
Asynchronous Variance-reduced Block Schemes for Composite
Nonconvex Stochastic Optimization: Block-specific Steplengths

and Adapted Batch-sizes

Jinlong Lei Uday V. Shanbhag ∗†‡

February 20, 2020

Abstract

This work considers the minimization of a sum of an expectation-valued coordinate-wise Li-smooth
nonconvex function and a nonsmooth block-separable convex regularizer where i denotes the block in-
dex. We propose an asynchronous variance-reduced algorithm, where in each iteration, a single block is
randomly chosen to update its estimates by a proximal variable sample-size stochastic gradient scheme,
while the remaining blocks are kept invariant. Notably, each block employs a steplength that is in accor-
dance with its block-specific Lipschitz constant while block-specific batch-sizes are random variables
updated at a rate that grows either at a geometric or a polynomial rate with the (random) number of
times that block is selected. We show that every limit point for almost every sample path is a station-
ary point and establish the ergodic non-asymptotic rate of O(1/K) in terms of expected sub-optimality.
Iteration and oracle complexity to obtain an ε-stationary point are shown to be O(1/ε) and O(1/ε2),
respectively. Furthermore, under a µ-proximal Polyak-Łojasiewicz condition with the batch size in-
creasing at a geometric rate, we prove that the suboptimality diminishes at a geometric rate, the optimal
deterministic rate while iteration and oracle complexity to obtain an ε-optimal solution are proven to be
O((Lmax/µ) ln(1/ε)) and O

(
(Lave/µ)(1/ε)1+c

)
, respectively where Lmax and Lave denote the max-

imum and average of the block-specific Lipschitz constants and c ≥ 0. In the single block setting, we
obtain the optimal oracle complexity O(1/ε). In pursuit of less aggressive sampling rates, when the
batch sizes increase at a polynomial rate, we show that the suboptimality decays at a corresponding
polynomial rate and establish the iteration and oracle complexity as well. Finally, preliminary numerics
support our theoretical findings, displaying significant improvements over schemes where steplengths
are based on global Lipschitz constants.

1 Introduction

In this paper, we consider the following composite stochastic programming:

min
x∈Rd

F (x) , f̄(x) +
n∑
i=1

ri(xi), (1)

∗Lei is the Department of Control Science and Engineering, Tongji University; She is also with the Shanghai Institute of
Intelligent Science and Technology, Tongji University, Shanghai 200092, China leijinlong@tongji.edu.cn.
†Shanbhag is with the Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park,

PA 16802, USA udaybag@psu.edu.
‡The work has been partly supported by NSF grant 1538605 and 1246887 (CAREER).

1

ar
X

iv
:1

80
8.

02
54

3v
4

 [
m

at
h.

O
C

]
 1

9
Fe

b
20

20

where xi ∈ Rdi , x ∈ Rd is partitioned into n blocks as x = (x1, · · · , xn) with d ,
∑n

i=1 di, ri : Rdi → R
is a convex nonsmooth function, f̄(x) , Eξ[f(x1, · · · , xn, ξ)] is an expectation-valued smooth possibly
nonconvex function with coordinate-wiseLi-Lipschitz continuous gradients, the random vector ξ : Ω→ Rm
is defined on the probability space (Ω,F ,P), and f : Rd × Rm → R is a scalar-valued function. Suppose
that problem (1) has at least one solution. LetX∗ and F ∗ denote the set of optimal solutions and the optimal
function value, respectively. Nonsmoothness may be addressed through the proximal operator [25, 34],
defined as

proxαr(x) , argmin
y

(
r(y) +

1

2α
‖y − x‖2

)
, (2)

where r(·) is a closed and convex function, α > 0, and the argmin is uniquely defined. We will propose an
asynchronous proximal variance-reduced block scheme for solving the problem (1).

1.1 Prior research.

We first review the literature on proximal, variance-reduced, and block methods.
(i) Proximal-gradient methods. Proximal-gradient methods and their accelerated variants are among

the most important methods for solving composite convex problem f(x)+r(x) (also see forward-backward
splitting (FBS) methods [6,21,22]). While accelerated (or unaccelerated) schemes [2] display non-asymptotic
convergence rates in function value of O(1/k2) (or (O(1/k))), FBS methods [4, 38] display linear conver-
gence when ∇f(x) is strongly monotone. Nonconvex extensions have been studied in [1, 12, 17], where
the convergence to a stationary point is shown in [1] while rate statements are provided under both the
Kurdyka-Łojasiewicz (KL) property [12] and the Polyak-Łojasiewicz (PL) condition [17] (where a linear
rate is proven).

(ii) Variance-reduced schemes. A stochastic proximal gradient method was presented in [35] for
solving composite convex stochastic optimization, where the a.s. convergence and a mean-squared con-
vergence rate O(1/k) were developed in strongly convex regimes, in sharp contrast with the linear rate of
convergence in deterministic settings. Variance reduction and variable sample-size schemes have gained
increasing relevance in first-order methods for stochastic convex optimization [13–16, 36]; in the class of
variable sample-size schemes, the true gradient is replaced by the average of an increasing batch of sampled
gradients, progressively reducing the variance of the sample-average. In strongly convex regimes, linear
rates were shown for stochastic gradient methods [16, 36] and extragradient methods [15], while for merely
convex optimization problems, accelerated rates of O(1/k2) and O(1/k) were proven for smooth [13, 16]
and nonsmooth [15] regimes, respectively. Mini-batch stochastic approximation methods were developed
in [14] for nonconvex stochastic composite optimization. Alternative variance reduction schemes like SAGA
and SVRG, applied to finite-sum machine learning problems [29–31, 42], rely on periodic use of the exact
gradient, leading to recovery of deterministic convergence rates. For example, geometric rates were pro-
vided by [31] for proximal SAGA and SVRG algorithms in nonconvex regimes under the proximal PL
inequality. The variance reduced schemes have been widely applied to the data-driven applications, e.g.,
the phase retrieval problem [40,41] that aims at reconstructing a general signal vector from magnitude-only
measurements.

(iii) Block coordinate descent (BCD) schemes. BCD methods [10] have been widely used in machine
learning and optimization, where variables are partitioned into manageable blocks and in each iteration, a
single block is chosen to update while the remaining blocks remain fixed. Recently, in [26], coordinate-
friendly operators were investigated that perform low-cost coordinate updates and it is shown that a variety
of problems in machine learning can be efficiently resolved by such an update. The convergence properties
of cyclic BCD methods has been extensively analyzed in [28, 39, 43]. Nesterov considered a randomized

2

BCD method [23] and proved sublinear and linear convergence in terms of expected objective value for
general convex and strongly convex cases, respectively. In [32], proximal (but unaccelerated) extensions
were developed to contend with composite problems (also see [9,32,43,45,47]), while in [11], an accelerated
proximal RBCD scheme was presented with a rate of O(1/k2). In more recent work [7], diverse block
selection rules are considered and linear statements are provided for deterministic nonconvex problems
under the PL condition.

1.2 Motivations.

We consider a class of techniques that combine variance reduced and block-based schemes for solving the
nonconvex nonsmooth stochastic programs, drawing inspiration from two seminal papers. Of these, the
first by Xu and Yin [44] proposes a block stochastic gradient (BSG) method that cyclically updates blocks
of variables. The second paper, by Dang and Lan [8], presents a stochastic block mirror-descent scheme
reliant on randomly choosing and updating a single block by a mirror-descent stochastic approximation
method. In [44] and [8], rates are provided in the convex setting while in nonconvex regimes, Dang and
Lan [8] present non-asymptotic rates. Yet, there are several shortcomings that motivate the present research:
(1) Centralized batch sizes. The schemes in [8, 44] require a centrally specified batch-size across all
blocks requiring global knowledge of the global clock, i.e. iteration k; (2) Shorter steps. Block-invariant
steplengths utilize the global Lipschitz constant leading to significantly shorter steps and poorer perfor-
mance; (3) No almost sure convergence guarantees. Almost sure convergence guarantees are unavailable
for BCD schemes for general nonconvex problems; (4) Sub-optimal rate statements. Optimal determin-
istic rates via variance-reduced schemes are unavailable but have been alluded to in convex regimes [44,
Rem. 7]; Refinements via the PL condition remain open questions.

1.3 Summary of Contributions.

We address the aforementioned gaps through designing a novel algorithm that combines a randomized BCD
method with a proximal VSSG method, reliant on block-specific steplengths based on locally available Li
without knowledge of the central Lipschitz constant, leading to larger steplengths and improved behav-
ior, and on random block-specific batch-sizes (adapted to its block-selection history) without knowledge
of the global clock, leading to lower informational coordination requirements. We make the following
contributions supported by numerics in Section 5. Table 1 formalizes the distinctions in our scheme, while
Table 2 compares our results with deterministic rates for nonconvex regimes.

(I) In Section 3, we prove that every limit point for almost every sample path is a stationary point under
appropriately chosen batch sizes and show that the ergodic mean-squared error of the gradient mapping
diminishes at a rate O(1/K). We then establish that for any given ε > 0, the iteration complexity (no. of
proximal evaluations) and oracle complexity (no. of sampled gradients) to obtain an ε-stationary point are
O(nLmax/ε) and O(n2σ2L2

maxL
−1
minε

−2) with uniform block selection, where Lmax , maxi Li, Lmin ,
mini Li, and σ2 denotes a uniform bound on the variance of gradient noise. When the blocks are chosen
as per a non-uniform distribution with probabilities Li (

∑n
i=1 Li)

−1 for each i = 1, · · · , n, the iteration
and oracle complexity are improved to O(nLave/ε) and O(n2σ2Lave/ε

2) with Lave ,
∑n

i=1 Li/n. This
represents a constant factor improvement in the rate from Lmax (in [8]) to Lave. Preliminary numerics
reveal that block-specific steplengths lead to significant improvements in empirical behavior (see Table 5).
In addition, we show that if the batch-sizes increase at a quadratic rate with the number of times a particular
block is chosen, the choice of batch-size sequences no longer relies on the knowledge of global Lipschitzian
information.

