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ABSTRACT

In this paper we first extend the diminishing stepsize method for nonconvex con-
strained problems presented in [4] to deal with equality constraints and a nonsmooth
objective function of composite type. We then consider the particular case in which
the constraints are convex and satisfy a standard constraint qualification and show
that in this setting the algorithm can be considerably simplified, reducing the com-
putational burden of each iteration.
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1. Introduction

We consider the nonconvex constrained optimization problem

minimize
x

f(x) + q(x)

s.t. g(x) ≤ 0

h(x) = 0

x ∈ K,

(P)

where K ⊆ Rn is a nonempty closed and convex set, and f : Rn → R, g : Rn → Rm,
h : Rn → Rp are C1,1 (i.e., continuously differentiable with locally Lipschitz continuous
gradients) functions on an open set containing K, while q : Rn → R is convex on K
and locally Lipschitz continuous on an open set containing K. In [4], building on an
extended SQP-like approach, we analyze the first Diminishing Stepsize Method (DSM)
for a general optimization problem with a nonconvex objective function and nonconvex
constraints; we refer the reader to [4] for a detailed discussion on DSMs in nonconvex
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settings. However, the problem considered in [4] includes neither equality constraints
nor a possibly nonsmooth term q(x) in the objective function. The main contributions
of the present paper are

(1) the study of the DSM for the more general problem (P) including equality con-
straints and a possibly nonsmooth term q(x) in the objective;

(2) the development of a new DSM for (P) whenever constraints are convex (with
f still possibly nonconvex), which results in a simpler algorithm than the one in
(1) while maintaining global convergence guarantees.

Regarding (1), the importance of the (possibly) nonsmooth term q (for example the
ℓ1 norm) cannot be overestimated: in the past ten years, objective functions including
such terms have become pervasive, especially in the domains of machine learning and
statistics. The presence of equality constraints of course also further widens the domain
of applicability of our DSM. It should be remarked that equality constraints pose
some subtle technical challenges making the extension of the results in [4] to equality
constrained problems much less immediate than might be anticipated. Passing to the
second contribution, we notice that, similarly to [4], the main cost of the new DSM (cf.
Section 4) is solving at each iteration two convex subproblems, whose computational
complexity depends on the specific (inner) algorithm that is chosen to address them.
However, if the constraints in (P) are known to be regular and convex, a simplified
variant of the algorithm can be devised to good effect, which is more reminiscent
of classical SQP methods and now only requires the solution of one strongly convex
subproblem at each iteration; this algorithm is discussed in Section 5.

The algorithms we focus on are DSMs. At each iteration ν, a direction d(xν) is
computed by solving a (surrogate) strongly convex optimization subproblem whose
definition may require the solution of a further auxilary convex subproblem, actually
a linear program if the appropriate choices are made. These subproblems are described
in Section 3, where their properties are also analyzed in detail. A step-size γν scales
this direction so that the iterative sequence satisfies

xν+1 = xν + γνd(xν), (1)

with a stepsizes γν such that the classical conditions

lim
ν→∞

γν = 0 and

∞∑

ν=0

γν = ∞ (2)

hold. The convergence properties of this algorithm are analyzed in Section 4. Note that
this algorithm does not require any assumptions, such as nonemptiness of the feasible
set or constraint qualifications, to be well-defined and enjoy global convergence from
arbitrary starting points to some limit point with desirable features. More specifically,
the method is shown to be (subsequentially) convergent to points satisfying a (rather
standard) generalized stationarity condition; the specific definition of generalized sta-
tionarity, along with its associated relevant properties, is discussed in Section 2. In
the final part of the paper, see Section 5, we discuss the specific case in which the
constraints are convex and a standard Mangasarian-Fromovitz-type constraint quali-
fication is satisfed. For this setting, we introduce an alternative method, simpler than
the one discussed in Sections 3 and 4, and show its global (subsequential) convergence
to KKT points.
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We refer the reader to [4] for a detailed literature review and comparison of the
class of approaches we study with other algorithms; [4] is also a good entry point for
a discussion about generalized stationarity concepts.

We conclude this introduction by mentioning that an important theoretical tool we
put forth in our convergence analysis is the classical penalty function

W (x; ε) , f(x) + q(x) +
1

ε
ϕ(x),

where ε is a positive penalty parameter, and

ϕ(x) , max
i,j
{gi(x)+, |hj(x)|}, (3)

where α+ , max{0, α}. The penalty function acts as a Lyapunov function in the con-
vergence analysis in Section 5, when a constraint qualification holds. However, when
analyzing the more general case considered in Section 4, the role of W in the conver-
gence analysis becomes more complex and is no longer that of a classical Lyapunov
function. Note also that, in our analysis, the penalty function turns out to be just a
theoretical tool and only enters in our convergence proof, and no penalty parameter
needs to be actually computed in the algorithm itself. For these reasons, we refer to
W as a ghost penalty function.

2. Generalized Stationarity

In this section we introduce the concept of generalized stationarity. As we study the
convergence properties of our algorithm without assuming constraint qualifications or
even nonemptiness of the feasible set of (P), we need to define what sort of stationarity
is possible and desirable to achieve in the case that no limit point is KKT or even
feasible. The concept of generalized stationarity, which characterizes stationarity across
the full taxonomy of possible desirable limit points, is discussed in more detail in [4]
and the references therein, and here we extend those considerations to account for the
additional structural components of (P).

Let us denote the feasible set of (P) by

X , {x ∈ Rn : g(x) ≤ 0, h(x) = 0, x ∈ K} .

The general constrained problem (P) can be viewed as a combination of two problems:
(i) the feasibility one, i.e., the problem of finding a feasible point; and (ii) the problem
of finding a local minimum point of the objective function over the feasible set. Consis-
tently, stationary solutions in a generalized sense are points that are either stationary
for (P) or for the following violation-of-the-constraints optimization problem:

minimize
x

ϕ(x),

x ∈ K
(4)

where we recall that ϕ(x), defined in (3), measures the degree of infeasibility. The
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KKT system for problem (P) is

0 ∈ ∇f(x) + ∂q(x) +∇g(x)ξ +∇h(x)π +NK(x)

0 ≤ ξ ⊥ g(x) ≤ 0

h(x) = 0

x ∈ K,

(5)

where ∇f(x) is the gradient of f in x, ∇g(x) and ∇h(x) are the transposed Jacobians
of g and h evaluated at x, ∂q is the subdifferential of q at x, and NK(x) is the normal
cone to K at x. The vectors ξ and π appearing in (5) are KKT multipliers and an
equivalent formulation of the condition is the existence of some pair (ξ, π) in the set,

M1(x) ,

{
(ξ, π) | ξ ∈ NR

m
−
(g(x)), π ∈ N0(h(x)),

0 ∈ ∇f(x) + ∂q(x) +∇g(x)ξ +∇h(x)π +NK(x)
}

=
{
(ξ, π) | ξ ∈ NR

m
−
(g(x)), h(x) = 0,

0 ∈ ∇f(x) + ∂q(x) +∇g(x)ξ +∇h(x)π +NK(x)
}
.

Note that indeed the KKT conditions are satisfied at a point x if and only ifM1(x) 6= ∅.
We also introduce the set of “abnormal” multipliers

M0(x) ,

{
(ξ, π) | ξ ∈ NR

m
−
(g(x) − ϕ(x)em), π ∈ Nϕ(x)Bp

∞
(h(x)),

0 ∈ ∇g(x)ξ +∇h(x)π +NK(x)
}
,

where Bp∞ is the closed unit ball in Rp associated with the infinity-norm, em ∈ Rm

is the vector of all ones, and, again, NR
m
−
(y), Nϕ(x)Bp

∞
(z) and NK(x) are the normal

cones to the convex sets Rm− , ϕ(x)Bp∞ and K at y, z and x, respectively. Let x̂ be a
local minimum point of (P), then it is well-known that either M1(x̂) 6= ∅, (the point is
a KKT point) or M0(x̂) 6= {0} (the point is a Fritz-John point), or both. Otherwise,
i.e., if x̂ ∈ K is stationary but not feasible, in view of the regularity of the functions
involved, then the appropriate stationarity condition is the one for problem (4), i.e.,

0 ∈ ∂ϕ(x̂) +NK(x̂), (6)

which is equivalent to M0(x̂) 6= {0}. Hence, the (generalized) stationarity criteria for
the original problem (P) can naturally be specified by using the sets M1 and M0, as
detailed in Definition 2.1.

Definition 2.1. A point x̂ ∈ K is, for problem (P),

• a KKT solution if g(x̂) ≤ 0, h(x̂) = 0 and M1(x̂) 6= ∅;
• a Fritz-John (FJ) solution if g(x̂) ≤ 0, h(x̂) = 0 and M0(x̂) 6= {0};
• an External Stationary (ES) solution if gi(x̂) > 0 or hj(x̂) 6= 0 for at least one
i ∈ {1, . . . ,m} or one j ∈ {1, . . . , p}, and M0(x̂) 6= {0}.

We call x̂ ∈ K a stationary solution of (P) if any of these cases occurs.
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The constraint qualification (CQ) we use is the Mangasarian-Fromovitz CQ, suitably
extended to (possibly) infeasible points.

