
ar
X

iv
:1

91
1.

00
23

6v
2 

 [
cs

.C
C

] 
 4

 D
ec

 2
01

9

Two-machine routing open shop on a tree: instance reduction and

efficiently solvable subclass

I. D. Chernykha,b,c and E. V. Lgotinab

aSobolev Institute of Mathematics, Novosibirsk, Russia; bNovosibirsk State University,
Novosibirsk, Russia; cNovosibirsk Technical State University, Novosibirsk, Russia

ARTICLE HISTORY

Compiled December 5, 2019

ABSTRACT

We consider two-machine routing open shop problem on a tree. In this problem
a transportation network with a tree-like structure is given, and each node contains
some jobs to be processed by two mobile machines. Machines are initially located
in the predefined node called the depot, have to traverse the network to perform
their operations on each job (and each job has to be processed by both machines
in arbitrary order), and machines have to return to the depot after performing all
the operations. The goal is to construct a feasible schedule for machines to process
all the jobs and to return to the depot in shortest time possible. This problem is
known to be NP-hard even in the case when the transportation network consists of
just two nodes.

We propose an instance reduction procedure which allows to transform any in-
stance of the problem to a simplified instance on a chain with limited number of jobs.
The reduction considered preserves the standard lower bound on the optimum. We
describe four possible outcomes of this procedure and prove that in three of them the
initial instance can be solved to the optimum in linear time, thus introducing a wide
polynomially solvable subclass of the problem considered. Our research can be used
as a foundation to construct efficient approximation algorithms for the two-machine
routing open shop on a tree.

KEYWORDS

Scheduling; open shop with delays; routing open shop; standard lower bound;
instance reduction; polynomially solvable subclass; overloaded node; overloaded
edge

1. Introduction

We consider the routing open shop problem, which is a natural combination of a well-
known metric traveling salesman problem and a classical scheduling open shop prob-
lem. Metric TSP hardly needs an introduction. The open shop problem, introduced
by Gonzalez and Sahni [12], can be described as follows. Sets M = {M1, . . . ,Mm} of
machines and J = {J1, . . . , Jn} of jobs are given and each machine Mi has to perform
an operation on each job Jj , this operation Oji requires pji > 0 time units to complete.
Each machine has to process jobs in some sequence which is not given in advance but
has to be chosen by a scheduler. Operations of the same job cannot be processed

CONTACT I. D. Chernykh. Email: idchern@math.nsc.ru

http://arxiv.org/abs/1911.00236v2


simultaneously. The goal is to construct a schedule of processing of all jobs, i.e. to
specify non-negative starting and completion times for each operation, such that the
conditions above are satisfied and the maximum completion time (also referred to as
the makespan) is minimized. Following the standard three-field notation for scheduling
problems (see [17] for example) the open shop problem with m machines is denoted by
Om||Cmax. Notation O||Cmax is used when the number of machines is not bounded by
any constant. The Om||Cmax problem is known ([12]) to be polynomially solvable in
the case of two machines and is NP-hard for m > 3. The O||Cmax problem is strongly
NP-hard. Moreover, unless P = NP , no ρ-approximation algorithm for O||Cmax exists
ρ < 5

4 [23].
Several algorithms for solving the two-machine problem O2||Cmax to the optimum

were proposed over the last decades, for example by Gonzalez and Sahni [12], Pinedo
and Schrage [19] and de Werra [10]. All the known algorithms run in linear time
and produce optimal schedules with different structures. An important property of
the schedules produced by each of those algorithms (and therefore of the optimal
schedule) is its so-called normality : the makespan of those schedules always coincides

with the standard lower bound C̄
.
= max

{

max
i

n
∑

j=1
pji,max

j

m
∑

i=1
pji

}

.

Most of the classical scheduling models (open shop included) share the following
disadvantage. It is supposed that each machine is able to start a new operation at
the same moment when it completes the previous one. In a real life environment
that’s not always possible. Usually jobs represent some material objects, therefore
some delays between processing operations of two subsequent jobs may be unavoidable.
Such delays can be machine-dependent, job- or sequence-dependent, and taking them
into account can make the problem harder to investigate. Still, there is a number of
papers considering scheduling problems with transportation delays (see [5, 13, 18, 20]
for example). However, the problem we are considering in this paper uses a different
approach to model transportation delays.

We consider the routing open shop problem [4] which can be described as the open
shop meeting the metric traveling salesman problem (TSP). Let the input of the TSP
be given by an edge-weighted graph G. Jobs from J are distributed between the nodes
of G, each node contains at least one job. Machines are mobile and are initially located
at the predefined node referred to as the depot. Machines have to travel over the edges
of G, weights of the edges represent travel times for each machine. Any number of
machines can travel over the same edge at the same time. Each machine has to visit
each node of G (not necessary once), perform all the respective operations (under the
feasibility constraints from the open shop problem), and return back to the depot
after processing all the jobs. One has to construct a schedule, specifying starting and
completion times for each machine’s activity, which is either a performing of some
operation or traveling over some edge of G. Note that a machine has to arrive at some
node to be able to process a job located at that node.

The makespan Rmax of a schedule S for the routing open shop is the maximum
completion time of machine’s activity. (Note that Rmax > Cmax and those to values
are different in case the last activity is a traveling of machine to the depot.) The
goal is to construct a feasible schedule minimizing the makespan. The routing open
shop problem with m machines is denoted by ROm||Rmax, or ROm|G = X|Rmax if
we want to specify the structure X of the graph G. In the latter case we use either
standard notation from graph theory, such as Kp for the complete graph with p nodes,
or standard terms like tree or chain.

2



The ROm||Rmax problem has a certain similarity to the so-called open shop with
batch setup times (see [13] for example). In the latter problem jobs a partitioned into
several groups referred to as batches, and a machine has to spend a pre-defined setup
time when switching from one batch to another. Batches can correspond to sets of
jobs from the same node in the routing open shop, and setup times correspond to
travel times. However, there are two significant differences. First, setup times usually
only depend on the destination batch (in terms of the routing scheduling problem that
would mean that the travel time between nodes u and v depend only on v); second,
there is no initial state of machines which can correspond to the depot. Including the
depot into the picture makes the problem to be a generalization of a metric TSP, and
it worth mentioning that such combinations of hard discrete optimization problems
get more attention during the last decades. For example, the routing scheduling model
appeared independently while considering tasks arising both in production (see, e.g.
[1, 2]), so in the service industry [9, 24].

The general routing open shop problem contains the metric TSP as a special case,
moreover, the problem with a single machine is equivalent to the metric TSP and
therefore is strongly NP-hard. On the other hand, the problem with zero travel times
(or with G = K1) is equivalent to the open shop problem and is NP-hard for m > 3.
However it is known, that the routing open shop problem remains NP-hard even in
the simplest case RO2|G = K2|Rmax with two machines and just two nodes of the
transportation network [4]. On the other hand, FPTAS for such a case is described in
[15].

Our research aims on the description of wide polynomially solvable cases of NP-
hard problem RO2||Rmax. A few such cases for the RO2|G = K2|Rmax problem can
be found in [8, 15], see Sections 2, 3 and 4 for details.

