑓𝜇(x). (4.12)

By the standard definitions for twice differentiable optimization problems, ̂︀x𝜇 is called a first-358

order stationary point of problem (4.12) if ∇ ̃︀𝑓𝜇(̂︀x𝜇) = 0; and ̂︀x𝜇 is called a second-order359

stationary point of problem (4.12) if ∇ ̃︀𝑓𝜇(̂︀x𝜇) = 0 and360

⟨∇2 ̃︀𝑓𝜇(̂︀x𝜇)z, z⟩ ≥ 0, ∀ z ∈ R𝑛. (4.13)
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Let {̂︀x𝜇𝑘} denote a sequence of first-order or second-order stationary points of problem361

(4.12) with 𝜇𝑘 > 0, 𝑘 = 1, 2, · · · , and 𝜇𝑘 → 0 as 𝑘 → ∞. We will investigate the accumulation362

points of {̂︀x𝜇𝑘}.363

Theorem 4.1 (Consistency of first-order stationary points) Suppose Assumption (A2) hold-364

s. Let {̂︀x𝜇𝑘} be a sequence of first-order stationary points of problem (4.12) with 𝜇 = 𝜇𝑘.365

Then any accumulation point of {̂︀x𝜇𝑘} is a first-order d-stationary point of problem (1.1).366

Proof Let ̂︀x be an accumulation point of {̂︀x𝜇𝑘}. Without loss of generality, we may assume367

that {̂︀x𝜇𝑘} converges to ̂︀x.368

Since ̂︀x𝜇𝑘 is a first-order stationary point of problem (4.12) with 𝜇 = 𝜇𝑘, then369

∇ ̃︀𝑓𝜇𝑘
(̂︀x𝜇𝑘) = ∇ℒ(̂︀x𝜇𝑘) +

⎛⎜⎜⎜⎝
[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

1 )− ̃︀ℎ′
𝜇 ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

1 )
]︁
∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

1 )

...[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝐾 )− ̃︀ℎ′
𝜇 ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝐾 )
]︁
∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝐾 )

⎞⎟⎟⎟⎠ = 0.

Therefore, for any z ∈ R𝑛 we have370

0 = ⟨∇ ̃︀𝑓𝜇𝑘
(̂︀x𝜇𝑘), z⟩

= ⟨∇ℒ(̂︀x𝜇𝑘), z⟩+
𝐾∑︁
𝑖=1

[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁
⟨∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 ), z𝑖⟩. (4.14)

Let 𝑘 → ∞, then we get 𝜇𝑘 → 0 and ̂︀x𝜇𝑘 → ̂︀x, consequently, ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ) → 𝑚(̂︀x𝑖), 𝑔
′ ∘371 ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 ) → 𝑔′ ∘𝑚(̂︀x𝑖) and ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ) → ℎ′ ∘𝑚(̂︀x𝑖). Moreover, from (4.4) and (4.5),372

we have373

lim
𝑘→∞

⟨∇̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ), z𝑖⟩ = 𝑚′(̂︀x𝑖; z𝑖) if ̂︀x𝑖 ̸= 0,

and374

lim sup
𝑘→∞

⟨∇̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ), z𝑖⟩ = 𝑚′(̂︀x𝑖; z𝑖) if ̂︀x𝑖 = 0.

By the condition 𝜙′(0) := 𝜙′(0+) = 𝑔′(0+)−ℎ′(0+) > 0, we know that 𝑔′∘𝑚(̂︀x𝑖)−ℎ′∘𝑚(̂︀x𝑖) >375

0 if ̂︀x𝑖 = 0. Hence when 𝑘 is sufficiently large, 𝑔′ ∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ) − ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ) > 0 for the376

index 𝑖 such that ̂︀x𝑖 = 0. From (4.14), we derive that for any z ∈ R𝑛,377

0 = lim
𝑘→∞

⟨∇ ̃︀𝑓𝜇𝑘
(̂︀x𝜇𝑘), z⟩

= lim
𝑘→∞

⟨∇ℒ(̂︀x𝜇𝑘), z⟩+ lim
𝑘→∞

𝐾∑︁
𝑖=1

[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁
⟨∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 ), z𝑖⟩

= ⟨∇ℒ(̂︀x), z⟩+ lim
𝑘→∞

∑︁
𝑖: ̂︀x𝑖 ̸=0

[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁
⟨∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 ), z𝑖⟩

+ lim
𝑘→∞

∑︁
𝑖: ̂︀x𝑖=0

[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁
⟨∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 ), z𝑖⟩

≤ ⟨∇ℒ(̂︀x), z⟩+ ∑︁
𝑖: ̂︀x𝑖 ̸=0

lim
𝑘→∞

[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁
· lim
𝑘→∞

⟨∇̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ), z𝑖⟩

+
∑︁

𝑖: ̂︀x𝑖=0

lim
𝑘→∞

[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁
· lim sup

𝑘→∞
⟨∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 ), z𝑖⟩
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378