Definition 2.2. We say that the extended Mangasarian-Fromovitz Constraint Qual-
ification (eMFCQ) holds at x̂ ∈ K if

M0(x̂) = {0}.

If x̂ ∈ X and K = Rn, this condition reduces to the classical MFCQ and in turn,
whenever the constraints are convex, it is well-known that the MFCQ is equivalent to
Slater’s CQ, i.e. to the existence of a point x̃ such that g(x̃) < 0 and h(x̃) = 0. Below,
we state a result that extends a standard property of the classical MFCQ for feasible
points.

Proposition 2.3. If the eMFCQ holds at x̂ ∈ K, then there exists a neighborhood V
of x̂ such that, for every x ∈ K ∩ V, the eMFCQ is satisfied.

Proof. If x̂ ∈ K is feasible, this is a rather classical result: suffice it to reason by
contradiction and to rely on the outer semicontinuity properties of the normal cone
mappings NR

m
−
, NK (see [11, Proposition 6.6]) and NϕB

p
∞

(refer to point (iv) in the
forthcoming Lemma 3.1). If x̂ ∈ K is not feasible, the condition M0(x̂) = {0} implies
that x̂ is not a stationary point for the feasibility problem (4), i.e. 0 6∈ ∂ϕ(x̂)+NK(x̂).
The assertion then follows from the outer semicontinuity and local boundedness of the
subdifferential mapping ∂ϕ(•) and by, again, the outer semicontinuity properties of
the set valued mapping NK (see [11] for the definition of outer semicontinuity).

3. Algorithmic Scheme and Preliminary Results

The key step in our algorithm is the computation of the direction d(xν) along which
the update is performed. Specifically, at each iteration, we move from the current
iterate xν along the direction d(xν) with a stepsize γν satisfying (2). We compute
d(xν) as the solution of a strongly convex approximation of the original (possibly)
nonconvex problem, with the approximating subproblem being reminiscent of (actually
a generalization of) that of classical SQP methods. More precisely, given a point x ∈ K
(which will actually be the current iterate xν in the algorithm), d(x) is the unique
solution of the following strongly convex optimization problem:

minimize
d

f̃(d;x) + q(x+ d)

s.t. g̃(d;x) ≤ κ(x)em

−κ(x)ep ≤ h̃(d;x) ≤ κ(x)ep,

‖d‖∞ ≤ β,

d ∈ K − x

(Px)

where β is a user-chosen positive constant, and the constraint ‖d‖∞ ≤ β is introduced
to prevent the direction d(xν) from becoming too large. Moreover, f̃ is a strongly
convex surrogate of function f , while g̃is are convex surrogate of the original constraint
functions gi (see Assumption A below for the conditions these surrogates must satisfy),
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and

h̃(d;x) , h(x) +∇h(x)Td.

Finally, the term κ(x) in the surrogate constraints is defined, for every x ∈ K, as

κ(x) , (1− λ)maxi,j{gi(x)+, |hj(x)|}

+λmind

{
maxi,j{g̃i(d;x)+, |h̃j(d;x)|} | ‖d‖∞ ≤ ρ, d ∈ K − x

}
,

(7)

with λ ∈ (0, 1) and ρ ∈ (0, β). The goal of κ(x) is making the feasible set of (Px) always
nonempty. To computation of κ(x) therefore requires one to calculate the optimal value
of the convex problem

min
d

{
max
i,j
{g̃i(d;x)+, |h̃j(d;x)|} | ‖d‖∞ ≤ ρ, d ∈ K − x

}
(8)

that is always solvable because its feasible set is nonempty and compact. Note that
in the most common case in which linear approximations are used for the inequality
constraints, this problem can easily be reformulated as an LP and hence efficiently
solved; nevertheless, the computation of κ(x) is a somewhat expensive task, the more
so when nonlinear approximations are used for g. In the last section of this paper we
see that under some additional assumptions the burden of this computation can be
avoided altogether. Furthermore, note that if x is feasible for (P), then κ(x) = 0.

The method we propose is summarized in Algorithm 1 below. A few remarks are in

Algorithm 1: DSM Algorithm for (P)

Data: γν ∈ (0, 1] such that (2) holds, x0 ∈ K, ν ←− 0;
repeat

(S.1) if xν is a generalized stationary point of (P) then
stop and return xν ;

end

(S.2) compute κ(xν) and the solution d(xν) of problem (Pxν );

(S.3) set xν+1 = xν + γνd(xν), ν ←− ν + 1;

end

order. Subproblem (Px) is a generalization, along the lines explored in [5, 12], of the
direction finding subproblem considered in [2], to which it reduces when the classical
quadratic/linear approximations are used for f̃ and g̃:

f̃(d;x) , ∇f(x)Td+
1

2
‖d‖2B ; g̃(d;x) , g(x) +∇g(x)Td. (9)

where B is some positive definite symmetric matrix. Note that if these approximations
are employed and we set κ(x) = 0 and β = +∞, (Px) boils down to the classical
SQP-type subproblem. In Section 5 we shall see that under certain conditions, setting
κ(x) = 0 and β = +∞ is appropriate. For the time being we adopt the approach in [2]
by taking κ(x) not necessarily zero and β < +∞ in order to guarantee the existence
and continuity of the solution mapping d(x). In addition, we introduce the use of
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general approximations f̃ and g̃: this may be very convenient in practice by allowing
flexibility in tailoring the direction finding subproblem to the problem at hand and
to exploit any available specific structure in (P) amenable to fast computation. It is
clear that we implicitly suppose that the solution of subproblem (Px) is “easy” and,
in any case, simpler than the original problem (P). We do not insist on this point
because it is very dependent on the choice of f̃ and g̃ which, in turn, is guided by the
original problem (P). It is worth mentioning that the use of models that go beyond the
standard quadratic/linear one in optimization is steadily emerging in the literature,
motivated, on the one hand, by the advances in the efficient solution of more complex
subproblems than the classical quadratic ones and, on the other hand, by the desire
of faster convergence rates, see for example the discussion in Section 3 of [8].

In the sequel we denote by X̃ (x) and d(x) the convex feasible set and the unique
solution of subproblem (Px), respectively, i.e.

X̃ (x) ,

{
d ∈ Rn : g̃(d;x) ≤ κ(x) em, −κ(x)ep ≤ h̃(d;x) ≤ κ(x)ep,

‖d‖∞ ≤ β, d ∈ K − x
}
,

d(x) , argmind{f̃(d;x) | d ∈ X̃ (x)},

and we equivalently write the constraints −κ(x)ep ≤ h̃(d;x) ≤ κ(x)ep and ‖d‖∞ ≤ β
as h̃(d;x) ∈ κ(x)Bp∞ and d ∈ βBn∞, respectively.

For our approach to be legitimate and lead to useful convergence results, we obvi-
ously need to make assumptions on the surrogate functions f̃ and g̃.

Assumption A

Let Od and Ox be open neighborhoods of βBn∞ and K, respectively, and f̃ : Od×Ox → R
and g̃i : R

n × Ox → R, for every i = 1, . . . ,m, be continuously differentiable on Od
with respect to the first argument and satisfy

A1) f̃(•;x) is a strongly convex function on Od for every x ∈ K, with modulus of
strong convexity c > 0 independent of x;

A2) f̃(•; •) is continuous on Od ×Ox;
A3) ∇1f̃(•; •) is continuous Od ×Ox;
A4) ∇1f̃(0;x) = ∇f(x) for every x ∈ K;
A5) g̃i(•;x) is a convex function on Od for every x ∈ K;
A6) g̃i(•; •) is continuous on Rn ×Ox;
A7) g̃i(0;x) = gi(x) for every x ∈ K;
A8) ∇1g̃i(•; •) is continuous on Od ×Ox;
A9) ∇1g̃i(0;x) = ∇gi(x), for every x ∈ K;

where ∇1f̃(u;x) and ∇1g̃i(u;x) denote the partial gradient of f̃(•;x) and g̃i(•;x) eval-
uated at u.

These conditions are certainly satisfied if we use the classical surrogates (9), but
they allow us to cover a much wider array of approximations, both for f and for g; we
refer the reader to [5, 12] as good sources of examples of nonlinear surrogates f̃ and g̃
satisfying Assumption A. Note that, under Assumption A, Algorithm 1 is always well
defined and d(xν) exists and is unique.
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3.1. Main Properties of Subproblem (Px)

In this section, we state the main properties of κ(x) and problem (Px).
Since κ(x) is always nonnegative, it restores feasibility by enlarging the range of ad-

missible constraint function values. Indeed, the point d̃ where a minimum is reached in
the optimization problem in (7) is easily seen to be always feasible for (Px). Moreover,
for every x ∈ K, the following relations hold thanks to Assumption A:

min
d

{
max
i,j
{g̃i(d;x)+, |h̃j(d;x)|} | ‖d‖∞ ≤ ρ, d ∈ K − x

}
≤ κ(x) ≤ max

i,j
{gi(x)+, |hj(x)|},

(10)

and

κ(x) = maxi,j{gi(x)+, |hj(x)|}

m

maxi,j{gi(x)+, |hj(x)|} = mind

{
maxi,j{g̃i(d;x)+, |h̃j(d;x)|} | ‖d‖∞ ≤ ρ, d ∈ K − x

}

m

0 ∈ argmind

{
maxi,j{g̃i(d;x)+, |h̃j(d;x)|} | ‖d‖∞ ≤ ρ, d ∈ K − x

}
.