3

SC,C,NC: Strongly convex, convex, nonconvex; p-PL: proximal P-L, δ ≥ 0
App. Metric Asym/Rate/complexity Comments

[44]
NC – E[d(0, ∂F (x(k))]→ 0

C E[F (x(k))− F ∗] O(1/
√
k)

(i) Centralized batch-size Nk;
(ii) Central. step depend. on global L;
(iii) No rate for nonconvex;

SC E[‖x(k)− x∗‖2] O(1/k) (iv) sub-linear rates for SC

[8]
NC E[‖Gα(xα,K)‖2]

rate: O(1/K)
iteration: O (nLmax/ε)
oracle: O

(
n2ν2Lmax/ε

2
) (i) Centralized batch-size Nk ;

(ii) Central stepsize depend on Lmax;
(iii) Inferior constants dependent on Lmax;

C E[F (x̄K)− F ∗] O(1/
√
K), O(1/K) (SC)

This
work

NC

– a.s. conv. to stationary points (i) a.s. convergence (unavailable in [8, 44])

E[‖Gα(xα,K)‖2]
rate: O(1/K)
iteration: O (nLave/ε)
oracle: O

(
n2ν2Lave/ε

2
)

(ii) Block-specific stepsize depend on Li
=⇒ better empirical behavior;

(iii) Optimal rates depend. on Lave

(Rather than L, Lmax [8, 44])

p-PL E[F (x(k))− F ∗]

geometric batch-size:
geometric rate

iteration: O
(
nLmax
µ

ln(1/ε)
)

oracle: O
(
nLave
µ

(1/ε)1+δ
)

(iv) Block-specific random. batch-sizes
=⇒ no central coordination of clocks

(v) Optimal geometric rate under p-PL
poly. batch-size: deg. v:
polynomial rate O(k−v)

iteration: O((1/ε)1/v)

oracle: O
(

(1/ε)1+1/v
)

Table 1: List of literature on block-structured stochastic optimization

(II) In Section 4, we consider a class of nonconvex functions satisfying the proximal PL condition with pa-
rameter µ (see Assumption 3) and prove that when the block-specific batch size is random and increases at a
suitable geometric rate with the number of times the block is selected, the expectation-valued optimality gap
diminishes at a geometric rate. In addition, with uniform block selection, the iteration and oracle complex-

ity to obtain an ε-optimal solution areO ((nLmax/µ) ln(1/ε)) andO
(
nLave
µ (1/ε)

(
1+ 1

nκmin−1

)
Lmax
Lmin

)
respec-

tively, where κmin , Lmin/µ. While in the smooth regimes with a non-uniform block selection, the iteration

and oracle complexity bounds are improved to O
(
nLave
µ ln

(
1
ε

))
and O

(
nLave
µ (1/ε)

(
1+ 1

nκmin−1

)
Lave
Lmin

)
, re-

spectively. Specifically, when n = 1, the optimal oracle complexity O
(
L
µε

)
is obtained. Notably, these

rates match the deterministic versions in [7]. We further show that when the batch size increases at a poly-
nomial rate of degree v ≥ 1, the convergence rate is O(k−v) and the corresponding iteration and oracle
complexity are respectively O(v(1/ε)1/v) and O

(
evv2v+1(1/ε)1+1/v

)
.

2 Asynchronous Block Proximal Stochastic Gradient Algorithm

We assume access to a proximal oracle (PO) that outputs proxαri(xi) at any point xi ∈ Rdi for any α > 0.
Since the exact gradient ∇f̄(x) is unavailable in a closed form, we assume there exists a stochastic first-
order oracle (SFO) such that for every i ∈ N , {1, · · · , n} and for any given x, ξ, a sampled gradient
∇xif(x, ξ) is returned, which is an unbiased estimator of ∇xi f̄(x). We aim to develop efficient algorithms
for obtaining an ε-optimal solution, where the efficiency is measured by the iteration complexity (no. of PO

4

(a) Iteration complexity in smooth case (r(x) = 0)

block selection rule PL general nonconvex

unif.
deterministic [7] O

(
nLmax
µ

ln
(
F (x1)−F∗

ε

))
O

(
nLmax(F (x(0))−F∗)

ε

)
stoch. (This work) O

(
nLmax
µ

ln
(
F (x1)−F∗

ε
+ nν2

ε

))
O

(
nLmax(F (x(0))−F∗)

ε

)
non-unif.

deterministic [7] O
(
nLave
µ

ln
(
F (x1)−F∗

ε

))
O

(
nLave(F (x(0))−F∗)

ε

)
stoch. (This work) O

(
nLave
µ

ln
(
F (x1)−F∗

ε
+ nν2

ε

))
O

(
nLave(F (x(0))−F∗)

ε

)
(b) Iteration complexity in nonsmooth case (r(x) 6= 0)

block selection rule PL general nonconvex

unif.
deterministic [7] O

(
nLmax
µ

ln
(
F (x1)−F∗

ε

))
O

(
nLmax(F (x(0))−F∗)

ε

)
stoch. (This work) O

(
nLmax
µ

ln
(
F (x1)−F∗

ε
+ nν2

ε

))
O

(
nLmax(F (x(0))−F∗)

ε

)

Table 2: Comparison with deterministic rates for nonconvex block methods

calls) and the oracle complexity (no. of SFO calls). Time is slotted at k = 0, 1, 2, Block i at time k
holds a state xi(k) ∈ Rdi that is an estimate for the corresponding coordinates of the optimal solution. We
propose an asynchronous variance-reduced block stochastic gradient scheme (Algorithm 1) where at time
instant k, a block i ∈ N is randomly chosen with probability pi to compute the proxima update (3), where
αi is the constant steplength and Ni(k) is the number of sampled gradients utilized at block i, respectively.
To be specific, the steplength αi depends on its block-specific Lipschitz constant Li and the batch-sizeNi(k)
is a function of the random number of times block i is selected up to time k. We will specify the selections
of αi and Ni(k) upon the performance analysis in Sections 3 and 4.

Algorithm 1 Asynchronous variance-reduced block stochastic gradient algorithm
Let k := 0, xi(0) ∈ Rdi and 0 < pi < 1 for i = 1, . . . , n such that

∑n
i=1 pi = 1.

(S.1) Pick ik = i ∈ N with probability pi.

(S.2) If ik = i, then block i updates its state xi(k + 1) as follows:

xi(k + 1) = proxαiri

(
xi(k)− αi

∑Ni(k)
j=1 ∇xif(x(k), ξj(k))

Ni(k)

)
, (3)

where αi > 0 is the steplength of block i, Ni(k) is the number of sampled gradients utilized at block
i, and samples {ξj(k)}Ni(k)

j=1 are randomly generated from the probability space (Ω,F ,P). Otherwise,
xj(k + 1) := xj(k) if j 6= ik.

(S.3) If k > K, stop and return {x(k)}Kk=0; Else, k := k + 1 and return to (S.1).

Remark 1 In fact, Algorithm 1 does not require a global coordinator to coordinate the block selection. The
block selection rule (S.1.) accommodates the Poisson model employed by [3] as a special case, where each

5

block i is activated according to a local Poisson clock that ticks according to a Poisson process with rate
%i > 0. Suppose that the local Poisson clocks are independent and there is a virtual global clock which ticks
whenever any of the local Poisson clocks tick, then the global clock ticks according to a Poisson process
with rate

∑n
i=1 %i. Let Zk denote the time of the k-th tick of the global clock. Since the local Poisson

clocks are independent, with probability one, there is a single block whose Poisson clock ticks at time Zk
with probability P(ik = i) = %i∑n

i=1 %i
, pi. In addition, note by (S.2.) and the algorithmic parameter

selection rule that each block i maintains a local clock counting the number of its block updates, and that
the update (3) does not necessitate knowledge of either the global Lipschitz constant or the virtual global
clock. As such, Algorithm 1 is an asynchronous scheme with limited coordination across blocks. Thus,
in practical applications, Algorithm 1 might be helpful for the decentralized implementations compared to
those designed in [8] and [44].

If the observation noise wi(k) of the exact gradient is defined as

wi(k + 1) ,
∑Ni(k)
j=1 ∇xif(x(k),ξj(k))

Ni(k) −∇xi f̄(x(k)), (4)

then (3) may be rewritten as

xi(k + 1) = proxαiri
(
xi(k)− αi

(
∇xi f̄(x(k)) + wi(k + 1)

))
. (5)

By taking ri(xi) as an indicator function of a convex set Xi, i.e., ri(xi) = 0 if xi ∈ Xi and ri(xi) = +∞
otherwise, then the problem (1) reduces to the stochastic programming minxi∈Xi,i∈N E [f(x1, · · · , xn, ξ)] .
In this case, the update (3) reduces to the variable sample-size projected stochastic gradient method:

xi(k + 1) = PXi

(
xi(k)− αi

(
∇xi f̄(x(k)) + wi(k + 1)

))
,

where PXi(xi) denotes the projection of xi onto the set Xi. This can be thought as a generalization of the
schemes proposed in [15, 36] for solving constrained stochastic convex program.

We denote the σ-field of the entire information used by Algorithm 1 up to (and including) the update of
x(k) by Fk. Then Ni(k) is adapted to Fk when Ni(k) is a function of the random number of times block
i is selected up to time k. We impose the following conditions on the objective functions and observation
noises.

Assumption 1 (i) ri is a proper lower semicontinuous and convex function with effective domain Ri re-
quired to be compact. (ii) There exists a constant Li > 0 such that for any x′i ∈ Ri and any x ∈ Πn

j=1Rj ,
‖∇xi f̄(x)−∇xi f̄(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)‖ ≤ Li‖xi − x′i‖.

Assumption 2 (i) There exists σ > 0 such that for any i ∈ N and all k ≥ 1, E[‖wi(k + 1)‖2|Fk] ≤
σ2

Ni(k) a.s.; (ii) ik is independent of Fk for all k ≥ 1.

Remark 2 Assumption 1(i) requires the effective domain of each block’s nonsmooth convex regularizer to
be a compact set. For example, if ri(xi) is set to be an indicator function of a convex set Xi, then it is
required that Xi be a compact set. Such a condition guarantees that the iterate sequence {x(k)} produced
by Algorithm 1 is uniformly bounded. Assumption 1(ii) necessitates the gradient of the nonconvex smooth
term f̄(x) to be block-wise Lipschitz continuous. Assumption 2(i) can be satisfied if the sampled gradients
are independently generated and E[‖∇xif(x, ξ)−∇xi f̄(x)‖2], the variance of the stochastic gradient noise,
is uniformly bounded.

6

3 Convergence to Stationary Points

In this section, we will prove the almost sure convergence of iterates to a stationary point and establish the
non-asymptotic rate of Algorithm 1.

3.1 Preliminary Lemmas

Before presenting the convergence results, we recall a preliminary result from [31, Lemma 2].

Lemma 1 Suppose y , proxαr(x− αg) for some g ∈ Rd. Then for any z ∈ Rd,

f̄(y) + r(y) ≤ f̄(z) + r(z) + (y − z)T (∇f̄(x)− g) +

(
L

2
− 1

2α

)
‖y − x‖2

+

(
L

2
+

1

2α

)
‖z − x‖2 − 1

2α
‖y − z‖2.

We now give a simple relation on the conditional expectation of the function value in the following
lemma, for which the proof can be found in Appendix A. This is an important preliminary result because
the convergence results to be presented are essentially obtained through a recursive application of this basic
lemma.

Lemma 2 Suppose that Assumptions 1 and 2(ii) hold. Let {x(k)} be generated by Algorithm 1, where
0 < αi ≤ 1

Li
for each i = 1, · · · , n. Define

x̄i(k + 1) , proxαiri
(
xi(k)− αi∇xi f̄(x(k))

)
(6)

as the update if the true gradient is used. Then the following recursion holds almost surely (a.s.):

E
[
F (x(k + 1))|Fk

]
≤ F (x(k))−

n∑
i=1

pi

(
1

2αi
− Li

)
‖x̄i(k + 1)− xi(k)‖2

+
1

2
E
[
αik‖wik(k + 1)||2|Fk

]
, ∀k ≥ 1.

(7)

Throughout the paper, all inequalities and equalities between random variables are assumed to hold a.s.,
but we often omit to write “a.s.” for simplicity.

3.2 Asymptotic Convergence

From Assumption 1(i) it is seen that the sequence of estimates {x(k)} produced Algorithm 1 is bounded.
We now establish the almost sure convergence by showing that for every limit point of almost every sample
path {x(k)} is a stationary point of problem (1).

Theorem 1 Let {x(k)} be generated by Algorithm 1. Suppose Assumptions 1 and 2 hold, and that for each
i = 1, · · · , n, 0 < αi <

1
2Li

and
∑∞

k=0
1

Ni(k) < ∞ a.s. . Then every cluster point of almost every sample
path {x(k)} is a stationary point.

7

Proof. Note by Assumption 2(i) that

E
[
αik‖wik(k + 1)||2|Fk

]
≤

n∑
i=1

E
[
αi‖wi(k + 1)||2|Fk

]
≤

n∑
i=1

αiσ
2

Ni(k)
.

