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Abstract
Mathematical programs with vanishing constraints (MPVCs) are a class of non-

linear optimization problems with applications to various engineering problems such
as truss topology design and robot motion planning. MPVCs are difficult problems
from both a theoretical and numerical perspective: the combinatorial nature of the
vanishing constraints often prevents standard constraint qualifications and optimality
conditions from being attained; moreover, the feasible set is inherently nonconvex,
and often has no interior around points of interest. In this paper, we therefore study
and compare four regularization methods for the numerical solution of MPVCS. Each
method depends on a single regularization parameter, which is used to embed the
original MPVC into a sequence of standard nonlinear programs. Convergence results
for these methods based on both exact and approximate stationary of the subproblems
are established under weak assumptions. The improved regularity of the subproblems
is studied by providing sufficient conditions for the existence of KKT multipliers. Nu-
merical experiments, based on applications in truss topology design and an optimal
control problem from aerothermodynamics, complement the theoretical analysis and
comparison of the regularization methods. The computational results highlight the
benefit of using regularization over applying a standard solver directly, and they allow
us to identify two promising regularization schemes.
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1 Introduction
We consider mathematical programs with vanishing constraints (MPVC), which are con-
strained optimization problems of the form

min f(x)
s.t. gi(x) ≤ 0 (i = 1, . . . ,m),

hi(x) = 0 (i = 1, . . . , p),
Hi(x) ≥ 0 (i = 1, . . . , l),
Gi(x)Hi(x) ≤ 0 (i = 1, . . . , l).

(1)

We assume throughout the paper that the functions f, gi, hi, Hi, Gi : Rn → R are continu-
ously differentiable. MPVCs were introduced to the mathematical community in a seminal
paper by Achtziger and Kanzow [3], where they were extracted as a mathematical model
for stress constraints in optimal topology design of mechanical structures. Other applica-
tions of MPVCs comprise e.g. robot motion planning and mixed-integer nonlinear optimal
control problems (MIOCPs) [23]. The theoretical foundations, i.e. optimality, stationarity,
criticality and constraint qualifications have been established in the literature by Hoheisel
et al. [13–17] and other authors [10, 22]. Numerical schemes based on smoothing and re-
laxation were studied by Hoheisel et al. [1, 2, 18, 19]. Izmailov et al. [21], and Dussault et
al [11] also study regularization methods. Izmailov et al. also study Newton-type methods
[22] for MPVCs. The recent paper by Benko and Gfrerer [7] establishes an SQP method
for MPVCs based on their very own Q-stationarity.

In this paper we focus on regularization methods for the solution of MPVCs, that
depend on a single parameter t > 0, since these have proven to be simple and robust
numerical approaches to MPVCs [1, 2, 18, 19, 21]. The general idea of these methods is
to consider a regularization X(t) ⊂ Rn of the feasible set of (1) which is less degenerate
in terms of constraint qualifications and existence of interior points, and such that X(0)
coincides with the original feasible set. Given a sequence {tk} ↓ 0, the resulting numerical
strategy is to asymptotically approximate critical points of (1) via critical points of f over
X(tk). The concrete regularization methods studied in this paper are:

• the global regularization method [2, 21];

• the local regularization method [18];

• the L-shaped regularization method [19];

• the nonsmooth regularization method.

The latter has not been previously considered for MPVCs but, like the others, cf. [20], is
inspired by an analogous approach to mathematical programs with complementarity con-
straints (MPCCs) due to Kadrani et al. [24].

This paper is the first systematic theoretical and numerical comparison of regularization
methods for MPVCs. For the regularization methods under consideration we present con-
vergence results under weak constraint qualifications, comprising both exact and inexact
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notions of stationarity. Moreover, we study local regularity properties of the regularized
feasible sets, which also establish the existence of KKT multipliers for the regularized
problems and thus prove that the regularized problems are less degenerate. A numerical
comparison, illustrating the benefit of regularization, is provided based on two instances
from truss topology optimization and an example from aerothermodynamics.

Inexact convergence result have previously not been available for MPVCs, and the
exact results in the improved given form are, unless otherwise stated, also new. The
same holds for our study of the local regularity properties of the regularized feasible sets.
Numerical tests of regularization methods for MPVCs on truss topology problems are well
established [1, 2, 11]. After all this was the motivating instance of this problem class. The
aerothermodynamics example is new and MPVCs have, to the best of our knowledge, never
been used in this context before.

Finally, since the regularization schemes in question have their counterpart for MPCCs
[20], we shed light on the question whether the respective approaches have similar theoret-
ical and numerical properties as for MPCCs.

The organization of this paper is as follows: In Section 2 we provide some background
material from nonlinear programming and MPVC theory, in particular different notions
of stationarity and constraint qualifications. Exact and inexact convergence properties
of four different regularization methods are investigated in Section 3. In Section 4, we
present a numerical comparison of the regularization methods studied on problems from
truss topology design and aerothermodynamics. We conclude with some final remarks in
Section 5.

Most of the notation used is standard: For a differentiable function f : Rn → R,
∇f(x) ∈ Rn denotes the gradient of f at x, which is understood as a column vector. For
a vector x ∈ Rn we denote by supp(x) :=

{
i ∈ {1, . . . , n} | xi 6= 0

}
the support of this

vector. Given a subset I ⊂ {1, . . . , n}, we use the abbreviation xI := (xi)i∈I ∈ R|I|.

2 Preliminaries
In this section, we recall necessary background knowledge for both standard nonlinear
programs and MPVCs, with a strong focus on optimality conditions and constraint quali-
fications.

2.1 Constraint Qualifications for Standard Nonlinear Programs

The central idea behind a regularization method is to replace the difficult MPVC by a
sequence of (hopefully simpler) standard nonlinear programs. Thus, we begin by recalling
some constraint qualifications for this problem class. Consider the following nonlinear
program (NLP)

min f(x) s.t. gi(x) ≤ 0 (i = 1, . . . ,m),
hi(x) = 0 (i = 1, . . . , p)

(2)
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and let Z denote the set of feasible points of (2). For an arbitrary x∗ ∈ Z we denote the
set of active inequality constraints by

Ig(x
∗) := {i | gi(x∗) = 0}.

Furthermore, the (Bouligand) tangent cone of Z at x∗ ∈ Z is defined as

TZ(x∗) :=
{
d ∈ Rn | ∃{xk} ⊂ Z, ∃{τk} ≥ 0 such that xk → x∗ and τk(xk − x∗)→ d

}
,

and the linearized cone of Z at x∗ ∈ Z is given by

LZ(x∗) :=
{
d ∈ Rn | ∇gi(x∗)Td ≤ 0 (i ∈ Ig(x∗)), ∇hi(x∗)Td = 0 (i = 1, . . . , p)

}
.

Furthermore, the polar cone to an arbitrary cone C ⊆ Rn is defined as

C◦ := {s ∈ Rn | sTd ≤ 0 ∀d ∈ C}.

One of the constraint qualifications we are going to state uses positive linear indepen-
dence of vectors. We therefore first recall the definition thereof.

Definition 2.1. A set of vectors

ai (i ∈ I1) and bi (i ∈ I2)

is said to be positively linearly dependent if there exist scalars αi (i ∈ I1) and βi (i ∈ I2),
not all of them being zero, with αi ≥ 0 for all i ∈ I1 and∑

i∈I1

αiai +
∑
i∈I2

βibi = 0.

Otherwise, we say that these vectors are positively linearly independent.

With these definitions, we are now able to define constraint qualifications (CQ) for
NLPs.

Definition 2.2. A feasible point x∗ for (2) is said to satisfy the

(a) linear independence CQ (LICQ), if the gradients

∇gi(x∗) (i ∈ Ig(x∗)), ∇hi(x∗) (i = 1, . . . , p)

are linearly independent;

(b) Mangasarian-Fromovitz CQ (MFCQ), if the gradients

∇gi(x∗) (i ∈ Ig(x∗)) and ∇hi(x∗) (i = 1, . . . , p)

are positively linearly independent;
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(c) constant rank CQ (CRCQ), if there exists a neighborhood N(x∗) of x∗, such that for
all subsets I1 ⊆ Ig(x

∗) and I2 ⊆ {1, . . . , p}, the gradient vectors

∇gi(x) (i ∈ I1), ∇hi(x) (i ∈ I2)

have constant rank for all x ∈ N(x∗) (which depends on I1, I2);

(d) constant positive linear dependence CQ (CPLD), if there exists a neighborhood N(x∗)
of x∗, such that for any subsets I1 ⊆ Ig(x

∗) and I2 ⊆ {1, . . . , p}, for which the
gradients

∇gi(x) (i ∈ I1) and ∇hi(x) (i ∈ I2)

are positively linearly dependent in x∗, they remain linearly dependent on N(x∗);

(e) Abadie CQ (ACQ) if TZ(x∗) = LZ(x∗);

(f) Guignard CQ (GCQ) if TZ(x∗)◦ = LZ(x∗)◦.

The following relations hold between these constraint qualifications:

LICQ
MFCQ

CRCQ
CPLD ACQ GCQ

It was proven in [5] that CPLD implies ACQ. All other implications follow directly from
the definitions. It is well known that for every local minimizer x∗ of (2), in which GCQ
holds, there exist multipliers λ ∈ Rm and µ ∈ Rp such that

0 = ∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)

with supp(λ) ⊆ Ig(x
∗) and λ ≥ 0. In this situation, by slight abuse of terminology, we will

refer to both x∗ and the triple (x∗, λ, µ) as a KKT point of (2).
From a computational perspective, one cannot expect to obtain exact KKT points of

a given NLP. Hence, the following generalized notion will play a role in our analysis.

Definition 2.3. Let x∗ ∈ Rn and ε ≥ 0. If there exist λ ∈ Rm and µ ∈ Rp such that∥∥∥∥∥∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)

∥∥∥∥∥
∞

≤ ε,

with gi(x
∗) ≤ ε, λi ≥ −ε, |gi(x∗)λi| ≤ ε and |hi(x∗)| ≤ ε (for all i = 1, . . . ,m and

i = 1, . . . , p, respectively), then x∗ is called an ε-stationary point of (2).
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2.2 Stationary Points for MPVCs

While the KKT conditions are the single most important necessary optimality criterion
for NLPs, there are several stationarity concepts in use when it comes to MPVCs. The
reason for this is that MPVCs violate NLP constraint qualifications in many important
and relevant situations, see e.g. [13]. They thus require tailored optimality conditions and
CQs.

In order to state MPVC-tailored stationarity conditions, we need the following index
sets: Let x∗ be an arbitrary feasible point of (1) and Ig = {i | gi(x∗) = 0} be defined as
before. Additional index sets corresponding to the vanishing constraints are defined as

I+ :=
{
i
∣∣Hi(x

∗) > 0
}
, I0 :=

{
i
∣∣Hi(x

∗) = 0
}
.

Furthermore, we divide the index set I+ into the following subsets:

I+0 :=
{
i
∣∣Hi(x

∗) > 0, Gi(x
∗) = 0

}
,

I+− :=
{
i
∣∣Hi(x

∗) > 0, Gi(x
∗) < 0

}
.

Similarly, we partition the set I0 in the following way:

I0+ :=
{
i
∣∣Hi(x

∗) = 0, Gi(x
∗) > 0

}
,

I00 :=
{
i
∣∣Hi(x

∗) = 0, Gi(x
∗) = 0

}
,

I0− :=
{
i
∣∣Hi(x

∗) = 0, Gi(x
∗) < 0

}
.

Note that the first subscript indicates the sign of Hi(x
∗), whereas the second subscript

stands for the sign of Gi(x
∗). We would also like to point out that the above index sets

substantially depend on the chosen point x∗. Throughout this section, it will always be
clear from the context which point these index sets refer to.

