
Industrial and
Systems Engineering

A Fully Stochastic Second-Order Trust Region Method

Frank E. Curtis and Rui Shi

Department of Industrial and Systems Engineering, Lehigh University

COR@L Technical Report 19T-025

ar
X

iv
:1

91
1.

06
92

0v
1 

 [
m

at
h.

O
C

] 
 1

6 
N

ov
 2

01
9



A Fully Stochastic Second-Order Trust Region Method

Frank E. Curtis∗1 and Rui Shi†1

1Department of Industrial and Systems Engineering, Lehigh University

November 19, 2019

Abstract

A stochastic second-order trust region method is proposed, which can be viewed as a second-order
extension of the trust-region-ish (TRish) algorithm proposed by Curtis et al. [INFORMS J. Optim. 1(3)
200–220, 2019]. In each iteration, a search direction is computed by (approximately) solving a trust
region subproblem defined by stochastic gradient and Hessian estimates. The algorithm has convergence
guarantees for stochastic minimization in the fully stochastic regime, meaning that guarantees hold when
each stochastic gradient is required merely to be an unbiased estimate of the true gradient with bounded
variance and when the stochastic Hessian estimates are bounded uniformly in norm. The algorithm is
also equipped with a worst-case complexity guarantee in the nearly deterministic regime, i.e., when the
stochastic gradient and Hessian estimates are very close in expectation to the true gradients and Hessians.
The results of numerical experiments for training convolutional neural networks for image classification
and training a recurrent neural network for time series forecasting are presented. These results show
that the algorithm can outperform a stochastic gradient approach and the first-order TRish algorithm
in practice.

1 Introduction

For many years, the foundational approach for solving stochastic optimization problems has been the stochas-
tic gradient method ([30]), hereafter referred to as SG. However, despite its many theoretical and practical
advantages, there remain some shortcomings in the use of SG for solving many stochastic optimization prob-
lems, including many arising in machine learning and signal processing, areas in which SG and its variants
are very popular. For example, one disadvantage of SG and many variants of it (see §2) is that the variance
of the step taken by the algorithm in each iteration is proportional to the variance of the stochastic gradient
estimate, which can be large. In the fully stochastic regime, i.e., when the variances of the stochastic gradient
estimates are merely bounded by some (large) constant, SG can take a large step even though the norm of
the true gradient may be relatively small in norm.

In [13], a first-order stochastic optimization algorithm is proposed that is designed to mitigate the effects
of large variances of the stochastic gradient estimates. Based on a trust region methodology, this trust-region-
ish algorithm, known as TRish, uses a careful step normalization procedure in order to attain theoretical
convergence properties on par with those of SG, but in such a way that the empirical performance can be
better than that of SG. The results of experiments on logistic regression and deep neural network training
problems demonstrates that the empirical performance of TRish can be significantly better than that of a
traditional SG approach. In particular, TRish is able to reach better solutions more quickly, and in a more
stable manner, meaning that the quality of the solution estimate does not vary wildly from one iteration to
the next.

∗E-mail: frank.e.curtis@lehigh.edu
†E-mail: rus415@lehigh.edu
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In this paper, we extend the TRish methodology to allow for the use of stochastic second-order informa-
tion, in the form of stochastic Hessian estimates that are incorporated in the trust region subproblems. The
resulting algorithm, which we continue to refer to as TRish, is shown to have good convergence properties
in a wide range of settings. In particular, in the fully stochastic regime and with a very loose requirement
on the accuracy with which the trust region subproblems are solved, we show that the algorithm achieves
convergence properties on par with those of TRish. Admittedly, this is done with assumptions that impose
stricter requirements on the stepsizes employed in the algorithm, but the results are still non-trivial to obtain,
and the theoretical analysis in this paper requires different techniques than those employed in [13]. We also
include some theoretical guarantees that are stronger than have been presented for the first-order variant of
TRish. On the other end of the theoretical spectrum, we show that when the stochastic gradient and Hes-
sian estimates are very close in expectation to the true values, and when the subproblems are solved exactly,
TRish offers a worst-case complexity property that is similar to that offered by a determinstic second-order
trust region method.

As has been the motivation for other authors considering second-order extensions of stochastic opti-
mization algorithms, a main motivation for our work is to design an algorithm that can ideally inherit the
benefits of Newton-trust-region methods for minimization, such as their scale invariance, ability to employ
problem-independent stepsizes near a solution (as opposed to first-order methods, which require problem-
dependent stepsizes, typically related to the Lipschitz constant for the gradient of the objective), ability to
handle nonconvexity and avoid saddle points without extra computational procedures, and asymptotic fast
rate of convergence. These properties cannot fully be attained in the stochastic regime, but our numerical
experiments demonstrate that the TRish methodology can benefit from the use of stochastic second-order
derivative information in practice. The results that we present in this paper are for training convolutional
neural networks (CNNs) for image classification, and for training a recurrent neural network (RNN) for time
series forecasting. Our results suggest that TRish can be an effective approach for stochastic and finite-sum
minimization over broad classes of challenging problems.

2 Literature Review

The literature on SG, a stochastic first-order method, is extensive. For a few examples of papers with
analyses of SG and variants of it, see [4, 28, 1, 5, 9, 14, 18, 25, 19, 30], and [31].

Stochastic second-order methods, which can be classified as methods that compute each step by (approxi-
mately) minimizing a quadratic model of the objective function, have received less attention in the literature.
That said, many types of methods have been proposed, analyzed, and tested. Overall, one may character-
ize stochastic second-order methods into four categories (see [4]): stochastic Newton methods, stochastic
quasi-Newton methods, natural gradient methods, and diagonal-scaling methods.

Stochastic Newton methods, like the deterministic Newton method for minimization, compute each step
by approximately minimizing a quadratic model of the form gTk s + 1

2s
THks over s ∈ Rn, where gk is

a stochastic gradient estimate and Hk is a stochastic Hessian estimate. For practical purposes, such an
approach would typically use an iterative method such as the conjugate gradient (CG) algorithm to minimize
this quadratic function approximately. In this manner, one need not form nor factor the matrix Hk; instead,
one need only perform matrix-vector products with Hk, which can be done with back propagation. (In
nonconvex settings, a regularization term might also be added if Hk might not be positive definite, or one
might terminate CG once negative curvature is detected, as in the standard Steihaug-CG routine ([34]).)
For examples of stochastic Newton methods in the literature, see [2, 6, 4, 3], and [12].

Stochastic quasi-Newton methods borrow the idea from the deterministic optimization literature that,
instead of employing second-derivative information, one could derive (inverse) Hessian approximations by
observing differences in gradients from one iteration to the next. In the stochastic regime, such an approach
needs to have safeguards to account for the fact that the gradients are only estimated in each iteration. For
examples of stochastic quasi-Newton methods, see [32, 6, 4, 11], and [36].

Motivated by insights from information geometry, the idea of the natural gradient method is to employ
the Fischer information matrix in place of the Hessian when computing a search direction. Due to various
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simplications that are required to derive a practical algorithm, such an approach reduces to a type of
(generalized) Gauss-Newton algorithm. For further information in the natural gradient method and related
ideas, see [24, 15, 20], and [38].

Diagonal-scaling methods, wherein each step can be expressed as a diagonal scaling matrix times the
negative stochastic gradient, are not always classified as second-order methods. However, we argue, as some
others do, that these methods should be viewed in this light, and one can argue that the good performance
of such methods in practice is because the algorithms are emulating second-order-type properties. A few
popular diagonal scaling methods are RMSprop ([35]), Adagrad ([16]), and Adam ([21] and [29]).

Finally, it should be mentioned that some other types of stochastic trust region methods have appeared
in the literature. For a couple of examples, see [8] and [7]. However, these approaches are distinct from
the TRish methodology, e.g., due to their need to impose stronger requirements on the stochastic gradient
and Hessian estimates to achieve their desired convergence rate guarantees. We also direct the reader to the
use of trust regions in reinforcement learning; see, e.g., [33] and [23]. This setting is distinct from the one
considered in this paper, but these works provide further evidence of how optimization algorithms based on
trust region ideas can be effective in various settings.

3 Algorithm

In this section, we formally present our problem of interest, introduce relevant notation and terminology,
and present our proposed algorithm.

3.1 Problem Description

The algorithm that we propose is designed to solve stochastic optimization problems; in particular, it is
designed to minimize an objective function f : Rn → R that is defined by an expectation of a function
F : Rn × Ξ→ R that depends on a random variable ξ, as in

min
x∈Rn

f(x), where f(x) = Eξ[F (x, ξ)]. (1)

Here, Eξ[·] denotes expectation with respect to the distribution of ξ. A related type of problem is one
obtained by taking a stochastic average approximation (SAA) of (1). This leads to a finite-sum objective of

the form f(x) = 1
N

∑N
i=1 fi(x), where fi := F (·, ξi) with ξi denoting a realization of the random variable ξ.

Our algorithm automatically extends to this setting—whether or not the function arises from an SAA of
(1)—where in place of the distribution of ξ one can consider a discrete uniform distribution over {1, . . . , N}.