Note that 1
2αi
−Li > 0 by 0 < αi <

1
2Li

. Then by recalling that
∑∞

k=0
1

Ni(k) <∞ a.s., we may then apply

[33, Thm. 1] to inequality (7) and conclude thatF (x(k)) converges almost surely and
∞∑
k=1

∑n
i=1 pi

(
1

2αi
− Li

)
‖x̄i(k+

1)− xi(k)‖2 <∞ a.s. . This implies that

∞∑
k=0

‖x̄(k + 1)− x(k)‖2 <∞, a.s. (8)

Then for almost every sample path, we have that ‖x̄(k + 1) − x(k)‖ → 0 as k → ∞. Let x̂ be a cluster
point of any such sequence {x(k)}. Then there exists a subsequence {x(kt)} such that lim

t→∞
x(kt) = x̂ and

hence lim
t→∞

x̄(kt + 1) = x̂ by (8). For any i = 1, · · · , n, using the definitions (2) and (6), we obtain that

x̄i(k + 1) = argmin
y∈Rdi

[
∇xi f̄(x(k))T (y − xi(k)) +

1

2αi
‖y − xi(k)‖2 + ri(y)

]
. (9)

Then by using the first-order optimality condition, we obtain for all t :

− 1

αi
(x̄i(kt + 1)− xi(kt)) ∈ ∇xi f̄ (x(kt)) + ∂ri (x̄i(kt + 1)) . (10)

By passing to the limit in (10), using ‖x̄(kt + 1) − x(kt)‖ → 0 a.s., by lim
t→∞

x(kt) = lim
t→∞

x̄(kt + 1) = x̂,

and the continuity of ∇xi f̄(·) and the closedness of ∂ri, we obtain that 0 ∈ ∇xi f̄(x̂) + ∂ri(x̂i) for each
i = 1 . . . , n. Thus, 0 ∈ ∇f̄(x̂) + ∂r(x̂), implying that x̂ is a stationary point of (1). 2

Remark 3 (i) For any i ∈ N and k ≥ 1, define Γi(k) ,
∑k−1

p=0 I[ip=i] as the number of updates block i
has carried out up to time k, where I[a=b] = 1 if a = b, and I[a=b] = 0 otherwise. Thus, Γi(k) is adapted
to Fk, and

∑∞
k=0

1
Ni(k) < ∞ holds almost surely by setting Ni(k) , d(Γi(k) + 1)1+δe for some δ > 0.

From [18, Lemma 7], it follows that for almost every ω ∈ Ω, there exists a sufficiently large k̃ possibly
contingent on the sample path ω such that for any k ≥ k̃, Γi(k) ≥ kpi

2 , i = 1, · · · , n.
(ii) If f̄(x) is convex, then Theorem 1 implies that F (x(k)) converges almost surely to the optimal function
value F ∗, and every cluster point of almost every sample path {x(k)} is a global minimum to the problem
(1).

3.3 Non-asymptotic Rate

Recall that for convex optimization, a frequently-used metric is the sub-optimality metric F (x) − F ∗ or
the distance to the optimal solution set d(x,X∗). However, in nonconvex optimization, the iterates might
converge to stationary points that are not necessarily global minima, and as a consequence, the standard
metric cannot be applied. Thus, one crucial problem in analyzing Algorithm 1 for nonconvex problems
lies in the selection of the convergence criterion. In smooth regimes, it is typical to use ‖∇f̄(x)‖ while
in nonsmooth settings, an appropriate alternative is the proximal gradient mapping [31]: Gα(x) = 1

α

(
x −

8

proxαr
(
x− α∇f̄(x)

))
. Then x0 ∈ Rd satisfying Gα(x0) = 0 is a stationary point of (1). We now analyze

the rate of convergence of Algorithm 1, and establish iteration and oracle complexity bounds to obtain an
ε-stationary point, by using the following metric to measure stationarity.

Gi,αi(x) =
xi − proxαiri

(
xi − αi∇xi f̄(x)

)
αi

, ∀i ∈ N , Gα(x) , (Gi,αi(x))ni=1 . (11)

It is seen that any zero of Gα(x) is a stationary point of (1). Next, we establish a result for Algorithm 1
when the block is chosen according to a uniform distribution.

Theorem 2 Suppose Assumptions 1 and 2 hold. Let {x(k)} be generated by Algorithm 1, where pi = 1
n

and αi = 1
4Li

for each i = 1, · · · , n. Let xα,K be chosen from {x(k)}Kk=0 as per a uniform distribution. We
have the following bound on the mean-squared error:

E
[
‖Gα(xα,K)‖2

]
≤ 16nLmax (E[F (x(0))]− F ∗)

K + 1
+

2σ2Lmax

K + 1

n∑
i=1

K∑
k=0

L−1
i E[Ni(k)−1]. (12)

Then for any given ε > 0, by settingK = K̄1(ε) , 32nLmax(E[F (x(0))]−F ∗)
ε andNi(k) ≡ N̄1(ε) , 4nσ2Lmax

εLmin
,

the iteration and oracle complexity to obtain an ε-stationary point such that E
[
‖Gα(xα,K)‖2

]
≤ ε are

K̄1(ε) and K̄1(ε)N̄1(ε), respectively.

Proof. Note by P(ik = i) = pi and Assumption 2(i), we obtain that

E
[
αik‖wik(k + 1)||2

]
=

n∑
i=1

piαiE
[
‖wi(k + 1)||2

]
≤

n∑
i=1

αipiσ
2E
[
Ni(k)−1

]
.

By taking unconditional expectations of (7) and rearranging the terms, the following holds.

E

[
n∑
i=1

pi

(
1

2αi
− Li

)
‖x̄i(k + 1)− xi(k)‖2

]

≤ E
[
F (x(k))

]
− E

[
F (x(k + 1))

]
+

1

2

n∑
i=1

αipiσ
2E
[
Ni(k)−1

]
.

(13)

Thus, by summing up (13) from k = 0 to K, we have that

K∑
k=0

E

[
n∑
i=1

pi

(
1

2αi
− Li

)
‖x̄i(k + 1)− xi(k)‖2

]

≤ E[F (x(0))]− E [F (x(K + 1))] +
σ2

2

K∑
k=0

n∑
i=1

αipiE
[
Ni(k)−1

]
.

(14)

By the definitions (6) and (11), αi = 1
4Li

,and pi = 1
n , we have that

pi

(
1

2αi
− Li

)
‖x̄i(k + 1)− xi(k)‖2 = piαi

(
1

2
− αiLi

)(
‖x̄i(k + 1)− xi(k)‖

αi

)2

=
1

16nLi
‖Gi,αi(x(k))‖2 ≥ 1

16nLmax
‖Gi,αi(x(k))‖2 .

9

This combined with (14), F (xK+1) ≥ F ∗, and pi = 1
n implies that

1

16nLmax

K∑
k=0

E
[
‖Gα(x(k))‖2

]
≤ E[F (x(0))]− F ∗ +

σ2

8n

n∑
i=1

1

Li

K∑
k=0

E
[
Ni(k)−1

]
.

Therefore, by multiplying both sides of the above equation by 16nLmax
K+1 , by using

E
[
‖Gα(xα,K)‖2

]
=

1

K + 1

K∑
k=0

E
[
‖Gα(x(k))‖2

]
we obtain (12). Since Ni(k) = N̄1(ε), we have 1

K+1

∑K
k=0 E

[
Ni(k)−1

]
= 1

N̄1(ε)
. This combined with (12)

produces the following bound.

E
[
‖Gα(xα,K)‖2

]
≤ 16nLmax (E[F (x(0))]− F ∗)

K̄1(ε) + 1
+

2nσ2Lmax

N̄1(ε)Lmin
≤ ε. (15)

Since a single block is chosen to be updated at each iteration, the total number of samples used to update
x(K) is

∑K−1
k=0

∑n
i=1Ni(k)I[ik=i] = K̄1(ε)N̄1(ε). Then the number of PO and SFO calls required to ensure

that E
[
‖Gα(xα,K)‖2

]
≤ ε are K̄1(ε) and K̄1(ε)N̄1(ε), respectively. 2

In the following, we analyze the rate of convergence of Algorithm 1 with the active block chosen via a
non-uniform distribution constructed using block-specific Lipschitz constants.

Theorem 3 Suppose Assumptions 1 and 2 hold. Let {x(k)} be generated by Algorithm 1, where pi =
Li∑n
i=1 Li

and αi = 1
4Li

for each i = 1, . . . , n. Then

E
[
‖Gα(xα,K)‖2

]
≤ 16nLave (E[F (x(0))]− F ∗)

K + 1
+

2σ2

K + 1

n∑
i=1

K∑
k=0

E
[
Ni(k)−1

]
. (16)

Thus, for any given ε > 0, by setting K = K̄2(ε) = 32nLave(E[F (x(0))]−F ∗)
ε and Ni(k) ≡ N̄2(ε) = 4nσ2

ε , the
iteration and oracle complexity to obtain an ε-stationary point such that E[‖Gα(xα,K)‖2] ≤ ε are K̄2(ε)
and K̄2(ε)N̄2(ε), respectively.

Proof. By definitions (6), αi = 1
4Li

, pi = Li
nLave

, we have that

pi

(
1

2αi
− Li

)
‖x̄i(k + 1)− xi(k)‖2

= piαi

(
1

2
− αiLi

)(
‖x̄i(k + 1)− xi(k)‖

αi

)2

=
1

16nLave
‖Gi,αi(x(k))‖2 .

Then using (14), the definition of Gα(x) and αipi = 1
4Lave

, we have the following:∑K
k=0 E

[
‖Gα(x(k))‖2

]
16nLave

≤ E[F (x(0))− F (x(K + 1))] +
σ2

8nLave

n∑
i=1

K∑
k=0

E
[
Ni(k)−1

]
.

Then by using F (xK+1) ≥ F ∗ and multiplying both sides of the above equation with 16nLave
K+1 , we obtain

(16). The rest of the proof is the same as that of Theorem 2. 2

10

Remark 4 We observe the following regarding Theorems 2–3:
(i) Note that Gα(x) = ∇f̄(x) when r(x) ≡ 0. Suppose

∑K
k=0 E

[
Ni(k)−1

]
is bounded for each i =

1, · · · , n. Then we attain the non-asymptotic rate E[‖∇f(xα,K)‖2] = O(1/K), which is the best known
rate for first-order methods for deterministic nonconvex programs [13].
(ii) Note that iteration and oracle complexity bounds of Algorithm 1 with uniform block selection are re-
spectivelyO(nLmax/ε) andO(n2σ2L2

max/(Lminε
2)), while if the blocks are selected with a likelihood pro-

portional to the block-specific Lipschitz constant, the bounds are respectively reduced to O(nLave/ε) and
O(n2σ2Lave/ε

2). Therefore, the block-specific selection rule improves the constant in both the iteration and
oracle complexity.
(iii) The iteration complexity (no. of partial proximal evaluations) is O(n/ε). Since the variable is parti-
tioned into n blocks, the iteration complexity (no. full proximal evaluations) isO(1/ε), which is optimal for
deterministic gradient descent methods.

In Theorems 2 and 3, the parametersNi(k) and pi still require some sort of global information regarding
the Lipschitz constants (namely Lmax, Lmin, Lave) to attain the optimal iteration complexity O(1/ε) and
oracle complexity O(1/ε2). Such a parameter selection works effectively for the setting where the prior
information about the Lipschitz constants is known to all blocks. To address the situation where the batch-
size depends on neither Lmax nor Lmin, we add an extra proposition to explore the convergence properties
of Algorithm 1 when the batch-size Ni(k) increases according to a quadratic function of the block update
time Γi(k).