= ⟨∇ℒ(̂︀x), z⟩+ ∑︁
𝑖: ̂︀x𝑖 ̸=0

[︁
𝑔′ ∘𝑚(̂︀x𝑖)− ℎ′ ∘𝑚(̂︀x𝑖)

]︁
𝑚′(̂︀x𝑖; z𝑖)

+
∑︁

𝑖: ̂︀x𝑖=0

[︁
𝑔′ ∘𝑚(̂︀x𝑖)− ℎ′ ∘𝑚(̂︀x𝑖)

]︁
𝑚′(̂︀x𝑖; z𝑖)

= ⟨∇ℒ(̂︀x), z⟩+ 𝐾∑︁
𝑖=1

[︁
𝑔′ ∘𝑚(̂︀x𝑖)− ℎ′ ∘𝑚(̂︀x𝑖)

]︁
𝑚′(̂︀x𝑖; z𝑖)

= 𝑓 ′(̂︀x; z),
which shows that ̂︀x is a first-order d-stationary point of problem (1.1). �379

Before discussing the consistency of second-order stationary points, we first study the380

property of second-order stationary points of the smoothing problem (4.12).381

Lemma 4.2 Under Assumption (A2), let ̂︀x𝜇𝑘 ∈ R𝑛 be a second-order stationary point of382

problem (4.12) with 𝜇 = 𝜇𝑘, then the following two statements hold for 𝑖 = 1, · · · ,𝐾:383

(i) ‖[∇ℒ(̂︀x𝜇𝑘)]𝑖‖ =
⃒⃒⃒
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
⃒⃒⃒

‖̂︀x𝜇𝑘
𝑖 ‖√

‖̂︀x𝜇𝑘
𝑖 ‖2+𝜇𝑘

.384

(ii) ̃︀ℎ′′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
‖̂︀x𝜇𝑘

𝑖 ‖4

‖̂︀x𝜇𝑘
𝑖 ‖2+𝜇𝑘

≤ ⟨∇2
𝑖ℒ(̂︀x𝜇𝑘)̂︀x𝜇𝑘

𝑖 , ̂︀x𝜇𝑘

𝑖 ⟩385

+
[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁

𝜇𝑘‖̂︀x𝜇𝑘
𝑖 ‖2

(‖̂︀x𝜇𝑘
𝑖 ‖2+𝜇𝑘)

3
2
.386

Proof (i) Since ̂︀x𝜇𝑘 is a second-order stationary point of problem (4.12), we have387

∇ ̃︀𝑓𝜇𝑘
(̂︀x𝜇𝑘) = ∇ℒ(̂︀x𝜇𝑘) +

⎛⎜⎜⎜⎝
[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

1 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

1 )
]︁
∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

1 )

...[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝐾 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝐾 )
]︁
∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝐾 )

⎞⎟⎟⎟⎠ = 0,

where, according to (4.2), ∇̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ) =
̂︀x𝜇𝑘
𝑖√

‖̂︀x𝜇𝑘
𝑖 ‖2+𝜇𝑘

for 𝑖 = 1, · · · ,𝐾. Therefore, we get388

‖[∇ℒ(̂︀x𝜇𝑘)]𝑖‖ =
⃒⃒⃒
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
⃒⃒⃒ ‖̂︀x𝜇𝑘

𝑖 ‖√︀
‖̂︀x𝜇𝑘

𝑖 ‖2 + 𝜇𝑘

.

(ii) Since ̂︀x𝜇𝑘 is a second-order stationary point of problem (4.12), we know that∇2 ̃︀𝑓𝜇𝑘
(̂︀x𝜇𝑘)389

is positive semi-definite, and then ⟨∇2 ̃︀𝑓𝜇𝑘
(̂︀x𝜇𝑘)z, z⟩ ≥ 0 for any z ∈ R𝑛. For each fixed390

𝑖 = 1, · · · ,𝐾, let z̄𝑖 = ̂︀x𝜇𝑘

𝑖 and other entries of z̄ are all zeros, then we get391

0 ≤ ⟨∇2 ̃︀𝑓𝜇𝑘
(̂︀x𝜇𝑘)z̄, z̄⟩

= ⟨∇2
𝑖ℒ(̂︀x𝜇𝑘)̂︀x𝜇𝑘

𝑖 , ̂︀x𝜇𝑘

𝑖 ⟩+
[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁
· ⟨∇2 ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )̂︀x𝜇𝑘

𝑖 , ̂︀x𝜇𝑘

𝑖 ⟩

−̃︀ℎ′′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
[︁
⟨∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 ), ̂︀x𝜇𝑘

𝑖 ⟩
]︁2
, (4.15)

where, according to (4.2) and ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ) =
√︀

‖̂︀x𝜇𝑘

𝑖 ‖2 + 𝜇𝑘,[︁
⟨∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 ), ̂︀x𝜇𝑘

𝑖 ⟩
]︁2

=
‖̂︀x𝜇𝑘

𝑖 ‖4

‖̂︀x𝜇𝑘

𝑖 ‖2 + 𝜇𝑘
, ⟨∇2 ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )̂︀x𝜇𝑘

𝑖 , ̂︀x𝜇𝑘

𝑖 ⟩ = 𝜇𝑘‖̂︀x𝜇𝑘

𝑖 ‖2

(‖̂︀x𝜇𝑘

𝑖 ‖2 + 𝜇𝑘)
3
2

.
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Thus, from (4.15), we obtain392

