
A Newton-bracketing method

for a simple conic optimization problem

Sunyoung Kim∗, Masakazu Kojima†, Kim-Chuan Toh‡

May 31, 2019

Abstract

For the Lagrangian-DNN relaxation of quadratic optimization problems (QOPs),
we propose a Newton-bracketing method to improve the performance of the bisection-
projection method implemented in BBCPOP [to appear in ACM Tran. Softw.,
2019]. The relaxation problem is converted into the problem of finding the largest
zero y∗ of a continuously differentiable (except at y∗) convex function g : R → R
such that g(y) = 0 if y ≤ y∗ and g(y) > 0 otherwise. In theory, the method gen-
erates lower and upper bounds of y∗ both converging to y∗. Their convergence is
quadratic if the right derivative of g at y∗ is positive. Accurate computation of g′(y)
is necessary for the robustness of the method, but it is difficult to achieve in practice.
As an alternative, we present a secant-bracketing method. We demonstrate that
the method improves the quality of the lower bounds obtained by BBCPOP and
SDPNAL+ for binary QOP instances from BIQMAC. Moreover, new lower bounds
for the unknown optimal values of large scale QAP instances from QAPLIB are
reported.

Key words. Nonconvex quadratic optimization problems, conic relaxations, robust nu-
merical algorithms, Newton-bracketing method, secant-bracketing method for generating
valid bounds.

AMS Classification. 90C20, 90C22, 90C25,

1 Introduction

We consider a class of (nonconvex) quadratic optimization problems (QOPs) with linear
and complementarity constraints in nonnegative continuous variables and binary vari-

∗Department of Mathematics, Ewha W. University, 52 Ewhayeodae-gil, Sudaemoon-gu, Seoul 120-
750, Korea (skim@ewha.ac.kr). The research was supported by NRF 2017-R1A2B2005119.
†Department of Industrial and Systems Engineering, Chuo University, Tokyo 192-0393, Japan

(kojima@is.titech.ac.jp). This research was supported by Grant-in-Aid for Scientific Research (A)
19H00808
‡Department of Mathematics, and Institute of Operations Research and Analytics, National Univer-

sity of Singapore, 10 Lower Kent Ridge Road, Singapore 119076 (mattohkc@nus.edu.sg). This research
is supported in part by the Ministry of Education, Singapore, Academic Research Fund (Grant number:
R-146-000-257-112).

1

ar
X

iv
:1

90
5.

12
84

0v
1 

 [
m

at
h.

O
C

] 
 3

0 
M

ay
 2

01
9



ables. We are particularly interested in efficient and robust numerical algorithms for
solving the class of QOPs. This class includes many important combinatorial optimiza-
tion problems such as binary integer QOPs, max-cut problems, maximum stable set
problems, quadratic multi-knapsack problems and quadratic assignment problems. Solv-
ing a QOP in the class is known to be NP-hard in general, and various (convex) conic
optimization problem relaxations including popular semidefinite programming (SDP) re-
laxations have been studied by many researchers from both theoretical and practical
perspectives. See [1, 8, 18, 19, 21].

One of notable developments in the theory of conic relaxations for QOPs is Burer’s
work in [7], where a completely positive programming (CPP) reformulation of a QOP in
the class was proposed under an additional assumption on the feasible region of the QOP.
This reformulation is very powerful in the sense that it attains the exact optimal value
of the QOP. But unfortunately the CPP relaxation problem is numerically intractable.

Our focus in this paper is on tractable numerical methods. In particular, we are
concerned with a Lagrangian doubly nonnegative (DNN) relaxation, which was proposed
by Kim, Kojima and Toh [13] as a numerically tractable relaxation of the simplified
Lagrangian-CPP reformulation [2] of a QOP in the class. The distinctive feature of their
Lagrangian-DNN relaxation problem is the representation of the constraint set, which
consists of a single linear equality constraint in a DNN variable matrix. They further
reduced the optimal value of the dual of the relaxation problem to the largest zero y∗ of an
equation g(y) = 0 in a single variable y. Here g : R→ R satisfies the following properties:
(a) g is convex on R. (b) g(y) = 0 if y ≤ y∗ and g(y) > 0 otherwise. (c) Although g
is not explicitly represented, the function value g(y) at each y ∈ R can be computed
through the metric projection onto the DNN cone. See Figure 1 (i). The properties
(a) and (b) naturally lead to the bisection algorithm for approximately computing y∗.
Step 0: Choose lb and ub such that lb < y∗ < ub and a sufficiently small positive ε > 0.
Step 1: Let y = (lb + ub)/2. Step 2: If g(y) < ε then lb = y. Otherwise ub = y. Go
to Step 1. Based on this idea, they proposed the bisection-projection (BP) method for
approximating the dual optimal value y∗ of the Lagrangian-DNN relaxation problem,
and showed through numerical results that their method could efficiently compute high
quality lower bounds for the optimal values of various QOP instances in the class.

Their simplified Lagrangian-DNN relaxation model and the BP method have been
studied further to handle polynomial optimization problems (POPs) with binary, box
and complementarity (BBC constraints), and extended to the Lagrangian conic opti-
mization problem relaxation model in [3, 4, 5, 14], where the DNN cone is replaced with
a more general convex cone. Recently, Ito, Kim, Kojima, Takeda and Toh [11] released
a software package BBCPOP for solving QOPs and POPs with BBC constraints. It was
demonstrated in [11] that BBCPOP can efficiently compute high quality lower bounds
for optimal values of large scale QOPs and POPs with BBC constrains.

The main purpose of this paper is to improve the performance of BBCPOP by in-
corporating the 1-dimensional Newton method for approximating the largest zeros y∗ of
the equation g(y) = 0. See Figure 1 (ii). This idea was originally presented in [4], which
showed that (d) g : (y∗,∞) → R is continuously differentiable, in addition to (a), (b)
and (c) mentioned above. However, neither the explicit algebraic representation of the
derivative g′(y) at y ∈ R nor computing its exact value is possible, although the deriva-

2



y

g(y)

y*
(i)

lb ubyk+1 kk

y

g(y)

y* ykk+1y

(ii)

Figure 1: (i) The function g : R → R and the bisection algorithm. (ii) The Newton
iteration.

tive g′(y) at y ∈ R can be approximately computed as a by-product of the approximation
of g(y) through the metric projection onto the DNN cone. Due to this main difficulty,
the 1-dimensional Newton was not incorporated in BBCPOP.