(11)
Also, κ(x) = 0 if and only if 0 = maxi,j{gi(x)+, |hj(x)|} =

mind{maxi,j{g̃i(d;x)+, |̃|hj(d;x)|}|‖d‖∞ ≤ ρ, d ∈ K − x}.
In the remaining part of this section we give some highly technical results needed in

the convergence analysis. The developments are along lines similar to those considered
in [4, Section 3.2] with, however, the additional hurdle of the equality constraints and
the nonsmooth term q(x) that need a specific, in some cases non trivial, treatment.

In Lemma 3.1, we establish some preliminary properties concerning the feasible set
of problem (Px).

Lemma 3.1. (i) For every x̂ ∈ K, and for every α > 0 and d ∈ αBn∞ ∩ (K − x̂),
the constraint qualification

[−NαBn
∞
(d)] ∩NK−x̂(d) = {0} (12)

holds and, in turn, NαBn
∞
∩(K−x̂)(d) = NαBn

∞
(d) +NK−x̂(d);

(ii) for every α > 0, the set-valued mapping αBn∞ ∩ (K − •) is continuous on K
relative to K;

(iii) letting C , {(d, x) ∈ βBn∞ × K : d + x ∈ K}, the set-valued mapping
NβBn

∞
∩(K−•)(•) is outer semicontinuous on C relative to C;

(iv) letting ψ : Rn → R be any nonnegative function that is continuous on K relative
to K, and D , {(u, x) ∈ ψ(x)Bp∞ ×K}, the set-valued mapping Nψ(•)Bp

∞
(•) is

outer semicontinuous on D relative to D.

Proof. (i) Let 0 6= η ∈ [−NαBn
∞
(d)] ∩ NK−x̂(d). Thanks to the convexity of the sets

αBn∞ and K − x̂, we have −ηT (v − d) ≤ 0 ∀v ∈ αBn∞ and ηT (y − d) ≤ 0 ∀y ∈ (K − x̂).
Choosing y = 0 ∈ (K − x̂), one gets the following contradiction:

0 < α max
v
{−ηTv | ‖v‖∞ = 1} = −ηTd ≤ 0,

thus proving relation (12). As a consequence, the other claim in (i) follows from [11,

8



Theorem 6.42].
(ii) The property is due to the continuity (relative to K) of the set-valued mapping

K − • at every x ∈ K and to the fact that αBn∞ ∩ (K − x) 6= ∅ for every x ∈ K.
(iii) Suppose by contradiction that (dν , xν)→

C
(d̄, x̄), ην ∈ NβBn

∞
∩(K−xν)(d

ν), ην → η̄

with η̄ /∈ NβBn
∞
∩(K−x̄)(d̄). Hence, z̄ ∈ βB

n
∞ ∩ (K − x̄) exists such that η̄T (z̄ − d̄) > 0.

By the inner semicontinuity relative to K (see [11, Chapter 5, Section B] for the
definition of inner semicontinuity) of βBn∞ ∩ (K − •) at x̄, zν exists such that zν → z̄
and zν ∈ βBn∞∩(K−x

ν). In turn, eventually we get (ην)T (zν−dν) > 0 in contradiction
to the inclusion ην ∈ NβBn

∞
∩(K−xν)(d

ν).
(iv) Taking into account the continuity of the set-valued mapping ψ(•)Bp∞, the proof

follows the same line of reasoning as in (iii).

The function κ(x) is obviously continuous and, under the local Lipschitz continuity
of g̃(•; •) (which is part of Assumption C to be introduced shortly), also locally Lips-
chitz continuous. This result has been shown in [2] when g̃ is a linear approximation
and readily generalizes to the case of the surrogate g̃ we consider here.

Proposition 3.2. Under Assumption A, κ(•) is continuous on K relative to K. If,
in addition, g̃(•; •) is locally Lipschitz continuous on Od×Ox, then κ(•) is also locally
Lipschitz continuous on an open neighborhood of K.

Proof. The continuity of κ(•) follows readily from the continuity (relative to K) of
the set-valued mapping ρBn∞ ∩ (K − •) at every x ∈ K: this in turn follows from (ii)
in Lemma 3.1 with α = ρ.

The Lipschitz continuity under the additional condition derives from, e.g., [10, The-
orem 3.1]. Suffice it to observe that the constraint qualification (12) with α = ρ holds
for every x ∈ K and d ∈ ρBn∞ ∩ K − x, and the problem (8) in the definition of
κ is solvable for every x in an open neighborhood of K. The latter claim is due to
ρBn∞ ∩ (K − x) 6= ∅ for every x in an open neighborhood of K, since, for every x ∈ K,
0 ∈ int(ρBn∞)∩(K−x), and in view of the continuity of the set-valued mapping K−•.

The following technical lemma is very useful for the subsequent developments.

Lemma 3.3. Under Assumption A, the following results hold for any x̂ ∈ K:

(i) if maxi,j{gi(x̂)+, |hj(x̂)|} > 0 and κ(x̂) < maxi,j{gi(x̂)+, |hj(x̂)|}, then, for all
ρ ∈ (0, β), there exists d ∈ int(βBn∞) ∩ rel int(K − x̂) such that g̃(d; x̂) < κ(x̂)em

and κ(x̂)ep < h̃(d; x̂) < κ(x̂)ep;
(ii) if maxi,j{gi(x̂)+, |hj(x̂)|} > 0 and κ(x̂) = maxi,j{gi(x̂)+, |hj(x̂)|}, then x̂ is an

ES point for (P);
(iii) if maxi,j{gi(x̂)+, |hi(x̂)|} = 0, then either x̂ is a FJ point for (P) or, for all

ρ ∈ (0, β), there exists d ∈ int(βBn∞) ∩ rel int(K − x̂) such that g̃(d; x̂) < 0,

h̃(d; x̂) = 0 and {0} =
{
π | (∇h(x̂)π)Tw = 0,∀w ∈ TβBn

∞
∩(K−x̂)(v)

}
for every

v ∈ X̃ (x̂), where TβBn
∞
∩(K−x̂)(v) denotes the tangent cone to βBn∞ ∩ (K − x̂) at

v.

Proof. (i) First, we recall that in this case, in view of the preliminary re-

lations discussed at the beginning of Section 3.1, κ(x̂) > 0. Choosing d̂ ∈
argmind{maxi,j{g̃i(d;x)+, |h̃j(d;x)|} | ‖d‖∞ ≤ ρ, d ∈ K − x} with ρ ∈ (0, β), we can

infer g̃i(d̂; x̂) ≤ mind{maxi,j{g̃i(d; x̂)+, |hj(d; x̂)|} | ‖d‖∞ ≤ ρ, d ∈ K − x̂} for every i,
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and |h̃j(d̂; x̂)| ≤ mind {maxi,j{g̃i(d; x̂)+, |hj(d; x̂)|} | ‖d‖∞ ≤ ρ, d ∈ K − x̂} for every j,

with d̂ ∈ ρBn∞∩ (K− x̂). The claim follows in view of (10) and (11), and by continuity
since ρ < β.

(ii) By (11), equality κ(x̂) = maxi,j{gi(x̂)+, |hj(x̂)|} holds if and only if d = 0
solves the minimization problem in the definition of κ and, in turn,M0(x̂) 6= {0} since
condition (6) holds at x̂ by (12) with α = ρ, A7 and A9.

(iii) With maxi,j{gi(x̂)+, |hj(x̂)|} being equal to zero, we have κ(x̂) = 0, and g(x̂) ≤
0 and h(x̂) = 0. If M0(x̂) 6= {0}, then, by definition, x̂ is a FJ point for (P) and the
result holds.

Thus, let us suppose M0(x̂) = {0}. Following the same line of reasoning as in [11,
Exercise 6.39], in view of the regularity of the involved sets, we see preliminarily that
this condition holds at x̂ ∈ K if and only if

{0} =
{
π | (∇h(x̂)π)Tw = 0,∀w ∈ TK(x̂)

}
,

∃ d̂ ∈ rel intTK(x̂) : ∇gi(x̂)
T d̂ < 0, ∀i : gi(x̂) = 0, ∇h(x̂)T d̂ = 0. (13)

First, we show that condition

{0} =
{
π | (∇h(x̂)π)Tw = 0,∀w ∈ TβBn

∞
∩(K−x̂)(d)

}
(14)

holds for any d ∈ X̃ (x̂). If this were not the case, there would exist some d̃ ∈ X̃ (x̂)
and π 6= 0 such that (∇h(x̂)π)Tw = 0,∀w ∈ TβBn

∞
∩(K−x̂)(d̃). Thus, with −∇h(x̂)π ∈

NβBn
∞
∩(K−x̂)(d̃), for some η ∈ NβBn

∞
(d̃) and ζ ∈ NK−x̂(d̃) it would hold that,

0 = (∇h(x̂)π)T (−d̃) + ηT (−d̃) + ζT (−d̃) = ηT (−d̃) + ζT(−d̃),

thanks to [11, Theorem 6.42] and observing that −d̃ ∈ TβBn
∞
∩(K−x̂)(d̃) since 0 ∈ βB

n
∞∩

(K − x̂). In turn,

0 = ηT d̃+ ζT d̃ ≥ ρ max
v
{ηTv | ‖v‖∞ = 1} ≥ 0,

where the first inequality follows from ζT d̃ ≥ 0, in view of 0 ∈ βBn∞. As a consequence,
η = 0 and ζT d̃ = 0, entailing ζ ∈ NK(x̂). Therefore, we would get

0 = ∇h(x̂)π + ζ,

with π 6= 0 and ζ ∈ NK(x̂), in contradiction with the assumed condition M0(x̂) = {0}.