Although our research focuses on the two-machine version of the problem, the
progress made in the study of the ROm||Rmax problem should be mentioned as well.
A series of approximation algorithms for the ROm||Rmax problem was developed,
starting with the m+4

2 -approximation [4]. The best known algorithm up to date has
the approximation ration guarantee of O(logm) [16]. (An intriguing open question is
whether an approximation algorithm with a constant approximation ratio exists for
the ROm||Rmax problem.) A number of papers is devoted to the research of a special
case with unit processing times [11, 21, 22].

In this paper we consider the problem RO2|G = tree|Rmax, and describe several spe-
cial cases which are solvable to the optimum in linear time, with the optimal makespan
equal to the standard lower bound. The main special cases are formulated in terms
of load distribution between the nodes, the formulation involves the definitions of an
overloaded node and an overloaded edge (see Section 2), and is based on a special
procedure of instance reduction and its properties (Section 3). For the sake of com-
pleteness we also provide a couple of additional special cases for RO2|G = chain|Rmax

problem formulated in terms of properties of the diagonal job, which plays important
role in the Gonzalez-Sahni algorithm for the O2||Cmax problem (Theorem 2.7). These
cases are elementary extensions of known classes for RO2|G = K2|Rmax described by
Kononov in [15] (see Theorem 2.5).

The structure of the remainder of the paper is as follows. Section 2 contains a
detailed problem description, necessary notation and the formulation of known results
we use. In Section 3, we describe the procedure of instance reduction, which is the
main part of our algorithm. Polynomially solvable outcomes of the instance reduction
procedure are described in Section 4, followed by the description of sufficient conditions

3



of polynomial solvability in terms of the properties of the initial instance in Section 5.
Concluding remarks and some open questions are given in Section 6.

2. Preliminary notes

Let us give a formal description of the routing open shop problem.
A problem instance combines inputs from the metric TSP and the open shop prob-

lem in the following manner. A connected graph G = 〈V,E〉 is given, a non-negative
weight function τ : E → Z>0 is defined. One of the nodes v0 ∈ V is chosen to be the
depot. Jobs from the set J = {J1, . . . , Jn} are distributed among the nodes from V . A
set of jobs located at v ∈ V is denoted by J (v) and is non-empty for any node with
possible exclusion of the depot. Machines from the given set M = {M1, . . . ,Mm} are
initially located at the depot and each machine can travel over the edges of G, travel
time of each machine over an edge e ∈ E equal to τ(e). Any number of machines can
travel over the same edge in any direction at the same time. Machines are allowed to
visit each node multiple times therefore we assume machines use the shortest paths
while traveling from one location to another. Each machine Mi has to perform an
operation Oji on every job Jj . This operation takes pji ∈ Z>0 time units and requires
the machine to be at the location of Jj : while machine is in the node v, it can only
process operations of jobs from J (v). Different operations of the same job cannot be
processed simultaneously, and each machine can process at most one operation at a
time. Machines have to return to the depot after processing all the operations. We use
notation pji(I), G(I), τ(I; e) and J (I; v), if we want to specify a problem instance I.

A schedule S can be described by specifying the starting time sji for each operation
Oji:

S = {sji|i = 1, . . . ,m, j = 1, . . . , n} .

The completion time of operation Oji in a schedule S is denoted by cji(S) = sji(S)+pji,
notation S is omitted when not needed.

Let dist(v, u) denote the weighted distance between the nodes v and u (and vice
versa), i.e. the minimal total weight of edges belonging to some chain connecting v

and u. So dist(v, u) is the shortest time needed for a machine to reach u from v. We
also use notation dist(I; v, u) for a specific instance I.

Definition 2.1. A schedule S for an instance I is referred to as feasible if it satisfies
the following conditions:

1. If i1 = i2 or j1 = j2 (but not both) then

(sj1i1 , cj1i1) ∩ (sj2i2 , cj2i2) = ∅.

2. If operation of job Jj ∈ J (v) is the first to start by machine Mi then

sji > dist(I; v0, v).

3. If machine Mi processes operation Oji before the processing of an operation Oj′i,
Jj ∈ J (v), and Jj′ ∈ J (v′), then

sj′i > cji + dist(I; v, v′).

4



Condition 1 means that intervals of processing of dependent operations (i.e. oper-
ations of the same job or of the same machine) do not overlap. Conditions 2 and 3
mean that machine cannot start an operation before it reaches its location.

Suppose an operation of job Jj ∈ J (v) is the last to be processed by machine Mi

in some schedule S. Then we define the release time of machine Mi as

Ri(S)
.
= cji(S) + dist(v, v0).

The makespan of schedule S is Rmax(S)
.
= max

i
Ri(S). The goal is to find a feasible

schedule minimizing the makespan.

For some problem instance I we use the following

Notation 1. • ℓi(I)
.
=

n
∑

j=1
pji(I) — the load of machine Mi;

• ℓmax(I)
.
= max

i
ℓi(I) — the maximal machine load;

• dj(I)
.
=

m
∑

i=1
pji(I) — the length of job Jj ;

• dmax(I; v)
.
= max

Jj∈J (v)
dj(I) — the maximal job length at node v;

• ∆(I; v)
.
=

∑

Jj∈J (v)

dj(I) — the load of node v;

• ∆(I)
.
=

∑

v∈V

∆(I; v) — the total load of instance I;

• T ∗(I) — the optimum of the underlying TSP, i.e. the length of the shortest a
cyclic route visiting each node at least once;

• R∗
max(I) — the optimal makespan.

We omit I from the notation in case when it does not lead to a confusion.

The following standard lower bound on the optimum for the routing open shop
problem was introduced in [3]:

R̄(I)
.
= max

{

ℓmax(I) + T ∗(I),max
v∈V

(

dmax(I; v) + 2dist(I; v0, v)
)

}

. (1)

Note that R̄ coincides with C̄ in case when all edges have zero weight or G = K1 (in
this case our problem is reduced to the classical open shop problem).

Our study is focused on the case of two machines. In this case we use simplified
notation for the operations of each job Jj : aj and bj instead of Oj1 and Oj2, respec-
tively. Moreover, we use the same notation (aj and bj) for operations’ processing times
whenever it does not lead to a confusion.

We use the following definitions inherited from [14].

Definition 2.2. A feasible schedule S for a problem instance I is referred to as normal
if Rmax(S) = R̄(I). Instance I is normal if it admits construction of a normal schedule.

A class of instances is normal if it consists of normal instances only. A normal class
K is referred to as efficiently normal if there exists a polynomial time algorithm for
solving any instance from K to the optimum.

The goal of this paper is to describe wide efficiently normal classes for the RO2|G =
tree|Rmax problem. Below we describe a few such classes known from previous research.

5



The first efficiently normal class of instances of RO2|G = K2|Rmax is due to
Kononov [15] and its description is based on so-called diagonal job, which can be
defined as follows.