Here we propose a Newton-bracketing method for the conic optimization problem
(COP) converted from a given QOP using the technique proposed in [4, 13]. More
precisely, we pay attention to the fact that the sequence {yk} generated by the Newton
iteration yk+1 = yk − g(yk)/g′(yk) (k = 0, 1, . . .), starting from y0 satisfying g(y0) > 0,
monotonically converges to y∗ from the above under the assumption that g(yk) and g′(yk)
are exact. By itself, however, it does not generate any lower bound for y∗. By employing
the technique proposed in [3], we generate a valid lower bound l̃b at any iterate yk and the
upper bound is updated by yk+1. Thus the Newton-bracketing method (Algorithm 3.2)

proposed in this paper generates both upper bound yk and lower bound l̃b
k

for y∗ at each
iteration, and the upper and lower bounds converge to y∗ monotonically. Furthermore,
we show that their convergence is locally quadratic if the right derivative of g at y∗ is
positive (See Theorem 3.3).

Despite the nice theoretical properties of the Newton-bracketing method mentioned
above, its implementation can be very expensive computationally in practice since the ac-
curate computation of the derivative g′(yk) is difficult. To avoid this difficulty, we present
the damped secant-bracketing method (Algorithm 4.1) by replacing the derivative by the
secant (g(yk) − g(yk−1))/(yk − yk − 1). The proposed secant-bracketing method is im-
plementable as the accurate computation of the function value is more manageable than
the accurate evaluation of the derivative. We present some preliminary numerical results
on the method applied to binary QOP instances from [20] and quadratic assignment
problem (QAP) instances from [9]. We observe that the lower bounds obtained for the
optimal values of the binary QOP instances by the new method are tighter than those
by BBCPOP and SDPNAL+. Also new lower bounds obtained by the method for large
scale QAP instances (whose optimal values are not known) are reported.

The paper is organized as follows. In Section 2.1, we introduce a primal-dual pair of
conic optimization problems, COPs (1) and (2), which serve as the aforementioned DNN
relaxation of a QOP in the class and its dual. In Section 2.2, we present some fundamental

3



properties (Lemma 2.1) of their Lagrangian relaxations described as COPs (3) and (4).
In Section 2.3, the BP method is described. We present the Newton-bracketing method
in Section 3, the secant-bracketing method in Section 4, and how a QOP in the class
can be reduced to COPs (1) and (2). Section 5. Some preliminary numerical results on
the secant-bracketing method applied to binary QOP instances from [20] and large scale
QAP instances from [9] are given in Section 6. We conclude in Section 7.

2 Preliminaries

2.1 A primal-dual pair of simple conic optimization problems

Let R denote the set of real numbers and R+ the set of nonnegative real numbers. We
use the following notation and symbols throughout the paper.

V = a finite dimensional vector space endowed with an inner product

〈X, Y 〉 and a norm ‖X‖ =
√
〈X, X〉 for every X, Y ∈ V,

Ki = a nonempty closed convex cone in V (i = 1, 2),

K = K1 ∩K2.

For every nonempty closed convex cone J, its dual is denoted by J∗, i.e., J∗ = {Y ∈ V :
〈X, Y 〉 ≥ 0 for every X ∈ J}. In general, K∗ coincides with the closure of K∗1 + K∗2.
Throughout the paper, we assume that K∗ = K∗1 + K∗2.

Let H0,H1 ∈ V. We consider the following pair of primal-dual COPs.

ηp = inf
{
〈Q0, X〉 : X ∈ K1 ∩K2, 〈H0, X〉 = 1, 〈H1, X〉 = 0

}
, (1)

ηd = sup
{
y0 : Q0 −H0y0 + H1y1 = Y 1 + Y 2, Y 1 ∈ K∗1, Y 2 ∈ K∗2

}
. (2)

We assume the following condition.

Condition (I) COP (1) is feasible, and H0,H1 ∈ K∗1 + K∗2.

2.2 A Lagrangian relaxation of COP (1) and its dual

If the Lagrangian relaxation is applied to COP (1), the following COP and its dual are
obtained.

ηpλ = inf
{
〈Q0 + λH1, X〉 : X ∈ K1 ∩K2, 〈H0, X〉 = 1

}
, (3)

ηdλ = sup
{
y0 : Q0 + λH1 −H0y0 = Y 1 + Y 2, Y 1 ∈ K∗1, Y 2 ∈ K∗2

}
, (4)

where λ ∈ R denotes the Lagrangian multiplier for the homogeneous equality 〈H1, X〉 =
0 in (1). Since H1 ∈ K∗1+K∗2 by Condition (I), the term λ〈H1, X〉 added to the objective
function is nonnegative for every X ∈ K1 ∩ K2 and λ ≥ 0. As a result, the term serves
as a penalty term for the violation of 〈H1, X〉 = 0 such that if X ∈ K1 ∩ K2 and
〈H1, X〉 6= 0 then λ〈H1, X〉 → ∞ as λ→∞. Furthermore, the following lemma holds.

4



Lemma 2.1. [4, Lemmas 2.3 and 2.5] Suppose that Conditions (I) is satisfied. Then,
the following assertions hold.

(i) ηdλ = ηpλ for every λ ∈ R. Moreover, if ηpλ is finite, then (4) has an optimal solution
with the objective value ηdλ = ηpλ.

(ii)
(
ηdλ = ηpλ

)
↑= ηd. Here ↑= ηd means “increases monotonically and converges to ηd

as λ→∞”.

(iii) Assume in addition that {X ∈ F : 〈Q0, X〉 ≤ η̄} is bounded for some η̄. Then
ηd = ηp.

In the remaining of the paper, we impose the following condition on the space V and
the cone K = K1 ∩K2.

Condition (II) V is the Cartesian product of symmetric matrix spaces, K1 the cone of
consisting of the positive semidefinite matrices in V, and K2 a closed convex cone
in V such that (K1 ∩K2)

∗ = K∗1 + K∗2.
In this case, we know that K∗1 = K1. By Lemma 2.1, we can obtain an accurate lower
bound ηdλ for the optimal value ηd of COP (2) by solving COP (4) for a sufficiently large
positive λ. For simplicity of notation, we fix λ to be a sufficiently large positive number,
and we rewrite the primal-dual pair of COPs (3) and (4) as

ϕ∗ = inf
{
〈Q, X〉 : X ∈ K1 ∩K2, 〈H , X〉 = 1

}
, (5)

y∗ = sup
{
y : Q−Hy = Y 1 + Y 2, Y 1 ∈ K∗1, Y 2 ∈ K∗2

}
. (6)

To solve COP (6), we present the bisection-projection (BP) method (Algorithm 2.3)
in Section 2.3, the Newton-bracketing method (Algorithm 3.2) in Section 3 and the
secant-bracketing method (Algorithm 4.1) in Section 4.

2.3 The bisection-projection method for COP (6)

We describe the bisection-projection (BP) method [3, 4, 11, 13, 14] for COP (6). For
every y ∈ R, define G(y) = Q−Hy and

g(y) = min {‖G(y)− (Y 1 + Y 2)‖ : Y 1 ∈ K∗1, Y 2 ∈ K∗2} (7)

= ‖G(y)− (Ŷ 1(y) + Ŷ 2(y))‖.