Hence, (14) is verified at any d ∈ X̃ (x̂).
Then, for those j ∈ {1, . . . ,m} such that gj(x̂) < 0, we have g̃j(0; x̂) = gj(x̂) < 0; as

for indices k ∈ {1, . . . ,m} with gk(x̂) = 0, by (13), there exists d̂ ∈ rel intTK(x̂) such
that

0 > ∇gk(x̂)
T d̂ = ∇1g̃k(0; x̂)

T d̂ = lim
τ↓0

g̃k(τ d̂; x̂)− g̃k(0; x̂)

τ
,

as well as ∇h(x̂)T d̂ = 0. Taking the cue from the proof of [11, Theorem 6.9], one
can observe that rel intTK(x̂) = {d ∈ Rn | ∃α > 0 with x̂+ αd ∈ rel intK} due to [11,
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Proposition 2.40]. Hence, in view of [9, Theorem 6.1], for every τ > 0 sufficiently small,

x̂+ τ d̂ ∈ rel intK as well. The claim follows by continuity, observing that g̃i(τ d̂; x̂) < 0
for every i and for any τ sufficiently small.

The quantity

θ(x) , maxi,j{gi(x̂)+, |hj(x̂)|} − κ(x) = λ
(
maxi,j{gi(x̂)+, |hj(x̂)|}

−mind

{
maxi,j{g̃i(d;x)+, |h̃j(d;x)|} | ‖d‖∞ ≤ ρ, d ∈ K − x

})
,

(15)

with λ ∈ (0, 1), plays a key role in the previous lemma and in all the subsequent
developments. As shown in the following proposition, θ turns out to be a stationarity
measure for the violation-of-the-constraints problem (4).

Proposition 3.4. Under Assumption A,

(i) the nonnegative function θ(•) is continuous on K relative to K;
(ii) θ(x̂) = 0 if and only if x̂ is a stationary point for problem (4);
(iii) we have, for every x ∈ K,

θ(x) ≤

∥∥∥∥
(
∇g(xν)T

∇h(xν)T

)∥∥∥∥
∞

‖d(x)‖. (16)

Proof. (i) The nonnegativity of θ follows readily from (10) while continuity follows
from Proposition 3.2.

(ii) At any feasible point x̂ of (P), θ(x̂) = 0; of course, every feasible point of (P)
is stationary for problem (4). Consider now an infeasible point x̂ for (P) and suppose
that θ(x̂) = 0. By (ii) in Lemma 3.3, x̂ turns out to be an ES point for (P). Hence,
we are left to show that if x̂ is an ES point for (P), then θ(x̂) = 0. For x̂ to be ES, it
is necessary and sufficient (see condition (6)) to have M0(x̂) 6= {0} which in turn, by
the Motzkin’s alternative theorem (see e.g. [3, 2.5.2]), holds if and only if

∄ d ∈ TK(x̂) : ∇gi(x̂)Td < 0, ∀i ∈ I+(x̂) , {i : gi(x̂) = maxi,j{gi(x̂)+, |hj(x̂)|}},

∇hj(x̂)Td < 0, ∀j ∈ J+(x̂) , {j : hj(x̂) = maxi,j{gi(x̂)+, |hj(x̂)|}}, and,

∇hj(x̂)Td > 0, ∀j ∈ J−(x̂) , {j : hj(x̂) = −maxi,j{gi(x̂)+, |hj(x̂)|}}.
(17)

Suppose by contradiction that θ(x̂) > 0. Then, noting that d ∈ K − x̂ implies d ∈
TK(x̂), Lemma 3.3 (i) states that d ∈ TK(x̂) exists such that g̃i(d; x̂) < κ(x̂) for all
i ∈ I+(x̂) and |h̃j(d; x̂)| < κ(x̂) for all j ∈ J+(x̂)∪ J−(x̂). But then, using A5, A7, and
A9, we can write, for any d,

maxi,j{gi(x̂)+, |hj(x̂)|}} > κ(x̂) > g̃i(d; x̂) ≥ g̃i(0; x̂) +∇1g̃i(0; x̂)
T (d− 0)

≥ gi(x̂) +∇gi(x̂)Td,

maxi,j{gi(x̂)+, |hj(x̂)|}} > κ(x̂) > h̃j(d; x̂) = hj(x̂) +∇hj(x̂)Td,

−maxi,j{gi(x̂)+, |hj(x̂)|}} < −κ(x̂) < h̃j(d; x̂) = hj(x̂) +∇hj(x̂)Td,

for every i ∈ I+(x̂), j ∈ J+(x̂) and j ∈ J−(x̂), respectively. In turn, we get a contra-
diction to (17).

11



(iii) Furthermore,

0 ≤ θ(xν) = max
i,j
{gi(x

ν)+, |hj(x
ν)|}} − κ(xν)

(a)

≤ max
i,j
{gi(x

ν)+, |hj(x
ν)|}} −max

i,j
{g̃i(d(x

ν);xν)+, |h̃j(d(x
ν);xν)|}

(b)

≤ max
i,j
{gi(x

ν)+, |hj(x
ν)|}}

−maxi,j{(gi(xν) +∇gi(xν)Td(xν))+, |hj(xν) +∇hj(xν)Td(xν)|}

(c)

≤ max
i,j
{(gi(x

ν)− gi(x
ν)−∇gi(x

ν)Td(xν))+, |hj(x
ν)− hj(x

ν)−∇hj(x
ν)Td(xν)|}

≤

∥∥∥∥
(
∇g(xν)T

∇h(xν)T

)
d(xν)

∥∥∥∥
∞

≤

∥∥∥∥
(
∇g(xν)T

∇h(xν)T

)∥∥∥∥
∞

‖d(xν)‖,

where (a) follows from g̃(d(xν);xν) ≤ κ(xν)em, −κ(xν)ep ≤ h̃(d(xν);xν) ≤ κ(xν)ep,
and max{0, α1} ≤ max{0, α2} for any α1, α2 ∈ R such that α1 ≤ α2; (b) is due to
A5, A7 and A9; and (c) follows from max{0, α1, β1} −max{0, α2, β2} ≤ max{0, α1 −
α2, β1−β2}, for any α1, α2, β1, β2 ∈ R, and |β1| − |β2| ≤ |β1−β2| for any β1, β2 ∈ R.

Leveraging Lemma 3.3, we can establish a key continuity property for the solution
mapping d(•) of subproblem (Px). Preliminarily, for the reader’s convenience, we report

the MFCQ for (Px) at d ∈ X̃ (x).

{0} =
{
(ξ, π) | ξ ∈ NR

m
−
(g̃(d;x) − κ(x)em), π ∈ Nκ(x)Bp

∞
(h̃(d;x)),

0 ∈ ∇1g̃(d;x)ξ +∇h(x)π +NβBn
∞
∩(K−x)(d)

}

Proposition 3.5. Under Assumption A, let the eMFCQ hold at x̂ ∈ K. Then,
(i) the MFCQ holds at every point of X̃ (x̂);
(ii) a neighborhood V of x̂ exists such that, for every point x ∈ K ∩ V, the function

d(•) is continuous relative to K.

Proof. (i) Since eMFCQ holds at x̂, case (ii) in Lemma 3.3 cannot occur. On the other
hand, as for both cases (i) and (iii) in Lemma 3.3, Slater’s constraint qualification holds

for X̃ (x̂) and, since X̃ (x̂) is convex, this proves (i), see e.g. again [11, Exercise 6.39],
but now applied to subproblem (Px̂).