Definition 2.3. The diagonal job of an instance of the O2||Cmax (or RO2||Rmax)
problem is such a job Jr ∈ J that

r = argmax
j

{

min{aj , bj}
}

.

We also need the following

Definition 2.4. A feasible schedule S if referred to as early if no operation Oji can
start earlier than at sji(S), providing that the sequences of operations of each job and
each machine from S are preserved, without violating the feasibility.

Note that any early schedule is uniquely defined by sequences of operations of each
job and each machine.

Theorem 2.5 (Kononov, [15]). A class of instances of the RO2|G = K2|Rmax problem
satisfying at least one of the following properties of the diagonal job Jr is solvable to
the optimum in linear time:

1. Jr ∈ J (v0),
2. dr > ℓmax.

The proof of Theorem 2.5 is based on properties of the Gonzalez-Sahni algorithm
for open shop problem O2||Cmax [12]. This proof can be easily extended on a problem
RO2|G = chain|Rmax under the following conditions:

1. the depot v0 is one of the terminal nodes of chain G,
2. job Jr is located at some terminal node of G.

To present this proof, we use the following Gonzalez-Sahni formulation, similar to that
described in [15].

Gonzalez-Sahni algorithm [12]
Input: An instance I of O2||Cmax problem.
Output: An optimal schedule for I.

Step 1. Partition the set of jobs J into two subsets:

JA = {Jj|aj 6 bj}, JB = {Jj |aj > bj}.

Step 2. Let Jr be a diagonal job. Without loss of generality assume Jr ∈ JA.
Step 3. Choose enumerations of operations from J \ {Jr} (A and B for machines M1,

M2 respectively) in the following way:
3.1. If dr < ℓmax then A = B is a concatenation of arbitrary enumerations of

JA \ {Jr} and JB,
3.2. If dr > ℓmax then both A and B are arbitrary and independent.

Step 4. Construct an early schedule in the following manner:
4.1. Machine M1 processes operation of jobs from J \ {Jr} according to A, then

ar;
4.2. Machine M2 processes br, then operations of jobs from J \ {Jr} according to

B;
4.3. Operations of all jobs except Jr are processed first by M1, then by M2.

6



JA(v0) JA(v1) · · · JA(vg) JB(vg) · · · JB(v0) ar

br JA(v0) JA(v1) · · · JA(vg) JB(vg) · · · JB(v0)

Figure 1. Structure of the schedule for Theorem 2.7, Case 1.

Lemma 2.6 ([12]). The Gonzalez-Sahni algorithm runs in O(n) time and obtains a
normal schedule for any instance of O2||Cmax.

Theorem 2.7. Let I be an instance of the RO2|G = chain|Rmax problem with Jr
being a diagonal job, G is a chain (v0, . . . , vg). Then any of the following conditions
implies I is normal and an optimal schedule for I can be found in O(n):

1. Jr ∈ J (v0),
2. Jr ∈ J (v) and dr > ℓmax.

Proof. The algorithm for RO2|G = chain|Rmax is based on the Gonzalez-Sahni algo-
rithm and its properties. The key fact is that operations of jobs from each of the sets
JA and JB (Step 3) can be processed in an arbitrary order, and we show that is it
possible to choose the order in such a way that each machine is guaranteed to take an
optimal route. Thus the algorithm of building an optimal schedule in both cases has
the following structure:

• Choose a specific orders A and B for operations of non-diagonal jobs to apply
at Step 3 of Gonzalez-Sahni algorithm.

• Build a schedule SGS ignoring travel times using Gonzalez-Sahni algorithm.
• “Insert” travel times into SGS to obtain a schedule for the initial RO2||Rmax

problem instance.

Hereafter we assume without loss of generality that Jr ∈ JA, and use notation
JA(v)

.
= JA ∩ J (v) \ {Jr} (JB(v)

.
= JB ∩ J (v)) for each v ∈ V . Let us specify the

orders A and B for both cases of the Theorem.
Case 1. Let A = B be a concatenation of arbitrary enumerations of

JA(v0),JA(v1), . . . ,JA(vg),JB(vg), . . . ,JB(v0). The structure of the resulting sched-
ule is shown in Figure 1. Thick arcs represent multiple precedence constraints: not
between the two blocks, but between respective operations of the same job.

Case 2. Let A be a concatenation of arbitrary enumerations of
J (v0),J (v1), . . . ,J (vg) \ {Jr}, and B be a concatenation of arbitrary enumer-
ations of J (vg) \ {Jr},J (vg−1), . . . ,J (v0) (see Figure 2). A thick dashed line
represents the connection between operations of the diagonal job: cr2 = sr1.

Note that in both cases the orders A and B comply with the Gonzalez-Sahni algo-
rithm, hence the schedule built is normal. Now it is sufficient to observe that inserting
travel times into those schedules does not introduce extra delay intervals into their
structure.

The second normal class of instances of RO2|G = K2|Rmax was introduced in [8]
and is based on the following

Definition 2.8. A node v is referred to as superoverloaded if jobs from J (v) can be
partitioned into three subsets J1,J2,J3 such that

7



J (v0) J (v1) · · · J (vg) ar

br J (vg) · · · J (v1) J (v0)

Figure 2. Structure of the schedule for Theorem 2.7, Case 2.

1. ∀k ∈ {1, 2, 3}
∑

Jj∈Jk

dj 6 R̄− 2dist(v0, v),

2. ∀k 6= l ∈ {1, 2, 3}
∑

Jj∈Jk∪Jl

dj > R̄− 2dist(v0, v).

Such a partition is referred to as irreducible one.

It was proved in [8] that any instance of RO2|G = K2|Rmax containing a superover-
loaded node is normal, and the optimal schedule for such an instance can be built in
linear time providing that an irreducible partition is known.We provide an elementary
extension of this result on the special case with G = chain in Section 4.

Unfortunately the verification of existence of an irreducible partition is NP-complete
[8] and therefore the problem of obtaining of such a partition is NP-hard. However,
there is a description ([8]) of a sufficient condition for a node to be superoverloaded,
together with a polynomial time procedure of obtaining of an irreducible partition.

Theorem 2.9 ([8]). Let ∆(v) > 3
2 (R̄ − 2dist(v0, v)) + dmax(v). Then v is superover-

loaded, and an irreducible partition can be obtained by the following procedure.

Procedure Partition.
Let J (v) = {J1, . . . , Jk}.

Step 1. Find minimal x > 1 such that
x
∑

j=1

dj >
1

2
(R̄− 2dist(v0, v)).

Set J1 = {J1, . . . , Jx} and X =
x
∑

j=1

dj .

Step 2. Find minimal y > x such that
y
∑

j=x+1

dj > R̄− 2dist(v0, v)−X .

Set J2 = {Jx+1, . . . , Jy}.
Step 3. Set J3 = {Jy+1, . . . , Jk}.

This procedure runs correctly if for each job Jj ∈ J (v) its length dj 6 1
2(R̄ −

2dist(v0, v)). The condition of Theorem 2.9 implies that inequality, and also guarantees
the irreducibility of the partition obtained. In general case the procedure Partition
still may be applied if a special treatment for “long” jobs (with dj >

1
2 (R̄−2dist(v0, v)),

if any) is provided. We describe the following version of the procedure guaranteed to
run correctly in any case.