Here (Ŷ 1(y), Ŷ 2(y)) ∈ K∗1 × K∗2 denotes an optimal solution. For every y ∈ R, we have
that g(y) ≥ 0, and

g(y) = 0 ⇔ G(y) = Q−Hy ∈ K∗1 + K∗2
⇔ y is a feasible solution of COP (6).

Thus, COP (6) can be rewritten as

y∗ = sup {y ∈ R : g(y) = 0} . (8)

From H ∈ K∗1 + K∗2 by Condition (I), we see that g(y) = 0 (i.e., Q−Hy ∈ K∗1 + K∗2) if
y ≤ y∗ and g(y) > 0 (i.e., Q−Hy 6∈ K∗1 + K∗2) otherwise.

In addition to Conditions (I) and (II), we assume the following condition in the
subsequent discussion.

5



Condition (III) (Condition (D) of [3]) A positive number ρ such that 〈I, X〉 ≤ ρ for
all feasible solutions X of (6) is known, where I denotes the identity matrix in V.

Then, the primal-dual pair of COPs (5) and (6) are equivalent to

ϕ∗ = min {〈Q, X〉 : 〈H , X〉 = 1, 〈I, X〉 ≤ ρ, X ∈ K1 ∩K2} , (9)

and its dual

y∗ = max {y + ρt : G(y)− It− Y 2 = Y 1 ∈ K∗1, Y 2 ∈ K∗2, t ≤ 0} , (10)

respectively. For every y ∈ R and Y 2 ∈ K∗2, let{
t̃(y,Y 2) = min{0, λmin(G(y)− Y 2)},
Ỹ 1(y,Y 2) = G(y)− I t̃(y,Y 2)− Y 2,

(11)

where λmin(A) denotes the minimum eigenvalue of A ∈ V.

Lemma 2.2. (Lemma 3.1 of [3]) Let y ∈ R and Y 2 ∈ K∗2. Then, y + ρt̃(y,Y 2) ≤ y∗.

Proof. By the construction (11) of t̃(y,Y 2) and Ỹ 1(y,Y 2), we see that

G(y)− I t̃(y,Y 2)− Y 2 = Ỹ 1(y,Y 2) ∈ K∗1,

which, together with Y 2 ∈ K∗2, implies that (t, y,Y 1,Y 2) with t = t̃(y,Y 2) and Y 1 =

Ỹ 1(y,Y 2) is a feasible solution of (10) with the objective value y + ρt̃(y,Y 2). Hence,
the inequality y + ρt̃(y,Y 2) ≤ y∗ follows.

In Algorithm 2.3 described below, we utilize Lemma 2.2 to generate a valid lower
bound l̃b for y∗ under the assumption that the computation of the minimal eigenvalue of
λmin(A) is accurate for every A ∈ V.

Let y ∈ R. Then, every optimal solution (Y 1,Y 2) = (Ŷ 1(y), Ŷ 2(y)) of the minimiza-

tion problem (7) is characterized by the KKT condition: there exists an X = X̂(y) such
that

G(y) = Y 1 + Y 2 −X, Y 1 ∈ K∗1, Y 2 ∈ K∗2, (12)

X ∈ K1 ∩K2, 〈X, Y 1〉 = 0 and 〈X, Y 2〉 = 0. (13)

Therefore, we obtain

g(y) = ‖G(y)− (Ŷ 1(y) + Ŷ 2(y))‖ = ‖X̂(y)‖. (14)

Algorithm 2.3. (the BP method [3, Algorithm 3.2])

Step 0: Let δ and ε be sufficiently small positive numbers. Here δ > 0 determines the
length of the target interval [lb, ub] and ε > 0 is used to determines whether g(y)
attains 0 numerically with ‖X‖ < ε in Step 3. See(14). For instance, we can use

δ = 1.0e-4 and ε = 1.0e-12 in the double precision arithmetic. Choose l̃b, lb and
ub such that l̃b = lb < y∗ < ub, where l̃b = lb can be −∞.

Step 1: If ub− lb < δ, then output l̃b as a valid lower bound for y∗ and [lb, ub] as an
interval which expects to contain y∗.

6



Step 2: Let y = (lb + ub)/2.

Step 3: Compute (X,Y 1,Y 2) which satisfies accurately (12) and approximately (13)
by applying the accelerated proximal gradient (APG) method [6] to the problem (7).

Let l̃b = max{l̃b, y + ρt̃(y,Y 2)}. Let lb = y if ‖X‖ < ε, and ub = y otherwise
(i.e., ‖X‖ ≥ ε). Go to Step 1.

At Step 3, Y 2 ∈ K∗2 is obtained. As a result, Lemma 2.2 guarantees that l̃b is a
valid lower bound for y∗ regardless of the choice of a positive ε. On the other hand,
y∗ ∈ [lb, ub] is not guaranteed because of the numerical error.

The APG method [6] used in Step 3 is a first order iteration method that employs
the metric projection Π∗i onto K∗i (i = 1, 2). The BP method combined with the APG
method has been implemented recently as a software package BBCPOP [10]. It employs
the following error criterion

κ(X,Y 1,Y 2) = max


〈X, Y 1〉

1 + ‖X‖+ ‖Y 1‖
,

〈X, Y 2〉
1 + ‖X‖+ ‖Y 2‖

,

‖Π∗1(−X)‖
1 + ‖X‖

,
‖Π∗2(−X)‖
1 + ‖X‖

 (15)

to decide whether the iterate (X,Y 1,Y 2) of the APG method approximately satis-
fies (13). We note that (12) is maintained throughout the iterations, and that Π∗i (−X) =
X − Πi(X) (i = 1, 2) holds for every X ∈ V by Moreau’s decomposition theorem [16].
Here Πi(X) (Π∗i (X), respectively) denotes the metric projection of X ∈ V onto Ki (K∗i ,
respectively) (i = 1, 2). If ‖X‖ < ε or ‖X‖ ≥ ε and κ(X,Y 1,Y 2) < tol, then the itera-
tion stops, where ε and tol are sufficiently small positive numbers, such as ε = tol = 1.0e-
12 in the double precision arithmetic. See Sections of 2.2 and 4.2 of [11] for more details.

In the APG method, the metric projections from V onto the cones Ki (i = 1, 2) and
their duals play an essential role. We have been dealing with the case where K1 = K∗1 is
the cone of symmetric matrices in V, thus the metric projection of A ∈ V onto K1 = K∗1
is carried out efficiently and accurately via the eigenvalue decomposition of A. For the
efficient and accurate metric projection onto the cone K2, we need to restrict K2 to a
class of polyhedral cones onto which the accurate metric projection can be efficiently
computed. Such a class of polyhedral cones were studied in [14]. The class includes
the cone of nonnegative matrices in V, polyhedral cones induced from SDP relaxations
of binary and complementarity constraints, and their intersections. Those cones are
described in Section 5 where applications of COP (1) to doubly nonnegative relaxations
of combinatorial QOPs are discussed.