(ii) Since κ(•) is continuous by Proposition 3.2, thanks to A6 and (ii) in Lemma 3.1,
we can assert the outer semicontinuity, relative to K, at x̂ for the set-valued mapping

X̃ (•) = [βBn∞ ∩ (K − •)] ∩
{
d ∈ Rn : g̃(d; •) ≤ κ(•)em, −κ(•)ep ≤ h̃(d; •) ≤ κ(•)ep

}

(see [1, Theorem 3.1.1])
As for the inner semicontinuity property, we distinguish two cases. If

maxi,j{gi(x̂)+, |hj(x̂)|} > 0, X̃ (•), by virtue of Lemma 3.3 (i), A5, A6 and (ii) in
Lemma 3.1, is also inner semicontinuous (see [1, Theorem 3.1.6]) at x̂ relative to
K. Else, if maxi,j{gi(x̂)+, |hj(x̂)|} = 0, in order to prove the inner semicontinu-

ity of X̃ (•) =
{
d ∈ Rn : g̃(d; •) ≤ κ(•)em

}
∩
{
d ∈ Rn : −κ(•)ep ≤ h̃(d; •) ≤

κ(•)ep, ‖d‖∞ ≤ β, d ∈ K − •
}

at x̂, relative to K, suffice it to show, thanks again to

[1, Theorem 3.1.6], that the mapping H̃(•) ,
{
d ∈ Rn : h̃(d; •) = 0, ‖d‖∞ ≤ β, d ∈
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K − •
}

is inner semicontinuous at x̂, relative to K. Suppose by contradiction that

the latter mapping is not inner semicontinuous at x̂ relative to K. Thus, there exists
d̂ ∈ H̃(x̂), a sequence xν →

K
x̂ and ε > 0, such that, eventually,

‖dν − d̂‖ ≥ ε, ∀ dν ∈ H̃(xν). (18)

Taking into account Lemma 3.3 (iii), we know that d ∈ int(βBn∞) ∩ rel int(K − x̂)
exists such that h̃(d; x̂) = h(x̂) + ∇h(x̂)Td = 0. We also observe that the vectors

∇hj(x̂), j = 1, . . . , p are linearly independent since {0} =
{
π | (∇h(x̂)π)Tw = 0,∀w ∈

TβBn
∞
∩(K−x̂)(v)

}
, for every v ∈ X̃ (x̂). As a consequence, denoting by (∇h(x̂)T )† ,

∇h(x̂) [∇h(x̂)T∇h(x̂)]−1 the Moore-Penrose pseudoinverse of ∇h(x̂)T , on the one hand

∃ ẑ ∈ Rn : d̂ = −(∇h(x̂)T )†h(x̂) + (I − (∇h(x̂)T )†∇h(x̂))ẑ ∈ βBn∞ ∩ (K − x̂), (19)

on the other hand,

∃ z ∈ Rn : d = −(∇h(x̂)T )†h(x̂)+(I− (∇h(x̂)T )†∇h(x̂))z ∈ int(βBn∞)∩ rel int(K− x̂).
(20)

Consider the direction (1 − τν)d̂ + τνd with (0, 1) ∋ τν ↓ 0: by [9, Theorem 6.1], we
have for every ν

−(∇h(x̂)T )†h(x̂) + (I − (∇h(x̂)T )†∇h(x̂))[ẑ + τν(z − ẑ)] ∈ int(βBn∞) ∩ rel int(K − x̂)

and, eventually, for continuity reasons,

dν , −(∇h(xν)T )†h(xν)+(I− (∇h(xν)T )†∇h(xν))[ẑ+τν(z− ẑ)] ∈ int(βBn
∞)∩rel int(K−xν),

with h(xν) + ∇h(xν)Tdν = 0, since the vectors ∇hj(xν), j = 1, . . . , p are linearly

independent. Thus, dν ∈ H̃(xν) exists such that dν → d̂, in contradiction to (18).
In turn, thanks to A1, the continuity (relative to K) of d(•), leveraging [1, Theorem
4.3.3], follows from [11, Corollary 5.20].

To enforce the convergence results in the next section, we need d(•) to be not only
continuous, but also Hölder continuous on compact sets: for this reason, we introduce
Assumption B.

Assumption B

For any compact set S ⊆ K, two positive constants µ and α exist such that

‖d(y)− d(z)‖ ≤ µ‖y − z‖α, ∀y, z ∈ S.

Since it is not immediately obvious when this condition is satisfied, below we give a
set of simple sufficient conditions on f̃ and g̃ for Assumption B to hold.
Assumption C

C1) f̃(•; •) is locally Lipschitz continuous on Od ×Ox;
C2) each g̃j(•; •) is locally Lipschitz continuous on Od ×Ox.

Note that Assumption C is automatically satisfied if we use the quadratic/linear
approximations (9). The following proposition shows the desired result.
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Proposition 3.6. Under Assumptions A and C, let S ⊆ K be compact. Suppose
further that the eMFCQ holds at every x̂ ∈ K. Then, there exists µ > 0 such that, for
every y, z ∈ S,

‖d(y) − d(z)‖ ≤ µ‖y − z‖
1

2 . (21)

Proof. Preliminarily, observe that by Proposition 3.2, κ(•) is locally Lipschitz con-

tinuous. Furthermore, by Proposition 3.5 (i), the MFCQ holds at every point in X̃ (x̂).

In turn, by [10, Theorem 3.2], for every x̂ ∈ K, the set-valued mapping X̃ has the

Aubin property relative to K at x̂ for any element belonging to X̃ (x̂) (see [11] for
the definition of the Aubin property). Even more, in the light of [11, Theorems 9.38

and 9.30] being X̃ outer semicontinuous and locally bounded at x̂ relative to K, for

every x̂ ∈ K, X̃ is Lipschitz continuous (see [11] for the definition of the Lipschitz
continuity in the context of set-valued mappings) on a neighborhood of x̂ relative to
K. Therefore, in view of [7, Theorem 3.3], for every x̂ ∈ K, there exist µ̂ > 0 and a
neighborhood V of x̂ such that, for every y, z ∈ V ∩K

‖d(y) − d(z)‖ ≤ µ̂‖y − z‖
1

2 .

This together with the compactness of set S implying a uniform bound µ across x̂
implies (21).

We recall that the KKT conditions for problem (Px) can be written as follows:

0 ∈ ∇1f̃(d(x);x) + ∂q(x+ d(x)) +∇1g̃(d(x);x)ξ +∇h(x)π +NβBn
∞
∩(K−x)(d(x)),

with the KKT multipliers ξ and π satisfying the conditions ξ ∈ NR
m
−
(g̃(d(x);x) −

κ(x)em), and π ∈ Nκ(x)Bp
∞
(h̃(d(x);x)), respectively.

Proposition 3.7. Under Assumption A, let x̂ ∈ K and suppose that d̂ ∈ int(βBn∞) ∩
rel int(K−x̂) exists such that g̃(d̂; x̂) < κ(x̂)em and either κ(x̂)ep < h̃(d̂; x̂) < κ(x̂)ep (if

κ(x̂) > 0), or h̃(d̂; x̂) = 0 with {0} =
{
π | (∇1h̃(d̂; x̂)π)

Tw = 0,∀w ∈ TβBn
∞
∩(K−x̂)(v)

}
,

for every v ∈ X̃ (x̂) (if κ(x̂) = 0). Then, a neighborhood V of x̂ exists such that, for
every point x ∈ K ∩ V, the unique solution d(x) of (Px) is a KKT point for problem
(Px) and the set-valued mapping of the KKT multipliers is locally bounded at x̂ relative
to K.

Proof. The condition g̃(d̂; x̂) < κ(x̂)em and either κ(x̂)ep < h̃(d̂; x̂) < κ(x̂)ep (if

κ(x̂) > 0), or h̃(d̂; x̂) = 0 and {0} =
{
π | (∇1h̃(d̂; x̂)π)

Tw = 0,∀w ∈ TβBn
∞
∩(K−x̂)(v)

}
,

for every v ∈ X̃ (x̂), (if κ(x̂) = 0), with d̂ ∈ int(βBn∞)∩rel int(K− x̂) is nothing else but
the Slater’s CQ for problem (Px̂), which obviously implies that the MFCQ holds at
the unique solution of problem (Px̂) (see also again point (i) in Proposition 3.5). The
derivation of the result is then rather classical and follows from, e.g., [6, Proposition
5.4.3] taking into account Lemma 3.1 (ii), Propositions 3.2 and 3.5, and the outer
semicontinuity of NβBn

∞
∩(K−•)(•) and Nκ(•)Bp

∞
(•), see Lemma 3.1 (iii) and (iv) (with

ψ ≡ κ), respectively.
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4. Convergence of the Method in the General Case

We are now ready to study convergence of Algorithm 1. The main result is stated
below.

Theorem 4.1. Consider the sequence {xν} generated by Algorithm 1 with f̃ and g̃
satisfying Assumption A. The whole sequence {xν} is contained in K and either is
unbounded or satisfies the following assertions:

(i) at least one limit limit point x̂ of {xν} is generalized stationary for problem (P);
in particular, if the eMFCQ holds at x̂, then x̂ is a KKT point for problem (P);

(ii) if, in addition, the eMFCQ holds at every limit point of {xν}, under Assumption
B, every limit point of {xν} is a KKT solution for problem (P).

Proof. Since the starting point x0 belongs to the convex set K, the stepsize satisfies
γν ≤ 1 by construction and, by the last constraint in (Pxν ), xν + d(xν) ∈ K for all ν,
it is easily seen that all points xν generated by the algorithm belong to K. We now
assume, without loss of generality, that the sequence {xν} is bounded.