The algorithm that we propose makes use of stochastic gradient and stochastic Hessian estimates that,
at an algorithm iterate xk ∈ Rn, are intended to approximate ∇f(xk) and ∇2f(xk), respectively. These can
be understood as follows. First, in the context of (1), a stochastic gradient estimate may be computed as
gk = ∇xF (xk, ξk), where ξk is a realization of ξ. On the other hand, in the context of minimizing a finite
sum, one may consider gk = ∇xfik(xk), where ik has been generated from a discrete uniform distribution
over the index set {1, . . . , N}. In either setting, gk could instead represent an average of such quantities and
still be thought of as a stochastic gradient estimate. In this case, gk is commonly referred to as a mini-batch
estimate. Specifically, for (1) one may consider gk = 1

|Sk|
∑
j∈Sk ∇xF (xk, ξk,j) and for the finite-sum setting

one may consider the estimate gk = 1
|Sk|

∑
j∈Sk ∇xfik,j

(xk). In the statement of our algorithm, we capture

all of these possibilities by writing gk ≈ ∇f(xk).
For the stochastic Hessian estimates employed in our algorithm, we write Hk ≈ ∇2f(xk), but in this

context the meaning of “estimate” is meant much more loosely. Indeed, in the context of computing gk,
the possibilities in the previous paragraph make sense since our analysis requires that gk be an unbiased
estimator of ∇f(xk). However, our assumption on Hk can be much less restrictive. While one might choose
in the context of (1) to define Hk = ∇2

xxF (xk, ξ
H
k ) for some realization ξHk of ξ (or with a mini-batch), most

of our analysis merely requires that {Hk} is uniformly bounded in norm.
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3.2 Algorithm Description

Our algorithm is stated below as TRish. Similar to the first-order version in [13], each iteration involves
solving a trust region subproblem involving stochastic derivative estimates. Importantly, for much of our
analysis, the algorithm merely requires that each subproblem is solved such that Cauchy decrease is achieved.
This only requires that the solution vector sk is feasible and yields a value for the subproblem objective that
is at least as good as that offered by the Cauchy point, which is the minimizer of the subproblem objective
along its steepest descent direction from the origin (subject to the trust region constraint); see [10] or [27].
If Hk = 0 for all k ∈ N, then the algorithm reduces to that in [13]. However, clearly, the algorithm presented
here offers much more computational flexibility.

Algorithm TRish : (Second-Order) Trust-Region-ish Algorithm

1: Choose an initial iterate x1 ∈ Rn and positive stepsizes {αk}.
2: Choose positive parameters {γ1,k} and {γ2,k} such that 0 < γ2,k ≤ γ1,k <∞ for all k ∈ N.
3: for all k ∈ N do
4: Generate a stochastic gradient gk ≈ ∇f(xk).
5: Compute sk yielding at least Cauchy decrease for the subproblem

min
s∈Rn

gTk s+
1

2
sTHks s.t. ‖s‖2 ≤ ∆k (2)

6: using matrix-vector products with a stochastic Hessian Hk ≈ ∇2f(xk), where

∆k ←


γ1,kαk‖gk‖2 if ‖gk‖2 ∈

[
0, 1

γ1,k

)
αk if ‖gk‖2 ∈

[
1
γ1,k

, 1
γ2,k

]
γ2,kαk‖gk‖2 if ‖gk‖2 ∈

(
1
γ2,k

,∞
]
.

(3)

7: Set xk+1 ← xk + sk.
8: end for

Further motivation for the scheme for choosing the trust region radii, namely, (3), can be found in [13].
In short, if one were merely to choose ∆k = αk for all k ∈ N so that the steplength is normalized in all
iterations, then one might not have a convergent algorithm; it is possible that the algorithm would compute
a direction that is one of expected ascent. An example showing this possibility is shown as [13, Ex. 1].
Hence, (3) embodies a careful step normalization strategy that might choose ∆k = αk, but otherwise uses a
nonlinear stepsize control scheme to adjust the steplength. The specific formulas for the radii in (3) ensure
that (in the case Hk = 0) the steplength ‖xk+1 − xk‖2 is a continuous function of ‖gk‖2; see [13, Fig. 1].

4 Convergence Analysis

We prove convergence results for TRish under various settings. We begin by proving fundamental lemmas
under basic sets of assumptions. These results illuminate the critical features of the algorithm that lead to all
convergence guarantees. We present these guarantees first for the case of nonconvex f and different stepsize
and parameter choices, then for the case of f satisfying the well-known Polyak- Lojasiewicz (PL) condition, of
which strongly convex functions are a special case. Again, these results are presented for a few stepsize and
parameter choices. As TRish generalizes the first-order algorithm proposed in [13], the convergence theorems
proved in this section essentially generalize those results proved for the first-order algorithm. However, the
proofs presented here require different approaches due to the influence of {Hk} on the subproblems.

For convenience throughout our analysis, we denote for all k ∈ N the following cases, which clearly
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correspond to the different cases for the trust region radius ∆k in (3):

‖gk‖ ∈
[
0, 1

γ1,k

)
, (Case 1)

‖gk‖ ∈
[

1
γ1,k

, 1
γ2,k

]
, (Case 2)

or ‖gk‖ ∈
(

1
γ2,k

,∞
)
. (Case 3)

Also, for shorthand, we use Ek[·] to denote expectation of a random variable conditioned on the event that
the algorithm has reached the iterate xk and generates the stochastic gradient estimate gk and the stochastic
Hessian estimate Hk; i.e.,

Ek[·] ≡ E[ · | the current iterate and derivative estimates are xk, gk, and Hk].

We make the following assumptions throughout our analysis. These assumptions are essentially the
same as the basic assumptions from [13], except that we add the assumption that f is twice continuously
differentiable, which is a reasonable assumption to add in the context of a second-order-type algorithm.

Assumption 4.1. The objective function f : Rn → R is twice continuously differentiable and bounded
below by a scalar finf := infx∈Rn f(x) ∈ R. In addition, the gradient function ∇f : Rn → Rn is Lipschitz
continuous with constant Lg ∈ R>0 (i.e., f is Lg-smooth).

It is known (see, e.g., [26, Lemma 1.2.2]), that under Assumption 4.1 one has

‖∇2f(x)‖2 ≤ Lg for all x ∈ Rn. (4)

Assumption 4.2. For all k ∈ N, the stochastic gradient estimate gk is an unbiased estimator of the gradient
∇f(xk) in the sense that Ek[gk] = ∇f(xk).

Under Assumption 4.2, one finds for all k ∈ N that

Ek[‖∇f(xk)− gk‖22] = Ek[‖∇f(xk)‖22 − 2∇f(xk)T gk + ‖gk‖22]

= −‖∇f(xk)‖22 + Ek[‖gk‖22].
(5)

4.1 Fundamental Lemmas

Our first lemma provides a bound on the subsequent function value with each step that holds regardless of
the properties of the generated stochastic derivative estimates.

Lemma 4.1. Suppose Assumption 4.1 holds. For all k ∈ N, for any (gk, Hk), one finds

f(xk+1) ≤ f(xk) + gTk sk +
1

2
sTkHksk + (∇f(xk)− gk)T sk +

1

2
(Lg + ‖Hk‖2)‖sk‖22.

Proof. Proof. Since f is twice continuously differentiable under Assumption 4.1, it follows by Taylor’s
theorem that there exists x̂k on the line segment [xk, xk+1] such that

f(xk+1)− f(xk) = ∇f(xk)T sk +
1

2
sTk∇2f(x̂k)sk

= gTk sk +
1

2
sTkHksk + (∇f(xk)− gk)T sk +

1

2
sTk (∇2f(x̂k)−Hk)sk.

Then, since the Cauchy-Schwarz and triangle inequalities together imply with (4) that

sTk (∇2f(x̂k)−Hk)sk ≤ ‖∇2f(x̂k)−Hk‖2‖sk‖22 ≤ (Lg + ‖Hk‖2)‖sk‖22,

the desired result follows.
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Our next lemma is a Cauchy decrease result on the reduction in a quadratic model of the objective
function yielded by each computed step. This type of result is standard in the literature on trust region
methods, so we state it without a detailed proof.

Lemma 4.2. For all k ∈ N, for any (gk, Hk), one finds

gTk sk +
1

2
sTkHksk ≤ −

1

2
‖gk‖2 min

{
∆k,

‖gk‖2
‖Hk‖2

}
.

Proof. Proof. The result follows in the standard manner for Cauchy decrease as in the trust region method
literature (see, e.g., [10, Corollary 6.3.2] or [27, Lemma 4.3]) since, whichever subproblem is solved to compute
the step sk, TRish requires that at least Cauchy decrease is attained.

We also make use of a second Cauchy decrease result, stated below as our third lemma. This lemma
is useful only when one adds an additional assumption that the norm of the stochastic Hessian estimate is
sufficiently small. We shall add such an assumption for one of our main theorems. (The proof the lemma
follows using a similar argument as in the standard proof for Lemma 4.2, but with alternative final steps.)

Lemma 4.3. For all k ∈ N, for any (gk, Hk), one finds

gTk sk +
1

2
sTkHksk ≤ −min

{
∆k‖gk‖2 −

1

2
∆2
k‖Hk‖2,

1

2

‖gk‖22
‖Hk‖2

}
.

Proof. Proof. Using standard analysis for the Cauchy point (see, e.g., [27, Lemma 4.3], one has that the
Cauchy point lies in the interior of the trust region constraint if ‖gk‖32 ≤ ∆kg

T
kHkgk, and lies on the

boundary of the trust region constraint otherwise. If the Cauchy point lies in the interior, then it is given
by sCk := −(‖gk‖22/gTkHkgk)gk, meaning that, by the Cauchy-Schwarz inequality, the step sk must satisfy

gTk sk +
1

2
sTkHksk ≤ gTk sCk +

1

2
sCk

T
Hks

C
k = −1

2

‖gk‖42
gTkHkgk

≤ −1

2

‖gk‖22
‖Hk‖2

.

On the other hand, if the Cauchy point lies on the boundary of the trust region constraint, then it is given
by sCk := −(∆k/‖gk‖2)gk and the step sk must satisfy

gTk sk +
1

2
sTkHksk ≤ gTk sCk +

1

2
sCk

T
Hks

C
k = −∆k‖gk‖2 +

1

2
∆2
k

gTkHkgk
‖gk‖22

≤ −∆k‖gk‖2 + ∆2
k‖Hk‖2.

The result follows by combining the conclusions of these two cases.