Definition 2.4. Let x∗ be feasible for the MPVC (1). Then x∗ is called

(a) weakly stationary, if there exist multipliers λ ∈ Rm, µ ∈ Rp, ηH , ηG ∈ Rl such that

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)−
l∑

i=1

ηHi ∇Hi(x
∗) +

l∑
i=1

ηGi ∇Gi(x
∗) = 0,

λi ≥ 0 (i ∈ Ig), λi = 0 (i /∈ Ig),
ηHi = 0 (i ∈ I+), ηHi ≥ 0 (i ∈ I0−), ηHi free (i ∈ I0+ ∪ I00),

ηGi = 0 (i ∈ I+− ∪ I0− ∪ I0+), ηGi ≥ 0 (i ∈ I+0 ∪ I00);

(b) T-stationary if x∗ is weakly stationary and ηGi ηHi ≤ 0 for all i ∈ I00;

(c) M-stationary if x∗ is weakly stationary and ηGi ηHi = 0 for all i ∈ I00;

(d) S-stationary if x∗ is weakly stationary and ηHi ≥ 0, ηGi = 0 for all i ∈ I00.
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0
ηGi

ηHi

(a) weak stationarity

0
ηGi

ηHi

(b) T-stationarity

0
ηGi

ηHi

(c) M-stationarity

0
ηGi

ηHi

(d) S-stationarity

Figure 1: Geometric illustration of weak, T-, M-, and S-stationarity for an index i ∈ I00

By slight abuse of terminology, if x∗ is a weakly/T-/M-S-stationary point with the
multipliers (λ, µ, ηG, ηH), then we also call the whole quintuple (x∗, λ, µ, ηG, ηH) weakly/T-
/M-S-stationary. Obviously, the following implications hold for these stationarity concepts:

S-stationarity M-stationarity T-stationarity weak stationarity

The only difference between these four stationarity concepts lies in the conditions on the
multipliers corresponding to the bi-active set I00. These conditions are illustrated in Figure
1. Hence, if the bi-active set is empty, all four stationary concepts coincide.

The notion of weak stationarity for MPVCs was introduced in [21], whereas M-statio-
narity for MPVCs is due to [16] and S-stationarity, which is equivalent to the KKT con-
ditions of (1), was first mentioned in [3]. T-stationarity was coined in [10]. In an MPCC
setting, the counterpart of T-stationarity is usually called C-stationarity, cf. [30].

2.3 MPVC-tailored Constraint Qualifications

As was pointed out above, most standard constraint qualifications are violated by the
vanishing constraints. For this reason, a myriad of MPVC-tailored constraint qualifications
have been developed in the past, see e.g. [13]. To keep our presentation unified and
compact, we confine ourselves to the ones most useful to our study.

Definition 2.5. A feasible point x∗ of the MPVC (1) is said to satisfy

(a) MPVC-linear independence CQ (MPVC-LICQ), if the gradients

∇gi(x∗) (i ∈ Ig), ∇hi(x∗) (i = 1, . . . , p), ∇Gi(x
∗) (i ∈ I00 ∪ I+0), ∇Hi(x

∗) (i ∈ I0)

are linearly independent;

(b) MPVC-Mangasarian-Fromovitz CQ (MPVC-MFCQ), if the gradients

∇gi(x∗) (i ∈ Ig), (−∇Hi(x
∗)) (i ∈ I0−), ∇Gi(x

∗) (i ∈ I+0 ∪ I00) and
∇hi(x∗) (i = 1, . . . , p), ∇Hi(x

∗) (i ∈ I0+ ∪ I00)

are positively linearly independent;
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(c) MPVC-constant rank CQ (MPVC-CRCQ), if there is a neighborhood N(x∗) of x∗
such that for all subsets I1 ⊆ Ig, I2 ⊆ {1, . . . , p}, I3 ⊆ I+0 ∪ I00, I4 ⊆ I0, the
gradients

∇gi(x) (i ∈ I1), ∇hi(x) (i ∈ I2), ∇Gi(x) (i ∈ I3), ∇Hi(x) (i ∈ I4)

have constant rank for all x ∈ N(x∗);

(d) MPVC-constant positive linear dependence CQ (MPVC-CPLD), if there is a neigh-
borhood N(x∗) of x∗ such that for all subsets I1 ⊆ Ig, I2 ⊆ I0−, I3 ⊆ I+0 ∪ I00,
I4 ⊆ {1, . . . , p}, I5 ⊆ I0+ ∪ I00, for which the gradients

∇gi(x) (i ∈ I1), (−∇Hi(x)) (i ∈ I2), ∇Gi(x) (i ∈ I3) and
∇hi(x) (i ∈ I4), ∇Hi(x) (i ∈ I5)

are positively linearly dependent in x∗, they remain linearly dependent for all x ∈
N(x∗).

In the definition of MPVC-MFCQ and MPVC-CPLD, we use the word "and" to sepa-
rate the gradients, for which there are sign constraints in the definition of positive linear
dependence, from those without sign constraints.

Apart from those defined above, there exist a number of constraint qualifications tai-
lored to MPVCs such as MPVC-ACQ, a variant of the standard ACQ. Some of the relations
between these constraint qualifications are displayed in the diagram below, see [18] and
the references therein for more information about these constraint qualifications.

MPVC-LICQ
MPVC-MFCQ

MPVC-CRCQ
MPVC-CPLD MPVC-ACQ

Analogous to the standard case, MPVC-LICQ is the strongest constraint qualification
of the five mentioned here and MPVC-ACQ is the weakest. MPVC-CPLD relaxes both
MPVC-MFCQ and MPVC-CRCQ, whereas it is known that neither MPVC-MFCQ implies
MPVC-CRCQ nor vice versa.

3 Convergence Properties of Regularization Schemes
In this section, we discuss the theoretical properties of the four regularization schemes from
[24, 25, 31, 32] in detail. All of them were originally introduced for MPCCs and have since
been adapted to MPVCs in [2, 18, 19, 21]. The only exception is the regularization scheme
from [24], which is discussed in the context of MPVCs for the first time in this paper.

In previous analysis of these regularization methods, it is usually assumed that one is
able to compute an exact KKT point of the regularized NLPs in every iteration. However,
from a numerical point of view, this is not a realistic assumption. Furthermore, for MPCCs
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an in-depth analysis [26] revealed that computing only ε-stationary points of the regularized
problems has serious effects on the convergence properties of some of these schemes.

For this reason, we develop convergence results based on ε-stationary points of the
regularized problems and compare them to the – partially preexisting – convergence results
based on exact KKT points. 1

Furthermore, we provide conditions on the MPVC under which the regularized problems
satisfy a standard CQ locally.

For clarity and brevity of notation we omit standard inequality and equality constraints
in the following proofs.

3.1 The Global Regularization

The first regularization method we present has been studied in [2, 21] and is similar to the
method for MPCCs proposed by Scholtes in his seminal paper [31]. For a given regular-
ization parameter t > 0 the regularized problem reads

min f(x)

s.t. gi(x) ≤ 0 (i = 1, . . . ,m),

hj(x) = 0 (j = 1, . . . , p), (RS(t))
Hi(x) ≥ 0 (i = 1, . . . , l),

Gi(x)Hi(x) ≤ t (i = 1, . . . , l). √
t Gi(x)

√
t

Hi(x)

Gi(x)Hi(x) = t

We denote the feasible set of the regularized program RS(t) by XS(t). Due to the struc-
ture of the resulting regularized feasible set, we call this approach the global regularization.
For a given t > 0 and x ∈ XS(t), we define the index sets

Ig(x) := {i | gi(x) = 0},
IH(x) := {i | Hi(x) = 0},

IGH(x, t) := {i | Gi(x)Hi(x) = t}.
Then we obtain the following convergence result based on ε-stationary points of the

regularized problems.

Theorem 3.1. Let {tk} ↓ 0, {εk} ↓ 0 with εk = O(tk) and {xk} a sequence of εk-stationary
points of RS(tk) with xk → x∗. If MPVC-MFCQ holds in x∗, then x∗ is a T-stationary
point of the MPVC (1).

Proof. Since xk is an εk-stationary point of RS(tk), there exist multipliers νk, δk ∈ Rl such
that ∥∥∥∥∥∇f(xk)−

l∑
i=1

νki ∇Hi(x
k) +

l∑
i=1

[
δkiGi(x

k)∇Hi(x
k) + δkiHi(x

k)∇Gi(x
k)
]∥∥∥∥∥
∞

≤ εk, (3)

1Here, for all convergence results, the point x∗ in question is always feasible for the underlying MPVC,
so that the imposed constraint qualifications at x∗ are well-defined.
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νki ≥ −εk, Hi(x
k) ≥ −εk, |νki Hi(x

k)| ≤ εk (i = 1, . . . , l), (4)
δki ≥ −εk, Gi(x

k)Hi(x
k)− tk ≤ εk, |δki (Gi(x

k)Hi(x
k)− tk)| ≤ εk (i = 1, . . . , l).(5)

First of all, this implies that the limit x∗ is feasible for the MPVC (1). Furthermore,
we can draw some conclusions from this regarding the multipliers: For all i ∈ I+ using
Hi(x

∗) > 0 the conditions in (4) imply νki = 0 for all k large and thus limk→∞ ν
k
i = 0. For

all i ∈ I0 we know at least lim infk→∞ ν
k
i ≥ 0.

For all i ∈ I+− using Gi(x
∗)Hi(x

∗) < 0 together with (5) implies limk→∞ δ
k
i = 0. For

all i /∈ I+− we obtain lim infk→∞ δ
k
i ≥ 0.

A case needed frequently later on will be |δki | → ∞. Based on the previous discussion,
this implies i /∈ I+− as well as δki → ∞. In case εk > 0 for all k large, we can infer from
(5) that

1
εk
|Gi(x

k)Hi(x
k)− tk| ≤ 1

δk
→ 0.

Then using εk = O(tk) yields
1
εk
Gi(x

k)Hi(x
k) 6→ 0. (6)

Now define ηG,k, ηH,k ∈ Rl component-wise as

ηG,ki :=

{
δkiHi(x

k), i ∈ I00 ∪ I+0,

0, i ∈ I0+ ∪ I0− ∪ I+−,
and ηH,ki :=

{
νki − δkiGi(x

k), i ∈ I0,

νki , i ∈ I+.

Then we can rewrite (3) as

∥∥∥∇f(xk)−
l∑

i=1

ηH,ki ∇Hi(x
k) +

∑
i∈I+−∪I+0

(δkiGi(x
k))∇Hi(x

k)

+
l∑

i=1

ηG,ki ∇Gi(x
k) +

∑
i∈I0+∪I0−∪I+−

(δkiHi(x
k))∇Gi(x

k)
∥∥∥
∞
≤ εk.

(7)

Define I := I+− ∪ I+0 ∪ I0+ ∪ I0−. To prove that the sequence {(ηG,k, ηH,k, δkI )} is
bounded, assume ‖(ηG,k, ηH,k, δkI )‖ → ∞ and w.l.o.g that the complete normalized se-
quences converges:

(ηG,k, ηH,k, δkI )

‖(ηG,k, ηH,k, δkI )‖
→ (η̄G, η̄H , δ̄I) 6= 0 for k →∞.

Then, dividing (7) by ‖(ηG,k, ηH,k, δkI )‖ and passing to the limit we arrive at

0 =
l∑

i=1

η̄Hi ∇Hi(x
∗) +

l∑
i=1

η̄Gi ∇Gi(x
∗). (8)

Here, we used Gi(x
k)→ 0 for i ∈ I+0, Hi(x

k)→ 0 for i ∈ I0+∪ I0− and δki → 0 for i ∈ I+−.
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By definition supp(η̄G) ⊆ I00 ∪ I+0 and supp(η̄H) ⊆ I00 ∪ I0+ ∪ I0− because νki → 0 for
i ∈ I+. To be able to apply MPVC-MFCQ, it remains to verify η̄Gi ≥ 0 for all i ∈ I+0 ∪ I00

and η̄Hi ≥ 0 for all i ∈ I0−. For all k sufficiently large, we have the following implications

i ∈ I0− =⇒ ηH,ki = νki + δki (−Gi(x
k)) ≥ −εk(1−Gi(x

k))→ 0 =⇒ η̄Hi ≥ 0,

i ∈ I+0 =⇒ ηG,ki = δkiHi(x
k) ≥ −εkHi(x

k)→ 0 =⇒ η̄Gi ≥ 0.