Preliminarily, observe that, at each step, the solution d(xν) of subproblem (Pxν)
is also a KKT point for (Pxν). In fact, suppose that at a certain iteration ν̄, d(xν̄)
does not satisfy the KKT conditions for (Pxν̄ ). The subproblem is always feasible by
construction; let us analyze the three exhaustive cases considered in Lemma 3.3. In
case (i), Slater’s condition holds for (Pxν̄ ) and d(xν̄) is a KKT point. In case (ii),
xν̄ is an ES point of (P): hence, we would have stopped at step (S.1). In case (iii),
either Slater’s condition holds for (Pxν̄ ) and d(xν̄) is a KKT point, or xν̄ is a FJ
point for (P), in which case we would have stopped at step (S.1). Therefore, d(xν̄) is a
KKT point and multipliers {ξν} and {πν} exist with ξν ∈ NR

m
−
(g̃(d(xν);xν)−κ(xν)e),

πν ∈ Nκ(xν)Bp
∞
(h̃(d(xν);xν)) and

0 ∈ ∇1f̃(d(x
ν);xν) + ∂q(xν + d(xν)) +∇1g̃(d(x

ν);xν)ξν +∇h(xν)πν

+NβBn
∞
∩(K−xν)(d(x

ν)).
(22)

Using to A1 and A4, we have

∇1f̃(d(x
ν);xν)Td(xν) = [∇1f̃(d(x

ν);xν)−∇1f̃(0;x
ν) +∇1f̃(0;x

ν)]Td(xν)

≥ c‖d(xν)‖2 +∇f(xν)Td(xν).
(23)

Also, by the convexity of q, for every ρν ∈ ∂q(xν + d(xν)),

ρνTd(xν) ≥ q(xν + d(xν))− q(xν). (24)

Moreover, in view of A5, for every i = 1, . . . ,m,

−∇1g̃i(d(x
ν);xν)Td(xν) ≤ g̃i(0;xν)− g̃i(d(xν);xν) (25)

and, by A7, since ξν is nonnegative, in turn,

− ξνi ∇1g̃i(d(x
ν);xν)Td(xν) ≤ ξνi [g̃i(0;x

ν)− g̃i(d(x
ν);xν)] = ξνi [gi(x

ν)− κ(xν)], (26)

where the equality follows observing that ξν belongs to NR
m
−
(g̃(d(xν);xν) − κ(xν)e).
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Also, taking into account πν ∈ Nκ(xν)Bp
∞
(h̃(d(xν);xν)), we have for every j = 1, . . . , p,

πνj [hj(x
ν) +∇hj(xν)Td(xν)] = |πνj |κ(x

ν) and in turn

− πνj∇hj(x
ν)Td(xν) = πνj hj(x

ν)− |πνj |κ(x
ν) ≤ |πνj | [|hj(x

ν)| − κ(xν)]. (27)

Therefore, by (22), (23), (24), (26) and (27), we have, for some ρν ∈ ∂q(xν + d(xν))
and ζν ∈ NβBn

∞
∩(K−xν)(d(x

ν)),

c‖d(xν)‖2 +∇f(xν)Td(xν) + q(xν + d(xν))− q(xν)

≤ ∇1f̃(d(x
ν);xν)Td(xν) + ρνTd(xν)

= −ξνT∇1g̃(d(x
ν);xν)Td(xν)− πνT∇h(xν)Td(xν)− ζνTd(xν)

≤ ξνT [g(xν)− κ(xν)e] +
∑p

j=1 |π
ν
j |[|hj(x

ν)| − κ(xν)]

≤ ξνT [maxi,j{gi(xν)+, |hj(xν)|} − κ(xν)]e

+
∑p

j=1 |π
ν
j | [maxi,j{gi(xν)+, |hj(xν)|} − κ(xν)] = θ(xν)‖(ξν , πν)‖1,

where the second inequality is due to 0 ∈ βBn∞ ∩ (K − xν). Hence, we get

∇f(xν)Td(xν) ≤ −c‖d(xν)‖2 + θ(xν) ‖(ξν , πν)‖1 + q(xν)− q(xν + d(xν)). (28)

We also notice that, since d(xν) is feasible for problem (Pxν ), by A5, A7 and A9, for
all i,

κ(xν) ≥ g̃i(d(x
ν);xν) ≥ g̃i(0;x

ν) +∇g̃i(0;x
ν)Td(xν) = gi(x

ν) +∇gi(x
ν)Td(xν). (29)

Let us now consider the nonsmooth (ghost) penalty function already described in the
introduction

W (x; ε) = f(x) + q(x) +
1

ε
max
i,j
{gi(x)+, |hj(x)|}, (30)

with a positive penalty parameter ε. This function plays a key role in the subsequent
convergence analysis although it does not appear anywhere in the algorithm itself.

In the following analysis we will freely invoke some properties of function (•)+ ,

max{0, •}, namely max{0, α1} ≤ max{0, α2} for any α1, α2 ∈ R such that α1 ≤ α2,
max{0, a α} = a max{0, α} for any α ∈ R and nonnegative scalar a, and max{0, α1 +
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α2} ≤ max{0, α1}+max{0, α2}. We have

W (xν+1; ε) −W (xν ; ε) = f(xν + γνd(xν))− f(xν) + q(xν + γνd(xν))− q(xν)

+
1

ε

[
max
i,j
{gi(x

ν + γνd(xν))+, |hj(x
ν + γνd(xν))|} −max

i,j
{gi(x

ν)+, |hj(x
ν)|}

]

(a)

≤ γν∇f(xν)Td(xν) +
(γν)2L∇f

2
‖d(xν)‖2 + q(xν + γνd(xν))− q(xν)

+
1

ε

[
max
i,j
{(gi(x

ν) + γν∇gi(x
ν)Td(xν))+, |hj(x

ν) + γν∇hj(x
ν)Td(xν)|}

−max
i,j
{gi(x

ν)+, |hj(x
ν)|} +

(γν)2 maxi,j{L∇gi , L∇hj
}

2
‖d(xν)‖2

]

(b)

≤ γν∇f(xν)Td(xν) +
(γν)2

2
(L∇f +

maxi,j{L∇gi , L∇hj
}

ε
)‖d(xν)‖2

+ q(xν + γνd(xν))− q(xν)

+
1

ε

[
max
i,j
{(1 − γν)gi(x

ν)+ + γνκ(xν), (1 − γν)|hj(x
ν)|+ γνκ(xν)}

−max
i,j
{gi(x

ν)+, |hj(x
ν)|}

]

= γν∇f(xν)Td(xν) +
(γν)2

2
(L∇f +

maxi,j{L∇gi , L∇hj
}

ε
)‖d(xν)‖2

+ q(xν + γνd(xν))− q(xν)

+
1

ε

[
(1− γν)max

i,j
{gi(x

ν)+, |hj(x
ν)|} −max

i,j
{gi(x

ν)+, |hj(x
ν)|}+ γνκ(xν)

]

= γν∇f(xν)Td(xν) +
(γν)2

2
(L∇f +

maxi,j{L∇gi , L∇hj
}

ε
)‖d(xν)‖2

+ q(xν + γνd(xν))− q(xν)−
γν

ε

[
max
i,j
{gi(x

ν)+, |hj(x
ν)|} − κ(xν)

]

= γν∇f(xν)Td(xν) +
(γν)2

2
(L∇f +

maxi,j{L∇gi , L∇hj
}

ε
)‖d(xν)‖2 −

γν

ε
θ(xν)

q(xν + γνd(xν))− q(xν) (31)

where (a) follows applying the descent lemma to f , gi and hj for every i = 1, . . . ,m,
j = 1, . . . , p, with L∇f , L∇gi and L∇hj

being the Lipschitz moduli of ∇f , ∇gi and
∇hj on the bounded set containing all iterates, and noticing that, for all js,

|hj(x
ν +γνd(xν))| ≤ |hj(x

ν)+γν∇hj(x
ν)Td(xν)|+

(γν)2 maxi,j{L∇gi , L∇hj
}

2
‖d(xν)‖2;

(b) holds for any positive γν ≤ 1 since, in view of (29), ∇gi(xν)Td(xν) ≤ κ(xν) −
gi(x

ν), and, recalling |hj(xν)+∇hj(xν)Td(xν)| ≤ κ(xν), |hj(xν)+γν∇hj(xν)Td(xν)| ≤
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γνκ(xν) + (1− γν)|hj(xν)|. Furthermore, we observe that

γν [∇f(xν)Td(xν)−
1

ε
θ(xν)] + q(xν + γνd(xν))− q(xν) ≤ γν [−c‖d(xν)‖2

+ (‖(ξν , πν)‖1 −
1

ε
) θ(xν)] + γν [q(xν)− q(xν + d(xν))] + q(xν + γνd(xν))− q(xν)

≤ γν [−c‖d(xν)‖2 + (‖(ξν , πν)‖1 −
1

ε
)θ(xν)] (32)

where the first inequality is due to (28) and the second relation is a consequence of
the convexity of q. We also notice that, for any fixed xν and for any η ∈ (0, 1], there
exists ε̄ν > 0 such that

∇f(xν)Td(xν)−
1

ε
θ(xν)+

1

γν
[q(xν+γνd(xν))− q(xν)] ≤ −ηc‖d(xν)‖2 ∀ε ∈ (0, ε̄ν ].

(33)
We now distinguish two cases.