8



Procedure Partition 2.0.
Let J (v) = {J1, . . . , Jk}.

Step 0. If J (v) contains long jobs, rearrange the enumeration of jobs to comply with
the following conditions:
0.1. J1 is a long job,
0.2. J2 is also a long job unless there are no more long jobs except for J1.

Step 1. Find minimal x > 1 such that
x
∑

j=1

dj >
1

2
(R̄− 2dist(v0, v) + dmax(v)).

If no such x exists, set x = k.

Set J1 = {J1, . . . , Jx} and X =
x
∑

j=1

dj .

If x = k, set J2 = J3 = ∅ and STOP.

Step 2. Find minimal y > x such that
y
∑

j=x+1

dj > R̄− 2dist(v0, v) + dmax(v)−X .

If no such y exists, set y = k.
Set J2 = {Jx+1, . . . , Jy}.
If y = k, set J3 = ∅ and STOP.

Step 3. Set J3 = {Jy+1, . . . , Jk}.

Clearly, each step of the procedure requires O(n) time. However, without the condi-
tions of Theorem 2.9 we cannot guarantee that the partition obtained by the procedure
Partition 2.0 is irreducible. Note how we use this procedure in our algorithm in the
next Section.

3. Instance reduction procedure

In this section we study some general properties of an instance of RO2||Rmax and
describe the reduction procedure which helps to reduce the number of jobs and to
simplify the graph structure preserving the standard lower bound R̄. One of the impor-
tant properties of the procedure is its reversibility : any feasible schedule for a reduced
instance can be treated as a feasible schedule for the initial instance with the same
makespan. In general case this procedure can increase the optimal makespan. However,
in the next sections we prove that for our special cases of RO2|G = tree|Rmax the
instance reduction procedure also preserves the optimum. Therefore, it can be used as
a main part of an exact algorithm for solving the initial instance.

The procedure is based on two types of instance transformation: job aggregation
and terminal edge contraction. The first one is described in detail in [7], while the
second was used in [6] for a certain generalization of the routing open shop problem.
We provide all the necessary details below.

Definition 3.1. Let I be an instance of the problem ROm||Rmax with graph G =
〈V ;E〉, and K ⊆ J (I; v) for some v ∈ V . Then we say that instance I ′ is obtained
from I by aggregation of jobs from K if

J (I ′; v)
.
= J (I; v) \ K ∪ {JjK}, ∀i = 1, . . . ,m pjKi(I

′)
.
=

∑

Jj∈K

pji(I),

∀u 6= v J (I ′;u) = J (I;u).

9



(Here jK is some new job index. A job JjK is to replace the set of jobs K.) An instance

Ĩ obtained from I by a series of job aggregations is referred to as an aggregation of I.

The idea behind the job aggregation is easy: to partition jobs into some number
of groups, and treat each group as a new job with processing times equal to the
total processing times of the jobs combined. Similar approach is used in de Werra’s
algorithm for the O2||Cmax problem [10].

It is easy to observe that any feasible schedule for any aggregation Ĩ can be treated
as a feasible schedule for the initial instance I: one just needs to replace an aggregated
operation with a sequence of operations of jobs from K to be processed in any order
with no idle time. Therefore, R∗

max(Ĩ) > R∗
max(I). Also as soon as we obtained a new

job JjK in J (I ′; v), it is possible that djK > dmax(I; v), so job aggregation can lead to
the growth of the standard lower bound. Specifically, (1) implies

R̄(I ′) > R̄(I) if and only if djK > R̄(I)− 2dist(v0, v). (2)

We use job aggregation to simplify the instance preserving the standard lower bound.
Such an aggregation is referred to as a valid one. An instance with no further legal
job aggregation possible is called irreducible.

A natural question arises, if it is possible to perform a valid job aggregation of
a whole set J (I; v) for some v ∈ V . To answer that question, we use the following
definition from [7].

Definition 3.2. A node v ∈ V of an instance I of the problem ROm||Rmax is referred
to as overloaded if

∆(I; v) > R̄(I)− 2dist(I; v0, v).

Otherwise the node is called underloaded.

Note that Definition 2.8 implies ∆(v) > 3
2

(

R̄ − 2dist(v0, v)
)

, therefore any super-
overloaded node is overloaded as well.

The job aggregation of the set J (I; v) is valid if and only if the node v is underloaded.
Therefore, any node containing single job is an underloaded one.

By LV (I) we denote the number of overloaded nodes in an instance I. It was proved
in [7] that for every instance I of the RO2||Rmax problem LV (I) 6 1. Further in this
section we prove a more general result (Proposition 3.5).

Now let us describe the terminal edge contraction operation.

Definition 3.3. Let v ∈ V \ {v0} be some terminal node in graph G, containing
a single job Jj in an instance I of the ROm||Rmax problem. Let e = [v, u] ∈ E be
the edge incident to v. By the contraction of the edge e we understand the following
instance transformation:

J (I ′;u)
.
= J (I;u) ∪ {Jj}; pji(I

′)
.
= pji(I) + 2τ(e); G(I ′)

.
= G(I) \ {v}.

In other words, job Jj is translated from v to u, while its operations’ processing
times increase by 2τ(e) each. After that translation node v is obsolete (contains no
jobs) and to be removed from G.

Consider an instance I ′ obtained from I by the contraction of edge e. Any feasible
schedule for I ′ can be treated as a feasible schedule for the initial instance I. One just

10



needs to replace a scheduled interval of a new operation Oji with three consecutive
intervals: traveling of the machine Mi over the edge e to the node v, performing of the
old operation Oji, and traveling back to the node u.

Note that an edge contraction increases each machine load be 2τ(e) while decreasing
T ∗ by the same amount, therefore preserving the sum ℓmax+T ∗. However the length of
Jj increases by 2mτ(e) which might lead to the growth of the standard lower bound.
We want to avoid that. Consider the two-machine case of our problem. The following
definition describes the exact condition, under which an edge contraction increases R̄.

Definition 3.4. Let v ∈ V \ {v0} be some terminal node in graph G, containing a
single job Jj in instance I of the RO2||Rmax problem. Let e = [v, u] ∈ E be the edge
incident to v. The edge e is referred to as overloaded if

dj(I) + 4τ(e) > R̄(I)− 2dist(I; v0, u), (3)

and underloaded otherwise.

(Note that we could perform a contraction of an overloaded edge — meaning that
the edge is terminal, the respective terminal node is not the depot and contains a
single job — but this would increase the standard lower bound. In the case the edge
contraction cannot be performed, the edge is neither overloaded nor underloaded.)

For any problem instance I, we denote the number of overloaded edges by LE(I).
The following property of any instance of RO2||Rmax is fundamental for the procedure
of instance reduction.

Proposition 3.5. Let I be an instance of the problem RO2||Rmax. Then LV (I) +
LE(I) 6 1.