3 The Newton-bracketing method

We use the same notation and symbols as in Section 2, specifically (Ŷ 1(y), Ŷ 2(y)) denotes

an optimal solution of the minimization problem (7) and (X̂(y), Ŷ 1(y), Ŷ 2(y)) ∈ (K1 ∩
K2)×K∗1 ×K∗2 satisfies the KKT condition (12) and (13); See also (14). To describe the
1-dimensional Newton method for computing y∗, we need the following lemma, which
shows some fundamental properties of the function g : R→ R+.

7



Lemma 3.1. ( [4, Lemma 4.1]) Assume that y∗ is finite.

(i) g : R→ R+ is continuous and convex.

(ii) If y > y∗, then 〈H , X̂(y)〉 > 0 and X̂(y)/〈H , X̂(y)〉 is a feasible solution of the
primal COP (5).

(iii) If y > y∗, then g′(y) = dg(y)/dy = 〈H , X̂(y)〉/g(y) > 0; hence g : (y∗,∞) → R
is continuously differentiable and strictly increasing.

(iv) Assume that G(z̄) lies in the interior of K∗1 ×K∗2 for some z̄. Then
g(y)− g(y∗)

y − y∗
converges to a positive value as y ↓ y∗; hence the right derivative g′+(y∗) of g(y) at
y = y∗ is positive.

Suppose that g(ȳ) > 0, i.e., ȳ > y∗ for some ȳ ∈ R. Then the Newton iteration for
computing y∗ is given by

ȳ+ = ȳ − g(ȳ)

g′(ȳ)
= ȳ − 〈X̂(ȳ), X̂(ȳ)〉

〈H , X̂(ȳ)〉

= ȳ − 〈Ŷ 1(ȳ + Ŷ 2(y))−G(ȳ), X̂(ȳ)〉
〈H , X̂(ȳ)〉

(since X̂(ȳ) = Ŷ 1(ȳ) + Ŷ 2(ȳ)−G(ȳ) by (12))

= ȳ +
〈G(ȳ), X̂(ȳ)〉
〈H , X̂(ȳ)〉

(since 〈X̂(ȳ), Ŷ 1(ȳ)〉 = 〈X̂(ȳ), Ŷ 2(ȳ)〉 = 0 by (13))

= ȳ +
〈Q−H ȳ, X̂(ȳ)〉
〈H , X̂(ȳ)〉

(by the definition of G(ȳ))

=
〈
Q, X̃(ȳ)

〉
≥ ϕ∗,

where X̃(ȳ) = X̂(ȳ)/〈H , X̂(ȳ)〉 denotes a feasible solution of the primal COP (5). It
should be noted that the sequence {yk} generated by the Newton iteration from any
initial iterate y0 > y∗ monotonically decreases and converges to y∗ by (i), (ii) and (iii) of
Lemma 3.1.

Now we combine the Newton iteration with Lemma 2.2 to design Newton-bracketing
method for solving COP (6).

Algorithm 3.2.

Step 0: Let l̃b
0

= −∞ and k = 0. Choose a y0 > y∗.

Step 1: Compute (X,Y 1,Y 2) ∈ (K1 ∩ K2) × K∗1 × K∗2 which satisfies the KKT

condition (12) and (13) with y = yk; hence (14) holds with (X̂(y), Ŷ 1(y), Ŷ 2(y)) =
(X,Y 1,Y 2) and y = yk. Let g(yk) = ‖X‖.

Step 2: (Application of Lemma 2.2 to update l̃b
k
) Let l̃b

k+1
= max{l̃b

k
, yk+ρt̃(yk,Y 2}.

Step 3: If g(yk) = 0 then yk = y∗ and stop the iteration.

Step 4: (Newton step to update yk) Let g′(yk) = 〈H , X〉/g(yk), and yk+1 = yk −
g(yk)/g′(yk).

8



Step 5: Replace k by k + 1, and go to Step 1.

Theorem 3.3.

(i) y∗ ∈ [l̃b
k
, yk] for every k = 1, 2, . . ., yk ↓= y∗ and l̃b

k
↑= y∗. Here ↑= y∗ (or ↓= y∗)

means “increases (or decreases) monotonically and converges to y∗ as k →∞”

(ii) Assume that G(z̄0) lies in the interior of K∗1+K∗2) for some z̄0. Then the convergence

of yk to y∗ as well as the convergence of l̃b
k

to y∗ are quadratic.

To prove the theorem, we need the following lemma.

Lemma 3.4. Assume that g(y) > 0 for some y ∈ R. Then y − ρg(y) ≤ y +

ρt̃(y, Ŷ 2(y)) ≤ y∗.

Proof. By Lemma 2.2, it suffices to show that −g(y) ≤ t̃(y, Ŷ 2(y)). It follows from (12)
that

λmin(G(y)− Ŷ 2(y)) = λmin(Ŷ 1(y)− X̂(y))

= uT (Ŷ 1(y)− X̂(y))u for some u with ‖u‖ = 1

≥ −uTX̂(y))u (since Ŷ 1(y) ∈ K∗1)
≥ −λmax(X̂(y))

≥ −
∥∥∥X̂(y)

∥∥∥ = −g(y).

Since −g(y) < 0, −g(y) ≤ min{0, λmin(G(y)− Ŷ 2(y))} = t̃(y, Ŷ 2(y)) follows.

Proof of Theorem 3.3. The assertions of (i) follows from Lemma 2.2, Lemma 3.1, and the

construction of the sequences {l̃b
k
} and {yk} by Algorithm 3.2. To prove (ii), assume

that G(z̄0) lies in the interior of K∗1 + K∗2 for some z̄0. By (iv) of Lemma 3.1, the right
derivative g′+(y∗) of g(y) at y = y∗ is positive. Define

h(y) =

{
g(y) if y ≥ y∗,
g′+(y∗)(y − y∗) otherwise.

Then h : R → R is continuously differentiable and convex, and h′(y∗) = g′+(y∗) > 0.
Since the application of Newton method to h(y) = 0 with the initial point y0 satisfying
h(y0) = g(y0) > 0 yields the same sequence as the Newton method applied to solve
g(y) = 0, yk converges quadratically to y∗ (hence g(yk) converges to 0) as k →∞ by [17,
Monotone Newton Theorem 13.3.4]. This implies the quadratic convergence of {g(yk)}
to 0. By Lemma 3.4, l̃b

k
also converges quadratically to y∗.