(I) Suppose that (33) does not hold uniformly for every xν , that is η ∈ (0, 1] and
a subsequence {xν}N exists, where N ⊆ {0, 1, 2, . . .}, such that we can construct a
corresponding subsequence {εν}N ∈ R+ with εν ↓ 0 on N and

∇f(xν)Td(xν)−
1

εν
θ(xν) +

1

γν
[q(xν + γνd(xν))− q(xν)] > −ηc‖d(xν)‖2 (34)

for every ν ∈ N . For (34) to hold, relying on (32), the multipliers’ subsequence
{(ξν , πν)}N must be unbounded. Combining (32) and (34), we get

0 ≤ c(1− η)‖d(xν)‖2 <

(
(m+ p)‖(ξν , πν)‖∞ −

1

εν

)
θ(xν),

and, thus, θ(xν) > 0 for every ν ∈ N . By the previous relation and (34), we also have

1

εν
<
∇f(xν)Td(xν) + 1

γν [q(x
ν + γνd(xν))− q(xν)] + ηc‖d(xν)‖2

θ(xν)
. (35)

As εν ↓ 0 on N , the right hand side of (35) goes to infinity: since, by the (local)
Lipschitz continuity of q, the numerator is bounded, we have

θ(xν)→
N

0. (36)

Let x̂ be a cluster point of the subsequence {xν}N . By (36), only cases (ii) and (iii) in
Lemma 3.3 can occur at x̂ ∈ K. The existence of a d as stipulated in Lemma 3.3 (iii)
would entail, by Proposition 3.7, the boundedness of the KKT multipliers (ξν , πν) for
ν ∈ N large enough, thus giving a contradiction. Therefore, by Lemma 3.3 (ii), we
conclude that x̂ is either an ES or FJ point for (P).

(II) As opposed to (I), consider the case in which relation (33) holds uniformly for
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every xν : that is, for any η ∈ (0, 1], there exists ε̄ > 0 such that

∇f(xν)Td(xν)−
1

ε
θ(xν)+

1

γν
[q(xν+γνd(xν))−q(xν)] ≤ −ηc‖d(xν)‖2 ∀ε ∈ (0, ε̄], ∀ν.

(37)
Combining relations (31) and (37), we get

W (xν+1; ε̃)−W (xν ; ε̃) ≤ −γνηc‖d(xν)‖2 + (γν )2

2 (L∇f +
maxi,j{L∇gi

,L∇hj
}

ε̃
)‖d(xν)‖2

= −γν
[
ηc− γν

2 (L∇f +
maxi,j{L∇gi

,L∇hj
}

ε̃
)
]
‖d(xν)‖2,

(38)
for any ε̃ ∈ (0, ε̄]. Since limν γ

ν = 0, there exists a positive constant ω such that, by
(38), for ν ≥ ν̄ sufficiently large,

W (xν+1; ε̃)−W (xν ; ε̃) ≤ −ωγν‖d(xν)‖2. (39)

With W being bounded from below, by (39), the sequence {W (xν ; ε̃)} converges and

lim
ν

ν∑

t=ν̄

γt‖d(xt)‖2 < +∞.

Therefore, since
∑∞

ν=0 γ
ν = +∞, we have

lim inf
ν→∞

‖d(xν)‖ = 0. (40)

Recalling relation (16), taking the limit on a subsequence N such that ‖d(xν)‖ →
N

0,

we have θ(xν) →
N

0. Finally, let x̂ be a cluster point of subsequence {xν}N . Since

θ(xν)→
N

0 implies κ(x̂) = maxi,j{gi(x̂)+, |hj(x̂)|}, cases (ii) or (iii) in Lemma 3.3 may

occur: specifically, x̂ is either an ES, or a FJ, or a KKT point for (P). In particular, if
the eMFCQ holds at x̂, case (ii) in Lemma 3.3 is ruled out and maxi,j{gi(x̂)+, |hj(x̂)|}
cannot be strictly positive; then, κ(x̂) = maxi,j{gi(x̂)+, |hj(x̂)|} = 0. Furthermore,
taking the limit in (22), we obtain, by A3, A4, A6-A9, KKT multipliers’ bounded-
ness and outer semicontinuity property of ∂q(•), and of the normal cone mappings
NβBn

∞
∩(K−•)(•) and Nκ(•)Bp

∞
(•) (see Lemma 3.1 (iii) and (iv) with ψ ≡ κ) and NR

m
−
(•),

−∇f(x̂)−∇g(x̂)ξ̂ −∇h(x̂)π̂ ∈ ∂q(x̂) +NβBn
∞
∩(K−x̂)(0) = ∂q(x̂) + {0}+NK−x̂(0)

= ∂q(x̂) +NK(x̂),

with ξ̂ ∈ NR
m
−
(g(x̂) − κ(x̂)e) = NR

m
−
(g(x̂)), π̂ ∈ N{0}(h(x̂)) = Rp and where the first

equality follows from Lemma 3.1 (i). In turn, x̂ is a KKT point for problem (P). This
concludes the proof of case (i).

As for point (ii), observe that if, instead of the weaker (40),

lim
ν→∞

‖d(xν)‖ = 0 (41)

holds, we can reason similarly to what done above after (40) for any convergent sub-
sequence of {xν}, and conclude that (ii) holds. Therefore, it is enough to show that
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Assumption B entails (41).
Consider now the compact set containing all iterates xν . While

lim infν→∞ ‖d(xν)‖ = 0, suppose by contradiction that lim supν→∞ ‖d(x
ν)‖ > 0.

Then, there exists δ > 0 such that ‖d(xν)‖ > δ and ‖d(xν)‖ < δ/2 for infinitely many
νs. Therefore, there is an infinite subset of indices N such that, for each ν ∈ N , and
some iν > ν, the following relations hold:

‖d(xν)‖ < δ/2, ‖d(xiν )‖ > δ (42)

and, if iν > ν + 1,

δ/2 ≤ ‖d(xj)‖ ≤ δ, ν < j < iν . (43)

Hence, for all ν ∈ N , we can write

δ/2 < ‖d(xiν )‖ − ‖d(xν)‖ ≤ ‖d(xiν )− d(xν)‖
(a)

≤ µ‖xiν − xν‖α

(b)

≤ µ
[∑iν−1

t=ν γt‖d(xt)‖
]α (c)

≤ µδα
(∑iν−1

t=ν γt
)α

,

(44)

where (a) is due to Assumption B with α and µ positive scalars, (b) comes from the
triangle inequality and the updating rule of the algorithm and in (c) we used (43). By
(44) we have

lim inf
ν→∞

µδα

(
iν−1∑

t=ν

γt

)α
> 0. (45)

We prove next that (45) is in contradiction with the convergence of {W (xν ; ε̃)} for any
ε̃ ∈ (0, ε̄], where ε̄ is defined around (37). To this end, we first show that ‖d(xν)‖ ≥ δ/4,
for sufficiently large ν ∈ N . Reasoning as in (44), we have

‖d(xν+1)‖ − ‖d(xν)‖ ≤ µ‖xν+1 − xν‖α ≤ µ(γν)α‖d(xν)‖α,

for any given ν. For ν ∈ N large enough so that µ(γν)α(δ/4)α < δ/4, suppose by
contradiction that ‖d(xν)‖ < δ/4; this would give ‖d(xν+1)‖ < δ/2 and, thus, condition
(43) (or (42)) would be violated. Then, it must be ‖d(xν)‖ ≥ δ/4. From this, and using
(39), we have, for sufficiently large ν ∈ N ,

W (xiν ; ε̃) ≤W (xν ; ε̃)− ω
iν−1∑

t=ν

γt‖d(xt)‖2 ≤W (xν ; ε̃)− ω
δ2

16

iν−1∑

t=ν

γt. (46)

Since {W (xν ; ε̃)} converges, as established above immediately after (39), renumbering

if necessary, relation (46) implies
∑iν−1

t=ν γt → 0, in contradiction with (45). This shows
that (41) holds and concludes the proof of the theorem.

Remark 1. Convergence to a generalized stationary point is obtained in Theorem 4.1
if the sequence {xν} is bounded. In our framework, generating an unbounded sequence
is a natural possibility that cannot and should not be excluded in principle, since we
do not make any standard assumption such as feasibility, regularity of the constraints,
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coercivity or even existence of a stationary point. Of course, the question arises of when
the sequence generated by the algorithm is bounded; can we give a priori conditions
that guarantee the boundedness of the iterations? It is possible to give a satisfactory
answer to this question, at the price of a much more convoluted analysis; we refer the
reader to [4] for developments in this direction. Here we only mention that if K is
bounded, a case very frequent in applications, the sequence {xν}, which is contained
in K, is also surely bounded.

5. Convergence of a Simplified Version of the Method for Problems with

Convex Constraints satisfying eMFCQ

The result in Theorem 4.1 is very broadly applicable, implying some notion of sta-
tionarity for limit points even for problems satisfying essentially no structural assump-
tions. In this section, we add two classical assumptions with respect to the constraints,
namely, convexity, and a standard constraint qualification.

A simple corollary of Theorem 4.1 is obtained assuming that the eMFCQ holds
everywhere; note that this is commonly assumed in papers considering convergence of
algorithms for nonlinear constrained optimization. Theorem 4.1 immediately gives the
following result.

Corollary 5.1. Consider the sequence {xν} generated by Algorithm 1 with f̃ and g̃
such that Assumption A holds and suppose that the eMFCQ holds everywhere in K.
Then, the whole sequence {xν} is contained in K and either the sequence {xν} is
unbounded or the following assertions hold:

(i) at least one limit limit point x̂ of {xν} is a KKT point for problem (P);
(ii) if Assumption B also holds, then every limit point of {xν} is a KKT point for

problem (P).

In what follows we further assume that the constraints are convex and we explore
the consequences of this structural property: we show that Algorithm 1 can actually
be simplified while stronger convergence results can be obtained. Therefore, from now
on we make the following assumption.

Assumption D

Each gi is convex and h is linear, i.e. h(x) = Ax + b, for some p × n matrix A and
vector b ∈ Rp, on an open neighborhood of K, and K is bounded. Furthermore, the
feasible set X of (P) is nonempty and the eMFCQ holds at every point in K.