Proof. As proved in [7], any instance of RO2||Rmax contains at most one overloaded
node, so LV (I) 6 1. Let us prove, that I contains at most one overloaded edge. Note
that (1) implies

∆(I) = ℓ1(I) + ℓ2(I) 6 2(R̄(I)− T ∗(I)). (4)

Let v and v′ be two different terminal nodes with single job in each, Jj and Jj′

respectively; e = [u, v] and e′ = [u′, v′] be the edges, incident to v and v′, respectively,
and both edges are overloaded. (Note that there is a possibility that u = u′.) Due to
the metric property of distances we have

T ′∗
> dist(v0, u) + dist(v0, u

′). (5)

From (3) we have

dj + 4τ(e) > R̄− 2dist(v0, u); dj′ + 4τ(e′) > R̄− 2dist(v0, u
′),

and therefore

∆ > dj + dj′ > 2R̄− 2dist(v0, u)− 2dist(v0, u
′)− 4τ(e)− 4τ(e′). (6)

Consider a graph G′ = G \ {v, v′}. Let T ′∗ be the optimum of the TSP on G′. Then

11



due to the fact that edges e and e′ are terminal,

T ∗ = T ′∗ + 2τ(e) + 2τ(e′). (7)

Indeed, in order to visit terminal nodes, one needs to travel twice over their respective
incident edges. Combining (6), (5) and (7), we obtain the inequality

∆ > 2R̄ − 2T ′∗ − 4τ(e) − 4τ(e′) > 2R̄ − 2T ∗.

By contradiction with (4) we have LE(I) 6 1.
Now suppose LV (I) = LE(I) = 1. Let e = [u, v] be the overloaded edge, v 6= v0

is terminal node with single job Jj . Note that node v is underloaded as it contains a
single job. Let v′ 6= v be the overloaded node. Then, by Definitions 3.2 and 3.4 we
have

∆(v′) > R̄− 2dist(v0, v
′), (8)

dj + 4τ(e) > R̄− 2dist(v0, u). (9)

By using reasoning similar to that of (5) and (7), we deduce T ∗ > dist(v0, v
′) +

dist(v0, u) + 2τ(e). Using this inequality, together with (8) and (9), we obtain

∆ > ∆(v′) + dj > 2R̄− 2dist(v0, v
′)− 2dist(v0, u)− 4τ(e) > 2R̄− 2T ∗,

contradicting (4). This concludes the proof of the Proposition.

The idea of the following instance reduction procedure is simple. First, we aggregate
jobs in all the underloaded nodes to obtain single job in each, then contract all the
underloaded edges, and repeat this step until there is no underloaded edge and each
underloaded node contains exactly one job. Second, we deal with the only overloaded
node (if any), using the Procedure Partition 2.0 and aggregation of the obtained job
sets. This way we transform the initial instance, preserving the standard lower bound.
The instance obtained is irreducible. Moreover, any further operation of terminal edge
contraction would increase the standard lower bound.

Note that the reduction procedure is not used for solving a problem instance, but
to simplify it and consequently verify it’s properties. Depending on the outcome of
the procedure (see Lemma 3.6) we further decide, whether the instance belong to
the efficiently normal subclass we announced (see Theorem 4.3). The simplification
procedure is described in detail in Table 1.

Let us illustrate this procedure on a small instance with transportation network
from Figure 3 and job data from Table 2. Job data contains the description of jobs of
type Jj(aj , bj), with each node’s load calculated in the last row. For this instance we
have T ∗ = 28 and ℓ1 = ℓ2 = 28. As soon as each job length (and even node’s load)
is smaller than lmax, we have R̄ = ℓmax + T ∗ = 56. We can also observe that for each
node v we have ∆(v) + 2dist(v0, v) < R̄, therefore all the node are underloaded. After
performing Step 1 of the procedure we will obtain an instance with a single job at
each node (see Table 3).

Let us perform Step 2. Consider terminal node v1. The edge [v1, v2] is underloaded
as soon as d3 + 4τ([v1, v2]) + 2dist(v2, v0) = 5 + 4 + 2 = 11 < R̄. After the edge

12



Reduction

INPUT: An instance I of the problem RO2||Rmax.

OUTPUT: A simplified irreducible instance Ĩ.

Step 1. For each underloaded v ∈ V perform the job aggregation of J (v).
Step 2. For each terminal node v 6= v0:

2.1. e
.
= [u, v] (e is incident to v, u is adjacent to v),

2.2. If e is underloaded then
2.2.1. Let Jj is the only job in J (v),
2.2.2. Perform the contraction of e,
2.2.3. If u is underloaded then perform the job aggregation of J (u).

Step 3. If some v ∈ V is overloaded then
3.1. Obtain sets J1,J2,J3 by application of the Partition 2.0 to node v,
3.2. For each non-empty set Jk perform the job aggregation of Jk,
3.3. If an aggregation of two obtained jobs in J (v) with the smallest length is

valid then perform that aggregation.

Table 1. The simplification procedure Reduction.

v1 v2 v0

v3

v4

v5

v6

v7

v8
1 1

2

2
3

1

2

2

Figure 3. A sample transportation network.

contraction (Step 2.2.2) we have modified job J3(6, 3) translated to node v2, so ∆(v2)
is now 15. The node v2 is still underloaded, so we perform job aggregation (Step 2.2.3),
see Table 4. Further contractions of terminal edges is show in Table 5. Terminal nodes
are eliminated in order v2, v3, v5, v7, v8, v6. After the last contraction the node v4
becomes overloaded, Step 3 does nothing and the procedure stops. The initial instance
is reduced to a simple instance with two nodes v0 and v4 with three jobs.

Note that the procedure Reduction obtains a reversible instance in O(n) time.
Indeed, Step 1 requires O(n) time. Step 2 is repeated once for each terminal node
(and total number of nodes is not greater than n), and takes constant amount of time
for a single edge contraction. Step 3 is also linear, as it’s running time is majored by
that of the procedure Partition 2.0.

The following Lemma describes all possible variants of the reduced instance for the
problem RO2|G = tree|Rmax.

Lemma 3.6. Let I be an instance of RO2|G = tree|Rmax and Ĩ is obtained from I

by the procedure Reduction. Then R̄(Ĩ) = R̄(I) and the graph G(Ĩ) satisfies exactly
one of the following conditions:

1. G(Ĩ) has a single node v0;
2. G(Ĩ) is a chain connecting v0 with an overloaded node v and each node contains

v: v0 v1 v2 v3 v4 v5 v6 v7 v8
Jobs: J1(1, 2)

J2(3, 4)
J3(4, 1) J4(1, 1)

J5(1, 1)
J6(1, 1)

J7(2, 1) J8(5, 2)
J9(1, 1)

J10(2, 1) J11(3, 2) J12(1, 4) J13(2, 3)
J14(1, 5)

∆(v): 10 5 6 3 9 3 5 5 11

Table 2. Job data for a sample instance.