If for some i ∈ I00 we had η̄Gi < 0, then due to ηG,ki = δkiHi(x
k) we could infer δki → +∞

due to Hi(x
k) → 0. Furthermore, Hi(x

k) < 0 has to hold for all k large and thus εk > 0
. Then (4) yields Hi(x

k) ∈ [−εk, 0) , which results in a contradiction to (6), because it
implies

1
εk
|Gi(x

k)Hi(x
k)| ≤ |Gi(x

k)| → 0.

These properties of η̄G, η̄H together with (8), and the assumption that MPVC-MFCQ
holds in x∗, yields η̄G = η̄H = 0 and thus δ̄I 6= 0. We know δki → 0 for all i ∈ I+− and thus
δ̄I+− = 0. However, δ̄iHi(x

∗) = η̄Gi = 0 for all i ∈ I+0 also implies δ̄I+0 = 0. Consequently,
there has to be an i ∈ I0+ ∪ I0− with δ̄i 6= 0 and thus δ̄i > 0. For i ∈ I0− this together with
η̄Hi = 0 yields

lim
k→∞

νki
‖(ηG,k, ηH,k, δkI )‖

= δ̄iGi(x
∗) < 0,

a contradiction to (4). The only remaining possibility is thus δ̄i > 0 for some i ∈ I0+.
Again using η̄Hi = 0 we then know

lim
k→∞

νki
‖(ηG,k, ηH,k, δkI )‖

= δ̄iGi(x
∗) > 0.

According to our construction, this implies νki →∞ and thus, by (4), we have |Hi(x
k)| ≤

εk
νki
→ 0. Since both νki → ∞ and δ̄i > 0 (hence δki → ∞), we know εk > 0 for all k large

and
1
εk
|Gi(x

k)Hi(x
k)| ≤ |Gi(x

k)| 1
νki
→ 0,

a contradiction to (6). This shows δ̄I = 0.
Consequently, the assumption that (ηG,k, ηH,k, δkI ) is unbounded has to false. We can

thus assume without loss of generality that the whole sequence {(ηG,k, ηH,k, δkI )} converges
to some limit (ηG,∗, ηH,∗, δ∗I ). Thanks to (7), this limit then satisfies

∇f(x∗)−
l∑

i=1

ηH,∗i ∇Hi(x
∗) +

l∑
i=1

ηG,∗i ∇Gi(x
∗) = 0, (9)

where we again used Hi(x
k)→ 0 for i ∈ I0+∪ I0−, Gi(x

k)→ 0 for i ∈ I+0 as well as δki → 0
for i ∈ I+−. By what was proven above, the limit also satisfies

supp(ηG,∗) ⊆ I00 ∪ I+0 and supp(ηH,∗) ⊆ I00 ∪ I0+ ∪ I0−
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as well as ηH,∗i ≥ 0 for all i ∈ I0− and ηG,∗i ≥ 0 for all i ∈ I+0 ∪ I00. This ensures weak
stationarity of x∗.

In order to prove that x∗ is in fact T-stationary, assume that there were i ∈ I00 with
ηG,∗i ηH,∗i > 0. In case νki → 0, this implies

ηG,∗i ηH,∗i = lim
k→∞
−(δki )2Gi(x

k)Hi(x
k) > 0

and thus Gi(x
k)Hi(x

k) < 0 for all k sufficiently large. Due to tk > 0 this implies

|δki |tk ≤ |δki ||Gi(x
k)Hi(x

k)− tk| ≤ εk.

But since |δki | → ∞, that is a contradiction to εk = O(tk).
In case νki 6→ 0, we can use that the assumption ηG,∗i = limk→∞ δ

k
iHi(x

k) 6= 0 implies
Hi(x

k) 6= 0 for all k large to infer εk > 0 due to (4). Then (4) guarantees |Hi(x
k)| ≤ εk

νki
and thus again

1
εk
|Gi(x

k)Hi(x
k)| ≤ |Gi(x

k)| 1
νki
→ 0,

in contradiction to (6). Consequently our assumption was wrong and ηG,∗i ηH,∗i ≤ 0 for all
i ∈ I00. Hence, x∗ is even T-stationary.

Since we can use εk = 0 in the previous theorem, the following exact convergence result
is an immediate corollary. Note that this constitutes an improvement over a result by
Achtziger et al. [2, Theorem 3.3(a)].

Corollary 3.2. Let {tk} ↓ 0 and {xk} a sequence of KKT points of RS(tk) with xk → x∗.
If MPVC-MFCQ holds in x∗, then x∗ is a T-stationary point of the MPVC (1).

As the regularization method is based on the assumption that local minima of the
regularized problems are KKT points, we conclude our discussion by verifying that MPVC-
MFCQ locally ensures MFCQ for the regularized problems. A similar result under the
stronger assumption of MPVC-LICQ can be found in [21, Theorem 5.3].

Theorem 3.3. Let x∗ be feasible for the MPVC (1) such that MPVC-MFCQ holds in x∗.
Then there exists a neighborhood N(x∗) of x∗ and a t̄ > 0 such that for all t ∈ (0, t̄] and
all x ∈ N(x∗) ∩XS(t) standard MFCQ for RS(t) is satisfied in x.

Proof. By continuity, there exists a neighborhood N(x∗) of x∗ and a t̄ > 0 such that for
all t ∈ (0, t̄] and all x ∈ N(x∗) ∩XS(t) we have the inclusions

IH(x) ⊆ I0, IGH(x, t) ⊆ I00 ∪ I0+ ∪ I+0, and IH(x) ∩ IGH(x, t) = ∅. (10)

Here, the last conditions follows directly from the definition of the regularized problem.
Since MPVC-MFCQ holds in x∗, we know that the gradients

(−∇Hi(x)) (i ∈ I0−), ∇Gi(x) (i ∈ I00 ∪ I+0), and ∇Hi(x) (i ∈ I00 ∪ I0+)
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are positively linearly independent in x∗. In view of [29, Proposition 2.2], this implies that
these gradients remain positively linearly independent for all x ∈ N(x∗) ∩XS(t), if N(x∗)
is chosen sufficiently small. We trivially have the inclusions

(IGH(x, t) ∩ I00) ∪ (IGH(x, t) ∩ I+0) ⊆ I00 ∪ I+0,

(IGH(x, t) ∩ I00) ∪ (IGH(x, t) ∩ I0+) ⊆ I00 ∪ I0+,

IH(x) ∩ (I00 ∪ I0+) ⊆ I00 ∪ I0+,

IH(x) ∩ I0− ⊆ I0−

for all x ∈ N(x∗) ∩ XS(t). Exploiting Gi(x) > 0, Hi(x) ≈ 0 for i ∈ I0+ as well as
Gi(x) ≈ 0, Hi(x) > 0 for i ∈ I+0 and shrinking N(x∗) further, if necessary, we can ensure
that for all x ∈ XS(t) ∩N(x∗) the gradients

−∇Hi(x) (i ∈ IH(x) ∩ I0−)
∇Gi(x) (i ∈ IGH(x, t) ∩ I00)

Hi(x)∇Gi(x) +Gi(x)∇Hi(x) (i ∈ IGH(x, t) ∩ I+0)
and ∇Hi(x) (i ∈ IGH(x, t) ∩ I00)

Hi(x)∇Gi(x) +Gi(x)∇Hi(x) (i ∈ IGH(x, t) ∩ I0+)
∇Hi(x) (i ∈ IH(x) ∩ (I00 ∪ I0+))

are positively linearly independent. But then thanks to the inclusions (10) for all x ∈
N(x∗) ∩XS(t) the gradients

−∇Hi(x) (i ∈ IH(x))
Hi(x)∇Gi(x) +Gi(x)∇Hi(x) (i ∈ IGH(x, t))

(11)

are positively linearly independent, which is MFCQ for the regularized problem RS(t) in
x.

3.2 The Local Regularization Scheme

While the previously considered global regularization relaxed the vanishing constraint glob-
ally, the next regularization method, which was introduced by Steffensen and Ulbrich [32]
for MPCCs and used for MPVCs by Hoheisel et al. [18], relaxes the vanishing constraint
only locally around the origin. For a given regularization parameter t > 0, the regularized
problem reads

min f(x)

s.t. gi(x) ≤ 0 (i = 1, . . . ,m),

hj(x) = 0 (j = 1, . . . , p), (RSU(t))
Hi(x) ≥ 0 (i = 1, . . . , l),

ΦSU
i (x; t) ≤ 0 (i = 1, . . . , l), t Gi(x)

t

Hi(x)

ΦSU
i (x; t) = 0
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with ΦSU
i : Rn → R defined as

ΦSU
i (x; t) = Gi(x) +Hi(x)− ϕ(Gi(x)−Hi(x); t)

where ϕ : R→ R is defined as

ϕ(a; t) :=

{
|a| if |a| ≥ t,

tθ
(
a
t

)
if |a| < t

and θ : [−1, 1]→ R is a function satisfying the following conditions:

(a) θ is twice continuously differentiable on [-1,1];

(b) θ(−1) = θ(1) = 1;

(c) θ′(−1) = −1 and θ′(1) = 1;

(d) θ′′(−1) = θ′′(1) = 0;

(e) θ′′(x) > 0 for all x ∈ (−1, 1).

We denote the feasible set of RSU(t) by XSU(t).
The following lemma collects some important properties of the function ΦSU

i .

Lemma 3.4 ([18, Lemma 4.5-4.6]). For t > 0 and x ∈ Rn we have for all i = 1, . . . , l

ΦSU
i (x; t)


< 0 if min{Gi(x), Hi(x)} < 0,

< 0 if min{Gi(x), Hi(x)} = 0 and |Gi(x)−Hi(x)| < t,

= 0 if min{Gi(x), Hi(x)} = 0 and |Gi(x)−Hi(x)| ≥ t,

> 0 if min{Gi(x), Hi(x)} > 0 and |Gi(x)−Hi(x)| ≥ t,

and
∇ΦSU

i (x; t) = αi∇Gi(x) + βi∇Hi(x)

with

(αi, βi) =


(

2
0

)
if Gi(x)−Hi(x) ≤ −t,(

0
2

)
if Gi(x)−Hi(x) ≥ t,(

1−θ′
(

Gi(x)−Hi(x)

t

)
1+θ′

(
Gi(x)−Hi(x)

t

)
)
, if |Gi(x)−Hi(x)| < t.

The following exact convergence result has been established by Hoheisel et al. [18].

Theorem 3.5 ([18, Theorem 4.12]). Let {tk} ↓ 0 and let {xk} be a sequence of KKT points
of RSU(tk) with xk → x∗ such that MPVC-CPLD holds at x∗. Then x∗ is a T-stationary
point of the MPVC (1).
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To facilitate the subsequent analysis of the inexact case, we need some new index sets.
For t > 0 and x ∈ XSU(t) we define

IH(x) := {i | Hi(x) = 0},
IΦ(x, t) := {i | ΦSU

i (x; t) = 0}.

Then analogously to the MPCC case, we see that in the case of ε-stationary points of
the regularized problems, the theoretical convergence properties of this scheme deteriorate.

Theorem 3.6. Let {tk}, {εk} ↓ 0, and {xk} be a sequence of εk-stationary points of RSU(tk)
with xk → x∗ such MPVC-MFCQ holds at x∗. Then x∗ is a weakly stationary point of (1).