Our next lemma shows that if the stepsize parameter αk is sufficiently small relative to a quantity
involving γ1,k, γ2,k, and ‖Hk‖2, then the expected reduction in the objective function value with each step is
bounded by a function of the expected squared norm of the stochastic gradient estimate, the variance of the
stochastic gradient estimate, and the algorithm parameters. The bound on the reduction proved here will
be refined in various ways later in our analysis as we consider the behavior of the algorithm under different
sets of assumptions on the derivative estimates and on the stepsize and parameter sequences.

Lemma 4.4. Suppose that Assumption 4.1 holds and that, for all k ∈ N,

0 < αk ≤
γ2,k

4γ21,k(Lg + ‖Hk‖2)
. (6)

Then, for all k ∈ N, one finds

Ek[f(xk+1)] ≤ f(xk)− 1

8
γ2,kαkEk[‖gk‖22] +

γ21,k
γ2,k

αkEk[‖∇f(xk)− gk‖22].

Proof. Proof. We divide the proof according to the three cases defined on page 6.
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Case 1. By Lemma 4.2, it follows in this case that

gTk sk +
1

2
sTkHksk ≤ −

1

2
‖gk‖2 min

{
γ1,kαk‖gk‖2,

‖gk‖2
‖Hk‖2

}
.

Since (6) ensures γ1,kαk ≤ γ2,k
4γ1,k(Lg+‖Hk‖2) ≤

1
4(Lg+‖Hk‖2) ≤

1
‖Hk‖2 , this implies that

gTk sk +
1

2
sTkHksk ≤ −

1

2
γ1,kαk‖gk‖22.

Combining this with the result of Lemma 4.1, the Cauchy-Schwarz inequality, and the fact that ‖sk‖2 ≤
γ1,kαk‖gk‖2 in this case, one finds that

f(xk+1)− f(xk)

≤ gTk sk +
1

2
sTkHksk + (∇f(xk)− gk)T sk +

1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ − 1

2
γ1,kαk‖gk‖22 + ‖∇f(xk)− gk‖2‖sk‖2 +

1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ − 1

2
γ1,kαk‖gk‖22 + γ1,kαk‖∇f(xk)− gk‖2‖gk‖2 +

1

2
γ21,kα

2
k(Lg + ‖Hk‖2)‖gk‖22. (7)

Since 0 ≤ ( 1
2‖gk‖2 − ‖∇f(xk)− gk‖2)2 = 1

4‖gk‖
2
2 − ‖∇f(xk)− gk‖2‖gk‖2 + ‖∇f(xk)− gk‖22 and since

(6) implies γ1,kαk ≤ γ2,k
4γ1,k(Lg+‖Hk‖2) ≤

1
4(Lg+‖Hk‖2) , one finds that

f(xk+1)− f(xk)

≤ − 1

2
γ1,kαk‖gk‖22 + γ1,kαk

(
1

4
‖gk‖22 + ‖∇f(xk)− gk‖22

)
+

1

2
γ21,kα

2
k(Lg + ‖Hk‖2)‖gk‖22

≤ − 1

8
γ1,kαk‖gk‖22 + γ1,kαk‖∇f(xk)− gk‖22,

which implies the desired conclusion since γ1,k ≥ γ2,k.

Case 2. By Lemma 4.2 and since in this case one has γ2,k‖gk‖2 ≤ 1, it follows that

gTk sk +
1

2
sTkHksk ≤ −

1

2
‖gk‖2 min

{
αk,
‖gk‖2
‖Hk‖2

}
≤ −1

2
‖gk‖2 min

{
γ2,kαk‖gk‖,

‖gk‖2
‖Hk‖

}
.

Since (6) ensures γ2,kαk ≤ γ1,kαk ≤ γ2,k
4γ1,k(Lg+‖Hk‖2) ≤

1
4(Lg+‖Hk‖2) ≤

1
‖Hk‖2 , this implies that

gTk sk +
1

2
sTkHksk ≤ −

1

2
γ2,kαk‖gk‖22.

Combining this with the result of Lemma 4.1, the Cauchy-Schwarz inequality, and the fact that ‖sk‖2 ≤
αk in this case, one finds that

f(xk+1)− f(xk)

≤ gTk sk +
1

2
sTkHksk + (∇f(xk)− gk)T sk +

1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ − 1

2
γ2,kαk‖gk‖22 + ‖∇f(xk)− gk‖2‖sk‖2 +

1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ − 1

2
γ2,kαk‖gk‖22 + αk‖∇f(xk)− gk‖2 +

1

2
α2
k(Lg + ‖Hk‖2).
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Since 0 ≤ γ2,k
γ2
1,k

( 1
2 −

γ2
1,k

γ2,k
‖∇f(xk) − gk‖2)2 =

γ2,k
4γ2

1,k
− ‖∇f(xk) − gk‖2 +

γ2
1,k

γ2,k
‖∇f(xk) − gk‖22 and since

1 ≤ γ1,k‖gk‖2 in this case, the above and (6) imply the desired conclusion that

f(xk+1)− f(xk)

≤ − 1

2
γ2,kαk‖gk‖22 + αk

(
γ2,k
4γ21,k

+
γ21,k
γ2,k
‖∇f(xk)− gk‖22

)
+

1

2
α2
k(Lg + ‖Hk‖2)

= − 1

2
γ2,kαk‖gk‖22 +

1

4
γ2,kαk‖gk‖22 +

γ21,k
γ2,k

αk‖∇f(xk)− gk‖22 +
1

2
γ21,kα

2
k(Lg + ‖Hk‖2)‖gk‖22

≤ − 1

8
γ2,kαk‖gk‖22 +

γ21,k
γ2,k

αk‖∇f(xk)− gk‖22.

Case 3. The proof follows in the same manner as the proof for Case 1, using γ2,k ≤ γ1,k.

The desired conclusion follows by combining the results for the three cases.

Our final fundamental lemma proves a similar type of bound on the expected reduction in the objective
function as in the preceding lemma, except that it can offer a stronger bound when the difference γ1,k−γ2,k is
proportional to αk and there is an appropriate balance between the stepsize αk and the norm of the stochastic
Hessian estimate. (Note that to ensure the bound on ‖Hk‖2 that is required for the lemma, one might need
to scale Hk, causing Ek[Hk] 6= ∇2f(xk). This might not seem ideal, but as is known in the deterministic
optimization literature, it still allows one to incorporate some (approximate) second-order information, which
can be beneficial in practice.) We consider the behavior of the algorithm in such situations in one of our
main theorems.

Lemma 4.5. Suppose that Assumption 4.1 holds and that, for all k ∈ N and some η ∈ R>0,

0 < αk ≤ min

{
γ2,k

4γ21,k(Lg + ‖Hk‖2)
,

1

6η + 2γ1,k(Lg + ‖Hk‖2)

}
,

‖Hk‖2 ≤
η

2γ1,k
, and γ1,k − γ2,k =

1

2
ηγ1,kαk.

(8)

(For one thing, this ensures that (6) holds for all k ∈ N.) Then, for all k ∈ N, one finds

Ek[f(xk+1)] ≤ f(xk)− 1

4
γ2,kαk‖∇f(xk)‖22

+
1

2
(3η + γ1,k(Lg + ‖Hk‖2)) γ1,kα

2
kEk[‖∇f(xk)− gk‖22].

Proof. Proof. We divide the proof according to the three cases defined on page 6.

Case 1. By (6), it follows that γ1,kαk ≤ γ2,k
4γ1,k(Lg+‖Hk‖2) ≤

1
4(Lg+‖Hk‖2) ≤

1
2‖Hk‖2 for all k ∈ N, meaning that

for all k ∈ N one finds in this case that

∆k‖gk‖2 −
1

2
∆2
k‖Hk‖2 = γ1,kαk‖gk‖22 −

1

2
γ21,kα

2
k‖gk‖22‖Hk‖2 ≤

1

2

‖gk‖22
‖Hk‖2

,

while at the same time 1
2‖Hk‖2 ≤ 2‖Hk‖2 ≤ η

γ1,k
, meaning for all k ∈ N that

∆k‖gk‖2 −
1

2
∆2
k‖Hk‖2 = γ1,kαk‖gk‖22 −

1

2
γ21,kα

2
k‖gk‖22‖Hk‖2

≥ γ1,kαk‖gk‖22 − γ1,kα2
kη‖gk‖22 = (1− αkη)γ1,kαk‖gk‖22.

9



(Observe that (8) ensures that α < 1
η , meaning that 1 − αkη > 0.) Combining these facts with the

results of Lemmas 4.1 and 4.3, the Cauchy-Schwarz inequality, and the fact that ‖sk‖2 ≤ γ1,kαk‖gk‖2
in this case, one finds that

f(xk+1)− f(xk)

≤ gTk sk +
1

2
sTkHksk + (∇f(xk)− gk)T sk +

1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ − (1− αkη)γ1,kαk‖gk‖22 + ‖∇f(xk)− gk‖2‖sk‖2 +
1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ − (1− αkη)γ1,kαk‖gk‖22 + γ1,kαk‖∇f(xk)− gk‖2‖gk‖2 +
1

2
γ21,kα

2
k(Lg + ‖Hk‖2)‖gk‖22.