13



v: v0 v1 v2 v3 v4 v5 v6 v7 v8
Jobs: J1,2(4, 6) J3(4, 1) J4,5,6(3, 3) J7(2, 1) J8,9(6, 3) J10(2, 1) J11(3, 2) J12(1, 4) J13,14(3, 8)
∆(v): 10 5 6 3 9 3 5 5 11

Table 3. Job data for a sample instance after Step 1.

v: v0 v2 v3 v4 v5 v6 v7 v8
Jobs: J1,2(4, 6) J3(6, 3)

J4,5,6(3, 3)
J7(2, 1) J8,9(6, 3) J10(2, 1) J11(3, 2) J12(1, 4) J13,14(3, 8)

∆(v): 10 15 3 9 3 5 5 11

v: v0 v2 v3 v4 v5 v6 v7 v8
Jobs: J1,2(4, 6) J3,4,5,6(9, 6) J7(2, 1) J8,9(6, 3) J10(2, 1) J11(3, 2) J12(1, 4) J13,14(3, 8)
∆(v): 10 15 3 9 3 5 5 11

Table 4. Performing Steps 2.2.2 and 2.2.3 for v1.

only one job except v which contains two or three jobs;
3. G(Ĩ) is a chain connecting v0 with a node v with single job at each node, and

the edge incident to v is overloaded.

Proof. Each job aggregation used in the Procedure is valid and, therefore, does not
grow the standard lower bound. Terminal edge contractions are applied only to un-
derloaded edges, therefore, R̄(Ĩ) = R̄(I).

Consider the case G(Ĩ) 6= K1. Note that Steps 1 and 2.2.3 guarantee that each
underloaded node in Ĩ contains exactly one job. Therefore, each terminal node in
G(Ĩ) is either v0, or overloaded, or incident to an overloaded edge. By Proposition 3.5
the graph G(Ĩ) contains at most two terminal nodes (one of which is the depot) and
hence is a chain. Step 2 of the procedure continues until we have no more underloaded
terminal edges. Therefore, a terminal edge is contracted unless it is overloaded, or
incident to the depot, or incident to an overloaded node. As soon as the first and the
third options are mutually exclusive, the Lemma follows.

As soon as the procedure Reduction preserves R̄, we have the following property: if
the reduced instance Ĩ is normal, then the initial instance I is normal as well, and any
normal (and hence optimal) schedule for Ĩ can be easily transformed into an optimal
schedule of I. Obviously Ĩ is normal in case 1 of Lemma 3.6: the problem is reduced to a
classical O2||Cmax and a normal schedule can be built by the Gonzalez-Sahni algorithm
(Lemma 2.6). Therefore a class of instances of RO2|G = tree|Rmax, for which the
procedure Reduction contracts the initial tree into a single node is efficiently normal
and can be solved in three steps: Reduction, Gonzalez-Sahni algorithms and restoring
a schedule for the initial instance. In the next Section we prove similar properties for
case 3 and (under a certain condition) for case 2.

v: v0 v3 v4 v5 v6 v7 v8
Jobs: J1,2,3,4,5,6(15, 14) J7(2, 1) J8,9(6, 3) J10(2, 1) J11(3, 2) J12(1, 4) J13,14(3, 8)
∆(v): 29 3 9 3 5 5 11

v: v0 v4 v5 v6 v7 v8
Jobs: J1,2,3,4,5,6,7(21, 19) J8,9(6, 3) J10(2, 1) J11(3, 2) J12(1, 4) J13,14(3, 8)
∆(v): 40 9 3 5 5 11

v: v0 v4 v6 v7 v8
Jobs: J1,2,3,4,5,6,7(21, 19) J8,9,10(14, 10) J11(3, 2) J12(1, 4) J13,14(3, 8)
∆(v): 40 24 5 5 11

v: v0 v4 v6 v8
Jobs: J1,2,3,4,5,6,7(21, 19) J8,9,10(14, 10) J11,12(8, 10) J13,14(3, 8)
∆(v): 40 24 18 11

v: v0 v4 v6
Jobs: J1,2,3,4,5,6,7(21, 19) J8,9,10(14, 10) J11,12,13,14(15, 22)
∆(v): 40 24 37

v: v0 v4
Jobs: J1,2,3,4,5,6,7(21, 19) J8,9,10(14, 10)

J11,12,13,14(17, 24)
∆(v): 40 65

Table 5. Performing Steps 2.2.2 and 2.2.3 for nodes v2, v3, v5, v7, v8, v6.

14



S F

a0 a1 · · · ag−1

bg−1 bg−2 · · · b0bg

ag
µ T + µ

T + µ µ

T

T

Figure 4. A scheme of an optimal schedule for an instance with overloaded edge.

4. Easy solvable cases on a chain

In this section we establish the normality of two special cases of RO2|G = chain|Rmax.
In both cases we assume that the instance is irreducible, the depot is one of the ends
of G, while the other end is either incident to an overloaded edge (which corresponds
to a case 3 of Lemma 3.6) or contains exactly three jobs (which is a special subcase of
a case 2 of Lemma 3.6). A trivial corollary of those results is Theorem 4.3 providing a
formulation of efficiently normal subcases for the RO2|G = tree|Rmax in terms of the
outcome of the procedure Reduction applied to an instance of the problem.

In this Section we construct early schedules using partial orders of the operations,
according to the remark to the Definition 2.4. Necessary partial orders are referred
to as schemes and are described graphically. Auxiliary nodes S and F represent start
and finish moments of a schedule.

Lemma 4.1. Let I be an instance of RO2|G = chain|Rmax, with G(I) being a chain
(v0, . . . , vg), g > 1, each node vp contains a single job Jp and the edge [vg−1, vg] is
overloaded. Then one can build a normal schedule S for I in linear time.

Proof. Let T
.
= dist(v0, vg−1) and µ

.
= τ([vg−1, vg]). Then T ∗ = 2(T + µ). As soon as

the edge [vg−1, vg] is overloaded, we have

dg + 4µ > R̄− 2T.

Therefore, (4) implies

g−1
∑

j=0

dj + 2T = ∆− dg + 2T < 2R̄− 2T ∗ − R̄+ 2T + 4µ+ 2T = R̄. (10)

Let S be the early schedule built according to the scheme from Figure 4. Following a
well-known fact from project planning, the makespan of the schedule S coincides with
the length of a critical path in graph from Figure 4:

Rmax(S) = max







ℓ1 + T ∗, ℓ2 + T ∗, dg + 2dist(v0, vg),

g−1
∑

j=0

dj + 2T







.

From (1) and (10) we obtain Rmax(S) = R̄(I), concluding the proof.

Lemma 4.2. Let I be an irreducible instance of RO2|G = chain|Rmax, with G(I)
being a chain (v0, . . . , vg), g > 1, and vg contains three jobs, while each underloaded

15



S F

a0· · ·ag−1aγaα aβ

bα bβbγbg−1· · ·b0

T

T

T

T

Figure 5. A scheme of the schedule S1.

S F

a0· · ·ag−1aγ aαaβ

bα bβbγbg−1· · ·b0

T

T

T

T

Figure 6. A scheme of the schedule S2

node vp contains a single job Jp, p = 0, . . . , g−1. Then one can build a normal schedule
S for I in linear time.