Proof. Since xk are εk-stationary points of RSU(tk), there exist multipliers {(νk, δk)} such
that for all k ∈ N∥∥∥∥∥∇f(xk)−

l∑
i=1

νki ∇Hi(x
k) +

l∑
i=1

δki∇ΦSU
i (xk; tk)

∥∥∥∥∥
∞

≤ εk, (12)

Hi(x
k) ≥ −εk, νki ≥ −εk, |νki Hi(x

k)| ≤ εk (i = 1, . . . , l), (13)
ΦSU
i (x; tk) ≤ εk, δki ≥ −εk, |δki ΦSU

i (x; tk)| ≤ εk (i = 1, . . . , l). (14)

In particular, x∗ is feasible for (1). We now observe that, for all k ∈ N and i = 1 . . . , l, we
have

∇ΦSU
i (xk); tk = αki∇Gi(x

k) + βkiHi(x
k)

with (αki , β
k
i ) given by Lemma 3.4. Hence, defining the multipliers

ηH,ki := νki − δki βki and ηG,ki := δki α
k
i

for all i = 1, . . . , l, we can rewrite (12) as∥∥∥∥∥∇f(xk)−
l∑

i=1

ηH,ki ∇Hi(x
k) +

l∑
i=1

ηG,ki ∇Gi(x
k)

∥∥∥∥∥
∞

≤ εk. (15)

We claim that the sequence {(ηG,k, ηH,k)} is bounded. Otherwise, we may assume w.l.o.g.
that the whole normalized sequence converges:

(ηG,k, ηH,k)

‖(ηG,k, ηH,k)‖
−→ (η̄G, η̄H) 6= 0.

Dividing (15) by ‖(ηG,k, ηH,k)‖ and passing to the limit then yields

−
l∑

i=1

η̄Hi ∇Hi(x
k) +

l∑
i=1

η̄Gi ∇Gi(x
k) = 0. (16)
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We now show that supp(η̄G) ⊆ I00 ∪ I+0. For all i ∈ I0+, we have Hi(x
∗) = 0 and

Gi(x
∗) > 0. This implies Gi(x

k)−Hi(x
k) ≥ tk for k sufficiently large and thus, by Lemma

3.4, αki = 0. It then follows that ηG,ki = αki δ
k
i = 0 for all k large and therefore η̄Gi = 0.

For all i ∈ I0−∪I+−, we haveHi(x
∗) ≥ 0 andGi(x

∗) < 0. This impliesGi(x
k)−Hi(x

k) ≤
−tk for k sufficiently large and by Lemma 3.4, we then have αki = 2. It follows that
ηG,ki = αki δ

k
i = 2δki , and hence η̄Gi 6= 0 is only possible if |δki | 6→ 0. By (14), this would

imply ΦSU
i (xk; tk)→ 0 and thus for k sufficiently large

2Gi(x
k) = Gi(x

k)+Hi(x
k)−|Gi(x

k)−Hi(x
k)| = Gi(x

k)+Hi(x
k)−ϕ(Gi(x

k)−Hi(x
k); t)→ 0.

But this would contradict i ∈ I0− ∪ I+−. All in all, we have shown supp(η̄G) ⊆ I00 ∪ I+0.
The next step is to show supp(η̄H) ⊆ I0. For all i ∈ I+ = I+−∪ I+0 we have Hi(x

∗) > 0
and Gi(x

∗) ≤ 0. Then for all k sufficiently large Gi(x
k)−Hi(x

k) ≤ −tk follows and Lemma
3.4 yields βki = 0. This implies ηH,ki = νki for all k sufficiently large. Thus, η̄Hi 6= 0 is only
possible, if |νki | 6= 0. But then Hi(x

∗) = 0 has to hold due to (13) , which contradicts
i ∈ I+.

Using the previous observations, (16) reduces to

−
∑
i∈I0

η̄Hi ∇Hi(x
k) +

∑
i∈I00∪I0+

η̄Gi ∇Gi(x
k) = 0.

We now observe that, for i ∈ I0− and k sufficiently large, we have Gi(x
k)−Hi(x

k) < −tk
and hence βki = 0 and ηH,ki = νki ≥ −εk. This guarantees η̄Hi ≥ 0 for i ∈ I0−. Since
ηG,ki = αki δ

k
i with αki ∈ [0, 2] and δki ≥ −εk for all k ∈ N and all i = 1, . . . , l, we also

know η̄Gi ≥ 0 for all i ∈ I00 ∪ I+0). But then (16) together with (η̄G, η̄H) 6= 0 contradicts
MPVC-MFCQ at x∗ .

Therefore, the sequence {(ηG,k, ηH,k)} is bounded and, at least on a subsequence, con-
verges to a limit (ηG,∗, ηH,∗). Reiterating the previous arguments proves that (x∗, ηG,∗, ηH,∗)
is a weakly stationary point.

Consequently, even under the stronger assumption of MPVC-MFCQ, using only ε-
stationary points of the regularized problems, we cannot guarantee T-stationarity of the
limit anymore. This is analogous to the MPCC case discussed in [26]. In this reference,
two MPCC examples are provided to illustrate that in the inexact setting limits, which are
only weakly stationary, can actually occur. Those examples can also be translated into the
MPVC setting.

Finally, we want to close our discussion of this local regularization method by again
proving that the regularized problems locally inherit a constraint qualification from the
MPVC. However, since the vanishing constraint is relaxed only locally, we cannot expect
strong CQs such as LICQ or MFCQ for the regularized problem if I0+ 6= ∅.

Theorem 3.7. Let x∗ be feasible for the MPVC (1) such that MPVC-LICQ holds at x∗.
Then there exists t̄ > 0 and a neighborhood N(x∗) of x∗ such that, for all t ∈ (0, t̄] and all
x ∈ XSU(t) ∩N(x∗), standard ACQ for RSU(t) is satisfied at x.
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Proof. By continuity, there exists a neighborhood N(x∗) of x∗ and a t̄ > 0 such that for
all t ∈ (0, t̄] and all x ∈ N(x∗) ∩XSU(t) we have the inclusions

IH(x) ⊆ I0, IG(x) ⊆ I+0 ∪ I00, IΦ(x, t) ⊆ I00 ∪ I0+ ∪ I+0. (17)

Shrinking t̄ and N(x∗) if necessary, we can also achieve

I0+ ⊆ IΦ(x, t) ∩ IH(x) (18)

for all t ∈ (0, t̄] and all x ∈ N(x∗) ∩XSU(t).
Now consider an arbitrary t ∈ (0, t̄] and x̂ ∈ N(x∗) ∩XSU(t). We define the auxiliary

problem NLP(x̂) by

min f(x) s.t. Hi(x) ≥ 0 (i ∈ IH(x̂) \ IΦ(x̂, t)),

Hi(x) = 0 (i ∈ IΦ(x̂, t) ∩ IH(x̂)),

ΦSU
i (x; t) ≤ 0 (i ∈ IΦ(x̂, t) \ IH(x̂)),

and denote its feasible region by X̂. Then, clearly, x̂ ∈ X̂.
Our next step is to prove that LICQ for NLP(x̂) holds in x̂. To this end, note that the

gradients of the active constraints are

∇Hi(x̂) (i ∈ IH(x̂) ⊆ I0),

αi∇Gi(x̂) + βi∇Hi(x̂) (i ∈ IΦ(x̂, t) \ IH(x̂) ⊆ I00 ∪ I+0),

with αi, βi given by Lemma 3.4. Here, we used I0+ ⊆ IΦ(x̂, t) ∩ IH(x̂) by the choice of t̄
and N(x∗). Consequently, if we choose N(x∗) small enough, MPVC-LICQ implies linear
independence of the above gradients and thus LICQ.

Since LICQ implies ACQ for NLP(x̂), we thus also know TX̂(x̂) = LX̂(x̂), where

LX̂(x̂) = {d ∈ Rn | ∇Hi(x̂)Td ≥ 0 (i ∈ IH(x̂) \ IΦ(x̂, t)),

∇Hi(x̂)Td = 0 (i ∈ IH(x̂) ∩ IΦ(x̂, t)),

(αi∇Gi(x̂) + βi∇Hi(x̂))Td ≤ 0 (i ∈ IΦ(x̂, t) \ IH(x̂))}.

If we choose r > 0 sufficiently small, then X̂∩Br(x̂) ⊆ XSU(t), because for all i /∈ IH(x̂)
we have Hi(x̂) > 0, for all i /∈ IΦ(x̂, t) we have ΦSU

i (x̂; t) < 0 and for all i ∈ IΦ(x̂, t)∩ IH(x̂)
the constraint Hi(x) = 0 implies ΦSU

i (x; t) ≤ 0 by Lemma 3.4. This implies LX̂(x̂) =
TX̂(x̂) ⊆ TXSU (t)(x̂).

To complete the proof, it remains to observe that LXSU (t)(x̂) = LX̂(x̂), because

LXSU (t)(x̂) = {d ∈ Rn | ∇Hi(x̂)Td ≥ 0 (i ∈ IH(x̂)),

(αi∇Gi(x̂) + βi∇H(x̂))Td ≤ 0 (i ∈ IΦ(x̂, t))}

where for all i ∈ IH(x̂) ∩ IΦ(x̂, t) we have |Gi(x̂)| ≥ t and thus (αi, βi) = (0, 2) by Lemma
3.4.
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3.3 The L-shaped Regularization Scheme

In this section we study the so-called L-shaped regularization introduced by Kanzow and
Schwartz in [25] for MPCCs and adapted for MPVCs in [19]. For t > 0, it is given by

min f(x)

s.t. gi(x) ≤ 0 (i = 1, . . . ,m),

hj(x) = 0 (j = 1, . . . , p), (RKS(t))
Hi(x) ≥ 0 (i = 1, . . . , l),

ΦKS
i (x; t) ≤ 0 (i = 1, . . . , l), Gi(x)

t

Hi(x)

ΦKS
i (x; t) = 0

with ΦKS
i : Rn → R being defined as the once continuously differentiable function

ΦKS
i (x; t) =

{
Gi(x)(Hi(x)− t) if Gi(x) +Hi(x) ≥ t,

−1
2
[Gi(x)2 + (Hi(x)− t)2] if Gi(x) +Hi(x) < t.

We denote the feasible set of RKS(t) by XKS(t).
Contrary to the two previously considered regularization schemes, this approach guar-

antees M-stationarity and not just T-stationarity of limits in the exact case.

Theorem 3.8 ([19, Theorem 4.1]). Let {tk} ↓ 0 and let {xk} be a sequence of KKT points
of RKS(tk)with xk → x∗ such that MPVC-CPLD holds at x∗. Then x∗ is an M-stationary
point of the MPVC (1).

It was also proven in [19] that the regularized problems satisfy standard GCQ locally
under suitable assumptions. Since the regularized problems retain the kink of the feasible
set in (Gi(x), Hi(x)) = (0, t), one cannot hope for a stronger CQ to be satisfied in all of
XKS(t).

Theorem 3.9 ([19, Theorem 4.7, 4.9]). Let x∗ be feasible for MPVC (1) and MPVC-
LICQ hold in x∗. Then there exists t̄ > 0 and a neighborhood N(x∗) of x∗ such that, for
all t ∈ (0, t̄] and all x ∈ XKS(t) ∩ N(x∗), standard GCQ for RKS(t) is satisfied at x. If
additionally (Gi(x), Hi(x)) 6= (0, t) for all i = 1, . . . , l, then standard LICQ holds at x.

However, similarly to the local regularization, the favourable convergence properties
are lost, if one computes only ε-stationary points of the regularized problems.

Theorem 3.10. Let {tk}, {εk} ↓ 0, and let {xk} be a sequence of εk-stationary points of
RKS(tk) with xk → x∗ such MPVC-MFCQ holds at x∗. Assume furthermore that

lim inf
k→∞

εk
Gi(xk)

≤ 0 (i ∈ I00) (19)

whenever this is well-defined. Then x∗ is a weakly stationary point of (1).
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Proof. Since xk are εk-stationary points of RKS(tk), there exist multipliers (νk, δk) such
that ∥∥∥∥∥∇f(xk)−

k∑
i=1

νki ∇Hi(x
k) +

l∑
i=1

δki∇ΦKS
i (xk; tk)

∥∥∥∥∥
∞

≤ εk, (20)

νki ≥ −εk, Hi(x
k) ≥ −εk, |νki Hi(x

k)| ≤ εk (i = 1, . . . , l), (21)
δki ≥ −εk, ΦKS

i (xk; tk) ≤ εk, |δki ΦKS
i (xk; tk)| ≤ εk (i = 1, . . . , l). (22)

Here, the gradients of ΦKS
i are given by

∇ΦKS
i (xk; tk) =

{
(Hi(x

k)− tk)∇Gi(x
k) +Gi(x

k)∇Hi(x
k) if Gi(x

k) +Hi(x
k) ≥ tk,

−Gi(x
k)∇Gi(x

k)− (Hi(x
k)− tk)∇Hi(x

k) if Gi(x
k) +Hi(x

k) < tk.