Proposition 1 Suppose Assumptions 1 and 2 hold. Let {x(k)} be generated by Algorithm 1, whereNi(k) =
(Γi(k) + 1)(Γi(k) + 2), pi = 1

n and αi = 1
4Li

for each i = 1, · · · , n. Then for any given ε > 0, the
iteration and oracle complexity required to obtain an ε-stationary point such that E

[
‖Gα(xα,K)‖2

]
≤ ε

are respectively O(1/ε) and O(1/ε3).

Proof. By definition, Γi(k) ,
∑k−1

p=0 I[ip=i] and P(ip = i) = pi. Consequently, we have that

P(Γi(k) = m) =

(
k

m

)
pmi (1− pi)k−m. (17)

It is noticed from (17) that for all i ∈ N :

E
[(

Πv
t=1(Γi(k) + t)

)−1
]

=
k∑

m=0

Πv
t=1(m+ t)−1P(Γi(k) = m) =

k∑
m=0

k! pmi (1− pi)k−m

m!(k −m)!Πv
t=1(m+ t)

=

k∑
m=0

k! pmi (1− pi)k−m

(m+ v)!(k −m)!
= Πv

t=1(k + t)−1p−vi

k∑
m=0

(k + v)! pm+v
i (1− pi)k−m

(m+ v)!(k −m)!︸ ︷︷ ︸
, P(Γi(k+v) ≤ k) ≤ 1

≤ Πv
t=1(k + t)−1p−vi ≤ (k + 1)−vp−vi . (18)

Since Ni(k) ,
∏2
t=1(Γi(k) + t), it follows that by setting v = 2 and by recalling that p−vi = n2, we have

that E[Ni(k)−1] ≤ n2
(
(k + 1)(k + 2)

)−1. Incorporating this bound with (12) and noting that
∑K

k=0

(
(k +

1)(k + 2)
)−1

= 1− 1
K+2 ≤ 1 leads to

E
[
‖Gα(xα,K)‖2

]
≤ 16nLmax (E[F (x(0))]− F ∗)

K + 1
+

2n2σ2Lmax
∑n

i=1 L
−1
i

K + 1
.

11

Hence, the iteration complexity required for achieving E
[
‖Gα(xα,K)‖2

]
≤ ε is K(ε) = O(1/ε).

From [24, p.154] it follows that the t-th moment of the binomial distribution Γi(k) equals the t-th
derivative of Mi(y) at y = 0, where Mi(y) = (pie

y + 1− pi)k. Thus, we can show that E[Γi(k)t] = O(kt),
and hence E [Ni(k)] = E[Γi(k)2] + 3E[Γi(k)2] + 2 = O(k2). Then the expected number of sampled
gradients required to obtain an ε−stationary point is bounded by

E
[K(ε)−1∑

k=0

n∑
i=1

Ni(k)I[ik=i]

]
=

K(ε)−1∑
k=0

n∑
i=1

piE [Ni(k)] = O(K3(ε)) = O(1/ε3). 2

Proposition 1 demonstrates that for the general nonconvex problem, the batch-size Ni(k) increases at a
quadratic rate given by (Γi(k) + 1)(Γi(k) + 2), where this function does not rely on any global information
(including the Lipschitz constant L or the global clock k). This unfortunately leads to poorer bounds on
oracle complexity. In fact, such a parameter choice uses the local sampling costs to substitute the cost of
global information. It can be similarly shown that when the batch-size is set as Ni(k) , d(Γi(k) + 1)1+δe
for some δ > 0, then the oracle complexity is O(1/ε2+δ).

Remark 5 This work does not consider the information delay for the simplicity of presentation so as to
highlight the influence of the block-specific steplengths and batch-sizes on the convergence rate. There are
some recent papers that study the asynchronous schemes with delays, e.g., asynchronous algorithms for
the generalized Nash equilibrium problem [46] as well as for the stochastic potential game and nonconvex
optimization [19]. However, neither [19] nor [46] analyze the convergence rate. We believe that the almost
sure convergence might still be guaranteed by using the uniformly bounded delays, but possibly at the cost
of a slower convergence rate; the simulation results displayed in Figure 6 validated this thought.

4 Global Linear Convergence under PL-Inequality

In this section, we will prove the global linear convergence of iterates and derive the complexity bounds
when the proposed scheme is applied to a class of nonsmooth nonconvex composite functions satisfying the
proximal PL inequality. The PL inequality ‖∇f(x)‖2 ≥ 2µ

(
f(x)−minx f(x)

)
requires the gradient norm

to grow faster than a quadratic function when moving away from the optimal value. It was first proposed
in [27] that the global linear convergence of the gradient descent method can be obtained under the PL
condition. Its generalization, called the proximal PL inequality, was proposed in [17] for the composite
function. It has been shown in [17] that several important classes of functions satisfy this proximal PL
condition, e.g., (i) f̄ is strongly convex; (ii) f̄ has the form f̄(x) = h(Ax) for a strongly convex function h
and a matrix A while r is an indicator function for a polyhedral set; and (iii) F is convex and satisfies the
quadratic growth property. We impose the following condition on the problem (1).

Assumption 3 (µ-PL) There is a µ > 0 satisfying 1
2Dr(x, Lmax) ≥ µ(F (x)− F ∗), where

Dr(x, L) , −2Lmin
y

[
∇f̄(x)T (y − x) +

L

2
‖y − x‖2 + r(y)− r(x)

]
.

4.1 Rate Analysis

We first present a preliminary lemma, based on which we show in Theorem 4 and Proposition 2 that F (x(k))
converges in mean to the optimal value F ∗ at a geometric rate and a polynomial rate when the number of
the sampled gradients increases at a geometric rate and a polynomial rate, respectively. The proof of the
Lemma 3 can be found in Appendix B.

12

Lemma 3 Let {x(k)} be generated by Algorithm 1. Suppose Assumptions 2 and 3 hold. Let β ∈ (1
2 , 1) and

0 < αi ≤ 2β−1
Li(1+β) . Define αmin = mini∈N αi. Then for all k ≥ 1,

E
[
F (x(k + 1))− F ∗

]
≤
(
1− αmin(1− β)µpmin

)
E
[
F (x(k))− F ∗

]
+
σ2

2

n∑
i=1

αipiE
[
Ni(k)−1

]
. (19)

We now discuss the optimal selection of parameters αi and β. Define ρ(α, β) , 1 − α(1− β)µpmin.

Then by 0 < αi ≤ 2β−1
Li(1+β) and β ∈ (1

2 , 1), there holds 0 < αi(1 − β) ≤ (2β−1)(1−β)
Li(1+β) . We set β to be

the maximizer of (2β−1)(1−β)
1+β , given by β∗ =

√
3 − 1. Then by setting α∗i = 2β∗−1

Li(1+β∗) = 2−
√

3
Li

, we get

0 < ρ(α∗min, β
∗) = 1 − (2−

√
3)2µpmin

Lmax
< 1. By setting αi = α∗i and β = β∗ in Algorithm 1, we obtain the

geometric rate under the proximal PL condition with the geometrically increasing sample-sizes.

Theorem 4 (Geometric rate of convergence) Suppose pi = 1
n ∀i ∈ N , Assumptions 2 and 3 hold.

Consider Algorithm 1, where αi = 2−
√

3
Li

and Ni(k) =
⌈
(1− qi)−Γi(k)

⌉
for some qi ∈ (0, 1) with

Γi(k) ,
∑k−1

p=0 I[ip=i]. Let qmin , mini∈N qi and ρ∗ , 1− (2−
√

3)2µ
nLmax

.

(i) If qmin 6= (2−
√

3)2µ
Lmax

, then for all k ≥ 0 :

E
[
F (x(k))− F ∗

]
≤

(
1− 1

n
min

{
qmin,

(2−
√

3)2µ

Lmax

})k
×

(
E
[
F (x(0))− F ∗

]
+

σ2
∑n

i=1 αi

2
∣∣qmin − (2−

√
3)2µ/Lmax

∣∣). (20)

(ii) If qmin = (2−
√

3)2µ
Lmax

, then the following holds for any ρ̃ ∈ (ρ∗, 1) and all k ≥ 0:

E
[
F (x(k))− F ∗

]
≤ ρ̃k

(
E
[
F (x(0))− F ∗

]
+

σ2
∑n

i=1 αi
2nρ∗ ln ((ρ̃/ρ∗)e)

)
. (21)

Proof. By using (17) and pi = 1/n, we obtain that for any k ≥ 1 and i ∈ N :

E
[
Ni(k)−1

]
≤ E

[
(1− qi)Γi(k)

]
=

k∑
m=0

(1− qi)mP(Γi(k) = m)

=
k∑

m=0

(
k

m

)
(pi(1− qi))m(1− pi)k−m = (pi(1− qi) + 1− pi)k = (1− piqi)k .

(22)

Since αi = α∗i and pi = 1
n , by setting β = β∗, we obtain that ρ(α∗min, β

∗) = 1 − (2−
√

3)2µpmin

Lmax
= ρ∗

with α∗min , mini∈N αi. By combining (22) with (19) and by the definition qmin = mini∈N qi, we have
vk+1 ≤ ρ∗vk +

∑n
i=1

αiσ
2

2n

(
1− qmin

n

)k
, where vk , E

[
F (x(k))−F ∗

]
. Then by defining q∗ , 1−qmin/n,

we obtain that

vk+1 ≤ (ρ∗)k+1 v0 +

k∑
m=0

(ρ∗)m (q∗)k−m
∑n

i=1 αiσ
2

2n
. (23)

13

(i) Suppose qmin >
(2−
√

3)2µ
Lmax

, we then have q∗ = 1− qmin
n < ρ∗, and hence

k∑
m=0

(ρ∗)m (q∗)k−m = (ρ∗)k
k∑

m=0

(q∗/ρ∗)k−m ≤ (ρ∗)k
1

1− q∗/ρ∗
= (ρ∗)k+1 1

ρ∗ − q∗
.

Similarly, for the case where 0 < qmin < (2−
√

3)2µ
Lmax

, we have that q∗ > ρ∗ and
∑k

m=0 (ρ∗)m (q∗)k−m ≤
(q∗)k+1 1

q∗−ρ∗ . As a result, by using (23) we obtain that

E
[
F (xk+1)− F ∗

]
≤ max {q∗, ρ∗}k+1

(
E
[
F (x(0))− F ∗

]
+

∑n
i=1 αiσ

2

2n |ρ∗ − q∗|

)
,

and hence (20) holds by definitions of ρ∗ and q∗.
(ii) By qmin = (2−

√
3)2µ

Lmax
, we have that q∗ = ρ∗. Then by (23), we have that vk ≤ (ρ∗)k v0+k (ρ∗)k

∑n
i=1 αiσ

2

2nρ∗ .

By using k (ρ∗)k ≤ ρ̃k/ ln ((ρ̃/ρ∗)e) (see [37, Lemma 2]) and v0 , E
[
F (x(0))− F ∗

]
, we obtain the result

(ii). 2

In some settings, the evaluation of sampled gradients might be costly. Hence it is unreasonable or
impossible to increase the batch-size too fast at a geometric rate. As such, we try to explore the convergence
rate of Algorithm 1 when the batch-size is increased at a slower polynomial rate. Next, we will investigate
the rate of convergence of Algorithm 1 with polynomially increasing sample sizes based on a preliminary
result from [20].