Proof. Let J (vg) = {Jα, Jβ , Jγ}. Let T
.
= dist(v0, vg), then we have T ∗ = 2T . With-

out loss of generality we may assume

aα 6 min{aγ , bγ , bα} (11)

(this can be achieved by renumeration of machines and/or jobs Jα, Jγ).
As soon as I is irreducible we have

dα + dβ > R̄− 2dist(v0, vg) = R̄− T ∗. (12)

Together (4) and (12) imply

g−1
∑

j=0

dj + dγ + T ∗ < R̄. (13)

Consider the early schedules S1 and S2 built according to the schemes from Figures
5 and 6, accordingly.

By the reasoning similar to that of the proof of Lemma 4.1, using (11) we have

Rmax(S1) = max







ℓ1 + T ∗, ℓ2 + T ∗,

g−1
∑

j=0

dj + dγ + T ∗, T ∗ + aα + aβ + bβ







.

We prove that at least one of S1 and S2 is normal. Assume otherwise. Then
Rmax(S1) > R̄ together with (1) and (13) imply

Rmax(S1) = T ∗ + aα + aβ + bβ, (14)

16



and Rmax(S2) > R̄ implies

Rmax(S2) = T ∗ +

g−1
∑

j=0

dj + bγ +max{aγ , bα}+ aα.

By the assumption (11) we have

Rmax(S2) 6 T ∗ +

g−1
∑

j=0

dj + bγ + aγ + bα. (15)

Therefore, by (4)

Rmax(S1) +Rmax(S2) = 2T ∗ +

g−1
∑

j=0

dj + dα + dβ + dγ = 2T ∗ +∆ 6 2R̄,

hence both S1 and S2 are normal. Lemma is proved by contradiction.

Now we are ready to declare the main result of this Section.

Theorem 4.3. Let I be an instance of the RO2|G = tree|Rmax problem, Ĩ is obtained
from I by Reduction procedure and one of the following conditions is true:

1. G(Ĩ) = K1,
2. G(Ĩ) contains an overloaded edge,
3. G(Ĩ) contains an superoverloaded node.

Then one can build a normal schedule S for I in linear time.

Proof. Straightforward from Lemmas 3.6, 4.1 and 4.2.

Theorem 4.3 can be seen as a description of efficiently normal class of instances of
RO2|G = tree|Rmax, formulated in terms of the outcome of the Procedure Reduction.
In the next Section we suggest a formulation of sufficient conditions of efficient nor-
mality in terms of the properties of the initial instance (Theorem 5.3).

5. Sufficient conditions of polynomial solvability

Consider an instance I of the RO2|G = tree|Rmax problem. Let us introduce some
notation and definitions convenient for the description of the further results.

Definition 5.1. Let G′ = 〈V ′;E′〉 be a subtree of G. We define the weight of G′ as

W (G′)
.
=

∑

v∈V ′

∆(v) + 4
∑

e∈E′

τ(e).

It is easy to observe that W (G) is preserved by any operation of job aggregation
and terminal edge contraction (and therefore by the Procedure Reduction). Moreover,
if during the Reduction some subtree G′ is completely contracted into a node v, then
in the instance Ĩ obtained we have ∆(Ĩ; v) = W (G′).

17



Notation 2. • Let v 6= v0 and e = [u, v] ∈ E — the edge, incident to v in the
chain connecting v0 and v. Then Gv is the connected component of G \ {e}
containing v. In other words, Gv is a subtree of G induced by the set of all
nodes u such that v belongs to a chain connecting v0 and u. For the sake of
completeness let Gv0 = G.

• Let e ∈ E. Then by v(e) we denote the node incident to e such that e belongs
to a chain connecting v0 and v(e).

• BG′(v) — the set of all nodes of G′, adjacent to v.

Proposition 5.2. Let W (Gv) 6 R̄− 2dist(v0, v). Then during the Reduction proce-
dure no node from Gv becomes overloaded.

Proof. It is sufficient to prove that any tree Gv with such a property cannot contain
an overloaded node. Assume otherwise, let some u ∈ Gv be overloaded. Then by
Definition 3.2

∆(u) > R̄− 2dist(v0, u) > R̄− 2dist(v0, v) > W (Gv),

which contradicts with Definition 5.1.

The next Theorem describes an efficiently normal class of instances of RO2|G =
tree|Rmax.

Theorem 5.3. Suppose an instance I of the RO2|G = tree|Rmax problem satisfies at
least one of the following properties:

1. The depot v0 is overloaded.
2. ∀v ∈ BG(I)(v0) W (v) 6 R̄− 2τ([v0, v]).
3. There exists e ∈ E such that

W
(

Gv(e)

)

∈
(

R̄− 2dist(v0, v)− 2τ(e), R̄ − 2dist(v0, v)
]

. (16)

4. There exists v 6= v0 such that
4.1. ∀u ∈ BGv

(v) W (Gu) 6 R̄− 2dist(v0, u), and
4.2. W (Gv) >

3
2

(

R̄− 2dist(v0, v)
)

+M , there

M = max

{

dmax(v), max
u∈BGv (v)

(

W (Gu) + 4τ([v, u])
)

}

.

Then a normal schedule for I can be built in linear time.

Proof. It is sufficient to prove that such an instance I satisfy the conditions of The-
orem 4.3.

1. By Lemma 3.6 the only possible outcome of the Reduction procedure is that G
is contracted into v0, and we have condition 1 of Theorem 4.3.

2. Let us prove that in this case the initial tree is contracted by the Reduction

procedure either into v0 or into a chain containing an overloaded edge. By Propo-
sition 5.2, in this case each of the subtrees Gv, v ∈ BG(v0) is either contracted
into v or there occurs an overloaded edge. In the later case we have condition
2 of Theorem 4.3, otherwise each of Gv is contracted into v, and after that v is
underloaded. Any further reduction can only end up either with v0 or a link with

18



overloaded edge (if any of the edges incident to v0 become overloaded). Either
way we have one of the conditions 1, 2 of Theorem 4.3.

3. Let us prove that condition (16) guarantees that the Reduction procedure will
end up with a chain containing an overloaded edge. Indeed, by (16) and Propo-
sition 5.2 the tree Gv(e) is either contracted into v(e) or an overloaded edge
occurs during the process and we have the claim. In the first case we obtain
∆(v(e)) = W (Gv(e)), by (16) v(e) is underloaded, and hence all the jobs from
J (v(e)) are aggregated into a single job Jx of length dx = ∆(v(e)) during the
Reduction. Let e = [u, v]. From (16) we have

dx > R̄− 2dist(v0, v)− 2τ(e) = R̄− 2dist(v0, u)− 4τ(e),

and by Definition 3.4 the edge e is overloaded.
4. Suppose that no overloaded edge occurs during the Reduction of subtree v. By

condition 4.1 and Proposition 5.2 Gv is contracted into overloaded node v. The
value M equals the maximal job length in J (v) after the reduction prior to Step
3 of the Reduction procedure: indeed, for each u ∈ BGv

(v) all jobs from Gu are
reduced into a single job of lengthW (Gu), which is further translated into v while
its length becomes W (Gu) + 4τ([v, u]) by the contraction of edge [v, u]. Now by
condition 4.2 set of jobs from J (v) satisfy the Theorem 2.9, an as soon as Step 3
of the Reduction procedure is an application of the Procedure Partition 2.0

(see Section 2), all the jobs from J (v) are aggregated into exactly three jobs,
and v is superoverloaded. Hence the reduced instance satisfies condition 3 of
Theorem 4.3.