We now define multipliers ηG,k, ηH,k ∈ Rl component-wise by

ηG,ki :=

{
δki (Hi(x

k)− tk) if Gi(x
k) +Hi(x

k) ≥ tk,

−δkiGi(x
k) if Gi(x

k) +Hi(x
k) < tk,

ηH,ki :=

{
νki − δkiGi(x

k) if Gi(x
k) +Hi(x

k) ≥ tk,

νki + δki (Hi(x
k)− tk) if Gi(x

k) +Hi(x
k) < tk.

Using these new multipliers, we can re-write (20) as∥∥∥∥∥∇f(xk)−
l∑

i=1

ηH,ki ∇Hi(x
k) +

l∑
i=1

ηG,ki ∇Gi(x
k)

∥∥∥∥∥
∞

≤ εk. (23)

We claim that the sequence {(ηG,k, ηH,k)} is bounded. If the sequence were unbounded,
then w.l.o.g. we have

(ηG,k, ηH,k)

‖(ηG,k, ηH,k)‖
→ (η̄G, η̄H) 6= 0. (24)

Therefore, dividing (23) by ‖(ηG,k, ηH,k)‖ and passing to the limit we obtain

0 =
l∑

i=1

η̄Gi ∇Gi(x
∗)−

l∑
i=1

η̄Hi ∇Hi(x
∗). (25)

We now determine the support of the multipliers: For all i ∈ I0+ we have Gi(x
k)+Hi(x

k) ≥
tk for all k sufficiently large. By the definition of ηG,ki and (22) we hence have

Gi(x
k)ηG,ki = Gi(x

k)δki (Hi(x
k)− tk) = δki ΦKS

i (xk; tk)→ 0,

Since Gi(x
∗) > 0, this implies ηG,ki → 0 and hence η̄Gi = 0. For all i ∈ I0− ∪ I+−, we have

limk→∞ΦKS
i (xk; tk) 6= 0, and hence δki → 0 due to (22). Therefore, ηG,ki → 0 and hence

η̄Gi = 0. All in all, we have proven supp(η̄G) ⊆ I00 ∪ I+0.
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For all i ∈ I+, we know Gi(x
k) + Hi(x

k) > tk for all k sufficiently large and thus
ηH,ki = νki − δkiGi(x

k). Since we have νki → 0 by (21), we can use the definition of ηH,ki to
conclude

ηH,ki (Hi(x
k)− tk) = (νki − δkiGi(x

k))(Hi(x
k)− tk) = νki (Hi(x

k)− tk)− δki ΦKS
i (xk; tk)→ 0

and thus due to Hi(x
∗) > 0 obtain ηH,ki → 0. This shows supp(η̄H) ⊆ I0− ∪ I0+ ∪ I00.

Hence, (25) reduces to

0 =
∑

i∈I00∪I+0

η̄Gi ∇Gi(x
∗)−

∑
i∈I00∪I0−∪I0+

η̄Hi ∇Hi(x
∗).

The next step is to determine the signs of the multipliers η̄Gi (i ∈ I00 ∪ I+0) and
η̄Hi (i ∈ I0−). To this end, first consider i ∈ I0− and assume that η̄Hi < 0. Then for k
sufficiently large, we know Gi(x

k) +Hi(x
k) < tk and thus, using (21),

ηH,ki = δki (Hi(x
k)− tk) + νki ≤ −c < 0

for all k large. Due to νki ≥ −εk → 0 and δki ≥ −εk → 0, it follows that δki → +∞. From
(22) together with i ∈ I0−, we hence obtain for k sufficiently large

εk ≥ |δki ΦKS
i (xk; tk)| = δki

1
2
[Gi(x

k)2 + (Hi(x
k)− tk)2] ≥ 1

2
δkiGi(x

k)2 → +∞,

which is a contradiction to εk → 0. This shows η̄Hi ≥ 0 for all i ∈ I0−.
Now consider i ∈ I+0. Then Gi(x

k) + Hi(x
k) ≥ tk and thus ηG,ki = δki (Hi(x

k)− tk) for
all k large. As δki ≥ −εk and Hi(x

k)− tk → Hi(x̄) > 0, this implies η̄Gi ≥ 0 for all i ∈ I+0.
Finally, consider i ∈ I00 and assume that η̄Gi < 0. If Gi(x

k) + Hi(x
k) ≥ tk for almost

all k, then for some c > 0 we have

ηG,ki = δki (Hi(x
k)− tk) ≤ −c < 0, δki → +∞ and − ηG,ki Gi(x

k) ≤ |δki ΦKS
i (xk; tk)| ≤ εk

for all k large. If instead Gi(x
k) + Hi(x

k) < tk for almost all k, then analogously to the
previous discussion we obtain for all k large

ηG,ki = −δkiGi(x
k) ≤ −c < 0, δki → +∞ and − ηG,ki Gi(x

k) ≤ 2|δki ΦKS
i (xk; tk)| ≤ 2εk.

Since in both cases Gi(x
k) has to be positive for all k large due to ηG,ki < 0, it follows that

2εk
Gi(xk)

≥ −ηG,ki ≥ c > 0

for all k large, which contradicts the assumption (19).
All in all, we have shown η̄Gi ≥ 0 (i ∈ I00∪ I+0) and η̄Hi ≥ 0 (i ∈ I0−). But this together

with (25) and (24) contradicts the assumption that MPVC-MFCQ holds in x∗.
Therefore the sequence {(ηG,k, ηH,k)} is bounded and w.l.o.g. converges to some limit

(ηG,∗, ηH,∗). Reusing the previous sign considerations (note that we never explicitly ex-
ploited that ηG,ki or ηH,ki are assumed to be unbounded to extract the desired signs), we
see that (x∗, ηG,∗, ηH,∗) is a weakly stationary point of (1).
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Note that the assumptions needed to prove this result differ a little from those needed for
MPCCs in [25, 26]. For MPCCs convergence of ε-stationary points to a weakly stationary
point is proven under MPCC-LICQ (in fact only MPCC-MFCQ is needed) without any
additional assumptions in [25, Theorem 4.13]. However, since we consider MPVCs here, we
have to ensure for both weak stationarity and MPVC-MFCQ that multipliers ηGi associated
with gradients ∇Gi(x

∗), i ∈ I00 are nonnegative, whereas there is no sign constraint on
multipliers ηHi associated ∇Hi(x

∗), i ∈ I00. The subsequent example illustrates the need
for an additional condition to be able to ensure weak stationarity in the MPVC setting.

Example 3.11. Consider the MPVC

min
x∈R2

f(x) = x1 − x2 s.t. H(x) = x2 ≥ 0, G(x)H(x) = x1x2 ≤ 0.

Then x∗ = (0, 0)T is feasible but not weakly stationary, because the – due to MPVC-LICQ
– unique corresponding multipliers are (ηG, ηH) = (−1,−1) although G(x∗) = H(x∗) = 0.

Now consider the regularized problem RKS(t) for some t > 0 and define

xt :=

(
t2

t− t2

)
, νt := 0, δt :=

1

t2
, εt := t2.

Then obviously xt → x∗ for t ↓ 0 and one easily verifies that xt with the multipliers (νt, δt)
is an εt-stationary point of RKS(t) for all t > 0. Thus, even if ε = o(t) and MPVC-LICQ
holds, the limit point does not have to be weakly stationary. Note that εt

G(xt)
= 1 for all

t > 0 and thus the additional assumption (19) is not satisfied.

Theorem 3.10 is sharp in the sense that even under the additional assumptions used,
only weak stationarity of the limit can be guaranteed, but not M- or at least T-stationarity.

Example 3.12. Consider the MPVC

min
x∈R2

f(x) = −x1 + x2 s.t. H(x) = x2 ≥ 0, G(x)H(x) = x1x2 ≤ 0.

Then x∗ = (0, 0)T is weakly but not T- or M- stationary, because the – due to MPVC-LICQ
– unique corresponding multipliers are (ηG, ηH) = (1, 1) although G(x∗) = H(x∗) = 0.

Now consider the regularized problem RKS(t) for some t > 0 and define

xt :=

(
−t2

t+ t2

)
, νt := 0, δt :=

1

t2
, εt := t2.

Then obviously xt → x∗ for t ↓ 0 and one easily verifies that xt with the multipliers (νt, δt)
is an εt-stationary point of RKS(t) for all t > 0. Thus, although we have ε = o(t), MPVC-
LICQ, and εt

G(xt)
= −1 for all t > 0, the limit point x∗ is not T-stationary.
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3.4 The Nonsmooth Regularization

The following regularization approach is based on a regularization scheme for complemen-
tarity constraints introduced by Kadrani et al. [24]. For t > 0 it is given by

min f(x)

s.t. gi(x) ≤ 0 (i = 1, . . . ,m),

hj(x) = 0 (j = 1, . . . , p), (RKDB(t))
Hi(x) ≥ 0 (i = 1, . . . , l),

ΦKDB
i (x; t) ≤ 0 (i = 1, . . . , l), Gi(x)

t

Hi(x)

ΦKDB
i (x; t) = 0

with ΦKDB
i : Rn → R being defined as

ΦKDB
i (x; t) = Gi(x)(Hi(x)− t).

We denote the feasible set of RKDB(t) by XKDB(t).
For the analysis of this regularization scheme, we need the following index sets for t > 0

and x ∈ XKDB(t):

IH(x) := {i = 1, . . . , l | Hi(x) = 0},
IΦ(x, t) := {i = 1, . . . , l | ΦKDB

i (x; t) = Gi(x)(Hi(x)− t) = 0},
I0,∗

Φ (x, t) := {i ∈ IΦ(x, t) | (Hi(x)− t) = 0},
I∗,0Φ (x, t) := {i ∈ IΦ(x, t) | Gi(x) = 0}.

Since this is the first time that this regularization scheme is applied to MPVCs instead
of MPCCs, we start by analyzing the exact case, where we assume that we can compute
KKT points of the regularized problems.

Theorem 3.13. Let {tk} ↓ 0 and let {xk} be a sequence of KKT points of RKDB(tk)with
xk → x∗ such that MPVC-CPLD holds at x∗. Further, assume that for all k large

Hi(x
k) ≥ tk or Gi(x

k) > 0 ∀i ∈ I00. (26)

Then x∗ is an M-stationary point of (1).

Proof. Since xk is a KKT point of RKDB(tk), there exist multipliers (νk, δk) such that

0 = ∇f(xk)−
l∑

i=1

νki Hi(x
k) +

l∑
i=1

δki∇ΦKDB
i (xk; tk), (27)

νk ≥ 0, supp(νk) ⊆ IH(xk), (28)
δk ≥ 0, supp(δk) ⊆ IΦ(xk, tk) (29)

for all k ∈ N. Now define the multipliers (ηG,k, ηH,k) component-wise by

ηG,ki := δki (Hi(x
k)− tk) and ηH,ki := νki − δkiGi(x

k)
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for all i = 1, . . . , l. Using these definitions, (27) reads

0 = ∇f(xk) +
l∑

i=1

ηG,ki ∇Gi(x
k)−

l∑
i=1

ηH,ki ∇Hi(x
k). (30)

By simple continuity arguments, it follows that

supp(ηG,k) ⊆ I∗0Φ (xk, tk) ⊆ I00 ∪ I+0, and supp(ηH,k) ⊆ IH(xk) ∪ I0∗
Φ (xk, tk) ⊆ I0.

For all i ∈ I0− we have Gi(x
k) < 0 for all k large and thus ηH,ki ≥ 0. For all i ∈ I+0 we

have Hi(x
k) > tk for all k large and thus ηG,ki ≥ 0. Finally, for all i ∈ I00, our assumption

guarantees that either Hi(x
k) ≥ tk or Φi(x

k; tk) < 0 and thus δki = 0. In both cases ηG,ki ≥ 0
follows.