Since 0 ≤ 1
2 (‖gk‖2 − ‖∇f(xk)− gk‖2)2 = 1

2‖gk‖
2
2 − ‖∇f(xk)− gk‖2‖gk‖2 + 1

2‖∇f(xk)− gk‖22,

f(xk+1)− f(xk)

≤ −
(

1− αkη −
1

2
γ1,kαk(Lg + ‖Hk‖2)

)
γ1,kαk‖gk‖22 +

1

2
γ1,kαk(‖gk‖22 + ‖∇f(xk)− gk‖22)

= −
(

1

2
− αkη −

1

2
γ1,kαk(Lg + ‖Hk‖2)

)
γ1,kαk‖gk‖22 +

1

2
γ1,kαk‖∇f(xk)− gk‖22,

which along with (5) (applied twice) implies that

Ek[f(xk+1)]− f(xk)

≤ −
(

1

2
− αkη −

1

2
γ1,kαk(Lg + ‖Hk‖2)

)
γ1,kαkEk[‖gk‖22] +

1

2
γ1,kαk(−‖∇f(xk)‖22 + Ek[‖gk‖22])

= − 1

2
γ1,kαk‖∇f(xk)‖22 +

(
η +

1

2
γ1,k(Lg + ‖Hk‖2)

)
γ1,kα

2
kEk[‖gk‖22]

= − 1

2
γ1,kαk‖∇f(xk)‖22 +

(
η +

1

2
γ1,k(Lg + ‖Hk‖2)

)
γ1,kα

2
k(‖∇f(xk)‖22 + Ek[‖∇f(xk)− gk‖22])

= −
(

1

2
−
(
η +

1

2
γ1,k(Lg + ‖Hk‖2)

)
αk

)
γ1,kαk‖∇f(xk)‖22

+

(
η +

1

2
γ1,k(Lg + ‖Hk‖2)

)
γ1,kα

2
kEk[‖∇f(xk)− gk‖22].

Hence, with the inequality above, the desired result follows in this case due to the upper bound imposed
on αk and the fact that γ1,k ≥ γ2,k for all k ∈ N.

Case 2. Under the conditions of the lemma, one has αk ≤ 1
η and 2‖Hk‖2 ≤ η

γ1,k
. In addition, in this case, one

has γ1,k‖gk‖2 ≥ 1. These facts combined imply that

∆k‖gk‖2 −
1

2
∆2
k‖Hk‖2 = αk‖gk‖2 −

1

2
α2
k‖Hk‖2 ≤

‖gk‖2
η

while
1

2

‖gk‖22
‖Hk‖2

≥ γ1,k‖gk‖22
η

≥ ‖gk‖2
η

.

By Lemma 4.3 and the facts that 1
2‖Hk‖2 ≤ 2‖Hk‖2 ≤ η

γ1,k
and γ1,k‖gk‖2 ≥ 1, it follows that

gTk sk +
1

2
sTkHksk ≤ −∆k‖gk‖2 +

1

2
∆2
k‖Hk‖2

= −αk‖gk‖2 +
1

2
α2
k‖Hk‖2

≤ −(1− αkη)αk‖gk‖2.

10



Combining this fact with the results of Lemmas 4.1 and 4.3, the Cauchy-Schwarz inequality, and the
facts that γ2,k‖gk‖2 ≤ 1, γ1,k‖gk‖2 ≥ 1, and ‖sk‖2 ≤ αk in this case, one finds that

f(xk+1)− f(xk)

≤ gTk sk +
1

2
sTkHksk + (∇f(xk)− gk)T sk +

1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ − (1− αkη)αk‖gk‖2 + ‖∇f(xk)− gk‖2‖sk‖2 +
1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ − (1− αkη)γ2,kαk‖gk‖22 + αk‖∇f(xk)− gk‖2 +
1

2
α2
k(Lg + ‖Hk‖2)

≤ − (1− αkη)γ2,kαk‖gk‖22 + γ1,kαk‖∇f(xk)− gk‖2‖gk‖2 +
1

2
γ21,kα

2
k(Lg + ‖Hk‖2)‖gk‖22.

Since 0 ≤ 1
2 (‖gk‖2 − ‖∇f(xk)− gk‖2)2 = 1

2‖gk‖
2
2 − ‖∇f(xk)− gk‖2‖gk‖2 + 1

2‖∇f(xk)− gk‖22,

f(xk+1)− f(xk)

≤ −
(

(1− αkη)γ2,k −
1

2
γ21,kαk(Lg + ‖Hk‖2)

)
αk‖gk‖22 +

1

2
γ1,kαk

(
‖gk‖22 + ‖∇f(xk)− gk‖22

)
= −

(
(1− αkη)γ2,k −

1

2
γ1,k −

1

2
γ21,kαk(Lg + ‖Hk‖2)

)
αk‖gk‖22 +

1

2
γ1,kαk‖∇f(xk)− g‖22,

which along with (5) (applied twice) implies that

Ek[f(xk+1)]− f(xk)

≤ −
(

(1− αkη)γ2,k −
1

2
γ1,k −

1

2
γ21,kαk(Lg + ‖Hk‖2)

)
αkEk[‖gk‖22]

+
1

2
γ1,kαk(−‖∇f(xk)‖22 + Ek[‖gk‖22])

= − 1

2
γ1,kαk‖∇f(xk)‖22 +

(
γ1,k − γ2,k +

(
ηγ2,k +

1

2
γ21,k(Lg + ‖Hk‖2)

)
αk

)
αkEk[‖gk‖22]

≤ − 1

2
γ1,kαk‖∇f(xk)‖22

+

(
γ1,k − γ2,k +

(
ηγ2,k +

1

2
γ21,k(Lg + ‖Hk‖2)

)
αk

)
αk(‖∇f(xk)‖22 + Ek[‖∇f(xk)− gk‖22])

= −
(

1

2
γ1,k − (γ1,k − γ2,k)−

(
ηγ2,k +

1

2
γ21,k(Lg + ‖Hk‖2)

)
αk

)
αk‖∇f(xk)‖22

+

(
γ1,k − γ2,k +

(
ηγ2,k +

1

2
γ21,k(Lg + ‖Hk‖2)

)
αk

)
αkEk[‖∇f(xk)− gk‖22]

= −
(

1

2
− 1

2

(
3η − η2αk + γ1,k(Lg + ‖Hk‖2)

)
αk

)
γ1,kαk‖∇f(xk)‖22

+
1

2

(
3η − η2αk + γ1,k(Lg + ‖Hk‖2)

)
γ1,kα

2
kEk[‖∇f(xk)− gk‖22].

Hence, the desired result follows for this case, again due to the upper bound on αk and the fact that
γ1,k ≥ γ2,k for all k ∈ N.

Case 3. The proof for this case follows in the same manner as the proof for Case 1, where the result for this
case has a similar form except with γ1,k replaced by γ2,k. For the proof, it should be noted that
γ2,kαk ≤ γ1,kαk ≤ 1

2‖Hk‖2 , 1
2‖Hk‖2 ≤ η

γ1,k
≤ η

γ2,k
, and ‖sk‖2 ≤ γ2,kαk‖gk‖2.

The desired conclusion follows by combining the results for the three cases.
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Now that these fundamental lemmas have been established, which focus on the behavior of the algorithm
over a single iteration, we turn to analyzing the behavior of the algorithm over the entire sequence of
iterations. We break our analysis into parts based on different assumptions about the problem function
and the stochastic derivative estimates. For simplicity in much of our analysis, we consider the behavior
of the algorithm when the parameter sequences {γ1,k} and {γ2,k} are constant. In such cases, one could
prove similar results that allow the sequences not to be constant, as long as they remain within bounded
intervals. We also prove one result showing that, in practice, one might define these sequences to have the
same limit point, which in a sense makes the algorithm behave asymptotically like a more standard stochastic
Newton-type method.

4.2 General (nonconvex) objective functions

First, we consider the case when the algorithm is employed to minimize an objective function satisfying only
Assumptions 4.1 and 4.2, and when the following loose assumption holds about the algorithm parameters,
stochastic gradients, and stochastic Hessians.

Assumption 4.3. The variance of the stochastic gradient estimates and the sequence of stochastic Hessian
estimates are both uniformly bounded in the sense that there exist constants (Mg,MH) ∈ R>0 × R>0 such
that, for all k ∈ N,

Ek[‖∇f(xk)− gk‖22] ≤Mg and ‖Hk‖2 ≤MH .

In addition, (αk, γ1,k, γ2,k) = (α, γ1, γ2) for all k ∈ N, where γ1 ≥ γ2 > 0 and

0 < α ≤ γ2
4γ21(Lg +MH)

,

which, in particular, implies that (6) holds for all k ∈ N.

Combining the result of Lemma 4.4 with Assumption 4.3 leads to the following result showing that the
expected average squared norm of the gradient at the iterates is bounded.

Theorem 4.1. Under Assumptions 4.1, 4.2, and 4.3, TRish yields

E

[
K∑
k=1

‖∇f(xk)‖22

]
≤
(

8

γ2α

)
(f(x1)− finf) +K

(
8γ1
γ2
− 1

)
Mg (9a)

and E

[
1

K

K∑
k=1

‖∇f(xk)‖22

]
≤ 1

K

(
8

γ2α

)
(f(x1)− finf) +

(
8γ21
γ22
− 1

)
Mg

K→∞−−−−→
(

8γ21
γ22
− 1

)
Mg. (9b)

Proof. Proof. Since Assumption 4.3 ensures that (6) holds for all k ∈ N, it follows that the result of
Lemma 4.4 holds; hence, with parameters as in Assumption 4.3, for all k ∈ N one has

Ek[f(xk+1)] ≤ f(xk)− 1

8
γ2αEk[‖gk‖22] +

γ21
γ2
αEk[‖∇f(xk)− gk‖22].

Hence, due to Assumption 4.3 and (5), it follows for all k ∈ N that

Ek[f(xk+1)]− f(xk)

≤ − 1

8
γ2α(‖∇f(xk)‖22 + Ek[‖∇f(xk)− gk‖22]) +

γ21
γ2
αEk[‖∇f(xk)− gk‖22]

= − 1

8
γ2α‖∇f(xk)‖22 + α

(
γ21
γ2
− 1

8
γ2

)
Ek[‖∇f(xk)− gk‖22]
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≤ − 1

8
γ2α‖∇f(xk)‖22 + α

(
γ21
γ2
− 1

8
γ2

)
Mg. (10)

Taking total expectation, it follows for all k ∈ N that

E[f(xk+1)]− E[f(xk)] ≤ −1

8
γ2αE[‖∇f(xk)‖22] + α

(
γ21
γ2
− 1

8
γ2

)
Mg,

which implies

E[‖∇f(xk)‖22] ≤
(

8

γ2α

)
(E[f(xk)]− E[f(xk+1)]) +

(
8γ21
γ22
− 1

)
Mg.