̃︀ℎ′′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
‖̂︀x𝜇𝑘

𝑖 ‖4

‖̂︀x𝜇𝑘

𝑖 ‖2 + 𝜇𝑘

≤ ⟨∇2
𝑖ℒ(̂︀x𝜇𝑘)̂︀x𝜇𝑘

𝑖 , ̂︀x𝜇𝑘

𝑖 ⟩+
[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁ 𝜇𝑘‖̂︀x𝜇𝑘

𝑖 ‖2

(‖̂︀x𝜇𝑘

𝑖 ‖2 + 𝜇𝑘)
3
2

.

The proof is completed. �393

Now we begin to discuss the consistency of second-order stationary points. If ℎ is twice394

differentiable in (0,∞), such as logarithm penalty and fraction penalty, there is no need to395

smooth ℎ, but ℎMCP and ℎSCAD are not twice differentiable in (0,∞). In the following part,396

we focus on that ℎ is not twice differentiable in (0,∞).397

Assumption (A3) Under Assumption (A2),398

𝐷(ℎ) := {𝑡 ∈ (0,∞) : ℎ is not twice differentiable at 𝑡} (4.16)

has finite many points. In this case, we denote 𝑙ℎ := min{𝑡 : 𝑡 ∈ 𝐷(ℎ)}, 𝐿ℎ := max{𝑡 : 𝑡 ∈399

𝐷(ℎ)}.400

We can easily check that several penalty functions satisfy Assumption (A3), such as MCP401

(𝑙ℎ = 𝐿ℎ = 𝛼𝜆) and SCAD (𝑙ℎ = 𝜆, 𝐿ℎ = 𝛼𝜆). We also observe that the values of 𝑙ℎ and402

𝐿ℎ are highly consistent with the corresponding lower bounds obtained in Corollary 2.5 and403

Theorem 3.9. Since 𝑔 is affine in Assumption (A2), we know 𝜙 = 𝑔 − ℎ is also not twice404

differentiable at 𝑡 for 𝑡 ∈ 𝐷(ℎ).405

Lemma 4.3 Suppose Assumption (A3) holds and the following four conditions hold.406

(a) There exists a nondecreasing function 𝐶 : R → R+ such that ‖∇ℒ(x)‖ ≤ 𝐶(ℒ(x))407

for any x ∈ R𝑛.408

(b) There exists x0 ∈ R𝑛 satisfying 𝜙′(0) > 𝐶(ℒ(x0)).409

(c) There exists 𝑀 > 0 such that ‖∇2ℒ(x)‖2 ≤ 𝑀 for all x ∈ R𝑛.410

(d) If 𝑙ℎ = 𝐿ℎ, it holds that inf
𝑡∈(0,𝐿ℎ]

max{𝐻 ′(𝑡; 1),−𝐻 ′(𝑡;−1)} > 𝑀 ; if 𝑙ℎ < 𝐿ℎ, it holds411

that inf
𝑡∈(0,𝑙ℎ]

𝜙′(𝑡) ≥ 𝜙′(0) and that inf
𝑡∈(𝑙ℎ,𝐿ℎ]

max{𝐻 ′(𝑡; 1),−𝐻 ′(𝑡;−1)} > 𝑀 , where 𝐻(𝑡) =412

ℎ′(𝑡).413

Let {̂︀x𝜇𝑘} be a sequence of second-order stationary points of problem (4.12) with 𝜇 = 𝜇𝑘414

satisfying ℒ(̂︀x𝜇𝑘) ≤ ℒ(x0), and ̂︀x be any accumulation point of {̂︀x𝜇𝑘}, then the following415

three statements hold:416

(i) ‖∇ℒ(̂︀x)‖ < 𝜙′(0).417

(ii) min
𝑖:̂︀x𝑖 ̸=0

‖̂︀x𝑖‖ > 𝐿ℎ.418

(iii) For any subsequence {̂︀x𝜇𝑘}𝑘∈𝒦 converging to ̂︀x, we have419

𝛤𝜇𝑘 := {𝑖 ∈ {1, · · · ,𝐾} : ‖̂︀x𝜇𝑘

𝑖 ‖ ≤ 𝐿ℎ

2
} = {𝑖 ∈ {1, · · · ,𝐾} : ‖̂︀x𝑖‖ = 0} := 𝛤

for all sufficiently large 𝑘 ∈ 𝒦,420

Proof Without loss of generality, we may assume that {̂︀x𝜇𝑘} converges to ̂︀x.421

(i) By Condition (a) and ℒ(̂︀x𝜇𝑘) ≤ ℒ(x0), we have422

‖∇ℒ(̂︀x𝜇𝑘)‖ ≤ 𝐶(ℒ(̂︀x𝜇𝑘)) ≤ 𝐶(ℒ(x0)).