Lemma 4 ([Eq. (17) and Lemma 4 [20]) For any q ∈ (0, 1) and v > 0, the following hold:

k+1∑
m=1

qk+1−mm−v ≤ qk+1 e
2vq−1 − 1

1− q
+

2(k + 1)−v

q ln(1/q)
, ∀k ≥ 0, (i)

qx ≤ cq,vx−v for all x > 0 where cq,v , e−v
(

v
ln(1/q)

)v
. (ii)

Proposition 2 (Polynomial rate of convergence) Let Assumptions 2 and 3 hold. Consider Algorithm 1,
where pi = 1

n , αi = 2−
√

3
Li

and Ni(k) = Πv
t=1(Γi(k) + t) for some positive integer v ≥ 1. Let Cv ,

(2−
√

3)nv−1σ2

2

∑n
i=1 L

−1
i , ρ∗ , 1 − (2−

√
3)2µ

nLmax
, and Cf , cρ∗,vCv

e2v/ρ∗−1
1−ρ∗ + cρ∗,vE

[
F (x(0)) − F ∗

]
+

2Cv
ρ∗ ln(1/ρ∗) . Then

E
[
F (x(k))− F ∗

]
≤ Cfk−v, ∀k ≥ 1. (24)

Proof. By setting β =
√

3 − 1, αi = 2−
√

3
Li

, and pi = 1
n in (19), and using Ni(k) = Πv

t=1(Γi(k) + t) and
(18), we obtain the following recursion:

E
[
F (x(k + 1))− F ∗

]
≤ ρ∗E

[
F (x(k))− F ∗

]
+ (k + 1)−v

(2−
√

3)σ2nv−1

2

n∑
i=1

L−1
i

≤ (ρ∗)k+1E
[
F (x(0))− F ∗

]
+ Cv

k+1∑
m=1

(ρ∗)k+1−mm−v. (25)

14

This together with Lemma 4(i) produces the following inequality.

E
[
F (x(k))− F ∗

]
≤ (ρ∗)k

(
Cv
e2v/ρ∗ − 1

1− ρ∗
+ E

[
F (x(0))− F ∗

])
+ 2Cvk−v

ρ∗ ln(1/ρ∗) . (26)

Since ρ∗ ∈ (0, 1) and v ≥ 1, by Lemma 4(ii) we see that for any k ≥ 1 : (ρ∗)k ≤ cρ∗,vk
−v with cρ∗,v ,

e−v
(

v
ln(1/ρ∗)

)v
. This combined with (26) proves (24). 2

4.2 Iteration and Oracle Complexity

Next, we derive the iteration complexity (measured by the number of proximal oracle) and oracle complex-
ity (measured by the expected number of stochastic first-order oracle) bounds for obtaining an ε−optimal
solution such that E [F (x)]− F ∗ ≤ ε.

Theorem 5 (Iteration Complexity) Suppose Assumptions 2 and 3 hold. Let {x(k)} be generated by Al-

gorithm 1, where αi = 2−
√

3
Li

, pi = 1
n and Ni(k) =

⌈
(1− qi)−Γi(k)

⌉
for some qi ∈ (0, (2−

√
3)2µ

Li
). Define

qmin , mini∈N qi, q∗ = 1− qmin
n , and ηi ,

qi
n(1−qi) + 1. Then the iteration complexity and oracle complex-

ity required to obtain an ε−optimal solution are respectively ln(1/ε̄)
ln(1/q∗) and 1

n

∑n
i=1

ηi
ln(ηi)

(1/ε̄)
ln(ηi)

ln(1/q∗) with ε̄
defined by

ε̄ , ε
(
F (x(0))− F ∗ +

(1−
√

3/2)σ2
∑n

i=1 Lmax/Li

(2−
√

3)2µ− qminLmax

)−1
. (27)

Proof. Note from qi <
(2−
√

3)2µ
Li

for each i ∈ N that qmin <
(2−
√

3)2µ
Lmax

. Define K1(ε) ,
⌈

ln(1/ε̄)
ln(1/ρ∗)

⌉
with ε̄

defined by (27). Then by (20), αi = 2−
√

3
Li

, pi = 1
n , and q∗ = 1− qmin

n , there holds:

E
[
F (xk)− F ∗

]
≤
(

1− qmin

n

)k (
F (x(0))− F ∗ +

∑n
i=1 αiσ

2/2

(2−
√

3)2µ/Lmax − qmin

)
= (q∗)kεε̄−1 ≤ ε ∀k ≥ K1(ε).

Then the number of PO to obtain an ε−optimal solution is K1(ε). By pi = 1/n and (17),

E [Ni(k)] ≤ E
[
(1− qi)−Γi,k

]
+ 1 =

k∑
m=0

(
k

m

)(
pi(1− qi)−1

)m
(1− pi)k−m + 1

= (pi(1− qi)−1 + 1− pi)k + 1 = ηki + 1. (28)

Note that for λ > 1,
∑K

k=0 λ
k ≤

∫K+1
0 λxdx ≤ λK+1

ln(λ) . Since ik is independent of Ni(k), by using (27)
and (28), the expected number of SFO calls required to approximate an ε−optimal solution is bounded as

15

follows.

E

K1(ε)−1∑
k=0

n∑
i=1

Ni(k)I[ik=i]

 =

K1(ε)−1∑
k=0

n∑
i=1

E [Ni(k)]E
[
I[ik=i]

]

=

K1(ε)−1∑
k=0

n∑
i=1

piE [Ni(k)] ≤
K1(ε)−1∑
k=0

1

n

n∑
i=1

(
ηki + 1

)
=

1

n

n∑
i=1

K1(ε)−1∑
k=0

ηki +K1(ε)

≤ 1

n

n∑
i=1

ηi
ln(ηi)

η
ln(1/ε̄)

ln(1/q∗)
i +

⌈
ln(1/ε̄)

ln (1/q∗)

⌉
.

Note that for any 0 < ε, q < 1, we have the following relations:

η
ln(1/ε)
ln(1/q) =

(
eln(η)

) ln(1/ε)
ln(1/q)

= eln(1/ε)
ln(η)

ln(1/q)
= (1/ε)

ln(η)
ln(1/q) .

Thus, the expected number of SFO to obtain an ε−optimal solution is bounded by

1

n

n∑
i=1

ηi
ln(ηi)

(1/ε̄)
ln(ηi)

ln(1/q∗) +

⌈
ln(1/ε̄)

ln (1/q∗)

⌉
, (29)

giving us the required oracle complexity. 2

The following corollary emerges from Theorem 5 with qi taking a specific form. It shows how the
number of blocks n, the Lipschitz constants, and the parameter µ in Assumption 3 collectively influence the
constants as well as the order in the iteration and oracle complexity.

Corollary 1 Let Ni(k) =
⌈
(1− qi)−Γi(k)

⌉
with qi = θiµ

Li
for some θi ∈ (0, (2 −

√
3)2) in Algorithm

1, and the other conditions of Theorem 5 still hold. Define θmin , mini θi and θmax , maxi θi. Then
the iteration and oracle complexity required to obtain an ε−optimal solution are O

(
nLmax
µ ln(1/ε)

)
and

O
(
nLave
µ (1/ε)

(
1+ 1

nκmin−1

)(
Lmaxθmax
Lminθmin

))
, respectively.

Proof. We begin by deriving a bound on K1(ε):

ln(1/ε̄)

ln(1/q∗)
=

ln(1/ε̄)

− ln(q∗)
=

ln(1/ε̄)

− ln(1− qmin/n)
≤ ln(1/ε̄)

qmin/n
=
nLmax

θminµ
ln(1/ε̄),

where− ln(1− qmin
n) ≥ qmin

n and qmin ≥ θminµ
Lmax

, implying thatK1(ε) = O
(
nLmax ln(

1
ε)

µ

)
.Next, we analyze

the two terms necessary for bounding the oracle complexity.

ln(ηi)

ln(1/q∗)
≤ nLmax

θminµ
ln(ηi) =

nLmax

θminµ
ln(1 + qi/(n− qi)) ≤

nLmax

θminµ

qi
n− qi

≤ nLmax

θminµ

µθmax

Li(n− θiµ/Li)
≤ nLmaxθmax

(n− µ/Lmin)Lminθmin
=

nLmaxθmax

(n− 1/κmin)Lminθmin
,

where the second inequality holds by ln(1 + x) ≤ x,∀x ∈ [0, 1), the fourth inequality follows from θi ≤ 1,
and the last equality follows from κmin = Lmin/µ. In addition, we derive a bound on ηi/ ln(ηi) where

16

ηi = 1 + qi
n(1−qi) . Since ln(1 + x) ≥ x/(x+ 1) for any x ≥ 0, we then have

ηi
ln(ηi)

=
1 + qi/(n(1− qi))

ln(1 + qi/(n(1− qi)))
=

(1 + x0)

ln(1 + x0)
≤ (x0 + 1)2

x0

= x0 + 2 +
1

x0
= 2 +

qi
n(1− qi)

+
n(1− qi)

qi
≤ 2 +

1

n
+
nLi
θiµ

,

where x0 = qi/(n(1− qi)) and qi/(1− qi) ≤ 1 (since qi ≤ (2−
√

3)2). We prove the result by deriving a
bound on the oracle complexity:

1

n

n∑
i=1

ηi
ln(ηi)

(1/ε̄)
ln(ηi)

ln(1/ρ∗) +

⌈
ln(1/ε̄)

ln (1/ρ∗)

⌉
(27)

=
O

(∑n
i=1 Li
µ

(
E[F (x(0))]− F ∗

ε
+
nσ2

ε

) nLmaxθmax
(n−1/κmin)Lminθmin

)
. 2

It can be seen from the above corollary that if θmax = θmin (by choosing θi = θ for all i) and Lmax =

Lmin = L, the oracle complexity becomes O(nκ(1/ε)1+ 1
nκ−1) with κ , L

µ , which tends to the optimal
oracle complexity of O

(
nκ
ε

)
for large n. From Theorem 5, we may obtain the optimal oracle complexity

for n = 1. This is because ln(ηi)/ ln(1/ρ∗) = ln(1/(1− q))/ ln(1/(1− q)) = 1 when n = 1.

Corollary 2 Suppose n = 1, Assumptions 2 and 3 hold. Consider Algorithm 1, where α = 2−
√

3
L and

N(k) =
⌊
(1− q)−k

⌋
with q ∈

(
0, (2−

√
3)2µ
L

)
. Then the iteration and oracle complexity required to obtain

an ε−optimal solution are O(Lµ ln(1/ε)) and O
(
L
µε

)
, respectively.

In Theorems 4 and 5, we establish the rate as well as the iteration and oracle complexity bounds of
Algorithm 1 when each block is randomly picked with equal probability. When blocks are chosen by a
non-uniform distribution, we state a result in the smooth regime but omit the proof since it is similar to
Theorems 4 and 5.

Corollary 3 Suppose r(x) ≡ 0 and f̄ satisfies ‖∇f̄(x)‖2 ≥ 2µ
(
f̄(x) − F ∗

)
with µ > 0. Consider Al-

gorithm 1, where αi = 2−
√

3
Li

, pi = Li∑n
j=1 Lj

, and Ni(k) =
⌈
(1− qi)−Γi(k)

⌉
with qi = θiµ

Li
for some

θi ∈ (0, (2−
√

3)2). Then the iteration and oracle complexity bounds for obtaining an ε−optimal solution

are O
(
nLave
µ ln

(
1
ε

))
and O

(
nLave
µ (1/ε)

(
1+ 1

nκmin−1

)
Laveθmax
Lminθmin

)
, respectively.

This result shows that the non-uniform block selection rule can improve the constant in the iteration
complexity when compared with the uniform block selection. Finally, we investigate the iteration and oracle
complexity of Algorithm 1 when the number of the sampled gradients increases at a slower polynomial rate.