Note that f is not assumed to be convex. In this setting, we show that one can always
set κ(x) = 0, thus avoiding the non negligible task of computing this quantity, and
make the resulting modified version of Algorithm 1 resemble a pure, classical SQP-
type method. The key point here is that κ(x) is introduced to relax the constraints in
subproblem (Px) in order to ensure nonemptiness of its feasible set and some continuity
properties of d(x). It turns out that, alternatively, Assumption D is also sufficient to
achieve these results. The search direction we consider is now defined to be the solution
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of the following strongly convex optimization problem:

minimize
d

f̃(d;x) + q(x+ d)

s.t. g(x) +∇g(x)Td ≤ 0

A(x+ d) + b = 0,

d ∈ K − x,

(Pcx)

whose feasible set is denoted by X̃ c(x). Note that this is just a particular case of
(Px) where we take g̃ to be the linear approximations of g and omit the constraint
‖d‖∞ ≤ β; this latter simplification is possible because we assume K to be bounded
and therefore, if we take β to be larger than the diameter of K, this constraint is
superfluous (i.e. never active) and can be omitted. Note also that if x0 satisfies the
linear equality constraints, every point generated by the algorithm will satisfy them,
and the equality constraints in (Pcx) can be rewritten as Ad = 0, since at each iteration
b+Axν = 0.

Our first order of business is then to ensure that the feasible set of (Pcx) is always
nonempty; this is rather classical to show, even if in our setting not totally immediate.

Proposition 5.2. Under Assumption D, for any x ∈ K there exists d ∈ rel int(K−x)

such that g(x)+∇g(x)T d < 0 and A(x+d)+b = 0. Furthermore {0} =
{
π | (ATπ)Tw =

0,∀w ∈ TK−x(v)
}
for every v ∈ X̃ c(x). A fortiori, the feasible set of (Pcx) is nonempty.

Proof. The proof is an adaptation of the one for Lemma 3.3 (iii). Take a feasible
point x̂. In view of convexity, we recall that the eMFCQ holds at x̂ if and only if (see
[11, Exercise 6.39 (b)]) conditions (13), which under Assumption D read as follows,
hold:

{0} =
{
π | (ATπ)Tw = 0,∀w ∈ TK(x̂)

}
,

∃d̂ ∈ rel intTK(x̂) : ∇gi(x̂)
T d̂ < 0, ∀i : gi(x̂) = 0, Ad̂ = 0. (47)

First, observing that the tangent cone to the convex set K at a point x̂ is
given by the closure of the cone of feasible directions for K at x̂, and bor-
rowing again from the proof of [11, Theorem 6.9], we have rel intTK(x̂) =
{d ∈ Rn | ∃α > 0 with x̂+ αd ∈ rel intK} due to [11, Proposition 2.40]. Hence, in view

of [9, Theorem 6.1], for every τ > 0 sufficiently small, x̂+τ d̂ , x̃ ∈ rel intK as well. As

a consequence, by (47), x̃ is still feasible for (P) and, because of ∇gi(x̂)T d̂ < 0, ∀i such
that gi(x̂) = 0, and simple continuity arguments, it holds that g(x̃) is stricty feasible,
i.e., g(x̃) < 0.

Concerning the feasible set X̃ c(x) of subproblem (Pcx), take d , x̃ − x. Clearly,
d ∈ rel int(K − x). Furthermore it can readily be seen that x̃ satisfies the linear
constraints, i.e., b + A(x + (x̃ − x)) = 0 holds. Moreover, by using convexity, we can
write, for all i,

0 > gi(x̃) ≥ gi(x) +∇gi(x)
T (x̃− x) = gi(x) +∇gi(x)

Td.

Finally, following the same line of reasoning (by contradiction) in the proof of Lemma
3.3 (iii) (see in particular the developments below (14)), but here considering the con-
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straint ‖d‖∞ ≤ β as never active and thus omitted, since the eMFCQ holds everywhere,

we get, for every v ∈ X̃ c(x),

{0} =
{
π | (ATπ)Tw = 0,∀w ∈ TK−x(v)

}
. (48)

Paralleling Proposition (3.5) (ii), we now establish that d(x), also as the unique
solution of the modified subproblem (Pcx), remains continuous. Since the feasible set
of (Pcx) is nonempty and we assume, as usual, that the objective function of that
subproblem is strongly convex (see Assumption A), d(x) is well-defined to begin with.

Proposition 5.3. Under Assumptions A and D, the function d(•) is continuous on
K.

Proof. The proof can be derived from the one for Proposition 3.5. More specifically,
in view of the continuity of the functions involved and by (ii) in Lemma 3.1, the set-

valued mapping X̃ c(•) = (K − •) ∩ {d ∈ Rn : g(•) +∇g(•)Td ≤ 0, A(• + d) + b = 0}
is outer semicontinuous relative to K at any x ∈ K, thanks to [1, Theorem 3.1.1]. To

show that X̃ c(•) =
{
d ∈ Rn : g(•) + ∇g(•)Td ≤ 0

}
∩
{
d ∈ Rn : A(• + d) + b =

0, d ∈ K−•
}
at x̂ is also inner semicontinuous at any x ∈ K, relative to K, it suffices

to prove, thanks again to [1, Theorem 3.1.6] and Proposition 5.2, that the mapping

H̃c(•) ,
{
d ∈ Rn : A(•+d)+ b = 0, d ∈ K−•

}
is inner semicontinuous at x, relative

to K. In the light of Proposition 5.2, this can be done by a reductio ad absurdum,
following the same steps as in the proof of Proposition 3.5 (ii) (see in particular the
developments below relation (18)), by recalling that here the constraint ‖d‖∞ ≤ β is
never active and thus omitted.

Finally, thanks to A1, the continuity (relative to K) of d(•), leveraging [1, Theorem
4.3.3], follows from [11, Corollary 5.20].

The following proposition shows that, classically, ‖d(x)‖ is a stationarity measure.

Proposition 5.4. Under Assumptions A and D, d(x) = 0 if and only if x is a KKT
point of (P).

Proof. The (unique) solution of the strongly convex subproblem (Pcx) satisfies the
KKT conditions because of Proposition 5.2. This KKT conditions can be written as

0 ∈ ∇1f̃(d;x) + ∂q(x+ d) +∇g(x)ξ +ATπ +NK−x(d)

0 ≤ ξ ⊥
(
g(x) +∇g(x)Td

)
≤ 0

A(x+ d) + b = 0

d ∈ K − x,

(49)

where, we recall, the variable is d. Taking into account A4 and A9, and the fact that
NK−x(0) = NK(x), the assertion of the proposition can be checked easily by comparing
the KKT system (5) for the original problem to that for the subproblem, i.e. (49).

We now have all the required preliminary derivations to analyze the following algo-
rithm, which is a variant of Algorithm 1 where we use (Pcx) instead of (Px) to compute
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the direction and therefore avoid the calculation of κ. We can now establish the con-

Algorithm 2: Simplified DSM Algorithm for (P) under Assumption D

Data: γν ∈ (0, 1] such that (2) holds, x0 ∈ K, ν ←− 0;
repeat

(S.1) if xν is a KKT solution for (P) then
stop and return xν ;

end

(S.2) compute the solution d(xν) of problem (Pcxν);

(S.3) set xν+1 = xν + γνd(xν), ν ←− ν + 1;

end

vergence properties of this modified algorithm. Note that in the following theorem
below we assume that Assumption C holds, but this places a requirement only on f̃ ,
since g̃ is the linearization of g and therefore Assumption C2 is automatically satisfied.

Theorem 5.5. Consider the sequence {xν} generated by Algorithm 2 under Assump-
tions A, C and D. The whole sequence {xν} is bounded and contained in K and each
of its limit points is a KKT solution for problem (P).

Proof. The proof is formally similar to that of Theorem 4.1 and we do not repeat it
for sake of brevity. It is enough to follow the proof of Theorem 4.1 step by step, setting
κ(x) = 0 wherever this quantity appears and taking into account these points, which
primarily even simplify the analysis further:

• by Assumption D, the sequence {xν} is bounded, since K is bounded;
• Proposition 5.2 shows that d(x) is well-defined;
• Proposition 5.3 gives the required continuity of d(x) which, in the proof of The-

orem 4.1, was guaranteed by the results in Sections 2 and 3;
• at the beginning of the proof we need to show that d(x) is actually a KKT point

for subproblem (Pcx) and this is now guaranteed by Proposition 5.2, where we
prove that that Slater’s CQ holds for subproblem (Pcx);

• since κ(x) = 0, θ(x) reduces to nothing else but the classical measure of the
violation of the constraints: θ(x) = maxi,j{gi(x̂)+, |hj(x̂)|};

• case I in the proof of of Theorem 4.1 cannot now occur because of the eMFCQ
assumption;

• in case II there, we have lim infν→∞ ‖d(xν)‖ = 0. Together with the continuity
of d(x) and Proposition 5.4, this implies that there exists at least one limit point
of the sequence generated by the algorithm that turn out to be a KKT solution
for (P);

• Assumption C1 guarantees that actually every limit point of the bounded se-
quence {xν} is a KKT solution of (P) since it implies Assumption B.
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