Then it follows from the continuity of ∇ℒ(·), ̂︀x𝜇𝑘 → ̂︀x and Condition (b) that423

‖∇ℒ(̂︀x)‖ ≤ 𝐶(ℒ(x0)) < 𝜙′(0).
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The first conclusion is proved.424

(ii) We consider an arbitrary nonzero group of ̂︀x, say ̂︀x𝑖 ̸= 0. Since 𝜇𝑘 → 0 and ̂︀x𝜇𝑘

𝑖 → ̂︀x𝑖,425

it follows from (4.3) and (4.8) that426

̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ) → 𝑚(̂︀x𝑖) = ‖̂︀x𝑖‖ ≠ 0,
‖̂︀x𝜇𝑘

𝑖 ‖√
‖̂︀x𝜇𝑘

𝑖 ‖2+𝜇𝑘

→ 1, and⃒⃒⃒
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
⃒⃒⃒
→ |𝑔′ ∘𝑚(̂︀x𝑖)− ℎ′ ∘𝑚(̂︀x𝑖)| = 𝜙′(‖̂︀x𝑖‖) ≥ 0.

(4.17)

As a consequence of Lemma 4.2 (i), (4.17) and ‖[∇ℒ(̂︀x𝜇𝑘)]𝑖‖ → ‖[∇ℒ(̂︀x)]𝑖‖, we get427

‖[∇ℒ(̂︀x)]𝑖‖ = 𝜙′(‖̂︀x𝑖‖). (4.18)

From Lemma 4.2 (ii) and Condition (c), we derive428

̃︀ℎ′′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
‖̂︀x𝜇𝑘

𝑖 ‖4

‖̂︀x𝜇𝑘

𝑖 ‖2 + 𝜇𝑘

≤ ⟨∇2
𝑖ℒ(̂︀x𝜇𝑘)̂︀x𝜇𝑘

𝑖 , ̂︀x𝜇𝑘

𝑖 ⟩+
[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁ 𝜇𝑘‖̂︀x𝜇𝑘

𝑖 ‖2

(‖̂︀x𝜇𝑘

𝑖 ‖2 + 𝜇𝑘)
3
2

≤ 𝑀‖̂︀x𝜇𝑘

𝑖 ‖2 +
[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁ 𝜇𝑘‖̂︀x𝜇𝑘

𝑖 ‖2

(‖̂︀x𝜇𝑘

𝑖 ‖2 + 𝜇𝑘)
3
2

.

Since ‖̂︀x𝜇𝑘

𝑖 ‖ → ‖̂︀x𝑖‖ > 0, when 𝑘 is sufficiently large the above inequality can be simplified429

as430

̃︀ℎ′′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
‖̂︀x𝜇𝑘

𝑖 ‖2

‖̂︀x𝜇𝑘

𝑖 ‖2 + 𝜇𝑘
≤ 𝑀 +

[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁
𝜇𝑘

(‖̂︀x𝜇𝑘

𝑖 ‖2 + 𝜇𝑘)
3
2

.

Let 𝑘 → 0 in the above inequality. By (4.10) and (4.17), we obtain431

max{𝐻 ′(‖̂︀x𝑖‖; 1),−𝐻 ′(‖̂︀x𝑖‖;−1)} = lim sup
𝑘→∞

̃︀ℎ′′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ) ≤ 𝑀. (4.19)

To verify the second conclusion, let us consider two cases.432

Case 1: 𝑙ℎ = 𝐿ℎ. In this case, assume, on the contrary, that ‖̂︀x𝑖‖ ≤ 𝐿ℎ. Then by the first433

part of Condition (d), we obtain434

max{𝐻 ′(‖̂︀x𝑖‖; 1),−𝐻 ′(‖̂︀x𝑖‖;−1)} ≥ inf
𝑡∈(0,𝐿ℎ]

max{𝐻 ′(𝑡; 1),−𝐻 ′(𝑡;−1)} > 𝑀,

which is in contradiction with (4.19). Hence, we must have ‖̂︀x𝑖‖ > 𝐿ℎ.435

Case 2: 𝑙ℎ < 𝐿ℎ. In this case, assume at first that ‖̂︀x𝑖‖ ≤ 𝑙ℎ. Then by the second part of436

Condition (d), we obtain437

𝜙′(‖̂︀x𝑖‖) ≥ inf
𝑡∈(0,𝑙ℎ]

𝜙′(𝑡) ≥ 𝜙′(0).