Proposition 3 Let Assumptions 2 and 3 hold. Consider Algorithm 1, where pi = 1
n , αi = 2−

√
3

Li
, and

Ni(k) = Πv
t=1(Γi(k)+t) for some integer v ≥ 1. Define ρ∗ , 1− (2−

√
3)2µ

nLmax
andCv ,

(2−
√

3)nv−1σ2

2

∑n
i=1 L

−1
i .

Then the iteration and oracle complexity bounds required to obtain an ε−optimal solution areO(v(1/ε)1/v)
and O

(
evv2v+1(1/ε)1+1/v

)
, respectively.

17

Proof. From (24) it follows that for any k ≥ K(ε) ,
(
Cf
ε

)1/v
, E
[
F (x(k))− F ∗

]
≤ ε. From the definition

of Cf in Proposition 2 it follows that Cf = O(evvv), hence the iteration complexity isO(v(1/ε)1/v) . Note
that (m+ v)v =

∑v
t=0

(
v
t

)
mtvv−t. Then by Ni(k) = Πv

t=1(Γi(k) + t) ≤ (Γi(k) + v)v and using (22), we
obtain that for each i ∈ N :

E [Ni(k)] ≤
k∑

m=0

(m+ v)vP(Γi(k) = m)

=
v∑
t=0

(v
t

)
vv−t

k∑
m=0

mt k!

m!(k −m)!
pmi (1− pi)k−m =

v∑
t=0

(v
t

)
vv−tE[Γi(k)t].

(30)

By [24, p.154] we know that the t-th moment of the binomial distribution Γi(k) equals the t-th derivative of
Mi(y) at y = 0, where Mi(y) = (pie

y + 1 − pi)k. Thus, we can show that E[Γi(k)t] = O(kt), hence by
(30) and

(
v
t

)
vv−t = O(vv) we obtain E [Ni(k)] = O(vv+1kv). Note by Cf = O(evvv) that

K(ε)−1∑
k=0

kv ≤
∫ K(ε)

1
tvdt =

tv+1

v + 1

∣∣∣K(ε)

1
≤ (v + 1)−1

(
Cf
ε

)1+ 1
v

= O(vvev(1/ε)1+1/v)).

This together with E [Ni(k)] = O(vv+1kv) implies that the expectation of the total number of sampled
gradients required to obtain an ε−optimal solution is bounded by

E
[K(ε)−1∑

k=0

n∑
i=1

Ni(k)I[ik=i]

]
=

K(ε)−1∑
k=0

n∑
i=1

piE [Ni(k)] = O(v2v+1ev(1/ε)1+1/v). 2

Remark 6 Proposition 3 implies that as the polynomial degree v is increased, the constant in the itera-
tion and oracle complexity respectively grows at a linear and an exponential rate, respectively. Therefore,
choosing an appropriate v requires assessing both available computational resources and the impact of
generating sample-average gradients with large sample-sizes.

5 Numerical Experiments

In this section, we will examine empirical algorithm performance on the sparse and nonlinear least squares
problems to demonstrate the behavior of Algorithm 1. Throughout this section, the empirical mean error is
based on averaging across 50 trajectories.

5.1 Sparse Least Squares

We apply Algorithm 1 to the following sparse least squares problem:

min
x∈Rd

1

2N

N∑
i=1

(aTi x− bi)2 + λ‖x‖1, λ > 0. (LASSO)

We first generate a sparse vector x∗ where only 10% components of the vector is nonzero with nonzero ones
independently generated from the standard normal distribution. We then generate N samples (ai, bi), where

18

components of ai ∈ Rd are generated from standard normal distribution while bi = aTi x
∗ + ε̂, where ε̂ is

normally distributed with zero mean and standard deviation 0.01. We partition x ∈ Rd into n = 10 blocks
and set λ = 0.1.

Sensitivity to sample-size policies: We now implement Algorithm 1 with α = 0.01, pi = 1
n , the ge-

ometric batch-size Ni(k) =
⌈
q−Γi(k)

⌉
, and investigate how the parameters q,N, d influence the algorithm

performance. We ran Algorithm 1 for 50 epochs where each epoch implies the usage of all samples. The
results are displayed in Table 3 for the empirical relative error E[F (x)]−F ∗

F ∗ , the number of proximal evalua-
tions, and CPU times. The results suggest that for given a fixed simulation budget, slower geometric rates
of growth of batch-sizes lead to better empirical error while requiring more CPU time since more proximal
evaluations are needed. In addition, it is noticed that the running time increases approximately linearly with
N and d.

(a) d = 400
N q emp.err prox.eval CPU(s)

1000
0.85 2.46e-02 86 4.22
0.9 1.71e-02 105 4.7
0.95 5.00e-03 164 6.28

2000
0.85 3.71e-02 90 7.71
0.9 2.49e-02 112 8.82
0.95 6.10e-03 178 11.48

4000
0.85 1.27e-02 94 16.15
0.9 7.60e-03 119 18.27
0.95 1.90e-03 192 24.3

(b) d = 800
N q emp.err prox.eval CPU(s)

1000
0.85 2.8e-02 86 8.57
0.9 1.93e-02 105 9.69
0.95 7.10e-03 164 12.33

2000
0.85 1.62e-02 90 17.28
0.9 1.10e-02 112 17.7
0.95 3.70e-03 178 25.9

4000
0.85 1.62e-02 94 34.2
0.9 1.00e-02 119 38.6
0.95 2.6e-03 192 50.37

Table 3: Comparison of the different selections of batch-sizes

Comparison with BSG [44]: Let N = 2000 and d = 200 in (LASSO). We compare Algorithm 1 with
BSG [44] by running both schemes for 50 epochs. We show the results in Table 4 and plot trajectories in
Figures 1 and 2, where BSG-m denotes the minibatch BSG that utilizesm samples at each iteration while in
Algorithm 1, we set Ni(k) =

⌈
q−Γi,k

⌉
. The empirical rate of convergence in terms of proximal evaluations

shown in Figure 1 implicitly supports the iteration complexity statements. We observe the following: (i) at
first, minibatch BSG displays a faster decay in objective than Algorithm 1 since the batch-size in our scheme
is relatively small at the outset; (ii) Algorithm 1 proceeds to catch up and outperform the minibatch BSG
since the variance of the sampled gradient decreases with increasing batch-size; (iii) Both minibatch BSG
with larger batch-sizes and Algorithm 1 with faster increasing batch-size display faster empirical rates with
fewer proximal evaluations. The empirical algorithm performance in terms of epochs displayed in Figure 2
demonstrates the results of oracle complexity. By comparing the number of samples given the fixed relative
error, Algorithm 1 with Ni(k) =

⌈
0.98−Γi(k)

⌉
has the best performance, which can also be concluded from

Table 4.

Algorithm 1, p=0.95 Algorithm 1, p=0.98 BSG-16 BSG-64
emp.err 4.30e-3 1.73e-4 2.60e-3 2.75e-4

prox.eval 178 375 6251 1563
CPU(s) 5.94 10.25 118.65 33.36

Table 4: Comparison of Algorithm 1 and BSG

19

0 100 200 300 400 500 600 700 800 900 1000
prox.eval

10-4

10-3

10-2

10-1

100

re
la

tiv
e

er
ro

r

Alg.1,p=0.95
Alg.1,p=0.98
BSG-16
BSG-64

0 10 20 30 40 50

0.1

0.15

0.2

0.25

Figure 1: Iteration Complexity of Algorithm1 and
BSG

0 5 10 15 20 25 30 35 40 45 50
epochs

10-4

10-3

10-2

10-1

100

re
la

tiv
e

er
ro

r

Alg.1,p=0.95
Alg.1,p=0.98
BSG-16
BSG-64

0 0.2 0.4 0.6 0.8 1
10-2

10-1

Figure 2: Oracle Complexity of Algorithm1 and
BSG

Influence of block-specific steplengths: In this experiment, we set N = 1000, d = 200, and let the
entries of ai ∈ Rd corresponding to different blocks be generated from normal distributions with zero
mean but with differing variances. Such data generation implies that the block-wise Lipschitz constants
of 1

2N

∑N
i=1(aTi x − bi)

2 can vary. We implement Algorithm 1 with the non-uniform block selection as
per a distribution pi = Li∑n

i=1 Li
in two settings: (i) the same steplength αi ≡ α = 1.28

L depending on the

Lipschtiz constant of ∇f̄(x), and (ii) the block-specific steplength αi = 1
Li

depending on the block-wise
Lipschitz constant Li. Such a selection ensures that the steplengths in two settings are approximately the
same when the block-wise Lipschitz constants are identical. For a particular set of realizations with the
Lipschtiz constant satisfying Lmax/Lave = 2.5, the empirical iteration and oracle complexity of Algorithm
1 in the two settings are shown in Figures 3 and 4, respectively. These findings reinforce the point that
block-specific steplengths, reliant on block-wise Lipschitz constant Li, display better empirical behavior
since less proximal evaluations (see Figure 3) and less sampled gradients (see Figure 4) are required for
obtaining a solution with similar accuracy. In addition, we generate four sets of data, for which the global
Lipschitz constant L of the problem (LASSO) is the same while the ratio Lmax/Lave is different. We then
run Algorithm 1 with the identical and block-specific steplengths on the four generated datasets up to 100
epochs and compare the empirical errors. The results are shown in Table 5, where xI(K) and xB(K) denote
the estimates generated by Algorithm 1 with identical and block-specific steplengths, respectively. Since the
ratio E[F (xI(K))]−F ∗

E[F (xB(K))]−F ∗ is greater than one, we may conclude that the block-specific steplengths might lead to
much better algorithm performance compared with identical steplength. We observe that empirical error can
be 50 times poorer when Lmax/Lave = 1.47.

0 50 100 150 200
prox.eval

10-2

100

102

re
la

tiv
e

er
ro

r

block-specific steplength
same steplength

Figure 3: Iteration Complexity of Algorithm 1
with identical and block-specific steplengths

0 20 40 60 80 100
epochs

10-2

100

102

re
la

tiv
e

er
ro

r

block-specific steplength
same steplength

Figure 4: Oracle Complexity of Algorithm 1
with identical and block-specific steplengths

20

Lmax
Lave

= 1.15 Lmax
Lave

= 1.27 Lmax
Lave

= 1.34 Lmax
Lave

= 1.47
E[F (xI(K))]−F ∗
E[F (xB(K))]−F ∗ 15.3 27.5 31.9 52.4

Table 5: Comparison of Algorithm 1 with identical and block-specific steplengths

Uniform vs non-uniform block selection mechanism. We generate a particular set of realizations
with Lipschitz constants of 1

2N

∑N
i=1(aTi x − bi)2 satisfying Lmax/Lave = 1.35. We implement Algorithm

1 with the non-uniform and the uniform block selection probability, while keeping the other algorithm
parameters the same. The empirical iteration and oracle complexities are displayed in Fig. 5, showing that
non-uniform block selection leads to better performance than the uniform case and reduces the empirical
error by approximately 50%.

0 20 40 60 80 100 120 140 160 180 200
prox.eval

10-6

10-4

10-2

100

102

re
la

tiv
e

er
ro

r

nonuniform uniform

190 192 194 196 198 200

4

6

8

10
12
14

10-6

0 10 20 30 40 50 60 70 80 90 100
epochs

10-8

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r

nonuniform uniform

90 92 94 96 98 100

1

1.5

2

2.5
3

10-6

Figure 5: Algorithm 1 with Uniform and Non-uniform Block Selection for (LASSO) with Lmax/Lave =
1.35

Influence of delays. We now compare the empirical performance of Algorithm 1 with and without
delays, where in the delayed case, we set the delay to be uniformly bounded by some positive integer. The
iteration and oracle complexity bounds are displayed in Fig. 6, which shows that a larger delay leads to
worse performance than the case with smaller delay or without delay.