Summing this inequality over all k ∈ {1, . . . ,K} and using the fact that f is bounded below by finf yields
(9a), which, in turn, implies (9b).

Next, we consider the behavior of TRish when Assumptions 4.1 and 4.2 hold and when a run of the
algorithm satisfies the following assumption involving diminishing stepsizes.

Assumption 4.4. The variance of each stochastic gradient estimate is proportional to the stepsize and
the sequence of stochastic Hessian estimates is uniformly bounded in the sense that there exist constants
(Mg,MH) ∈ R>0 × R>0 such that, for all k ∈ N,

Ek[‖∇f(xk)− gk‖22] ≤Mgαk and ‖Hk‖2 ≤MH . (11)

In addition, (γ1,k, γ2,k) = (γ1, γ2) for all k ∈ N where γ1 ≥ γ2 > 0, and

{αk} =

{
a

b+ k

}
for some (a, b) ∈ R>0 × R>0

such that (6) holds for all k ∈ N.

Under this assumption, which is stronger than Assumption 4.3, we obtain the following result, which,
not surprisingly, is stronger than the result in Theorem 4.1.

Theorem 4.2. Under Assumptions 4.1, 4.2, and 4.4, TRish yields

lim
K→∞

E

[
K∑
k=1

αk‖∇f(xk)‖2
]
<∞ (12a)

and E

[
1∑K

k=1 αk

K∑
k=1

αk‖∇f(xk)‖2
]

K→∞−−−−→ 0. (12b)

In addition, it follows that
lim inf
k→∞

‖f(xk)‖22 = 0 with probability 1. (13)

Proof. Proof. Following the same arguments as in the proof of Theorem 4.1, for all k ∈ N,

Ek[f(xk+1)] ≤ f(xk)− 1

8
γ2αk‖∇f(xk)‖22 +

(
γ21
γ2
− 1

8
γ2

)
Mgα

2
k, (14)

which, taking total expectation, implies for all k ∈ N that

E[f(xk+1)]− E[f(xk)] ≤ −1

8
γ2αkE[‖∇f(xk)‖22] +

(
γ21
γ2
− 1

8
γ2

)
Mgα

2
k.
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Rearranging terms and summing over all k ∈ {1, . . . ,K}, it follows that

1

8
γ2

K∑
k=1

αkE[‖∇f(xk)‖22] ≤
K∑
k=1

(E[f(xk)]− E[f(xk+1)]) +

(
γ21
γ2
− 1

8
γ2

)
Mg

K∑
k=1

α2
k. (15)

Since
∑K
k=1 (E[f(xk)]− E[f(xk+1)]) ≤ f(x1) − finf < ∞ for any K ∈ N and since Assumption 4.4 im-

plies
∑∞
k=1 α

2
k < ∞, it follows from (15) that (12a) holds. Moreover, dividing (15) by

∑K
k=1 αk and since

Assumption 4.4 implies
∑∞
k=1 αk =∞, it follows that (12b) holds.

Let us now prove (13). Defining the scalars β1 := 1
8γ2 and β2 :=

(
γ2
1

γ2
− 1

8γ2

)
Mg, it follows from (14)

that, for all k ∈ N, the expected reduction in f satisfies

Ek[f(xk+1)] ≤ f(xk)− β1αk‖∇f(xk)‖2 + β2α
2
k

=⇒ Ek[f(xk+1)] + β2

∞∑
i=k+1

α2
i ≤ f(xk)− β1αk‖∇f(xk)‖2 + β2

∞∑
i=k

α2
i .

Considering the stochastic processes {pk} and {qk}, where, for all k ∈ N,

pk := β1αk‖∇f(xk)‖22 and qk := f(xk) + β2

∞∑
i=k

α2
i ,

it follows from above that, for all k ∈ N,

Ek[qk+1 − finf ] ≤ qk − finf − pk. (16)

One finds from this relationship that E[qk − finf ] < ∞ and Ek[qk+1 − finf ] ≤ qk − finf for all k ∈ N, which
with qk − finf ≥ 0 for all k ∈ N implies that {qk − finf} is a nonnegative supermartingale. This implies
(see, e.g., [17] and similar use in [36]) that there exists q such that limk→∞ qk = q with probability 1 and
E[q] ≤ E[q1]. From (16), one finds that E[pk] ≤ E[qk]− E[qk+1], from which it follows that

E

[ ∞∑
k=1

pk

]
<∞ =⇒

∞∑
k=1

β1αk‖∇f(xk)‖22 =

∞∑
k=1

pk <∞ with probability 1. (17)

Since
∑∞
k=1 αk =∞ under Assumption 4.4, the above implies (13).

To conclude this section, let us prove a result that in part considers the behavior of the algorithm under
the following assumption.

Assumption 4.5. The second moment of the stochastic gradient estimates is uniformly bounded in the sense
that there exists a constant Mg,2 ∈ R>0 such that, for all k ∈ N,

Ek[‖gk‖22] ≤Mg,2.

It should be said that Assumption 4.5 is strong since it implies that the variance of the stochastic
gradient estimates is smaller at points at which ‖∇f(xk)‖2 is large. In particular, under Assumptions 4.2
and Assumption 4.5, it follows (recall (5)) that

Ek[‖gk‖22] ≤Mg =⇒ Ek[‖∇f(xk)− gk‖22] ≤Mg − ‖∇f(xk)‖22.

That said, if the iterates of the algorithm happen to remain in a region over which ‖∇f(·)‖2 is bounded,
then it is interesting to note that Assumption 4.5 leads to the following strong result about the behavior
of the algorithm. (A result similar to the following was proved for a stochastic quasi-Newton method as
[36, Th. 2.6], and our proof borrows from that one. That said, our proof corrects an oversight made in the
proof of [36, Th. 2.6] when one considers the negation of a statement of the form (18); in particular, in
the negation, one should only assume that the limit does not hold with some positive probability, not with
complete certainty.)
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Theorem 4.3. Under Assumptions 4.1, 4.2, 4.4, and 4.5, TRish yields

lim
k→∞

‖∇f(xk)‖2 = 0 with probability 1. (18)

Proof. Proof. To derive a contradiction, suppose that (18) does not hold, meaning that with some nonzero
probability there exists ε ∈ (0,∞) and an infinite index set K1 ⊆ N such that ‖∇f(xk)‖2 > ε for all k ∈ K1.
On the other hand, from Theorem 4.2 it follows that (13) holds, meaning that with probability one there
exists an infinite index set K2 such that ‖∇f(xk)‖2 ≤ 1

2ε for all k ∈ K2. Together, these facts imply with
nonzero probability the existence of index sets {mi}∞i=1 ⊂ N and {ni}∞i=1 ⊂ N with mi < ni for all i ∈ N
such that

‖∇f(xmi
)‖ ≥ ε, ‖∇f(xni

)‖ < 1
2ε,

and ‖∇f(xk)‖ ≥ 1
2ε for all k ∈ {mi + 1, · · · , ni − 1}.

(19)

For the remainder of the proof, let us condition on the event that (19) holds. With (17),

∞ >

∞∑
k=1

αk‖∇f(xk)‖22 ≥
∞∑
i=1

ni−1∑
k=mi

αk‖∇f(xk)‖22 ≥ ε2
∞∑
i=1

ni−1∑
k=mi

αk with probability 1,

meaning that

lim
i→∞

ni−1∑
k=mi

αk <∞ with probability 1. (20)

Now notice that, for any k ∈ N, for any (gk, Hk), Assumption 4.5 implies

Ek[‖xk+1 − xk‖2] = Ek[‖sk‖] ≤ αk max{1, γ1Ek[‖gk‖2]} = αk max
{

1, γ1
√
Mg,2

}
,

from which it follows that

Ek[‖xni − xmi‖2] ≤ max
{

1, γ1
√
Mg,2

} ni−1∑
k=mi

αk.

Therefore, with (20), one finds that limi→∞ ‖xni − xmi‖2 = 0 with probability 1, which with Lipschitz
continuity of ∇f under Assumption 4.1 implies that limi→∞ ‖∇f(xni

)−∇f(xmi
)‖2 = 0 with probability 1.

However, this contradictions (19).

4.3 Objective functions satisfying the Polyak- Lojasiewicz condition

We now consider when the algorithm is employed to minimize an objective function satisfying Assump-
tions 4.1 and 4.2 along with the Polyak- Lojasiewicz (PL) condition. We state this condition in the form of
the following assumption.

Assumption 4.6. There exists a constant c ∈ (0,∞) such that, for all x ∈ Rn, one has

2c(f(x)− finf) ≤ ‖∇f(x)‖22 for all x ∈ Rn. (21)

Functions satisfying Assumption 4.6 include c-strongly convex functions, but also other nonconvex func-
tions. Assumptions 4.1 and 4.6 combined do not guarantee that f has a minimizer, although they do
guarantee that if a stationary point exists then it is a global minimizer with objective value finf . The PL
condition is known as a relatively weak condition under which certain algorithms, such as gradient descent,
can enjoy a linear rate of convergence. In this section, we show that the theoretical properties for TRish are
stronger under the PL condition than they are in the more general situations considered in §4.2.

Our first result shows that if the variance of the stochastic gradient estimates and the stochastic Hessian
estimates are both uniformly bounded and the algorithm is run with certain fixed parameter settings, then the
expected optimality gap is bounded above by a sequence that converges linearly to a constant proportional
to Mg/c. This result is comparable to one that can be proved for SG with a fixed stepsize, for which the
limiting constant is also O(Mg/c); see [4, Theorem 4.6].
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Theorem 4.4. Under Assumptions 4.1, 4.2, 4.3, and 4.6, if α ≤ 4/(γ2c), then with

θ := 4

(
γ21
γ22
− 1

8

)
Mg

c
(22)

TRish yields

E[f(xK+1)]− finf ≤ θ +

(
1− 1

4
γ2cα

)K
(f(x1)− finf − θ)

K→∞−−−−→ θ.