4 The damped secant-bracketing method

Although Algorithm 3.2 (the Netwton-bracketing method) has nice theoretical prop-
erties as shown in Theorem 3.3, its accurate implementation is difficult. More pre-
cisely, the exact function value g(yk) and its derivative g′(yk) have been assumed for

9



each iterate yk in Algorithm 3.2. However, when Algorithm 3.2 is implemented in
practice, only approximate value (X,Y 1,Y 2) of (X̂(yk), Ŷ 1(y

k), Ŷ 2(y
k)) can be com-

puted by the APG method. From those values, g(yk) and g′(yk) are approximated
by ‖X‖ and 〈H , X〉/‖X‖, respectively. In particular, the accurate computation of

g′(yk) = 〈H , X̂(yk)〉/‖X̂(yk)‖ is difficult as the denominator ‖X̂(yk)‖ as well as the nu-

merator 〈H , X̂(yk)〉 both converge to zero as yk approaches to y∗. This computational
issue should be carefully dealt with for the robustness of the Newton-bracketing method
in practice.

To avoid such a difficulty and for the purpose of developing a practically robust
method, we replace the derivative g′(yk) at the kth iterate yk by the secant (g(yk) −
g(yk−1))/(yk − yk−1) (k = 1, 2, . . .). Then the iterative formula turns out to be

yk+1 = yk − αk g(yk)(yk − yk−1)
g(yk)− g(yk−1)

= yk − αk ‖X̂(yk)‖(yk − yk−1)
‖X̂(yk)‖ − ‖X̂(yk−1)‖

(k = 1, 2, . . .). (16)

Here αk ∈ (0, 1] is a damping factor, which is multiplied to the secant to avoid the
occurrence of yk+1 < y∗ in any case, which might happen due to inaccurate computations
of g(yk−1) and g(yk). To initiate the first secant, we need to prepare two points y0 >
y1 > y∗.

Algorithm 4.1. (The damped secant-bracketing method)

Step 0: Let δ and ε be sufficiently small positive numbers (for example, δ = 1.0e-4
and ε = 1.0e-12 in the double precision arithmetic). Choose y0 and y1 such that

y∗ < y1 < y0. Let l̃b
0

= −∞ and k = 0.

Step 1: Compute (X,Y 1,Y 2) = (Xk,Y k
1,Y

k
2) which satisfies accurately (12) and

approximately (13) with y = yk by the APG method.

Step 2: (Application of Lemma 2.2 to update l̃b
k
) Let l̃b

k+1
= max{l̃b

k
, yk+ρt̃(yk,Y k

2}.
If k=0, then let k=1 and go to Step1.

Step 3: If ‖Xk‖ < ε or yk − l̃b
k+1

< δ, then stop the iteration, and output l̃b
k+1

as a
valid lower bound for y∗ and yk as an approximation of y∗.

Step 4: (Damped secant iteration) Apply

yk+1 = yk − αk ‖X
k‖(yk − yk−1)

‖Xk‖ − ‖Xk−1‖

with some αk ∈ (0, 1] to update yk.

Step 5: Replace k by k + 1, and go to Step 1.

The use of the secant certainly mitigates the difficulty of computing the derivative
g′(yk) accurately in the Newton method. Computing the secant by (g(yk)−g(yk−1))/(yk−
yk−1) involves the computation of the denominator yk − yk−1, which is almost exact. To
compute the numerator with high accuracy, we still need to compute the function value

10



g(yk) accurately at each iteration (k = 0, 1, . . .). The computations that are not carried
out with sufficient accuracy may affect the entire iteration. In particular, if the computed
secant is much smaller than the real secant or the computed value of g(yk) is much larger
than its real value at the kth iteration, then the next iterate yk+1 could be smaller than
y∗ and Algorithm 4.1 cannot be continued in a consistent manner.

The stopping criteria in the APG method combined with Algorithm 4.1 should be
carefully set up. We recall the discussion on the stopping criteria of the APG method
combined with Algorithm 2.3 in Section 2.3. To approximate (X̂(yk), Ŷ 1(y

k), Ŷ 2(y
k))

with high accuracy by the APG method, we modify the stopping criteria mentioned
there. We introduce two criteria which must be satisfied simultaneously for the APG
method to stop the iteration. The first one is κ(X,Y 1,Y 2) < tol.

For the second criterion, let (X̃
p
, Ỹ

p

1, Ỹ
p

2) denote the pth iterate of the APG method
(p = 1, 2, . . .). We compute

zp = yk − αk ‖X̃
p
‖(yk − yk−1)

‖X̃
p
‖ − ‖Xk−1‖

(p = 1, 2, . . . , ).

Here zp becomes the next iterate yk+1 of Algorithm 4.1 if the APG method stops at
iteration p. Through numerical experiments, we have observed that the sequence {zp}
increased on average as p increase, and in many cases, it converged to some z∗. To check
the convergence of the generated sequence numerically to some z∗, which is almost equal
to zp at the pth iteration, some variance of the subsequence zq(p)+1, zp(q)+2, . . . , zp and the
slope of their linear interpolation are incorporated into the second criteria (for example,
q(p) = max{1, p − 100}). Our second criterion is: the variance and the slope are both
sufficiently small. The details are omitted here.

The second criterion can be very strict for some problems. In fact, the APG method
sometimes does not terminate with the two stopping criteria, even when p reaches a
prescribed maximum number of iterations. From our numerical experience, we noticed
that this usually occurs when the second criterion is too strict. For such cases, we allow

Algorithm 4.1 to switch to the bisection temporarily. More precisely, we add lb = l̃b
0

and ub = y0 in Step 0 and insert the following steps between Steps 2 and 3.
Step 2.3: If ‖X‖ < ε, then let lb = max{lb, yk}. Otherwise let ub = min{ub, yk}.

If the APG method for computing (X,Y 1,Y 2) at Step 1 terminates with the two
stopping criteria, go to Step 3. Otherwise go to Step 2.6.

Step 2.6: Reset yk = (ub + lb)/2. If ub − lb < δ, then stop the iteration, and output

l̃b
k+1

as a valid lower bound for y∗ and yk as an approximation of y∗. Otherwise
go to Step 1.

This modification improves the robustness and stability of Algorithm 4.1.

5 Applications to DNN relaxations of Combinatorial

Quadratic Optimization Problems

Let C ∈ Sn, c ∈ Rn, A ∈ R`×n, b ∈ R`, Ibin ⊂ {1, . . . , n} (the index set for binary
variables), and Icomp ⊂ {(j, k) : 1 ≤ j < k ≤ n} (the index set for pairs of complementary

11



variables). Consider a QOP of the following form:

ζQOP = inf

uTCu + 2cTu :
u ∈ Rn

+, Au− b = 0,
ui(1− ui) = 0 (i ∈ Ibin),
ujuk = 0 ((j, k) ∈ Icomp)

 . (17)

We assume that the feasible region of QOP (17) is nonempty.

To derive a doubly nonnegative (DNN) relaxation for QOP (17) of the form COP (1),
we introduce some notation and symbols. Let R1+n denote the (1 + n)-dimensional
Euclidean space of column vectors x = (x0, x1, . . . , xn), and R1+n

+ =
{
x ∈ R1+n : xi ≥ 0

(i = 0, . . . , n)} (the nonnegative orthant of R1+n). Let S1+n denote the space of (1 +
n) × (1 + n) symmetric matrices with row and column indices i = 0, 1, . . . , n, S1+n

+ the
cone of positive semidefinite matrices in S1+n, N1+n the cone of nonnegative matrices in
S1+n and D1+n = S1+n

+ ∩ N1+n (the DNN cone). By definition, xxT ∈ D1+n for every
x = (x0,u) ∈ R1+n

+ .