But equality (4.18) and Conclusion (i) yield that438

𝜙′(‖̂︀x𝑖‖) = ‖[∇ℒ(̂︀x)]𝑖‖ ≤ ‖∇ℒ(̂︀x)‖ < 𝜙′(0),

which is a contradiction. Hence, we must have ‖̂︀x𝑖‖ > 𝑙ℎ.439

Secondly, assume that 𝑙ℎ < ‖̂︀x𝑖‖ ≤ 𝐿ℎ. Then by the second part of Condition (d), we440

obtain441

max{𝐻 ′(‖̂︀x𝑖‖; 1),−𝐻 ′(‖̂︀x𝑖‖;−1)} ≥ inf
𝑡∈(𝑙ℎ,𝐿ℎ]

max{𝐻 ′(𝑡; 1),−𝐻 ′(𝑡;−1)} > 𝑀,
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which is in contradiction with inequality (4.19). Hence, we must have ‖̂︀x𝑖‖ > 𝐿ℎ.442

Taken together, we have shown that ‖̂︀x𝑖‖ > 𝐿ℎ whenever ̂︀x𝑖 ̸= 0, which means min
𝑖:̂︀x𝑖 ̸=0

‖̂︀x𝑖‖ >443

𝐿ℎ.444

(iii) Let a subsequence {̂︀x𝜇𝑘}𝑘∈𝒦 → ̂︀x, then {̂︀x𝜇𝑘

𝑖 }𝑘∈𝒦 → ̂︀x𝑖 for each 𝑖 = 1, · · · ,𝐾.445

Suppose 𝑖 ∈ 𝛤 , then ̂︀x𝑖 = 0. Since {‖̂︀x𝜇𝑘

𝑖 ‖}𝑘∈𝒦 → ‖̂︀x𝑖‖ = 0, we have ‖̂︀x𝜇𝑘

𝑖 ‖ < 𝐿ℎ

2 for all446

sufficiently large 𝑘 ∈ 𝒦. That is, 𝑖 ∈ 𝛤𝜇𝑘 for any sufficiently large 𝑘 ∈ 𝒦, which shows447

𝛤 ⊂ 𝛤𝜇𝑘 . Now we suppose 𝑖 ∈ 𝛤𝜇𝑘 , then ‖̂︀x𝜇𝑘

𝑖 ‖ ≤ 𝐿ℎ

2 . If 𝑖 ̸∈ 𝛤 , then ̂︀x𝑖 ̸= 0, therefore448

‖̂︀x𝑖‖ > 𝐿ℎ according to (ii). It follows from {̂︀x𝜇𝑘

𝑖 }𝑘∈𝒦 → ̂︀x𝑖 that ‖̂︀x𝜇𝑘

𝑖 ‖ > 𝐿ℎ

2 for any449

sufficiently large 𝑘 ∈ 𝒦. This contradiction shows 𝑖 ∈ 𝛤 , thus 𝛤𝜇𝑘 ⊂ 𝛤 for all sufficiently450

large 𝑘 ∈ 𝒦. Therefore, 𝛤𝜇𝑘 = 𝛤 for all sufficiently large 𝑘 ∈ 𝒦. �451

Remark 4.4 Condition (d) in Lemma 4.3 is very important to ensure the lower bound452

given by Conclusion (ii) when ℎ is differentiable but not twice differentiable in (0,∞). We453

can see that MCP and SCAD meet this condition. In fact, for MCP, 𝑙ℎ = 𝐿ℎ = 𝛼𝜆 (𝛼 >454

1), then inf
𝑡∈(0,𝐿ℎ]

max{𝐻 ′(𝑡; 1),−𝐻 ′(𝑡;−1)} = 1
𝛼 > 𝑀 whenever 𝛼 is taken such that 1 <455

𝛼 < 1
𝑀 ; and for SCAD, 𝑙ℎ = 𝜆 < 𝛼𝜆 = 𝐿ℎ (𝛼 > 2), then inf

𝑡∈(0,𝑙ℎ]
𝜙′(𝑡) = 𝜆 = 𝜙′(0) and456

inf
𝑡∈(𝑙ℎ,𝐿ℎ]

max{𝐻 ′(𝑡; 1),−𝐻 ′(𝑡;−1)} = 1
𝛼−1 > 𝑀 whenever 𝛼 is taken such that 2 < 𝛼 < 1

𝑀+1.457

Theorem 4.5 (Consistency of second-order stationary points) Under the conditions of Lem-458

ma 4.3, let {̂︀x𝜇𝑘} be a sequence of second-order stationary points of problem (4.12) with459

𝜇 = 𝜇𝑘 satisfying ℒ(x𝜇𝑘) ≤ ℒ(x0), then any accumulation point of {̂︀x𝜇𝑘} is a second-order460

d-stationary point of problem (1.1).461

Proof Without loss of generality, we may assume that {̂︀x𝜇𝑘} converges to ̂︀x. Since ̂︀x𝜇𝑘 is a

second-order stationary point of problem (4.12) with 𝜇 = 𝜇𝑘, we have

∇ ̃︀𝑓𝜇𝑘
(̂︀x𝜇𝑘) = 0 and ⟨∇2 ̃︀𝑓𝜇𝑘

(̂︀x𝜇𝑘)z, z⟩ ≥ 0, ∀ z ∈ R𝑛.