Proof. Proof. As in the proof of Theorem 4.1 (see (10)), it follows for all k ∈ N that

Ek[f(xk+1)] ≤ f(xk)− 1

8
γ2α‖∇f(xk)‖22 + α

(
γ21
γ2
− 1

8
γ2

)
Mg.

Hence, by Assumption 4.6, it follows for all k ∈ N that

Ek[f(xk+1)] ≤ f(xk)− 1

4
γ2cα(f(xk)− finf) + α

(
γ21
γ2
− 1

8
γ2

)
Mg.

Subtracting finf from both sides and taking total expectation, it follows for all k ∈ N that

E[f(xk+1)]− finf ≤
(

1− 1

4
γ2cα

)
(E[f(xk)]− finf) + α

(
γ21
γ2
− 1

8
γ2

)
Mg.

Therefore, with θ defined in (22), it follows for all k ∈ N that

E[f(xk+1)]− finf − θ ≤
(

1− 1

4
γ2cα

)
(E[f(xk)]− finf − θ).

Applying this bound repeatedly for k ∈ {1, . . . ,K} yields the desired result.

Let us now prove, under similar assumptions as in the previous theorem (in particular with respect
to the stochastic gradient and Hessian estimates), that TRish can offer sublinear decrease of the expected
optimality gap to zero if the stepsizes vanish along with the differences {γ1,k − γ2,k}. This is the only
theorem that we prove in which we consider a case in which {γ1,k} and {γ2,k} are not both constant; in
particular, we assume {γ1,k} is constant, but that {γ2,k} is not. Other similar results can be proved, say
with {γ1,k} converging to a constant sequence {γ2,k}, or with {γ1,k} and {γ2,k} both not constant as long
as the sequences remain within a positive interval and the difference sequence is proportional to the stepsize
sequence in that {γ1,k − γ2,k} = O(αk).

For this theorem only, we consider the following assumption.

Assumption 4.7. The variance of the stochastic gradient estimates and the sequence of stochastic Hessian
estimates are both uniformly bounded in the sense that there exist constants (Mg,MH) ∈ R>0 × R>0 such
that, for all k ∈ N,

Ek[‖∇f(xk)− gk‖22] ≤Mg and ‖Hk‖2 ≤MH .

In addition, γ1,k = γ1 > 0 for all k ∈ N, and

{αk} =

{
a

b+ k

}
and {γ2,k} =

{
γ1

(
1− 1

2
ηαk

)}
for some (a, b, η) ∈ R>0 × R>0 × R>0

such that (8) holds for all k ∈ N.

Under this assumption, we prove sublinear decrease of the expected optimality gap.
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Theorem 4.5. Under Assumptions 4.1, 4.2, 4.6, and 4.7, if the pair (a, b) ∈ R>0×R>0 is chosen such that
αk ≤ 2

γ2,1c
for all k ∈ N, then for all k ∈ N the expected optimality gap satisfies

E[f(xk)]− finf ≤
φ

b+ k
, (23)

where

φ := max

{
(b+ 1)(f(x1)− finf),

δ2a
2

δ1a− 1

}
∈ (0,∞), (24)

with

δ1 :=
1

2
γ2,1c ∈

(
0,

1

α

]
and δ2 :=

1

2
(3η + γ1(Lg +MH))γ1Mg ∈ (0,∞). (25)

Proof. Proof. By Lemma 4.5, it follows for all k ∈ N that

Ek[f(xk+1)] ≤ f(xk)− 1

4
γ2,1αk‖∇f(xk)‖22 +

1

2
(3η + γ1(Lg +MH))γ1Mgα

2
k. (26)

Hence, by Assumption 4.6, it follows for all k ∈ N that

Ek[f(xk+1)] ≤ f(xk)− 1

2
γ2,1cαk(f(xk)− finf) +

1

2
(3η + γ1(Lg +MH))γ1Mgα

2
k.

Subtracting finf from both sides and taking total expectation, it follows for all k ∈ N that

E[f(xk+1)]− finf ≤
(

1− 1

2
γ2,1cαk

)
(E[f(xk)]− finf) +

1

2
(3η + γ1(Lg +MH))γ1Mgα

2
k.

Let us now prove (23) by induction. First, for k = 1, the inequality holds by the definition of φ in (24). Now
suppose that (23) holds up to k ∈ N. Then, with (δ1, δ2) defined in (25), one finds for iteration (k + 1) ∈ N
that

E[f(xk+1)]− finf ≤ (1− δ1αk)(E[f(xk)]− finf) + δ2α
2
k

=

(
1− δ1a

b+ k

)
(E[f(xk)]− finf) +

δ2a
2

(b+ k)2

≤
(

1− δ1a

b+ k

)
φ

b+ k
+

δ2a
2

(b+ k)2

=
(b+ k)φ

(b+ k)2
− δ1aφ

(b+ k)2
+

δ2a
2

(b+ k)2

=
(b+ k − 1)φ

(b+ k)2
− (δ1a− 1)φ

(b+ k)2
+

δ2a
2

(b+ k)2

≤ (b+ k − 1)φ

(b+ k)2
≤ φ

b+ k + 1
,

where the last equation follow from the definition of φ in (24) and the last inequality follows from the fact
that (z − 1)(z + 1) ≤ z2 for any z ∈ R.

TRish can also yield sublinear decrease of the expected optimality gap with fixed parameters. However,
this can only be guaranteed with the stronger assumption on the stochastic gradient estimates stipulated in
Assumption 4.4 (specifically in (11)).

Theorem 4.6. Under Assumptions 4.1, 4.2, 4.4, and 4.6, if the pair (a, b) ∈ R>0×R>0 is chosen such that
αk ≤ 4

γ2c
for all k ∈ N, then for all k ∈ N the expected optimality gap satisfies

E[f(xk)]− finf ≤
φ

b+ k
, (27)
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where

φ := max

{
(b+ 1)(f(x1)− finf),

δ2a
2

δ1a− 1

}
∈ (0,∞),

with

δ1 :=
1

4
γ2c ∈

(
0,

1

α

]
and δ2 =

(
γ21
γ22
− 1

8
γ2

)
Mg ∈ (0,∞).

Proof. Proof. As in the proof of Theorem 4.2 (see (14)), it follows for all k ∈ N that

Ek[f(xk+1)] ≤ f(xk)− 1

8
γ2αk‖∇f(xk)‖22 +

(
γ21
γ2
− 1

8
γ2

)
Mgα

2
k,

Noting that this inequality has the same form as that in (26), the remainder of the proof follows in the same
manner as that for Theorem 4.5.

Finally in this section, let us consider the behavior of the algorithm under the following stronger as-
sumption, which requires that the variance of the stochastic gradient estimates vanishes at a geometric rate.
Specifically, consider the following assumption.

Assumption 4.8. The variances of the stochastic gradient estimates decreases at a geometric rate and
the sequence of stochastic Hessian estimates is uniformly bounded in the sense that there exist constants
(Mg,MH , ζ) ∈ R>0 × R>0 × (0, 1) such that, for all k ∈ N,

Ek[‖∇f(xk)− gk‖22] ≤Mgζ
k−1 and ‖Hk‖2 ≤MH .

In addition, (αk, γ1,k, γ2,k) = (α, γ1, γ2) for all k ∈ N, where γ1 ≥ γ2 > 0 and

0 < α ≤ γ2
4γ21(Lg +MH)

,

which, in particular, implies that (6) holds for all k ∈ N.

This assumption leads to the following theorem.

Theorem 4.7. Under Assumptions 4.1, 4.2, 4.6, and 4.8, TRish yields

E[f(xk)]− finf ≤ ωρk−1, (28)

where

κ1 :=
1

8
γ2, κ2 :=

(
γ21
γ2
− 1

8
γ2

)
Mg, ω := max

{
f(x1)− finf ,

κ2
cκ1

}
,

and ρ := max{1− cκ1α, ζ} ∈ (0, 1).

(29)

Proof. Proof. Using the same arguments as in the beginning of the proof of Theorem 4.1 (specifically leading
to (10)), one has for all k ∈ N that

Ek[f(xk+1)] ≤ f(xk)− 1

8
γ2α‖∇f(xk)‖22 + α

(
γ21
γ2
− 1

8
γ2

)
Mgζ

k−1.

Applying the bound in Assumption 4.6, subtracting finf from both sides, and taking total expectation, one
finds with (κ1, κ2) defined in (29) that, for all k ∈ N, one has

E[f(xk+1)]− finf ≤ (1− 2cκ1α)(E[f(xk)]− finf) + κ2αζ
k−1.
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Let us now prove (28) by induction. First, for k = 1, the inequality follows by the definition of ω in (29).
Then, assuming the inequality holds true for k ∈ N, one finds from above that

E[f(xk+1)]− finf ≤ (1− 2cκ1α)ωρk−1 + κ2αζ
k−1

= ωρk−1

(
1− 2cκ1α+

κ2α

ω

(
ζ

ρ

)k−1)
≤ ωρk−1

(
1− 2cκ1α+

κ2α

ω

)
≤ ωρk−1(1− cκ1α) ≤ ωρk,

which proves that the conclusion holds for k + 1, as desired.