0 50 100 150 200 250 300 350
prox.eval

10-5

100

re
la

tiv
e

er
ro

r

no-delay
delay=3
delay=5

0 10 20 30 40 50
epochs

10-5

100

re
la

tiv
e

er
ro

r

no-delay
delay=3
delay=5

Figure 6: Performance of Algorithm1 with Delays and without Delays

5.2 Nonlinear least squares

We consider a binary classification problem on a data set {xi, yi}Ni=1, where xi ∈ Rd and yi ∈ {0, 1} are
the ith feature vector and the corresponding label, respectively. We consider the minimization of empir-
ical error: min

w,b

1
2N

∑N
i=1

(
yi − φ(wTxi + b)

)2
, where φ(z) = 1

1+e−z is the sigmoid function. We apply

21

Algorithm 1 to gisette from LIBSVM library1 and investigate how batch-sizes influence the training loss
and misclassification rate. We partition the vector w ∈ Rd into n = 10 blocks. We implement Algorithm
1 with α = 0.2, where the batch-sizes are set to be the constant batch-sizes Ni(k) ≡ 0.02N, 0.05N and
the increasing batch-sizes Ni(k) = Γi(k), (Γi(k))2. From Figure 7, we conclude that smaller batch-sizes
would lead to better performance if we run the algorithm with a relatively small amount of samples (e.g,N);
the mini-batch schemes may not perform well if the batch-size is not suitably selected, for instance, 0.05N .
Favorable behavior follows if the batch-size increases at a suitable rate, e.g., linearly.

0 2 4 6 8 10
#epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

Linear batch-size
Quadratic batch-size
Batch-size 0.02N
Batch-size 0.05N

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10
#epochs

0

0.2

0.4

0.6

0.8

1

T
ra

in
in

g
lo

ss

Linear batch-size
Quadratic batch-size
Batch-size 0.02N
Batch-size 0.05N

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Figure 7: Performance of Algorithm 1 with different batchsizes applied to the classification problem

6 Concluding remarks

Existing block-based techniques for stochastic nonconvex optimization rely on centrally mandated batch-
sizes and steplengths bounded by the global Lipschitz constant, leading to larger oracle complexities and
poorer performance (because of shorter steps), as well as higher informational coordination requirements.
We consider minimizing the sum of an expectation-valued smooth nonconvex function and a nonsmooth
separable convex function through a limited coordination asynchronous variance-reduced method, reliant on
block-specific steplengths and random decentralized batch-sizes. The almost sure convergence of the gener-
ated iterates is established. In addition, the scheme achieves the deterministic rate of O(1/K) with the rate
and oracle complexities dependent on Lave rather than Lmax. Furthermore, under the proximal PL require-
ment, the iterates provably converge linearly (polynomially) to the global optimum in a mean sense when
batch-sizes grow geometrically (polynomially). Notably, despite using randomized batch-size sequences,
we show that the deterministic iteration complexities may be achieved. Specifically, the schemes achieve
the optimal oracle complexity when the considered problem admits a single block. Finally, numerical studies
are carried out to support the theoretical findings and reveal that schemes leveraging block-specific Lipschitz
constants lead to significantly superior empirical behavior.

References

[1] H. Attouch, J. Bolte, and B.F. Svaiter, Convergence of descent methods for semi-algebraic and tame
problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods,
Mathematical Programming 137 (2013), pp. 91–129.

1The data set is from https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

22

[2] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems, SIAM journal on imaging sciences 2 (2009), pp. 183–202.

[3] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms, IEEE/ACM Transac-
tions on Networking (TON) 14 (2006), pp. 2508–2530.

[4] G.H. Chen and R.T. Rockafellar, Convergence rates in forward–backward splitting, SIAM Journal on
Optimization 7 (1997), pp. 421–444.

[5] Y.S. Chow and H. Teicher, Probability theory: independence, interchangeability, martingales,
Springer Science & Business Media, 2012.

[6] P.L. Combettes and J.C. Pesquet, Proximal splitting methods in signal processing, in Fixed-point algo-
rithms for inverse problems in science and engineering, Springer, 2011, pp. 185–212.

[7] D. Csiba and P. Richtárik, Global convergence of arbitrary-block gradient methods for generalized
Polyak–Łojasiewicz functions, arXiv preprint arXiv:1709.03014 (2017).

[8] C.D. Dang and G. Lan, Stochastic block mirror descent methods for nonsmooth and stochastic opti-
mization, SIAM Journal on Optimization 25 (2015), pp. 856–881.

[9] D. Davis, The asynchronous palm algorithm for nonsmooth nonconvex problems, arXiv preprint
arXiv:1604.00526 (2016).

[10] D. d’Esopo, A convex programming procedure, Naval Research Logistics Quarterly 6 (1959), pp. 33–
42.

[11] O. Fercoq and P. Richtárik, Accelerated, parallel, and proximal coordinate descent, SIAM Journal on
Optimization 25 (2015), pp. 1997–2023.

[12] P. Frankel, G. Garrigos, and J. Peypouquet, Splitting methods with variable metric for Kurdyka–
Łojasiewicz functions and general convergence rates, Journal of Optimization Theory and Applica-
tions 165 (2015), pp. 874–900.

[13] S. Ghadimi and G. Lan, Accelerated gradient methods for nonconvex nonlinear and stochastic pro-
gramming, Math. Programming 156 (2016), pp. 59–99.

[14] S. Ghadimi, G. Lan, and H. Zhang, Mini-batch stochastic approximation methods for nonconvex
stochastic composite optimization, Math. Programming 155 (2016), pp. 267–305.

[15] A. Jalilzadeh, U.V. Shanbhag, J.H. Blanchet, and P.W. Glynn, Optimal smoothed variable sample-size
accelerated proximal methods for structured nonsmooth stochastic convex programs, arXiv preprint
arXiv:1803.00718 (2018).

[16] A. Jofré and P. Thompson, On variance reduction for stochastic smooth convex optimization with
multiplicative noise, arXiv preprint arXiv:1705.02969 (2017).

[17] H. Karimi, J. Nutini, and M. Schmidt, Linear convergence of gradient and proximal-gradient meth-
ods under the Polyak-Łojasiewicz condition, in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2016, pp. 795–811.

23

http://arxiv.org/abs/1709.03014
http://arxiv.org/abs/1604.00526
http://arxiv.org/abs/1803.00718
http://arxiv.org/abs/1705.02969

[18] J. Koshal, A. Nedić, and U.V. Shanbhag, Distributed algorithms for aggregative games on graphs,
Operations Research 64 (2016), pp. 680–704.

[19] J. Lei and U.V. Shanbhag, Asynchronous schemes for stochastic and misspecified potential games and
nonconvex optimization, Accepted for publication at Operations Research, arXiv:1711.03963 (2019).

[20] J. Lei and U. V. Shanbhag, Distributed variable sample-size gradient-response and best-response
schemes for stochastic nash games over graphs, arXiv:1811.11246 (2018).

[21] P.L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal
on Numerical Analysis 16 (1979), pp. 964–979.

[22] H. Mine and M. Fukushima, A minimization method for the sum of a convex function and a continu-
ously differentiable function, Journal of Optimization Theory and Applications 33 (1981), pp. 9–23.

[23] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM
Journal on Optimization 22 (2012), pp. 341–362.

[24] A. Papoulis, Probability, random variables and stochastic theory (1984).

[25] N. Parikh, S. Boyd, et al., Proximal algorithms, Foundations and Trends R© in Optimization 1 (2014),
pp. 127–239.

[26] Z. Peng, T. Wu, Y. Xu, M. Yan, and W. Yin, Coordinate friendly structures, algorithms and applica-
tions, arXiv preprint arXiv:1601.00863 (2016).

[27] B.T. Polyak, Gradient methods for minimizing functionals, Zhurnal Vychislitel’noi Matematiki i
Matematicheskoi Fiziki 3 (1963), pp. 643–653.

[28] M. Razaviyayn, M. Hong, and Z.Q. Luo, A unified convergence analysis of block successive minimiza-
tion methods for nonsmooth optimization, SIAM Journal on Optimization 23 (2013), pp. 1126–1153.

[29] S.J. Reddi, A. Hefny, S. Sra, B. Póczos, and A. Smola, Stochastic variance reduction for nonconvex
optimization, in International conference on machine learning. 2016, pp. 314–323.

[30] S.J. Reddi, S. Sra, B. Póczos, and A. Smola, Fast incremental method for smooth nonconvex optimiza-
tion, in Decision and Control (CDC), 2016 IEEE 55th Conference on. IEEE, 2016, pp. 1971–1977.

[31] S.J. Reddi, S. Sra, B. Póczos, and A.J. Smola, Proximal stochastic methods for nonsmooth nonconvex
finite-sum optimization, in Advances in Neural Information Processing Systems. 2016, pp. 1145–1153.

[32] P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function, Math. Programming 144 (2014), pp. 1–38.

[33] H. Robbins and D. Siegmund, A convergence theorem for nonnegative almost supermartingales and
some applications, in H. Robbins Selected Papers, Springer, 1985, pp. 111–135.

[34] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM journal on control and
optimization 14 (1976), pp. 877–898.

[35] L. Rosasco, S. Villa, and B.C. Vũ, Convergence of stochastic proximal gradient algorithm, arXiv
preprint arXiv:1403.5074 (2014).

24

http://arxiv.org/abs/1711.03963
http://arxiv.org/abs/1811.11246
http://arxiv.org/abs/1601.00863
http://arxiv.org/abs/1403.5074

[36] U.V. Shanbhag and J.H. Blanchet, Budget-constrained stochastic approximation, in Winter Simulation
Conference (WSC), 2015. IEEE, 2015, pp. 368–379.

[37] U.V. Shanbhag, J.S. Pang, and S. Sen, Inexact best-response schemes for stochastic Nash games:
linear convergence and Iteration complexity analysis, in Decision and Control (CDC), 2016 IEEE
55th Conference on. IEEE, 2016, pp. 3591–3596.

[38] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM
Journal on Control and Optimization 38 (2000), pp. 431–446.

[39] P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, Jour-
nal of optimization theory and applications 109 (2001), pp. 475–494.

[40] G. Wang and G. Giannakis, Solving random systems of quadratic equations via truncated generalized
gradient flow, in Advances in Neural Information Processing Systems. 2016, pp. 568–576.

[41] G. Wang, G.B. Giannakis, and J. Chen, Scalable solvers of random quadratic equations via stochastic
truncated amplitude flow, IEEE Transactions on Signal Processing 65 (2017), pp. 1961–1974.

[42] L. Xiao and T. Zhang, A proximal stochastic gradient method with progressive variance reduction,
SIAM Journal on Optimization 24 (2014), pp. 2057–2075.

[43] Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex optimization with
applications to nonnegative tensor factorization and completion, SIAM Journal on imaging sciences 6
(2013), pp. 1758–1789.

[44] Y. Xu and W. Yin, Block stochastic gradient iteration for convex and nonconvex optimization, SIAM
Journal on Optimization 25 (2015), pp. 1686–1716.

[45] Y. Xu and W. Yin, A globally convergent algorithm for nonconvex optimization based on block coor-
dinate update, Journal of Scientific Computing (2017), pp. 1–35.

[46] P. Yi and L. Pavel, Asynchronous distributed algorithms for seeking generalized nash equilibria under
full and partial-decision information, IEEE transactions on cybernetics (2019).