According to Theorem 4.1, ̂︀x is a first-order d-stationary point of problem (1.1), that is,462

𝑓 ′(̂︀x; z) ≥ 0 for any z ∈ R𝑛.463

In the following arguments, we only consider such z ∈ R𝑛 that makes 𝑓 ′(̂︀x; z) = 0.464

According to Lemma 4.3 (i), it holds that max
𝑖:̂︀x𝑖=0

‖[∇ℒ(̂︀x)]𝑖‖ ≤ ‖∇ℒ(̂︀x)‖ < 𝜙′(0). By virtue465

of this inequality and Corollary 2.7 (iii), it yields from 𝑓 ′(̂︀x; z) = 0 that z𝑖 = 0 whenever466 ̂︀x𝑖 = 0.467

By using z𝑖 = 0 whenever ̂︀x𝑖 = 0, we have468

0 ≤ ⟨∇2 ̃︀𝑓𝜇𝑘
(̂︀x𝜇𝑘)z, z⟩

= ⟨∇2ℒ(̂︀x𝜇𝑘)z, z⟩

+
𝐾∑︁
𝑖=1

[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁
· ⟨∇2 ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )z𝑖, z𝑖⟩

−
𝐾∑︁
𝑖=1

̃︀ℎ′′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
[︁
⟨∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 ), z𝑖⟩
]︁2

= ⟨∇2ℒ(̂︀x𝜇𝑘)z, z⟩+
∑︁

𝑖:̂︀x𝑖 ̸=0

[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁
⟨∇2 ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )z𝑖, z𝑖⟩

−
∑︁

𝑖:̂︀x𝑖 ̸=0

̃︀ℎ′′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ) ·
[︁
⟨∇̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 ), z𝑖⟩
]︁2
. (4.20)
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According to Lemma 4.3 (ii), we have min
𝑖:̂︀x𝑖 ̸=0

‖̂︀x𝑖‖ > 𝐿ℎ. Under Assumption (A3), this in-469

equality means that ℎ is twice continuously differentiable at each ‖̂︀x𝑖‖ whenever ̂︀x𝑖 ̸= 0.470

Since for each 𝑖, lim
𝑘→∞

̂︀x𝜇𝑘

𝑖 = ̂︀x𝑖, lim
𝑘→∞

̂︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ) = 𝑚(̂︀x𝑖) = ‖̂︀x𝑖‖,471

lim
𝑘→∞

[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁
= 𝑔′ ∘𝑚(̂︀x𝑖)− ℎ′ ∘𝑚(̂︀x𝑖),

and for ̂︀x𝑖 ̸= 0,

lim
𝑘→∞

⟨∇̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ), z𝑖⟩ = 𝑚′(̂︀x𝑖; z𝑖),

lim
𝑘→∞

⟨∇2 ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )z𝑖, z𝑖⟩ = 𝑚(2)(̂︀x𝑖; z𝑖),

lim
𝑘→∞

̃︀ℎ′′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ) = 𝐻 ′(‖̂︀x𝑖‖; 1) = −𝐻 ′(‖̂︀x𝑖‖;−1),

then from (4.20), we obtain472

0 ≤ lim
𝑘→∞

⟨∇2 ̃︀𝑓𝜇𝑘
(̂︀x𝜇𝑘)z, z⟩

= lim
𝑘→∞

⟨∇2ℒ(̂︀x𝜇𝑘)z, z⟩

+
∑︁

𝑖:̂︀x𝑖 ̸=0

lim
𝑘→∞

[︁
𝑔′ ∘ ̃︀𝑚𝜇𝑘

(̂︀x𝜇𝑘

𝑖 )− ̃︀ℎ′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )
]︁
lim
𝑘→∞

⟨∇2 ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 )z𝑖, z𝑖⟩

−
∑︁

𝑖:̂︀x𝑖 ̸=0

lim
𝑘→∞

̃︀ℎ′′
𝜇𝑘

∘ ̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ) ·
[︁
lim
𝑘→∞

⟨∇̃︀𝑚𝜇𝑘
(̂︀x𝜇𝑘

𝑖 ), z𝑖⟩
]︁2

= ⟨∇2ℒ(̂︀x)z, z⟩+ ∑︁
𝑖:̂︀x𝑖 ̸=0

[︁
𝑔′ ∘𝑚(̂︀x𝑖)− ℎ′ ∘𝑚(̂︀x𝑖)

]︁
𝑚(2)(̂︀x𝑖; z𝑖)

−
∑︁

𝑖:̂︀x𝑖 ̸=0

𝐻 ′(̂︀x𝑖; 1)[𝑚
′(̂︀x𝑖, z𝑖)]

2

= ⟨∇2ℒ(̂︀x)z, z⟩+ ∑︁
𝑖:̂︀x𝑖 ̸=0

[︁
𝑔′ ∘𝑚(̂︀x𝑖)− ℎ′ ∘𝑚(̂︀x𝑖)

]︁
𝑚(2)(̂︀x𝑖; z𝑖)