Let

V = S1+n, K1 = S1+n
+ ,

K2 =

{
X ∈ N1+n :

X0i = Xi0 = Xii (i ∈ Ibin),
Xjk = Xkj = 0 ((j, k) ∈ Icomp)

}
,

K = K1 ∩K2 =

{
X ∈ D1+n :

X0i = Xi0 = Xii (i ∈ Ibin),
Xjk = Xkj = 0 ((j, k) ∈ Icomp)

}
,

H0 = the matrix in S1+n with 1 at the (0, 0) element and 0 elsewhere,

Q0 =

(
0 cT

c C

)
, H1 =

(
−b A

)T (−b A
)
∈ S1+n

+ ⊂ K∗1 + K∗2.


(18)

Then, for every x = (x0,u) ∈ R1+n
+ ,

x0 = 1 ⇔ 〈H0, xxT 〉 = x20 = 1,

Au− bx0 = 0 ⇔ 〈H1, xxT 〉 = (Au− bx0)
T (Au− bx0) = 0,

〈Q0, xxT 〉 = uTCu + 2x0c
Tu.

It is easy to verify that if x = (1,u) ∈ R1+n
+ , then

[xxT ]0i = [xxT ]i0 = x0ui = ui, [xxT ]ii = u2i (i ∈ Ibin),

[xxT ]jk = ujuk = ukuj = [xxT ]kj ((j, k) ∈ Icomp);

hence,

ui(1− ui) = 0 (i ∈ Ibin) and ujuk = 0 ((j, k) ∈ Icomp) ⇔ xxT ∈ K2

Therefore, QOP (17) is equivalent to

ζQOP = inf

{
〈Q0, xxT 〉 :

xxT ∈ K1 ∩K2,

〈H0, xxT 〉 = 1, 〈H1, xxT 〉 = 0

}
. (19)

12



Note that every feasible solution u ∈ Rn of QOP (17) with the objective value uTCu +
2cTu corresponds to a feasible solution x = (1,u) of QOP (19) with the same objective
value 〈Q0, xxT 〉. By construction, it is obvious that H0, H1 ∈ S1+n

+ ⊂ K∗1 + K∗2; hence
Condition (I) is satisfied.

Now, by replacing xxT ∈ V with a matrix variable X ∈ V, we obtain COP (1) with
V, K1, K2, Q

0, H0 and H1 given in (18), which serves as a DNN relaxation of QOP (19).
For the efficient computation of the metric projection onto K2 defined above, we refer to
the paper [14].

6 Preliminary numerical results

We implemented the damped secant-bracketing method (Algorithm 4.1) by modifying
the software package BBCPOP [10], which is based on the BP method (Algorithm 2.3)
for solving DNN relaxations of QOPs and polynomial optimization problems (POPs)
with binary, box and complementarity (BBC) constraints. For numerical tests, we ex-
perimented with binary quadratic optimization problem (BQOP) instances from [20] in
Section 6.1, and quadratic assignment problem (QAP) instances from [9] in Section 6.2.
All the computations were performed in MATLAB 2018b on iMac Pro with Intel Xeon
W CPU (3.2 GHZ) and 128 GB memory.

We compare our results from Algorithm 4.1 (the damped secant-bracketing method)
with BBCPOP and SDPNAL+. BBCPOP is based on Algorithm 2.3 and SDPNAL+
[22] is a Matlab implementation of the majorized semismooth Newton-CG augmented
Lagrangian method for large scale SDPs with bounded variables.

6.1 Binary quadratic optimization problems

We solved DNN relaxations of BQOP instances, bqp100-1,. . .,bqp100-5,bqp500-1,. . .,bqp500-
5, from [20] by three methods, BBCPOP, Algorithm 4.1 and SDPNAL+ [22].

Each BQOP instance is of the following form:

ζBQOP = inf
{
vTFv : v ∈ Rr

+, vi(1− vi) = 0 (i = 1, . . . , r)
}

(20)

with r = 100 or r = 500, where F ∈ Sr. The problem (20) is a special case of QOP (17),
thus the discussion in the previous section could be directly applied to BQOP (20) for its
DNN relaxation. To strengthen the relaxation [13, 12], instead of the direct application,
we first reformulate BQOP (20) to the following QOP by introducing a slack variable
vector w ∈ Rr

+.

ζBQOP = inf

{
vTFv :

v ∈ Rr
+, w ∈ Rn

+, v + w = e,
vi(1− vi) = 0, wi(1− wi) = 1 (i = 1, . . . , r)

}
, (21)

where e denotes the column vector of ones in Rr. Let n = 2r, ` = r, Ibin ={1,. . . ,n},
Icomp = ∅,

u =

(
v
w

)
∈ Rn, C =

(
F O
O O

)
∈ Sn, c = 0 ∈ Rn, A =

(
I I

)
, b = e,

13



where I denotes the r×r identy matrix. Then BQOP (21) can be rewritten as QOP (17),
and its DNN relaxation of the form COP (1) can be derived with K1, K2, Q

0, H0 and
H1 given in (18).

We applied BBCPOP and Algorithm 4.1 with the modification mentioned at the end
of Section 4 to the Lagrangian relaxation of the resulting COP (1) and its dual (2), i.e.,
the pair of COPs (3) and (4) with λ = 10, 000. (See Section 2.2). Since K1 and K2 are
given in (18) with Ibin = {1, . . . , n} and Icomp = ∅, COP (1) is equivalent to the DNN
problem

ηp = inf

{
〈Q0, X〉 :

X ∈ D1+n, 〈H0, X〉 = 1, 〈H1, X〉 = 0,
X0i = Xi0 = Xii (i = 1, . . . , n)

}
. (22)

We also applied SDPNAL+ to this problem with the default parameters.

Table 1 presents the numerical results. We can observe two distinct features of Al-
gorithm 4.1, which are inherited from the Newton-bracketing method to some extent,
in comparison to BBCPOP. The first one is that ‘it’ in Algorithm 4.1 is smaller than
‘it’ in BBCPOP in most of the instances. This is due to the advantage of the secant
iteration over the bisection iteration. We note that Algorithm 4.1 sometimes switched to
the bisection (Steps 2.3 and 2.6 stated at the end of Section 4) in many instances, which
increased ‘it’, but ‘it’ of Algorithm 4.1 still was smaller than ‘it’ of BBCPOP. However,
‘itAPG’ (the total number of iterations spent by the APG method) in Algorithm 4.1 is
larger than ‘itAPG’ in BBCPOP. This is because Algorithm 4.1 requires more accuracy
in the computation of (X̂(yk), Ŷ 1(y

k), Ŷ 2(y
k)) by the APG method as we discussed at

the end of Section 4. As a result, the execution time of Algorithm 4.1 is longer than that
of BBCPOP.