[47] F. Yousefian, A. Nedić, and U.V. Shanbhag, On stochastic mirror-prox algorithms for stochastic
Cartesian variational inequalities: Randomized block coordinate and optimal averaging schemes,
Set-Valued and Variational Analysis (2018).

A Proof of Lemma 2

Let x−i denote the coordinates of the variable x except those correspond to block i. By applying Lemma 1
to the function f̄ (·, x−ik(k)) and Eqn. (6) with y = x̄ik(k + 1), z = x = xik(k), and g = ∇xik f̄(x(k)),
we obtain the following inequality:

f̄ (x−ik(k), x̄ik(k + 1)) + rik(x̄ik(k + 1))

≤ f̄(x(k)) + rik(xik(k)) +

(
Lik
2
− 1

αi

)
‖x̄ik(k + 1)− xik(k)‖2.

25

Define x̃(k + 1) as follows:

x̃ik(k + 1) , x̄ik(k + 1) and x̃j(k + 1) , xj(k) ∀j 6= ik. (31)

Then rj(x̃j(k + 1)) = rj(xj(k)) ∀j 6= ik, and hence we obtain the following bound:

F (x̃(k + 1)) ≤ F (x(k)) +

(
Lik
2
− 1

αik

)
‖x̄ik(k + 1)− xik(k)‖2. (32)

By applying Lemma 1 to the function f̄ (·, x−ik(k)) and the update (5) with y = xik(k + 1), z = x̄ik(k +
1), x = xik(k), and g = ∇xik f̄(x(k)) + wik(k + 1), one obtains

f̄ (x−ik(k), xik(k + 1)) + rik(xik(k + 1)) ≤ f̄ (x−ik(k), x̄ik(k + 1)) + rik(x̄ik(k + 1))

− (xik(k + 1)− x̄ik(k + 1))Twik(k + 1) +

(
Lik
2
− 1

2αik

)
‖xik(k + 1)− xik(k)‖2

+

(
Lik
2

+
1

2αik

)
‖x̄ik(k + 1)− xik(k)‖2 − 1

2αik
‖xik(k + 1)− x̄ik(k + 1)‖2.

Note that x̃j(k+1) = xj(k) ∀j 6= ik and x̃ik(k+1) = x̄ik(k+1) by definition (31). Then by the definition
of F (·), we have the following

F (x(k + 1)) ≤ F (x̃(k + 1))− (xik(k + 1)− x̄ik(k + 1))Twik(k + 1)

+

(
Lik
2
− 1

2αik

)
‖xik(k + 1)− xik(k)‖2 − 1

2αik
‖xik(k + 1)− x̄ik(k + 1)‖2

+

(
Lik
2

+
1

2αik

)
‖x̄ik(k + 1)− xik(k)‖2.

(33)

By recalling that −aT b ≤ 1
2α‖a‖

2 + α
2 ‖b‖

2, the following holds:

− (xik(k + 1)− x̄ik(k + 1))Twik(k + 1)

≤ 1

2αik
‖xik(k + 1)− x̄ik(k + 1)‖2 +

αik
2
‖wik(k + 1)||2.

(34)

Therefore, by substituting (34) into (33), we obtain the following bound:

F (x(k + 1)) ≤ F (x̃(k + 1)) +

(
Lik
2
− 1

2αik

)
‖xik(k + 1)− xik(k)‖2

+

(
Lik
2

+
1

2αik

)
‖x̄ik(k + 1)− xik(k)‖2 +

αik
2
‖wik(k + 1)||2.

(35)

By adding inequalities (32) and (35),

F (x(k + 1)) ≤ F (x(k)) +

(
Lik
2
− 1

2αik

)
‖xik(k + 1)− xik(k)‖2

+
αik
2
‖wik(k + 1)||2 +

(
Lik −

1

2αik

)
‖x̄ik(k + 1)− xik(k)‖2.

(36)

26

Note that for all i = 1, · · · , n, Li2 −
1

2αi
≤ 0 by αi ≤ 1

Li
. Then the second term on the right-hand side of

Eqn. (36) is nonpositive, hence we can take out this term from the upper bound of F (x(k+ 1)). Since x(k)
is adapted to Fk, by taking expectations conditioned on Fk on both sides of (36), we obtain that

E
[
F (x(k + 1))|Fk

]
≤ F (x(k)) + E

[(
Lik −

1

2αik

)
‖x̄ik(k + 1)− xik(k)‖2|Fk

]
+

1

2
E
[
αik‖wik(k + 1)||2|Fk

]
.

(37)

Note that for any i ∈ N , x̄i(k + 1) is adapted to Fk by the definition (6), and ik is independent of Fk by
Assumption 2(ii). Therefore, by [5, Corollary 7.1.2]2 and P(ik = i) = pi, the following holds a.s.:

E
[(
Lik −

1

2αik

)
‖x̄ik(k + 1)− xik(k)‖2|Fk

]
=

n∑
i=1

pi

(
Li −

1

2αi

)
‖x̄i(k + 1)− xi(k)‖2. (38)

Then by substituting (38) into (37), we obtain Eqn. (7). 2

B Proof of Lemma 3.

By recalling that the gradient map ∇xi f̄(x) is Li-Lipschitz continuous from Assumption 1(ii) and that
x̃j(k + 1) = xj(k) ∀j 6= ik by definition (31), we have the following inequality:

f̄(x̃(k + 1)) ≤ f̄(x(k)) + (x̃ik(k + 1)− xik(k))T∇xik f̄(x(k)) +
Lik
2
‖x̃ik(k + 1)− xik(k)‖2.

Using the definition of x̃k+1 in (31), we have that rj (x̃j(k + 1)) = rj(xj(k)) ∀j 6= ik, x̃ik(k + 1) =
x̄ik(k + 1). Thus, the the following relation holds

F (x̃(k + 1)) ≤ F (x(k)) + (x̃ik(k + 1)− xik(k))T∇xik f̄(x(k)) +
Lik
2
‖x̃ik(k + 1)− xik(k)‖2

+ rik(x̃ik(k + 1))− rik(xik(k))

≤ F (x(k)) + (x̄ik(k + 1)− xik(k))T∇xik f̄(x(k))

+
1

2αik
‖x̄ik(k + 1)− xik(k)‖2 + rik(x̄ik(k + 1))− rik(xik(k)), (39)

where the last inequality holds by αi < 1/Li ∀i ∈ N . Since for any i ∈ N , x̄i(k + 1) is adapted to Fk by
its definition (6), and ik is independent of Fk. Then, by [5, Corollary 7.1.2] and P(ik = i) = pi, we have
that

E
[
(x̄ik(k + 1)− xik(k))T∇xik

f̄(x(k)) + ‖x̄ik(k + 1)− xik(k)‖2/(2αik) + rik(x̄ik(k + 1))− rik(xik(k))
∣∣Fk

]
=

n∑
i=1

pi

(
(x̄i(k + 1)− xi(k))T∇xi

f̄(x(k)) +
1

2αi
‖x̄i(k + 1)− xi(k)‖2 + ri(x̄i(k + 1))− ri(xi(k))

)
(6)

=

n∑
i=1

pi min
yi∈Rdi

[
∇xi

f̄(x(k))T (yi − xi(k)) +
1

2αi
‖yi − xi(k)‖2 + ri(yi)− ri(xi(k))

]
≤ pmin

n∑
i=1

min
yi∈Rdi

[
∇xi

f̄(x(k))T (yi − xi(k)) +
1

2αi
‖yi − xi(k)‖2 + ri(yi)− ri(xi(k))

]
,

2Let the random vectors X ∈ Rm and Y ∈ Rn on (Ω,F ,P) be independent of one another and let f be a Borel function on
Rm×n with |E[f(X,Y)]| ≤ ∞. If for any x ∈ Rm, g(x) = E[f(x, Y)] if |E[f(x, Y)]| ≤ ∞ and g(x) = 0 otherwise, then g is
a Borel function with g(X) = E[f(X,Y)|σ(X)].

27

where the last inequality follows by minyi∈Rdi [∇xi f̄(x(k))T (yi − xi(k)) + 1
2αi
‖yi − xi(k)‖2 + ri(yi) −

ri(xi(k))] ≤ 0. Then by α−1
i ≤ α

−1
min and Assumption 3, the above equation is further bounded by

pmin

n∑
i=1

min
yi∈Rdi

[
∇xi f̄(x(k))T (yi − xi(k)) +

1

2αmin
‖yi − xi(k)‖2 + ri(yi)− ri(xi(k))

]
= −pminαmin

2
Dr(x(k), α−1

min) ≤ −αminpmin

2
Dr(x(k), Lmax)

≤ −αminµpmin

(
F (x(k))− F ∗

)
,

(40)

where the first inequality follows from [17, Lemma 1] since Dr(x, ·) is nonnegative and nondecreasing in
(0,∞) and α−1

min ≥ Lmax. Then by taking unconditional expectations on both sides of (39) and using (40),
we obtain that

E
[
F (x̃(k + 1))

]
≤ E

[
F (x(k))

]
− αminµpminE

[
F (x(k))− F ∗

]
. (41)

By taking unconditional expectations on both sides of (32) and using P(ik = i) = pi, we obtain

E
[
F (x̃(k + 1))

]
≤ E

[
F (x(k))

]
+

n∑
i=1

pi

(
Li
2
− 1

αi

)
‖x̄i(k + 1)− xi(k)‖2. (42)

Adding (1− β)× (41) to β× (42) with β ∈ (0.5, 1), we obtain the following inequality:

E
[
F (x̃(k + 1))

]
≤ E

[
F (x(k))

]
+ β

n∑
i=1

pi

(
Li
2
− 1

αi

)
‖x̄i(k + 1)− xi(k)‖2

− αmin(1− β)µpminE
[
F (x(k))− F ∗

]
.

(43)

Using αi < 1
Li
, Assumption 2, and P(ik = i) = pi, and by taking unconditional expectations on both sides

of (35), the following holds:

E
[
F (xk+1)

]
≤ E

[
F (x̃(k + 1))

]
+

n∑
i=1

pi

(
Li
2

+
1

2αi

)
‖x̄i(k + 1)− xi(k)‖2 +

σ2

2

n∑
i=1

αipiE
[
Ni(k)−1

]
.

(44)

Therefore, by adding inequality (44) to (43) yields the following bound:

E
[
F (x(k + 1))

]
≤ E

[
F (x(k))

]
+

n∑
i=1

pi

(
Li(1 + β)

2
− 2β − 1

2αi

)
‖x̄i(k + 1)− xi(k)‖2

− αmin(1− β)µpminE
[
F (x(k))− F ∗

]
+
σ2

2

n∑
i=1

αipiE
[
Ni(k)−1

]
. (45)

By recalling that 0 < αi ≤ 2β−1
Li(1+β) , we get Li(1+β)

2 − 2β−1
2αi
≤ 0. Thus, by subtracting F ∗ from both sides

of (45), we obtain (19). 2

28

	1 Introduction
	1.1 Prior research.
	1.2 Motivations.
	1.3 Summary of Contributions.

	2 Asynchronous Block Proximal Stochastic Gradient Algorithm
	3 Convergence to Stationary Points
	3.1 Preliminary Lemmas
	3.2 Asymptotic Convergence
	3.3 Non-asymptotic Rate

	4 Global Linear Convergence under PL-Inequality
	4.1 Rate Analysis
	4.2 Iteration and Oracle Complexity

	5 Numerical Experiments
	5.1 Sparse Least Squares
	5.2 Nonlinear least squares

	6 Concluding remarks
	A Proof of Lemma 2
	B Proof of Lemma 3.