5 Complexity Analysis

In this section, we prove a complexity result for TRish. While not representing the behavior of the algorithm
in the fully stochastic regime, the result does show that if one computes sufficiently accurate gradient and
Hessian estimates, then one obtains—with the same algorithm—a worst-case performance that is reminiscent
of results that can be proved for certain deterministic algorithms with optimal complexity properties. To
keep our result in the stochastic setting, we assume only that the stochastic gradients and Hessians are
sufficiently accurate in expectation. Consequently, our theorem is weaker than those that can be proved
in the deterministic setting. (If one were to replace the conditional expectations in (30) with computed
values, then the same arguments would show that TRish yields first-order ε-stationarity in at most O(ε−3/2)
iterations.)

Assumption 5.1. The Hessian function ∇2f : Rn → Rn×n is Lipschitz continuous with constant LH ∈ R>0.
In addition, given ε ∈ R>0, the expected distances of the stochastic gradient and stochastic Hessian estimates
from the true gradients and Hessians, respectively, are uniformly bounded with respect to (LH , ε) in the sense
that there exist constants µ1 ∈ (0, 1

12 ) and µ2 ∈ (0, 1
12 ) such that, for all k ∈ N,

Ek[‖∇f(xk)− gk‖2] ≤ µ1

LH
ε and Ek[‖∇2f(xk)−Hk‖2] ≤ µ2

√
ε. (30)

Moreover, for all k ∈ N, the subproblem (2) is solved to global optimality. Finally, the norms of the stochastic
gradients are uniformly bounded above and below in that there exists (Glow, Ghigh) ∈ R>0 × R>0 such that
Glow ≤ ‖gk‖2 ≤ Ghigh for all k ∈ N.

Under Assumption 5.1, since the subproblem (2) is solved to global optimality for all k ∈ N, it follows
for all k ∈ N that there exists a scalar υk such that

gk + (Hk + υkI)sk = 0 (31a)

Hk + υkI � 0 (31b)

and 0 ≤ υk ⊥ ∆k − ‖sk‖2 ≥ 0. (31c)

Theorem 5.1. Suppose Assumptions 4.1, 4.2, and 5.1 hold. In addition, suppose that (αk, γ1,k, γ2,k) =
(α, γ1, γ2) for all k ∈ N, where γ1 ≥ γ2 > 0 and for some constants (λ1, λ2, λ3) ∈ (0, 1) × (0, 1) × (0, 1)
satisfying

λ21λ
2
2 −

µ1

λ3
− µ2

λ23
− 2

3λ33
≥ 1

6
(32)

one has that the parameters employed by TRish satisfy

α ∈
[

2λ1
√
ε

LH
,

2
√
ε

LH

]
, γ1 ∈

[
λ2
Glow

,∞
)
, and γ2 ∈

(
0,

1

λ3Ghigh

]
. (33)
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Then, either υk >
√
ε for all k ∈ {1, . . . ,K} where K = O(ε−3/2) and the (conditionally) expected total

decrease in f in these iterations is at least the initial optimality gap, i.e.,

K∑
k=1

Ek[f(xk)− f(xk+1)|υk >
√
ε] ≥ f0 − finf

or for some K = O(ε−3/2) one finds that

EK [‖∇f(xK+1)‖2|υK ≤
√
ε] ≤ O(ε).

Proof. Proof. Under Assumption 5.1, it follows for all k ∈ N that

f(xk + sk)− f(xk)−∇f(xk)T sk −
1

2
sTk∇2f(xk)sk ≤

LH
6
‖sk‖3 (34a)

and ‖∇f(xk + sk)−∇f(xk)−∇2f(xk)sk‖ ≤
LH
2
‖sk‖2. (34b)

For the next parts of the proof, we consider two cases. In the first case, we show that if the nonnegative
scalar υk in the optimality conditions (31) is sufficiently small for some k ∈ N, then the conditional expecta-
tion of the gradient of f at xk+1 is at most proportional to ε. In the second case, when υk is not sufficiently
small, we show that the conditional expected decrease in the objective function value is at least proportional
to ε3/2.

First, suppose that υk ≤
√
ε. For all k ∈ N, it follows from the Cauchy-Schwarz inequality, (34b), (31a),

and the trust region constraint in (2) that

‖∇f(xk+1)‖2 ≤ ‖∇f(xk+1)−∇f(xk)−∇2f(xk)sk‖2
+ ‖∇f(xk)− gk‖2 + ‖(∇2f(xk)−Hk)sk‖2 + ‖gk +Hksk‖2

≤ LH
2
‖sk‖22 + ‖∇f(xk)− gk‖2 + ‖∇2f(xk)−Hk‖2‖sk‖2 + υk‖sk‖2

≤ LH
2

∆2
k + ‖∇f(xk)− gk‖2 + ∆k‖∇2f(xk)−Hk‖2 + ∆k

√
ε. (35)

Let us now consider the three cases defined on page 6. In Case 1, one has that ‖gk‖2 ≤ 1/γ1, meaning
∆k = γ1α‖gk‖2 ≤ α. In Case 2, one has that ∆k = α. Finally, in Case 3, one has by (33) that ∆k =
γ2α‖gk‖2 ≤ γ2αGhigh ≤ α/λ3. Thus, it follows by (35) that, for all k ∈ N,

‖∇f(xk+1)‖2 ≤
LH
2

(
α

λ3

)2

+ ‖∇f(xk)− gk‖2 +
α

λ3
‖∇2f(xk)−Hk‖2 +

α

λ3

√
ε

≤
(

1

λ23
+

1

λ3

)
2

LH
ε+ ‖∇f(xk)− gk‖2 +

2

LHλ3
‖∇2f(xk)−Hk‖2

√
ε.

Taking conditional expectation, it follows for all k ∈ N that

Ek[‖∇f(xk+1)‖2|υk ≤
√
ε]

≤
(

1

λ23
+

1

λ3

)
2

LH
ε+ Ek[‖∇f(xk)− gk‖2] +

2

LHλ3
Ek[‖∇2f(xk)−Hk‖2]

√
ε

≤
((

1

λ23
+

1

λ3

)
2

LH
+

µ1

LH
+

2µ2

LHλ3

)
ε.

Second, suppose that υk >
√
ε. For such k ∈ N, it follows by (31c) that ‖sk‖2 = ∆. Therefore, by (34a),

(31), and the Cauchy-Schwarz inequality, it follows for all k ∈ N that

f(xk+1)− f(xk)
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≤ ∇f(xk)T sk +
1

2
sTk∇2f(xk)sk +

LH
6
‖sk‖32

≤ gTk sk +
1

2
sTkHksk + (∇f(xk)− gk)T sk +

1

2
sTk (∇2f(xk)−Hk)sk +

LH
6
‖sk‖32

≤ gTk sk +
1

2
sTkHksk + ‖∇f(xk)− gk‖2‖sk‖2 +

1

2
‖∇2f(xk)−Hk‖2‖sk‖22 +

LH
6
‖sk‖32

= gTk sk +
1

2
sTkHksk + ∆k‖∇f(xk)− gk‖2 +

1

2
∆2
k‖∇2f(xk)−Hk‖2 +

LH
6

∆3
k

≤ − 1

2
υk∆2

k + ∆k‖∇f(xk)− gk‖2 +
1

2
∆2
k‖∇2f(xk)−Hk‖2 +

LH
6

∆3
k

≤ − 1

2

√
ε∆2

k + ∆k‖∇f(xk)− gk‖2 +
1

2
∆2
k‖∇2f(xk)−Hk‖2 +

LH
6

∆3
k. (36)

Let us consider the three cases defined on page 6. In Case 1, it follows under Assumption 5.1 and by (33)
and the fact that ‖gk‖2 ≤ 1/γ that ∆k = γ1α‖gk‖2 ≥ γ1αGlow ≥ 2λ1λ2

LH

√
ε and ∆k ≤ α ≤ 2

LH

√
ε. In Case 2,

one finds that ∆k = α ∈
[
2λ1

LH

√
ε, 2
LH

√
ε
]
. Finally, in Case 3, one finds as before that ∆k ≤ α/λ3, meaning

that ∆k ≤ 2
LHλ3

√
ε. Moreover, one finds by the fact that ‖gk‖2 ≥ 1/γ2 in this case that ∆k ≥ α ≥ 2λ1

LH

√
ε.

Hence, for all k ∈ N, one finds

∆k ∈
[

2λ1λ2
LH

√
ε,

2

LHλ3

√
ε

]
.

Combining this inclusion with (36) and (32), one finds for all k ∈ N that

Ek[f(xk+1)|υk >
√
ε]− f(xk) ≤ − 2λ21λ

2
2

L2
H

ε3/2 +
2µ1

L2
Hλ3

ε3/2 +
2µ2

L2
Hλ

2
3

ε3/2 +
4

3L2
Hλ

3
3

ε3/2

≤ − 2

L2
H

(
λ21λ

2
2 −

µ1

λ3
− µ2

λ23
− 2

3λ33

)
ε3/2

≤ − 1

3L2
H

ε3/2.

Combining the results of these two cases leads to our desired conclusion. In particular, suppose that
υk >

√
ε for all k ∈ {1, . . . , k̂} for some k̂ ∈ N. It follows from above that

k̂∑
k=1

Ek[f(xk)− f(xk+1)|υk >
√
ε] ≥ k̂

(
1

3L2
H

)
ε3/2.

The left-hand side of this inequality is greater than f1 − finf as long as

k̂

(
1

3L2
H

)
ε3/2 ≥ f1 − finf ⇐⇒ k̂ ≥ 3L2

H(f1 − finf)ε−3/2,

which shows that the desired inequality is true for some K = O(ε−3/2).