Using [32, Lemma A.1], we can assume w.l.o.g. that the gradients

∇Gi(x
k) (i ∈ supp(ηG,k)), ∇Hi(x

k) (i ∈ supp(ηH,k)) (31)

are linearly independent for all k ∈ N. (Beware that while we can preserve the signs of the
multipliers ηG,k, ηH,k and the upper estimates for their support, their structure is lost after
using this lemma.)

If the sequence {(ηG,k, ηH,k)} were unbounded, we can assume w.l.o.g.

(ηG,k, ηH,k)

‖(ηG,k, ηH,k)‖
→ (η̄G, η̄H) 6= 0.

Dividing equation (30) by ‖(ηG,k, ηH,k)‖ and taking the limit k →∞ then yields

0 =
∑

i∈supp(η̄H)

η̄Gi ∇Gi(x
∗)−

∑
i∈supp(η̄G)

η̄Hi ∇Hi(x
∗), (32)

where supp(η̄G) ⊆ I00 ∪ I+0, supp(η̄H) ⊆ I0 and η̄Hi ≥ 0 for all i ∈ I0− as well as η̄Gi ≥ 0
for all i ∈ I+0 ∪ I00. Since (η̄G, η̄H) 6= 0, MPVC-CPLD then implies that the gradients

−∇Hi(x
k) (i ∈ supp(η̄H) ∩ I0−), ∇Gi(x

k) (i ∈ supp(η̄G) ∩ (I+0 ∪ I00))

and ∇Hi(x
k) (i ∈ supp(η̄H) ∩ (I0+ ∪ I00))

remain linearly dependent for all k sufficiently large. However, this contradicts our as-
sumption that the gradients in (31) are linearly independent for all k ∈ N.

Thus, the sequence {(ηG,k, ηH,k)} is bounded and we can assume w.l.o.g. that it is
convergent to some vector (ηG,∗, ηH,∗). This limit then satisfies

0 = ∇f(x∗) +
l∑

i=1

ηG,∗i ∇Gi(x
∗)−

l∑
i=1

ηH,∗i Hi(x
∗)
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and, by the same arguments as above,

supp(ηG,∗) ⊆ I00 ∪ I+0, supp(ηH,∗) ⊆ I0

as well as ηH,∗i ≥ 0 for all i ∈ I0− and ηG,∗i ≥ 0 for all i ∈ I+0 ∪ I00. This shows that x∗ is
a weakly stationary point of (1).

To prove that the limit is in fact M-stationary, we have to show ηG,∗i ηH,∗i = 0 for all
i ∈ I00. Here, we already know ηG,∗i ≥ 0 for all i ∈ I00. In case ηG,∗i > 0 for some i ∈ I00, we
know ηG,ki > 0 for all k sufficiently large. Since applying [32, Lemma A.1] does not enlarge
the support of the multipliers and preserves their signs, it follows that δki (Hi(x

k)− tk) > 0
for all k sufficiently large and thus ΦKDB

i (xk; tk) = 0 and Hi(x
k) > tk > 0. But then

Gi(x
k) = 0 and νki = 0 and thus ηH,ki = 0 for all k large. This is again preserved under

[32, Lemma A.1] and thus implies ηH,∗i = 0.

In the previous result, we need the additional assumption (26) in order to be able to
utilize MPVC-CPLD and to prove weak stationarity of the limit. Such an assumption is
not needed for MPCCs, see [24]. However, the following example illustrates the necessity
of such an additional assumption in the MPVC setting.

Example 3.14. Consider the MPVC

min
x∈R2

f(x) = x1 s.t. H(x) = x2 ≥ 0, G(x)H(x) = x1x2 ≤ 0.

Then x∗ = (0, 0)T is feasible but not weakly stationary, because the – due to MPVC-LICQ
– unique multipliers are (ηG, ηH) = (−1, 0) although G(x∗) = H(x∗) = 0.

Now consider the regularized problem RKDB(t) for some t > 0 and define

xt :=

(
0
t
2

)
, νt := 0, δt :=

2

t

Then obviously xt → x∗ for t ↓ 0 and one easily verifies that xt with the multipliers (νt, δt)
is a KKT point of RKS(t) for all t > 0.

This illustrates that even under MPVC-LICQ, the limit point does not have to be weakly
stationary without the additional assumption (26). Note that in this example we have
G(xt) = 0 and H(xt) = t

2
< t for all t > 0 and thus (26) is not satisfied.

Note that a similar situation is not possible when applying the L-shaped regularization
from Section 3.3 instead. This is a new, MPVC-specific observation, because both methods
have the same theoretical properties, when applied to MPCCs.

The next step is again to consider how the convergence properties change, when we
compute only ε-stationary points of the regularized problems.

Theorem 3.15. Let {tk}, {εk} ↓ 0, and let {xk} be a sequence of εk-stationary points of
RKDB(tk) with xk → x∗ such MPVC-MFCQ holds at x∗. Assume furthermore that for all
i ∈ I00 and all k large

[Hi(x
k) ≥ tk or Gi(x

k) > 0] and lim inf
k→∞

εk
Gi(xk)

≤ 0,

whenever the latter is well-defined. Then x∗ is a weakly stationary point of (1).
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Proof. Since xk are εk-stationary points of RKDB(tk), there exist multipliers (νk, δk) such
that ∥∥∥∥∥∇f(xk)−

k∑
i=1

νki ∇Hi(x
k) +

l∑
i=1

δki∇ΦKDB
i (xk; tk)

∥∥∥∥∥
∞

≤ εk, (33)

νki ≥ −εk, Hi(x
k) ≥ −εk, |νki Hi(x

k)| ≤ εk (i = 1, . . . , l), (34)
δki ≥ −εk, ΦKDB

i (xk; tk) ≤ εk, |δki ΦKDB
i (xk; tk)| ≤ εk (i = 1, . . . , l). (35)

Here, the gradients of ΦKDB
i are given by

∇ΦKDB
i (xk; tk) = (Hi(x

k)− tk)∇Gi(x
k) +Gi(x

k)∇Hi(x
k).

We now define multipliers ηG,k, ηH,k ∈ Rl component-wise by

ηG,ki := δki (Hi(x
k)− tk), and ηH,ki := νki − δkiGi(x

k).

Using these new multipliers, we can re-write (33) as∥∥∥∥∥∇f(xk)−
l∑

i=1

ηH,ki ∇Hi(x
k) +

l∑
i=1

ηG,ki ∇Gi(x
k)

∥∥∥∥∥
∞

≤ εk. (36)

We claim that the sequence {(ηG,k, ηH,k)} is bounded. If the sequence were unbounded,
then the whole normalized sequence would converge w.l.o.g.

(ηG,k, ηH,k)

‖(ηG,k, ηH,k)‖
→ (η̄G, η̄H) 6= 0.

Then, dividing (36) by ‖(ηG,k, ηH,k)‖ and passing to the limit we obtain

0 =
l∑

i=1

η̄Gi ∇Gi(x
∗)−

l∑
i=1

η̄Hi ∇Hi(x
∗). (37)

Here, for all i ∈ I+−, we have limk→∞ΦKDB
i (xk; tk) 6= 0, and hence δki → 0 due to (35).

Therefore, ηG,ki → 0 and hence η̄Gi = 0. For all i ∈ I0+ ∪ I0− we have

Gi(x
k)ηG,ki = Gi(x

k)δki (Hi(x
k)− tk) = δki ΦKDB

i (xk; tk)→ 0,

Since Gi(x
∗) 6→ 0, this implies ηG,ki → 0 and hence η̄Gi = 0. All in all, we have proven

supp(η̄G) ⊆ I00 ∪ I+0.
Now, for all i ∈ I+, we know νki → 0 by (34) and thus using (35) can conclude

ηH,ki (Hi(x
k)− tk) = (νki − δkiGi(x

k))(Hi(x
k)− tk) = νki (Hi(x

k)− tk)− δki ΦKDB
i (xk; tk)→ 0.
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Here, Hi(x
∗) > 0 implies ηH,ki → 0. This shows supp(η̄H) ⊆ I0 = I0− ∪ I0+ ∪ I00. Hence,

(37) reduces to

0 =
∑

i∈I00∪I+0

η̄Gi ∇Gi(x
∗)−

∑
i∈I00∪I0−∪I0+

η̄Hi ∇Hi(x
∗).

The next step is to determine the signs of the multipliers η̄Gi (i ∈ I00 ∪ I+0) and
η̄Hi (i ∈ I0−). To this end, first consider i ∈ I0− and ηH,ki = νki − δkiGi(x

k). Due to
νki ≥ −εk → 0 and δki ≥ −εk → 0 together with −Gi(x

k) > c > 0 for all k large we can
conclude

lim inf
k→∞

ηH,ki = lim inf
k→∞

νki − δkiGi(x
k) ≥ 0 =⇒ η̄Hi ≥ 0.

Now consider i ∈ I+0 and ηG,ki = δki (Hi(x
k)−tk). Since δki ≥ −εk → 0 and Hi(x

k)−tk >
c > 0 for all k large, this implies

lim inf
k→∞

ηG,ki = lim inf
k→∞

δki (Hi(x
k)− tk) ≥ 0 =⇒ η̄Gi ≥ 0.

Finally, consider i ∈ I00 and assume that ηG,ki = δki (Hi(x
k) − tk) < −c < 0 for all k

large. Since Hi(x
k)− tk → 0 and δki ≥ −εk, this implies δki → +∞ and Hi(x

k) < tk for all
k large. Our assumption then implies Gi(x

k) > 0 and thus

0 < −ηG,ki Gi(x
k) = −δki (Hi(x

k)− tk)Gi(x
k) = |δki ΦKDB

i (xk; tk)| ≤ εk

for all k large. But then it follows that

εk
Gi(xk)

≥ −ηG,ki > c > 0

for all k large in contradiction to the assumptions. This shows η̄Gi ≥ 0 for all I ∈ I00.
Since we have verified η̄Gi ≥ 0 (i ∈ I00 ∪ I+0) and η̄Hi ≥ 0 (i ∈ I0−), equation (37) and

(η̄G, η̄H) 6= (0, 0) contradict the assumption that MPVC-MFCQ holds in x∗.
Therefore the sequence {(ηG,k, ηH,k)} is bounded and w.l.o.g. converges to some limit

(ηG,∗, ηH,∗). Reusing the previous sign considerations (note that we never needed |ηG,ki | →
∞ or |ηH,ki | → ∞ to extract the desired supports and signs), we see that (x∗, ηG,∗, ηH,∗) is
a weakly stationary point of (1).

Thus, similarly to the local and the L-shaped regularization, the favourable theoretical
convergence properties of this regularization scheme are lost in the inexact case. Examples
3.14 and 3.11 illustrate that neither of the two additional assumptions for i ∈ I00 can be
dropped. To see this, note that in Example 3.11 we have xt1 + xt2 = t for all t > 0 and thus
the L-shaped regularization coincides with the nonsmooth regularization in xt. Example
3.12, where again xt1 + xt2 = t for all t > 0, illustrates that we cannot guarantee more than
weak stationarity of the limit under the assumptions of Theorem 3.15.

We finish our discussion of the nonsmooth regularization method by proving that the
regularized problems locally satisfy standard GCQ.
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Theorem 3.16. Let x∗ be feasible for the MPVC (1) such that MPVC-LICQ holds at x∗.
Then there exists t̄ > 0 and a neighborhood N(x∗) of x∗ such that, for all t ∈ (0, t̄] and all
x ∈ XKDB(t) ∩N(x∗), standard GCQ for RKDB(t) is satisfied at x.

Proof. Let N(x∗) be a neighborhood of x∗ and a t̄ > 0. Now consider an arbitrary t ∈ (0, t̄]
and x̂ ∈ N(x∗) ∩XKDB(t) and define the index sets

I0−
Φ := {i ∈ IΦ(x̂, t) | Hi(x̂) = t, Gi(x̂) < 0},
I−0

Φ := {i ∈ IΦ(x̂, t) | Hi(x̂) < t, Gi(x̂) = 0},
I00

Φ := {i ∈ IΦ(x̂, t) | Hi(x̂) = t, Gi(x̂) = 0},
I+0

Φ := {i ∈ IΦ(x̂, t) | Hi(x̂) > t, Gi(x̂) = 0},
I0+

Φ := {i ∈ IΦ(x̂, t) | Hi(x̂) = t, Gi(x̂) > 0},
J+− := {i = 1, . . . , l | Hi(x̂) > t, Gi(x̂) < 0},
J−+ := {i = 1, . . . , l | 0 < Hi(x̂) < t, Gi(x̂) > 0}.