6. Conclusion

We described the instance reduction procedure, and proved that any instance with
G = tree can reduced to a chain preserving the standard lower bound. We may
distinguish four outcomes of that procedure: Lemma 3.6 describes three, but the second
one actually consists of two: with 2 and 3 jobs at the overloaded node. We cannot
guarantee the normality of the initial instance only in one of that four outcomes (with
2 jobs in the overloaded node). However it would be of interest to find out, how often
does such an abnormal outcome occur, and therefore, how justified the use of term
“normal” in this context is. This might be a subject for an experimental study.

On top of that we suggest the following directions for future investigation.
Problem 1. Find new normal (or efficiently normal) classes of instances of the

RO2|G = cycle|Rmax problem.
Problem 2. Determine whether RO2|G = tree|Rmax is strongly NP-hard.

Funding

This research was supported by the program of fundamental scientific researches of
the SB RAS No I.5.1., project No 0314-2019-0014, and by the Russian Foundation for
Basic Research, projects 17-01-00170, 17-07-00513 and 18-01-00747.

19



References

[1] I. Averbakh and O. Berman, Routing two-machine flowshop problems on networks with
special structure, Transportation Science 30 (1996), pp. 303–314.

[2] I. Averbakh and O. Berman, A simple heuristic for m-machine flow-shop and its appli-
cations in routing-scheduling problems, Operations Research 47 (1999), pp. 165–170.

[3] I. Averbakh, O. Berman, and I. Chernykh, A 6/5-approximation algorithm for the two-
machine routing open-shop problem on a two-node network, European Journal of Opera-
tional Research 166 (2005), pp. 3–24.

[4] I. Averbakh, O. Berman, and I. Chernykh, The routing open-shop problem on a network:
Complexity and approximation, European Journal of Operational Research 173 (2006),
pp. 531–539.

[5] P. Brucker, S. Knust, T. Edwin Cheng, and N. Shakhlevich, Complexity Results for Flow-
Shop and Open-Shop Scheduling Problems with Transportation Delays, Annals of Opera-
tions Research (2004), pp. 81–106.

[6] I. Chernykh, Routing open shop with unrelated travel times, in Discrete Optimization and
Operations Research — 9th International Conference, DOOR 2016, Vladivostok, Russia,
September 19-23, 2016, Proceedings. 2016, pp. 272–283.

[7] I. Chernykh and E. Lgotina, The 2-machine routing open shop on a triangular trans-
portation network, in Discrete Optimization and Operations Research — 9th International
Conference, DOOR 2016, Vladivostok, Russia, September 19-23, 2016, Proceedings. 2016,
pp. 284–297.

[8] I. Chernykh and A. Pyatkin, Refinement of the optima localization for the two-machine
routing open shop, in Proceedings of the 8th International Conference on Optimization
and Applications (OPTIMA17). Vol. 1987. CEUR Workshop Proceedings (1987). 2017,
pp. 131–138.

[9] S. Chou and S. Lin, Museum visitor routing problem with the ballancing of concurrent
visitors, Complex Systems Concurrent Engineering 6 (2007), pp. 345–353.

[10] D. de Werra, Graph-theoretical models for preemptive scheduling, Ad-
vances in Project Scheduling (1989), pp. 171–185. Available at
http://infoscience.epfl.ch/record/88562.

[11] M. Golovachev and A.V. Pyatkin, Routing open shop with two nodes, unit processing
times and equal number of jobs and machines, in Mathematical Optimization Theory and
Operations Research, MOTOR 2019, Ekaterinburg, Russia, July 8–12, 2019, Proceedings,
M. Khachay, Y. Kochetov, and P. Pardalos, eds., Lecture Notes in Computer Science Vol.
11548. 2019, pp. 264–276.

[12] T.F. Gonzalez and S. Sahni, Open shop scheduling to minimize finish time, J. ACM 23
(1976), pp. 665–679.

[13] U. Kleinau, Two-machine shop scheduling problems with batch processing, Mathematical
and Computer Modelling 17 (1993), pp. 55–66.

[14] A. Kononov, S. Sevastianov, and I. Tchernykh, When difference in machine loads leads to
efficient scheduling in open shops, Annals of Operations Research 92 (1999), pp. 211–239.

[15] A. Kononov, On the routing open shop problem with two machines on a two-vertex net-
work, Journal of Applied and Industrial Mathematics 6 (2012), pp. 318–331.

[16] A. Kononov, O(log m)-approximation for the routing open shop problem, RAIRO – Op-
erations Research 49 (2015), pp. 383–391.

[17] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and G.B. Shmoys, Sequencing and
scheduling: algorithms and complexity. Logistics of Production and Inventory, Elsevier,
1993.

[18] I.N. Lushchakova, A.J. Soper, and V.A. Strusevich, Transporting jobs through a two-
machine open shop, Naval Research Logistics 56 (2009), pp. 1–18.

[19] M. Pinedo and L. Schrage, Stochastic shop scheduling: a survey, in Deterministic and
stochastic scheduling, M.A.H. Dempster, J.K. Lenstra, and A.H.G. Rinnooy Kan, eds.,
NATO Advanced Study Institute Series Vol. 84, Springer, Dordrecht, 1982, pp. 181–196.

20

http://infoscience.epfl.ch/record/88562


[20] V. Strusevich, A heuristic for the two-machine open-shop scheduling problem with trans-
portation times, Discrete Applied Mathematics 93 (1999), pp. 287–304.

[21] R. van Bevern and A.V. Pyatkin, Completing partial schedules for open shop with unit
processing times and routing, in Proceedings of the 11th International Computer Science
Symposium in Russia (CSR16). Lecture Notes in Computer Science, Vol. 9691. 2016, pp.
73–87.

[22] R. van Bevern, A.V. Pyatkin, and S.V. Sevastyanov, An algorithm with parameterized
complexity of constructing the optimal schedule for the routing open shop problem with
unit execution times, Siberian Electronic Mathematical Reports 16 (2019), pp. 42–84.

[23] D.P. Williamson, L.A. Hall, J.A. Hoogeveen, C.A.J. Hurkens, J.K. Lenstra, S.V. Sev-
ast’janov, and D.B. Shmoys, Short shop schedules, Operations Research 45 (1997), pp.
288–294.

[24] V.F. Yu, S. Lin, and S. Chou, The museum visitor routing problem, Applied Mathematics
and Computation 216 (2010), pp. 719–729.

21


	1 Introduction
	2 Preliminary notes
	3 Instance reduction procedure
	4 Easy solvable cases on a chain
	5 Sufficient conditions of polynomial solvability
	6 Conclusion