6 Numerical Experiments

The goal of our numerical experiments is to show that TRish, with stochastic second-order derivative in-
formation incorporated, can outperform SG and first-order TRish (i.e., TRish with Hk = 0 for all k ∈ N).
In particular, our goal is to show with a few interesting test problems that TRish can offer a better final
solution, and offer better stability throughout the optimization process, in the sense that the quality of the
solution estimates does not vary as wildly from one iteration to the next as it might for SG.
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6.1 Implementation Details

We implemented TRish and SG in Python. All of our test problems involve training neural networks. The
problems were implemented using PyTorch, which allows one to use back propagation to compute stochastic
gradient estimates and perform matrix-vector products with stochastic Hessian estimates. For TRish, we
implemented a Steihaug-CG routine (see [34]) for approximately solving the trust region subproblems, where
for each subproblem the same batch of data samples used to define the stochastic gradient estimate is used
to define the stochastic Hessian estimate. To ensure that TRish did not expend too much effort solving any
single subproblem, we imposed a limit of 3 on the number of CG iterations performed when solving each
subproblem. In our comparisons, we equate the cost of one stochastic gradient estimate with the cost of
computing one stochastic-Hessian-vector product. This allows SG and first-order TRish to perform more
optimization iterations per epoch than TRish is able to perform.

6.2 Hyperparameters Tuning

The hyperparameters for all algorithms were tuned using a similar approach to that used in [13]. In particular,
for each test problem, we proceeded as follows. First, to establish a baseline for the hyperparameter values,
we ran SG with a fixed stepsize of α = 0.1 and computed G as the average norm of the stochastic gradient
estimates computed throughout the run. We then established sets of possible hyperparameter values with
the formulas α = 10λ, γ1 = 2a

G , and γ2 = 1
2bG

, where λ, a, and b were evenly distributed in some interval.
(Different intervals were used for each test problem so that, e.g., the best stepsize for SG was never at the
extreme of the allowed range. Details are given in the following subsections for each test problem.) For
simplicity, we only consider the behavior of the algorithms with fixed hyperparameter values. To ensure
that all algorithms were tuned with the same amount of effort, we fixed the total number of hyperparameter
settings to be the same for all algorithms. For example, if (first-order) TRish considers 4 values of α, 3
values of γ1, and 3 values of γ2, then we allowed SG to consider 4× 3× 3 = 36 stepsizes.

To choose the best hyperparameter values for each algorithm for each test problem, we used a standard
type of cross validation procedure. Each dataset came equipped with a training set and a testing set of
data. We began by randomly selecting points from the training set to form a validation set. For each
hyperparameter setting, we ran each algorithm and observed its performance in terms of final validation
accuracy (in the case of image classification) or final validation loss (in terms of time series forecasting).
Once the best hyperparameter setting was found in this manner, we ran the algorithm using this setting
on all of the original training data. In the subsections below, we provide plots of the accuracy and/or loss
during this final run for the training and testing data.

6.3 FashionMNIST

The first dataset that we considered was FashionMNIST ([37]). This consists of images of 10 different types
of clothing. Each image is a color image of size 28× 28. There are 60000 training images and 10000 testing
images. We randomly chose 10000 images out of the training set as our validation set, and chose the best set
of hyperparameters for each algorithm as the one yielding highest classification accuracy on the validation
set.

The neural network that we considered for performing classification for this dataset was composed of
two convolutional layers (involving 10 and 20 output channels, respectively, with kernal size 5) followed by
a dropout layer and three fully connected layers. ReLU activation was used at each hidden layer and the
objective is defined using the logistic loss (cross entropy) function. It is known that one can achieve better
classification accuracy on FashionMNIST using a more sophisticated neural network, but this network offers
sufficiently good results in order for us to demonstrate the behavior of TRish.

We ran each algorithm for 5 epochs with a mini-batch size of 128. During tuning, we obtained G = 1.5644.
For TRish and first-order TRish, we considered 8 stepsize values over [0.1, 1], namely, α = 10−1+i/7 for
i ∈ {0, 1, . . . , 7}, along with γ1 ∈ { 4

G ,
16
G } = {2.5568, 10.2274} and γ2 ∈ { 1

2G ,
1
8G} = {0.3196, 0.07990}. For

a fair comparison (see [13]), this means that it was appropriate to allow SG to consider 32 stepsize choices
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in the range [ 1
8G × 10−1, 16G × 100] = [10−2.0974, 101.0097] = [0.00799, 10.2275]. TRish ended up with the

values (α, γ1, γ2) = (0.1930, 10.2274, 0.07990) = (10−5/7, 16
1.5644 ,

1
8(1.5644) ), first-order TRish ended up with

the values (α, γ1, γ2) = (0.3727, 2.5568, 0.3196) = (10−3/7, 4
1.5644 ,

1
2(1.5644) ), and SG ended up with the value

α = 0.4192 = 10−0.3775.
Once the hyperparameter values were determined, we ran the algorithms on the training data 5 times

each. In Figure 1, we plot the training loss and testing accuracy over the 5 epochs. The line for each
algorithm for each plot shows the mean values over the 5 runs with the shaded region showing one standard
deviation above and below the mean. One finds that while the first-order algorithms have an edge in the
early parts of the runs, eventually TRish overtakes both of the other algorithms in terms of final training
loss (for which lower is better) and final testing accuracy (for which higher is better).

Figure 1: Training loss and testing accuracy during the first five epochs when TRish, first-order TRish, and
SG are employed to train a convolutional neural network over the FashionMNIST dataset.

6.4 CIFAR-10.

The second dataset that we considered was CIFAR-10 ([22]). This dataset consists of 10 classes of color
images of different objects. Each image has size 32 × 32. There are 50000 training images and 10000
testing images. We randomly chose 5000 of the training images to compose the validation set. As in the
previously subsection, the best set of hyperparameters for each algorithm was chosen as the one yielding
highest classification accuracy on the validation set.

The neural network that we considered for this dataset was composed of two convolutional layers (involv-
ing 6 and 16 output channels, respectively, with kernal size 5) followed by a max pooling layer, a dropout
layer, and three fully connected layers. ReLU activation was used at each hidden layer and the objective was
again the logistic loss function. Again, one can achieve better testing accuracy using a more sophisticated
neural network, but this network gave sufficiently good results to demonstrate the behavior of our algorithm.

We ran 5 epochs with a mini-batch size of 128. We obtained G = 2.7819 and considered α = 10−1+i/7

for i ∈ {0, 1, . . . , 7}, γ1 ∈ { 4
G ,

16
G } = {1.4378, 5.7515}, and γ2 ∈ { 1

4G ,
1

80G} = {0.08986, 0.004493}. This
means that SG was tuned with 32 choices of α in the range [ 1

80G × 10−1, 16G × 100] = [10−3.3474, 100.7598] =

[0.0004493, 5.7515]. TRish chose (α, γ1, γ2) = (0.1389, 5.7515, 0.004493) = (10−6/7, 16
2.7819 ,

1
80(2.7819) ), first-

order TRish chose (α, γ1, γ2) = (0.3727, 5.7515, 0.08986) = (10−3/7, 16
2.7819 ,

1
4(2.7819) ), and SG chose α =

0.2316 = 10−0.6352.
Figure 2 shows the result of this experiment over 5 runs. Interestingly, for this problem, TRish does not

outperform the others in terms of training loss; indeed, first-order TRish appears to give the best results in

23



terms of training loss. However, TRish eventually offers better testing accuracy. While one cannot guarantee
that such would be the behavior in general, one does see benefits of TRish-based methods compared to SG.

Figure 2: Training loss and testing accuracy during the first five epochs when TRish, first-order TRish and
SG are employed to train a convolutional neural network over the CIFAR10 dataset.

6.5 NSW2016

As a final test problem, we considered one of time series forecasting. For this, we used historical data posted
online by the Australian Energy Market Operator (AEMO) on demand for electricity in New South Wales in
2016.1 This gives a univariate time series of length 17423. We used the first 17000 values for our experiments.
We used the first 12000 as the training set, the following 2000 as the validation set, and the remaining 3000
as the testing set. We chose the set of hyperparameters that yielded the lowest validation loss.

The recurrent neural network that we considered for this dataset was composed of a single long short-
term memory (LSTM) layer with hidden size 32 followed by a fully connected layer. A time step of 10 was
used with ReLU activation after the LSTM layer. The objective function used was the mean squared error.

We ran the experiment for 20 epochs using a mini-batch size of 100. We obtained G = 720.1389 and
considered α = 10−1+i/3 for i = {0, 1, . . . , 6} along with γ1 ∈ { 4

G ,
16
G } = {0.005555, 0.02222} and γ2 ∈

{ 1
2G ,

1
20G} = {0.0006944, 0.00006944}. SG was tuned with 16 choices of α in the range [ 1

20G × 10−1, 16G ×
101] = [0.000006944, 0.2222] = [10−5.1586, 10−0.6532]. As a result of hyperparameter tuning, TRish chose
(α, γ1, γ2) = (2.1544, 0.2222, 0.00006944) = (101/3, 16

720.1389 ,
1

20(720.1389) ), first-order TRish chose (α, γ1, γ2) =

(0.4641, 0.005555, 0.0006944) = (10−1/3, 4
720.1389 ,

1
2(720.1389) ), and SG chose α = 0.0002204 = 10−3.6567.

Figure 3 shows the result of this experiment over 50 runs. The losses are plotted on a logarithmic scale
for better viewing of the differences. From the plots, it is clear that while all algorithms reach solutions of
comparable quality, TRish is able to achieve low losses earlier than the other two methods, and first-order
TRish similarly outperforms SG.

7 Conclusion

A stochastic second-order trust region algorithm has been proposed, analyzed, and tested. It can be viewed
as a second-order extension of the algorithm proposed in [13]. We proved theoretical guarantees for the
method that are on par with those proved for the first-order algorithm in [13], and in turn comparable to
those possessed by SG and many of its variants. That said, our numerical experiments demonstrate that

1https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard
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Figure 3: Training loss and testing loss during the first twenty epochs when TRish, first-order TRish, and
SG are employed to train a recurrent neural network over the NSW2016 dataset.

the algorithm can perform better in practice, in terms of reaching better solutions and with more stable
behavior. We attribute this better behavior to the algorithm’s use of carefully chosen trust region radii and
stochastic second-order information.
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