−
∑︁

𝑖:̂︀x𝑖 ̸=0

𝐻 ′(̂︀x𝑖;𝑚
′(̂︀x𝑖, z𝑖))𝑚

′(̂︀x𝑖, z𝑖)

= ⟨∇2ℒ(̂︀x)z, z⟩+ 𝐾∑︁
𝑖=1

[︁
𝑔′ ∘𝑚(̂︀x𝑖)− ℎ′ ∘𝑚(̂︀x𝑖)

]︁
𝑚(2)(̂︀x𝑖; z𝑖)−

𝐾∑︁
𝑖=1

𝐻 ′(̂︀x𝑖;𝑚
′(̂︀x𝑖, z𝑖))𝑚

′(̂︀x𝑖, z𝑖)

= 𝑓 (2)(̂︀x; z),
where the third equality is due to

𝐻 ′(̂︀x𝑖; 1)[𝑚
′(̂︀x𝑖, z𝑖)]

2 = −𝐻 ′(̂︀x𝑖;−1)[𝑚′(̂︀x𝑖, z𝑖)]
2 = 𝐻 ′(̂︀x𝑖;𝑚

′(̂︀x𝑖, z𝑖))𝑚
′(̂︀x𝑖, z𝑖)

when ‖̂︀x𝑖‖ > 𝐿ℎ, and the fourth equality is due to

z𝑖 = 0, 𝑚′(̂︀x𝑖, z𝑖) = 𝑚(2)(̂︀x𝑖; z𝑖) = 0

when ̂︀x𝑖 = 0.473

As a summary, we have shown that ̂︀x is a first-order d-stationary point of problem (1.1)474

and that for any z ∈ R𝑛, 𝑓 ′(̂︀x; z) = 0 implies 𝑓 (2)(̂︀x; z) ≥ 0. Therefore, ̂︀x is a second-order475

d-stationary point of problem (1.1). �476



Second-order d-stationary points of group sparse optimization 23

Now, we use an example of problem (1.1) to illustrate how to compute a second-order477

directional stationary point by the smoothing method.478

Example 4.1. Consider the following problem479

min
𝑥1,𝑥2∈R

𝑓(𝑥1, 𝑥2) :=
1

2
(𝑥1 + 𝑥2 − 1)2 + 𝜙MCP(|𝑥1|) + 𝜙MCP(|𝑥2|), (4.21)

where the parameters in 𝜙MCP satisfy 𝛼 > 1 and 𝜆 > 0. In Tables 1,2,3, we present the sets
of the first-order d-stationary points, second-order d-stationary points, local minimizers, and
global minimizers of (4.21) with different parameters. From the tables, we can see the relation
between these sets for problem (4.21):

first-order d-stationary ⇐ second-order d-stationary⇔ local minimizer ⇐ global minimizer

For example, when 0 < 𝛼𝜆 ≤ 1
2 , 𝜆 < 1, let 𝑥̄ := (𝑥̄1, 𝑥̄2)

⊤ = (1 + 𝛼𝜆,−𝛼𝜆)⊤, then480

𝑥̄1 + 𝑥̄2 = 1, |𝑥̄1| ≥ 𝛼𝜆, and |𝑥̄2| ≥ 𝛼𝜆. It is easy to check that for any 𝑑 := (𝑑1, 𝑑2)
⊤ ∈ R2,481

𝑓 ′(𝑥̄; 𝑑) = 0 and482

𝑓 (2)(𝑥̄; 𝑑) = (𝑑1, 𝑑2)

(︂
1 1
1 1

)︂
(𝑑1, 𝑑2)

⊤ +

{︃
−𝑑2

2

𝛼 , 𝑑2 > 0,
0, 𝑑2 ≤ 0,

=

{︃
(𝑑1 + 𝑑2)

2 − 𝑑2
2

𝛼 , 𝑑2 > 0,

(𝑑1 + 𝑑2)
2, 𝑑2 ≤ 0.

Since it cannot ensure 𝑓 (2)(𝑥̄; 𝑑) ≥ 0 for any 𝑑, 𝑥̄ is a first-order d-stationary point but not483

a second-order d-stationary point of (4.21).484

Table 1 First-order d-stationary points of (4.21)

parameters first-order d-stationary points

0 < 𝛼𝜆 ≤ 1
2

𝜆 < 1 (1, 0)⊤, (0, 1)⊤, {(𝑥1, 𝑥2)⊤ : 𝑥1 + 𝑥2 = 1, |𝑥1| ≥ 𝛼𝜆, |𝑥2| ≥ 𝛼𝜆}
1
2
< 𝛼𝜆 ≤ 1 𝜆 < 1 (1, 0)⊤, (0, 1)⊤, (