The other important feature of Algorithm 4.1 is the quality of lower bounds obtained.
Indeed, the lower bounds obtained by Algorithm 4.1 for larger scale instances are obvi-
ously tighter than those obtained by the other methods.

6.2 Quadratic assignment problems

We identify a matrix W = [w1, . . . ,wr] ∈ Rr×r with the r2-dimensional column vec-

tor u = vec(W ) = [w1; . . . ;wr] ∈ Rr2 . Given matrices A,B ∈ Rr×r, the quadratic
assignment problem is stated as

ζQAP = inf

{
W •AWBT :

eTWej = 1, eTj We = 1,

(j = 1, . . . , r), W ∈ {0, 1}r×r

}

= min

{
uT (B ⊗A)u :

(eTj ⊗ eT )u = 1, (eT ⊗ eTj )u = 1

(j = 1, . . . , r), ui(1− ui) = 1 (i = 1, . . . , r2)

}
.

Here e ∈ Rr denotes the vector of ones, ej ∈ Rr the jth coordinate unit vector, and ⊗
denotes the Kronecker product. This problem is a special cace of QOP (17), so its DNN
relaxation of the form COP (1) can be derived.

Table 2 shows numerical results on large scale QAP instances from [9], whose optimal
values are not known. COP (1) derived as the DNN relaxation of the instance sko81 in

14



Table 1: Binary QOP instances from [20]. LB denotes a valid lower bound for the

optimal value. LB corresponds to l̃b in Algorithms 4.1 and 2.3 (BBCPOP). We also
applied Lemma 2.2 to the output of SDPNAL+ and computed a valid lower bound
for the optimal value. ‘sec’ denotes the execution time, ‘itAPG’ the total number of
iterations spent in the APG method in the case of Algorithms 4.1 and 2.3 and the total
number of iterations in the case of SDPNAL+, and ‘it’ the total number of iterations
in Algorithms 2.3 and 4.1. The bold digits in the column LB show the cases where
Algorithm 4.1 computed tighter lower bounds than the other two methods.

Problem Opt.Val. Solver LB(sec,itAPG/it)
bqp100-1 -7970 Algorithm 4.1 -8036(1.1e2,14980/14)
bqp100-1 BBCPOP -8039(5.7e1, 8453/20)
bqp100-1 SDPNAL+ -8050(5.4e1, 5741)
bqp100-2 -11036 Algorithm 4.1 -11036(1.1e2,15310/14)
bqp100-2 BBCPOP -11043(3.3e1, 5265/20)
bqp100-2 SDPNAL+ -11039(2.9e2,23868)
bqp100-3 -12723 Algorithm 4.1 -12723(5.4e1, 8455/11)
bqp100-3 BBCPOP -12723(2.0e1, 3874/21)
bqp100-3 SDPNAL+ -12723(1.8e1, 3321)
bqp100-4 -10368 Algorithm 4.1 -10368(6.0e1, 9105/11)
bqp100-4 BBCPOP -10368(2.2e1, 4124/14)
bqp100-4 SDPNAL+ -10369(2.3e1, 3991)
bqp100-5 -9083 Algorithm 4.1 -9083(1.0e2,13365/13)
bqp100-5 BBCPOP -9083(4.4e1, 7183/21)
bqp100-5 SDPNAL+ -9083(2.0e2,21039)
bqp500-1 -116586 Algorithm 4.1 -122598(1.3e4,35030/21)
bqp500-1 BBCPOP -133277(6.1e2, 2104/21)
bqp500-1 SDPNAL+ -122633(3.0e3, 8783)
bqp500-2 -128223 Algorithm 4.1 -132730(1.0e4,27840/17)
bqp500-2 BBCPOP -142163(5.6e2, 1915/21)
bqp500-2 SDPNAL+ -132773(3.1e3, 7591)
bqp500-3 -130812 Algorithm 4.1 -134800(1.2e4,31350/18)
bqp500-3 BBCPOP -145715(7.0e2, 2323/22)
bqp500-3 SDPNAL+ -134841(3.1e3, 8656)
bqp500-4 -130097 Algorithm 4.1 -135485(1.0e4,28235/17)
bqp500-4 BBCPOP -147512(7.0e2, 2468/22)
bqp500-4 SDPNAL+ -135527(2.8e3, 7699)
bqp500-5 -125487 Algorithm 4.1 -130300(8.1e3,28630/18)
bqp500-5 BBCPOP -140946(7.1e2, 2355/22)
bqp500-5 SDPNAL+ -130404(1.6e3, 6194)

15



Table 2 involves a 6562×6562 dense variable matrix X. Such a large scale DNN problem
is extremely hard to solve by many of the existing software packages. To solve such a
large scale QAP, it is meaningful to reduce the gap between the lower and upper bounds.

Recently, Mittelmann [15] applied BBCPOP to large scale QAP instances with un-
known optimal values, and computed their then-new lower bounds which had not been
obtained before. His results demonstrated that BBCPOP is very powerful and effective
for solving DNN problems from large scale QAP instances. His numerical experiments
were conducted with MATLAB 2018a on 32GB Intel(R) Core(TM) i7-7700K CPU @
4.20GHz. To compare BBCPOP with Algorithm 4.1, we applied the two methods to
some of the QAP instances on the same computing environment (MATLAB 2018b on
iMac Pro with Intel Xeon W CPU (3.2 GHZ) and 128 GB memory). See the 3rd and
4th columns of Table 2. As observed in the numerical results on BQOP instances in
Table 1, the lower bounds obtained by Algorithm 4.1 are of higher quality than those
obtained by BBCPOP for all instances in Table 2, but Algorithm 4.1 is 2-5 times slower
than BBCPOP. We also see that ‘it’ of Algorithm 4.1 is larger than ‘it’ of BBCPOP for
instances tai35b – tai60b, tai80b and tho40. This is because the APG method often failed
to terminate with the stopping criteria within the prescribed iteration upper bound, and
switched to the bisection (Steps 2.3 and 2.6 stated at the end of Section 4) for those
instances.

In [15], BBCPOP was applied to larger scale QAP instances in addition to the ones in
Table 2, including tai100a, tai100b and wil100. But we have not applied Algorithm 4.1
to those larger instances because they are too time consuming.

7 Concluding remarks

While our focus has been on QOPs in this paper, the Lagrangian-DNN was extended to a
class of polynomial optimization problems (POPs) with binary, box and complementarity
constraints. In fact, BBCPOP was designed to solve such POPs, and the paper [11]
reported better numerical results in terms of computational time (and/or quality of lower
bounds in some instances) on large scale randomly generated instances from the class
than SDPNAL+ which is regarded as a state-of-art software for solving DNN relaxation
problems.