The definition of these index sets implies

I0−
Φ ∪ I

−0
Φ ∪ I

00
Φ ∪ I+0

Φ ∪ I
0+
Φ = IΦ(x̂, t),

(J+− ∪ J−+) ∩ (IΦ(x̂, t) ∪ IH(x̂)) = ∅.

By choosing N(x∗) and t̄ > 0 sufficiently small, we can guarantee the inclusions

I0−
Φ ∪ I

00
Φ ∪ I0+

Φ ∪ IH(x̂) ⊆ I0,

I−0
Φ ∪ I

00
Φ ∪ I+0

Φ ⊆ I00 ∪ I+0,

and, due to MPVC-LICQ, that the following gradients are linearly independent:

∇Hi(x̂) (i ∈ I0−
Φ ∪ I

00
Φ ∪ I0+

Φ ∪ IH(x̂)), ∇Gi(x̂) (i ∈ I−0
Φ ∪ I

00
Φ ∪ I+0

Φ ).

For all J ⊆ I+0
Φ , we define the auxiliary problem NLP(x̂, J) as

min f(x) s.t. Hi(x) ≥ t, Gi(x) ≤ 0 ∀i ∈ I0−
Φ ∪ J ∪ I

+0
Φ ∪ J+−

0 ≤ Hi(x) ≤ t, Gi(x) ≥ 0 ∀i ∈ I−0
Φ ∪ (I00

Φ \ J) ∪ I0+
Φ ∪ IH(x̂) ∪ J−+

and denote its feasible set by X(J). Then, x̂ ∈ X(J) and X(J) ⊆ XKDB(t). The latter
implies ⋃

J⊆I+0
Φ

TX(J)(x̂) ⊆ TXKDB(t)(x̂).

To see the opposite inclusion, consider an arbitrary d ∈ TXKDB(t)(x̂) and let {xk} ⊆
XKDB(t) and {τk} ≥ 0 with xk → x∗ and τk(xk−x∗)→ d. Then for all i ∈ I0−

Φ ∪I
+0
Φ ∪J+−

it is easy to see that Hi(x
k) ≥ t and Gi(x

k) ≤ 0 for all k large. Analogously, for all
i ∈ I−0

Φ ∪ I
0+
Φ ∪ IH(x̂) ∪ J−+ we have Hi(x

k) ∈ [0, t] and Gi(x
k) ≥ 0 for all k large. For all

27



i ∈ I00
Φ either one of the two conditions can be satisfied in xk. But since I00

Φ is finite, we
can assume w.l.o.g. that for some J ⊆ I00

Φ we have

Hi(x
k) ≥ t, Gi(x

k) ≤ 0 ∀i ∈ J
0 ≤ Hi(x

k) ≤ t, Gi(x
k) ≥ 0 ∀i ∈ I00

Φ \ J

for all k large. This implies xk ∈ X(J) for all k large and thus d ∈ TX(J)(x̂). We thus know

TXKDB(t)(x̂) =
⋃
J⊆I00

Φ

TX(J)(x̂). (38)

To compute TX(J)(x̂) for J ⊆ I00
Φ , note that the active gradients for NLP(J) in x̂ are

∇Hi(x̂) ∀i ∈ I0−
Φ ∪ I

00
Φ ∪ I0+

Φ ∪ IH(x̂),

∇Gi(x̂) ∀i ∈ I−0
Φ ∪ I

00
Φ ∪ I+0

Φ .

These are linearly independent by choice of N(x∗) and t̄ and thus LICQ and ACQ for
NLP(x̂, J) hold in x̂. Using [6, Theorem 3.1.9] we thus obtain

TXKDB(t)(x̂)◦ =
⋂
J⊆I00

Φ

TX(J)(x̂)◦ =
⋂
J⊆I00

Φ

LX(J)(x̂)◦,

where for J ⊆ I00
Φ the polar of the linearization cones LX(J)(x̂) is given by

LX(J)(x̂)◦ =
{

s = −
∑

i∈I0−
Φ ∪I

00
Φ ∪I

0+
Φ ∪IH(x̂)

ηHi ∇Hi(x̂) +
∑

i∈I−0
Φ ∪I

00
Φ ∪I

+0
Φ

ηGi ∇Gi(x̂) |

ηH
I0−
Φ ∪J∪IH(x̂)

≥ 0, ηH
(I00

Φ \J)∪I0+
Φ
≤ 0, ηG

I+0
Φ ∪J

≥ 0, ηG
(I00

Φ \J)∪I−0
Φ
≤ 0
}

according to [6, Theorem 3.2.2]. To complete the proof, it remains to show

TXKDB(t)(x̂)◦ ⊆ LXKDB(t)(x̂)◦.

Here, the polar of the linearization cone LXKDB(t)(x̂) is given by

LXKDB(t)(x̂)◦ =
{
s ∈ Rn | s = −

∑
i∈IH(x̂)

νi∇Hi(x̂) +
∑

i∈IΦ(x̂,t)

δiGi(x̂)∇Hi(x̂)

+
∑

i∈IΦ(x̂,t)

δi(Hi(x̂)− t)∇Gi(x̂), ν ≥ 0, δ ≥ 0
}

To this end, consider an arbitrary s ∈ TXKDB(t)(x̂)◦. Then by our previous considerations,
we know that s ∈ LX(J)(x̂)◦ for all J ⊆ I00

Φ . Due to the linear independence of the gradients,
this implies that the representation of s does not depend on ∇Gi(x̂),∇Hi(x̂) with i ∈ I00

Φ

and thus

s = −
∑

i∈I0−
Φ ∪I

0+
Φ ∪IH(x̂)

ηHi ∇Hi(x̂) +
∑

i∈I−0
Φ ∪I

+0
Φ

ηGi ∇Gi(x̂)

with ηH
I0−
Φ ∪IH(x̂)

≥ 0, ηH
I0+
Φ
≤ 0, ηG

I+0
Φ
≥ 0, ηG

I−0
Φ
≤ 0.

This shows s ∈ LXKDB(t)(x̂)◦ and completes the proof of GCQ for RKDB(t) in x̂.

28



3.5 Theoretical Comparison of all four Regularization Schemes

Our analysis of the theoretical properties of these four regularization schemes allows us to
compare them with respect to limit of KKT points, the limit of ε-stationary points, and
the regularity of their feasible sets.

We begin with the limit of KKT points of the regularized problems, see Table 1. In this
regard, the L-shaped regularization is the clear victor, because it guarantees the strongest
stationarity of x∗ under the weakest assumptions.

Table 1: Comparison of the limit x∗ of KKT points

regularization CQ in x∗ additional assumptions stationarity of x∗

global MPVC-MFCQ none T-stationarity
local MPVC-CPLD none T-stationarity
L-shaped MPVC-CPLD none M-stationarity
nonsmooth MPVC-CPLD yes2 M-stationarity

However, when we instead consider the limit of ε-stationary points, the picture changes,
see Table 2. The only regularization, which guarantees more than weak stationarity in this
setting, is the global regularization. Furthermore, this regularization does not require
additional assumptions.

Table 2: Comparison of the limit x∗ of ε-stationary points

regularization CQ in x∗ additional assumptions stationarity of x∗

global MPVC-MFCQ none T-stationarity
local MPVC-MFCQ none weak stationarity
L-shaped MPVC-MFCQ yes3 weak stationarity
nonsmooth MPVC-MFCQ yes4 weak stationarity

With regard to the the regularity of the resulting feasible sets, see Table 3, the global
regularization again looks very promising. However, a closer look reveals that both the
L-shaped and the nonsmooth regularization also satisfy LICQ in all feasible points x with
(Gi(x), Hi(x)) 6= (0, t) for all i = 1, . . . , l. In contrast, the feasible set of the local regular-
ization can satisfy LICQ only in points x, where (Gi(x), Hi(x)) ≈ (0, 0) for all i = 1, . . . , l.

2∀i ∈ I00: Hi(x
k) ≥ tk or Gi(x

k) > 0.
3∀i ∈ I00: lim infk→∞

εk
Gi(xk)

≤ 0.
4∀i ∈ I00: Hi(x

k) ≥ tk or Gi(x
k) > 0 and lim infk→∞

εk
Gi(xk)

≤ 0.
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Table 3: Comparison of the local regularity of the feasible sets

regularization MVPC-CQ at x∗ standard CQ around x∗

global MPVC-MFCQ MFCQ
local MPVC-LICQ ACQ
L-shaped MPVC-LICQ GCQ
nonsmooth MPVC-LICQ GCQ

4 Numerical Comparison
In this chapter, we test and compare the presented regularization strategies numerically.
We consider problems arising from truss topology optimization and optimal control of air-
craft trajectories. Before presenting these models and the numerical results, let us describe
the procedure we followed in order to test the numerical behavior of the regularization
methods, whose theoretical properties we discussed before.

Algorithm 1 Abstract regularization algorithm
Input: An initial point x0 ∈ Rn, an initial regularization parameter t0 > 0, a reduction pa-

rameter σ ∈ (0, 1), a minimum regularization parameter tmin ∈ (0, t0), and a feasibility
tolerance tol > 0. Set k := 0.

1 while tk ≥ tmin and maxVio(xk) > tol do
2 Compute a solution xk+1 of the regularized problem R(tk) using xk as initial point.
3 Decrease the regularization parameter tk+1 := tk · σ and update k ← k + 1.
4 end while

Output: The final iterate x∗ := xk and the corresponding function value f(x∗).

We used Algorithm 1 for all the test examples and regularization schemes in order to
ensure the methods are tested under the same conditions. It was implemented in MATLAB
using the NLP solver fmincon with the SQP option to solve R(tk) on each iteration. The
maximum constraint violation in a point x is defined as

maxVio(x) = max
i=1,...,l

{Gi(x)Hi(x)},

and is used to ensure that the vanishing constraints are fulfilled. The parameters for the
algorithm were chosen as

t0 = 1, σ = 0.1, tmin = 10−8, tol = 10−6.

Thus, the algorithm terminates either when xk is sufficiently feasible, i.e. maxVio(xk) ≤
10−6, or when the regularization parameter becomes too small, i.e. tk < 10−8. In the latter
case, the regularized problem is numerically almost identical to the original MPVC and a
further decrease of tk is not beneficial.
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For the local regularization, we used the regularization function

θ(x) :=
2

π
sin

(
π

2
x+

3π

2

)
+ 1.

In the subsequent sections, the results are given in terms of objective function value
f(x∗), the maximum constraint violation of all constraint functions in x∗ and the number
of regularization iterations executed. They are also compared to the result achieved by
applying the NLP solver fmincon directly to the MPVC.

4.1 Academic Example

To show the positive influence of regularization methods, we first consider the following
two-dimensional academic truss topology optimization problem taken from [8]:

min
x∈R2

f(x) = 4x1 + 2x2

s.t. H1(x) = x1 ≥ 0,

H2(x) = x2 ≥ 0, (39)
G1(x)H1(x) = (5

√
2− x1 − x2)x1 ≤ 0,

G2(x)H2(x) = (5− x1 − x2)x2 ≤ 0.

0 5
√

2 x1

5

5
√

2

x2

x◦

x∗

x+

Here, the weight of a truss consisting of four bars shall be minimized and the variables
x1, x2 represent the cross-sectional areas of two different groups of bars. The feasible
set of this problem consists of an unbounded polyhedron with the attached line segment
{0} × [5, 5

√
2] and the isolated point (0, 0)T .