𝛼(1−𝜆)
2𝛼−1

,
𝛼(1−𝜆)
2𝛼−1

)⊤, {(𝑥1, 𝑥2)⊤ : 𝑥1 + 𝑥2 = 1, |𝑥1| ≥ 𝛼𝜆, |𝑥2| ≥ 𝛼𝜆}
𝛼𝜆 > 1 𝜆 < 1 (

𝛼(1−𝜆)
𝛼−1

, 0)⊤, (0,
𝛼(1−𝜆)
𝛼−1

)⊤, (
𝛼(1−𝜆)
2𝛼−1

,
𝛼(1−𝜆)
2𝛼−1

)⊤, {(𝑥1, 𝑥2)⊤ : 𝑥1 + 𝑥2 = 1, |𝑥1| ≥ 𝛼𝜆, |𝑥2| ≥ 𝛼𝜆}
𝛼𝜆 > 1 𝜆 ≥ 1 (0, 0)⊤, {(𝑥1, 𝑥2)⊤ : 𝑥1 + 𝑥2 = 1, |𝑥1| ≥ 𝛼𝜆, |𝑥2| ≥ 𝛼𝜆}

Table 2 Second-order d-stationary points / local minimizers of (4.21)

parameters second-order d-stationary points / local minimizers

0 < 𝛼𝜆 ≤ 1
2

𝜆 < 1 (1, 0)⊤, (0, 1)⊤, {(𝑥1, 𝑥2)⊤ : 𝑥1 + 𝑥2 = 1, |𝑥1| > 𝛼𝜆, |𝑥2| > 𝛼𝜆}
1
2
< 𝛼𝜆 ≤ 1 𝜆 < 1 (1, 0)⊤, (0, 1)⊤, {(𝑥1, 𝑥2)⊤ : 𝑥1 + 𝑥2 = 1, |𝑥1| > 𝛼𝜆, |𝑥2| > 𝛼𝜆}
𝛼𝜆 > 1 𝜆 < 1 (

𝛼(1−𝜆)
𝛼−1

, 0)⊤, (0,
𝛼(1−𝜆)
𝛼−1

)⊤, {(𝑥1, 𝑥2)⊤ : 𝑥1 + 𝑥2 = 1, |𝑥1| > 𝛼𝜆, |𝑥2| > 𝛼𝜆}
𝛼𝜆 > 1 𝜆 ≥ 1 (0, 0)⊤, {(𝑥1, 𝑥2)⊤ : 𝑥1 + 𝑥2 = 1, |𝑥1| > 𝛼𝜆, |𝑥2| > 𝛼𝜆}

To test the smoothing method and the consistency theory of stationary points, we use the485

smoothing trust region Newton (STRN) method proposed in [9] with an initial point (1, 1)⊤486

to solve problem (4.21) where the smoothing function of ℎMCP is taken ℎ̃MCP
𝜇 as (4.11).487

The numerical results are listed in Table 4, where 𝑓* means the global minimum of (4.21),488

and 𝑥̄ is the output solution of the STRN method. Table 4 shows that 𝑥̄ is a second-order489

d-stationary point and a global minimizer of problem (4.21).490
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Table 3 Global minimizers of (4.21)

parameters global minimizers

0 < 𝛼𝜆 ≤ 1
2

𝜆 < 1 (1, 0)⊤, (0, 1)⊤

1
2
< 𝛼𝜆 ≤ 1 𝜆 < 1 (1, 0)⊤, (0, 1)⊤

𝛼𝜆 > 1 𝜆 < 1 (
𝛼(1−𝜆)
𝛼−1

, 0)⊤, (0,
𝛼(1−𝜆)
𝛼−1

)⊤

𝛼𝜆 > 1 𝜆 ≥ 1 (0, 0)⊤

Table 4 Numerical results of the STRN method for (4.21) with different values of 𝛼 and 𝜆

𝛼 𝜆 global minimizers 𝑓* output solution 𝑥̄ 𝑓(𝑥̄)

𝛼 = 2 𝜆 = 0.25 (1, 0)⊤, (0, 1)⊤ 0.0625 (1, 0)⊤ 0.0625

𝛼 = 1.5 𝜆 = 0.5 (1, 0)⊤, (0, 1)⊤ 0.1875 (1, 0)⊤ 0.1875

𝛼 = 3 𝜆 = 0.5 (0.75, 0)⊤, (0, 0.75)⊤ 0.3125 (0.75, 0)⊤ 0.3125

𝛼 = 2 𝜆 = 1 (0, 0)⊤ 0.5 (0, 0)⊤ 0.5

5 Concluding remarks491

This paper shows that the first-order and second-order d-stationary points of folded concave492

penalized group sparse optimization problem (1.1) are local minimizers fulfilling the first-493

order and second-order growth conditions respectively under some mild conditions. Moreover,494

we construct a twice continuously differentiable smoothing approximation for the nonsmooth495

objective function, and show that any accumulation point of the sequence of second-order496

stationary points of the smoothing problem is a second-order d-stationary point of problem497

(1.1). The result provides a theoretic basis for computing first-order and second-order d-498

stationary points of the problem by using the gradient and Hessian of smoothing functions.499

Our results can be used for developing second-order algorithms for folded concave penalized500

group sparse optimization problems, and verifying the optimality of numerical solutions501

obtained by any algorithms. A simple example shows the validity of our theory and numerical502

method.503
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