Theoretically, the extension of the Newton-bracketing method to the Lagrangian-
DNN relaxation induced from the class of POPs is almost straightforward. As observed
in Section 6, the quality of the optimal values of relaxation problems of large-scale
QOP instances obtained by the secant-bracketing method are clearly better than those
by BBCPOP. The secant-bracketing method is, however, more time-consuming than
BBCPOP. As a result, the computational efficiency of the method should be improved
before incorporating it into BBCPOP to handle large scale QOPs and POPs.

References

[1] M. F. Anjos and J. B. Lasserre. Handbook on Semidefinite, Conic and Polyno-
mial Optimization, volume 166 of Internstional Series in Operations Research and

16



Table 2: QAP instances from [9]. LB denotes a valid lower bound for the optimal value.

LB corresponds to l̃b in Algorithms 2.3 and 4.1 (BBCPOP). ‘sec’ denotes the execution
time, ‘itAPG’ the total number of iterations spent in the APG method, and ‘it’ the total
number of iterations in Algorithms 4.1 and BBCPOP. The bold digits show differences
between LBs obtained by Algortihm 4.1 and BBCPOP.

Best known Algorithm 4.1 BBCPOP [15]
Problem upper bounds LB(sec,itAPG/it) LB(sec,itAPG/it)
tai35b 283315445 269754270(4.0e3,17265/28) 269532372(1.3e3,6272/21)
tai40b 637250948 609242568(9.6e3,19195/29) 608808404(3.7e3,8168/21)
tai50b 458821517 431245612(2.4e4,15595/28) 431090738(7.3e3,5072/21)
tai60a 7205962 6326094(2.8e4,6485/23) 6325979(1.5e4,3710/22)
tai60b 608215054 592829061(6.6e4,16630/27) 592371789(3.5e4,9008/22)
tai80a 13499184 11657055(1.1e5,5280/21) 11657014(2.0e4,1091/22)
tai80b 818415043 786900529(3.7e5,18070/33) 298474(8.1e4,4017/22)
sko42 15812 15334(5.7e3,9245/16) 15333(2.1e3,3898/21)
sko49 23386 22653(1.2e4,9170/19) 22651(4.4e3,3383/21)
sko56 34458 33389(2.3e4,8780/18) 33386(8.7e3,3393/22)
sko64 48498 47020(5.6e4,8920/18) 47018(1.8e4,3001/22)
sko72 66256 64461(1.1e5,9565/17) 64456(5.3e4,4923/22)
sko81 90998 88370(2.0e5,9555/17) 88363(8.1e4,3740/23)
tho40 240516 226516(5.0e3,10065/24) 226491(2.2e3,4826/21)
wil50 48816 48123(1.3e4,8650/20) 48122(8.0e3,5453/21)

17



Management Science. Sprignger, 2012.

[2] N. Arima, S. Kim, and M. Kojima. Simplified copositive and Lagrangian relaxations
for linearly constrained quadratic optimization problems in continuous and binary
variables. Pacific J. of Optim., 10:437–451, 2014.

[3] N. Arima, S. Kim, M. Kojima, and K.C. Toh. A robust Lagrangian-DNN method for
a class of quadratic optimization problems. Comput. Optim. Appl., 66(3):453–479,
2017.

[4] N. Arima, S. Kim, M. Kojima, and K. C. Toh. Lagrangian-conic relaxations, Part I:
A unified framework and its applications to quadratic optimization problems. Pacific
J. of Optim., 14(1):161–192, 2018.

[5] N. Arima, S. Kim, M. Kojima, and K. C. Toh. Lagrangian-conic relaxations, Part
II: Applications to polynomial optimization problems. To appear in Pacific J. of
Optim.

[6] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci., 2:183–202, 2009.

[7] S. Burer. On the copositive representation of binary and continuous non-convex
quadratic programs. Math. Program., 120:479–495, 2009.

[8] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6):1115–1145, 1995.

[9] P. Hahn and M. Anjos. QAPLIB – a quadratic assignment problem library.
http://www.seas.upenn.edu/qaplib.

[10] N. Ito, S. Kim, M. Kojima, A. Takeda, and K.C. Toh. Equivalences and differences
in conic relaxations of combinatorial quadratic optimization problems. J. Global
Optim., 72(4):619–653, 2018.

[11] N. Ito, S. Kim, M. Kojima, A. Takeda, and K.C. Toh. BBCPOP: A sparse doubly
nonnegative relaxation of polynomial optimization problems with binary, box and
complementarity constraints. ACM Trans. Math. Softw., To appear, 2019.

[12] S. Kim and M. Kojima. Binary quadratic optimization problems that are difficult
to solve by conic relaxations. Discrete Optim., 24:170–183, 2017.

[13] S. Kim, M. Kojima, and K. C. Toh. A Lagrangian-DNN relaxation: a fast method
for computing tight lower bounds for a class of quadratic optimization problems.
Math. Program., 156:161–187, 2016.

[14] S. Kim, M. Kojima, and K. C. Toh. Doubly nonnegative relaxations for quadratic
and polynomial optimization problems with binary and box constraints. Research
Rport B-483, Tokyo Institute of Technology, Department of Mathematical and Com-
puting Sciences, Oh-Okayama, Meguro-ku, Tokyo 152-8552, July 2016.

18

http://www.seas.upenn.edu/qaplib


[15] H. D. Mittelmann. Improved QAPLIB lower bounds using BBCPOP. May 2018.

[16] J. J. Moreau. Décomposition orthogonale d’un espace hilbertien selon deux cones
mutuellement polaires. C. R. Acad. Sci., 255:238–240, 1962.

[17] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in
several variables. Academic Press, 1970.

[18] N. Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and
Systems Sciences, 25:1–11, 1987.

[19] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49–95,
1996.

[20] A. Wiegele. Biq mac library. http://www.biqmac.uni-klu.ac.at/biqmaclib.html,
2007.

[21] H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of semidefinite program-
ming: theory, algorithms, and applications. Springer, 2000.

[22] L. Q. Yang, D. F. Sun, and K. C. Toh. SDPNAL+: a majorized semismooth Newton-
CG augmented Lagrangian method for semidefinite programming with nonnegative
constraints. Math. Prog. Comp., 7:331–366, 2015.

19

http://www.biqmac.uni-klu.ac.at/biqmaclib.html

	1 Introduction
	2 Preliminaries
	2.1 A primal-dual pair of simple conic optimization problems
	2.2 A Lagrangian relaxation of COP (1) and its dual
	2.3 The bisection-projection method for COP (6)

	3 The Newton-bracketing method
	4 The damped secant-bracketing method
	5 Applications to DNN relaxations of Combinatorial Quadratic Optimization Problems
	6 Preliminary numerical results
	6.1 Binary quadratic optimization problems
	6.2 Quadratic assignment problems

	7 Concluding remarks