The origin x◦ = (0, 0)T is the global minimizer of the problem, and x∗ = (0, 5)T is a local
minimizer. Additionally, x◦, x∗ are the only M-stationary points of this MPVC. However,
geometry indicates that numerical methods may also converge to x+ = (0, 5

√
2)T , which is

a weakly stationary point but not a local minimizer. To illustrate this behavior, we chose
a grid of 676 initial points x0 in [−5, 20]× [−5, 20] and attempted to solve (39) from those
using the four regularization schemes as well as applying fmincon directly to the MPVC.

The results are given in Figure 2, where we marked an initial point with ◦, if the
solution found differed less than 10−3 from x◦, with ∗, if the solution found was close to x∗,
and with +, if the solution found was close to x+. The added total number of iterations
needed to solve the problem from each initial point and the number of times the algorithm
reached a solution close to x◦, x∗ or x+ are gathered in Table 4.

Applying fmincon directly without a regularization failed to recover one of the three
points of interest for approximately 20% of the initial points. In contrast, the regularization
methods found the global optimum x◦ or the local optimum x∗ for almost all initial values.
The global regularization succeeded for all initial values but also needed about four times
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(a) no regularization (b) global regularization (c) local regularization

(d) L-shaped regularization (e) nonsmooth regularization

Figure 2: Results for the academic example (39)

method total iterations x◦ x∗ x+ neither

no regularization 676 85 453 1 137
global regularization 5482 86 590 0 0
local regularization 1353 87 539 0 50
L-shaped regularization 1352 100 567 0 9
nonsmooth regularization 1368 91 582 1 2

Table 4: Performance results for the academic example (39)
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(a) ground structure (b) optimal truss (c) nonsmooth solution

Figure 3: Results for ten-bar truss example (40)

as many iterations as the other methods. The L-shaped and nonsmooth regularization
performed similarly, whereas the local regularization failed to find one of the three points
of interest for more initial points. Interestingly, all five methods rarely terminated in the
weakly stationary point x+.

4.2 Ten-bar Truss

Our next example is the “ten-bar truss”, a well-known problem in the engineering literature,
see, e.g., [1, 8, 27] for a more detailed background. We consider a 2×1 sized truss consisting
of six nodes and ten potential bars, where the two nodes on the left side are fixed (e.g. on
a wall) and a force f with ‖f‖ = 1 pulls down on the bottom right hand node. The ground
structure is depicted in Figure 3a.

The aim is to minimize the weight of the truss. However, if we assume that the same
material is used for all bars, we can minimize the volume instead. To write down the
corresponding optimization problem, we need some notation first. For all bars i = 1, . . . , 10,
we denote the cross-sectional area of bar i by ai and its length by li. Additionally to the
variables ai (i = 1, . . . , 10) we have eight auxiliary variables uj (j = 1, . . . , 8) representing
the nodal displacement of the four free nodes in x- and y-direction. With this notation,
we obtain the following optimization problem

min
a∈R10,u∈R8

10∑
i=1

liai s.t. K(a)u = f,

fTu ≤ c,

0 ≤ ai ≤ ā ∀i = 1, . . . , 10, (40)
(σi(a, u)2 − σ̄2)ai ≤ 0 ∀i = 1, . . . , 10.

Here, the matrix K(a) is the global stiffness matrix of the truss and is given by

K(a) =
10∑
i=1

ai
E

li
γiγ

T
i ∈ R8×8
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method V ∗ constraint violation iterations

no regularization 8.0000 6.43708e−11 1
global regularization 8.0000 1.5504e−11 8
local regularization 8.0000 1.8052e−12 2
L-shaped regularization 8.0000 2.15399e−11 3
nonsmooth regularization 8.1563 1.0415e−15 3

Table 5: Results for ten-bar tuss

with some vectors γi ∈ R8 and Young’s modulus E. For all bars i = 1, . . . , 10 the vector
γi ∈ R8 contains − cos(α) in the components corresponding to a nodal displacement at
one of the two end nodes of the bar i, where α is the angle between the respective nodal
displacement axis and the bar axis. This equation models force equilibrium and some other
conditions.

The inequality fTu ≤ c bounds the compliance of the truss, i.e. the work caused by the
force f . Here, c > 0 is a user-defined constant.

The box constraints 0 ≤ ai ≤ ā (i = 1, . . . , 10) ensure nonnegativity of the cross-
sectional areas and allow a user-defined upper bound ā > 0. Additionally, one wants to
impose bounds on the stress σi(a, u) for the bar i, where

σi(a, u) = E
γTi u

li
∀i = 1, . . . , 10,

which is caused by the nodal displacement due to the force f . This could be formulated as

σi(a, u)2 − σ̄2 ≤ 0 ∀i = 1, . . . , 10,

where σ̄ > 0 is the user-defined threshold. However, with this formulation, we would also
bound the stress on those bars i that do not appear in the final truss, i.e. those with ai = 0.
This is obviously not desirable, as it is unnecessarily restrictive. We circumvent this by
multiplying the inequalities above with ai. This eventually leads to the MPVC formulation
given in (40).

For this test, we chose the constants

E = 1, c = 10, ā = 100, σ̄ = 1

and the initial point a0 = (1, . . . , 1) ∈ R10 and u0 = K(a0)−1f .
The algorithm terminated with the message Local minimizer found that satisfies the

constraints for all the methods, and computed the known optimal volume of V ∗ = 8.0000
with negligible differences in the solutions for all methods except for the nonsmooth reg-
ularization. The latter yielded a larger volume of V ∗ = 8.1563 and a slightly different
structure, see Figures 3b and 3c for pictures of the corresponding trusses and Table 5 for
a comparison of the results for all the methods.
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γ

Figure 4: Aerodynamic forces on an aircraft

4.3 Aerothermodynamic Problem

During re-entry, aircrafts experience extreme thermal loads, which can be controlled by
choosing an adequate trajectory using optimal control techniques; cf. e.g. [12, 28]. Addi-
tionally, a liquid hydrogen active cooling system can be used. However, this is only needed,
when the heat loads exceed the radiative cooling abilities of the thermal protection mate-
rials; see [4, 9]. Thus, a constraint on its activation must be imposed to avoid unnecessary
fuel consumption.

Using optimal control terminology, the state variables of an aircraft are velocity v =
v(t), flight path angle γ = γ(t), altitude h = h(t) and total external heat load QT = QT (t).
The control variables are angle of attack CL = CL(t), thrust T = T (t) and convected heat
rate due to active cooling Q̇c = Q̇c(t). The forces defining the trajectory of the aircraft,
pictured in Figure 4, are aerodynamic lift L and drag D, thrust T and gravitational force
mg.

The equations describing the trajectory and heat rate evolution at the stagnation point
are

v̇ =
T −D(v, h;CL)

m
− g(h) sin γ,

γ̇ =
L(v, h;CL)

mv
+ cos γ

(
v

r(h)
− g(h)

v

)
,

ḣ = v sin γ,

Q̇T = Ke

√
ρ(h)

Rn

v3 − Q̇c,

where g(h) is the gravitational acceleration, r(h) the distance to the center of the Earth,
and ρ(h) the air density for a given height h, RN is the nose radius, and Ke is a constant.
Box constraints for the controls have to be imposed:

0.01 ≤ CL ≤ 0.18326,

0 N ≤ T ≤ 107N,

0 W/cm2 ≤ Q̇c ≤ 0.5 W/cm2.
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The landing condition translates to

h(tf ) ≤ 500 m,

and the cooling system activation constraint is given by

(Q̇rad.max − Q̇T ) Q̇c ≤ 0,

for which we have chosen the value Q̇rad,max = 1.7 W/cm2, which corresponds to reaching
temperatures over 750 K.

Finally, the objective function to minimize is the final heat load QT (tf ). We now have
a general optimal control problem of the form

min f(xf , uf )
s.t. ẋ = F (x, u),

h(x, u) = 0,
g(x, u) ≤ 0,
H(x, u) ≥ 0,
G(x, u)H(x, u) ≤ 0,

(41)

where x = x(t) = (v(t), γ(t), h(t), QT (t)) is the vector of state variables and u = u(t) =
(CL(t), T (t), Q̇c(t)) is the vector of control variables.

Discretizing in time and choosing a suitable integration scheme Φ(·) with step δ

yi+1 = yi + δΦ(ti, ti+1, yi, yi+1)

where ti+1 = ti+ δ and yi ≈ y(ti) for i = 0, 1, ..., N −1, we can approximate (x(ti), u(ti)) ≈
(xi, ui), thus obtaining the following MPVC from problem (41):

min f(xN , uN)
s.t. xi+1 − xi − δΦ(ti, ti+1, xi, xi+1, ui, ui+1) = 0 (i = 0, 1, ..., N − 1),

h(xi, ui) = 0 (i = 0, 1, ..., N − 1),
g(xi, ui) ≤ 0 (i = 0, 1, ..., N − 1),
H(xi, ui) ≥ 0 (i = 0, 1, ..., N − 1),
G(xi, ui)H(xi, ui) ≤ 0 (i = 0, 1, ..., N − 1).

(42)

We have chosen the implicit Euler method as integration scheme for this test with 30
time nodes and used a free final time transformation. The initial values for the state and
control variables were

v0 = 0.2 km/s, γ0 = 0 rad, h0 = 12 km, QT,0 = 0.0 J/cm2.

The obtained trajectories for each regularization method as well as the heat load evo-
lution are depicted in Figure 5. For all five methods, the algorithm terminated with the
message Local minimizer found that satisfies the constraints. The lowest final heat loads
was obtained by the L-shaped regularization. The direct approach without regularization,
the global regularization and the nonsmooth regularization resulted in similar final heat
loads and the local regularization found a slightly higher final heat load.
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Figure 5: Solutions for the Aerothermodynamic problem (41)

4.4 Summary of the Numerical Tests

The previous examples show that all four regularization methods can successfully be applied
to both truss design and optimal control problems with realistic and complex modelling.
The computed solutions are at least as good as the result of the direct approach without
regularization. In case of the aerothermodynamic problem (41), the L-shaped regulariza-
tion was even able to decrease the final heat load by approx. 20% compared to the direct
approach, and the academic example (39) indicates that the regularization methods are
less dependent on the initial point than the direct approach.

Discriminating between the four regularization methods based on these numerical re-
sults is subtle: The global regularization generated satisfactory solutions for all text exam-
ples and was the most robust with respect to the initial point in the academic example (39).
However, it also had the highest iterations numbers in this example. The local regulariza-
tion was more sensitive to the choice of initial points in the academic example (39) than the
other regularizations and generated the worst solution for the aerothermodynamic prob-
lem (41). The L-shaped regularization found the global optimum in the academic example
(39) more often than all other approaches and the best solution for the aerothermodynamic
problem (41). The nonsmooth regularization finally was the only approach to terminate
in a suboptimal solution in the ten-bar truss problem (40).

5 Final Remarks
In this paper, we analyzed four one-parameter regularization schemes for MPVCs with a
focus on their theoretical convergence properties in the exact and inexact case as well as
on the regularity of the resulting feasible sets. The central observation here is that the
simplest approach, the global regularization has the worst theoretical properties in the exact
setting but is able to retain those in the inexact setting. The other three, more involved
regularization schemes have better theoretical properties, if one is able to compute KKT
points of the regularized problems. But when only ε-stationary points can be computed,
their properties are worse than those of the global regularization.
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A second result of the theoretical analysis is that the transfer of these regularization
schemes from MPCCs to MPVCs sometimes requires additional assumptions not present
in the MPCC setting. These are needed to cope with the sign constraint ηGi ≥ 0 for i ∈ I00,
which is required already for weak stationarity.

In addition to the theoretical analysis, we also performed numerical tests based on
three examples from truss design and optimal control. These examples illustrate that the
use of a regularization is beneficial compared to the direct application of an NLP solver
to the MPVC. The numerical results also indicate that the global regularization is quite
robust, but it can be slow and terminate in suboptimal solutions. Contrary to this, the
L-shaped regularization seems to be faster and find better solutions, but might be less
robust with respect to the initial point. Those observations would also fit well with the
theoretical analysis. However, in order to be able to make solid claims in this regard, a
more extensive numerical study is necessary. Unfortunately, at the moment no suitable
collection of MPVC test problems is available.
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