
HAL Id: hal-03419540
https://ensta-bretagne.hal.science/hal-03419540v2

Submitted on 19 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global optimization for sparse solution of least squares
problems

Ramzi Ben Mhenni, Sébastien Bourguignon, Jordan Ninin

To cite this version:
Ramzi Ben Mhenni, Sébastien Bourguignon, Jordan Ninin. Global optimization for sparse
solution of least squares problems. Optimization Methods and Software, 2022, 37 (5),
�10.1080/10556788.2021.1977809�. �hal-03419540v2�

https://ensta-bretagne.hal.science/hal-03419540v2
https://hal.archives-ouvertes.fr

Global Optimization for Sparse Solution of Least Squares Problems

Ramzi BEN MHENNIa, Sébastien BOURGUIGNONa∗ and Jordan NININb

aLS2N, CNRS UMR 6004, École Centrale de Nantes, Nantes, France;
bLab-STICC, CNRS UMR 6285, ENSTA Bretagne, Brest, France

ARTICLE HISTORY

Compiled August 23, 2021

ABSTRACT

Finding solutions to least-squares problems with low cardinality has found many
applications, including portfolio optimization, subset selection in statistics, and in-
verse problems in signal processing. Although most works consider local approaches
that scale with high-dimensional problems, some others addressed its global opti-
mization via mixed integer programming (MIP) reformulations. We propose dedi-
cated branch-and-bound methods for the exact resolution of moderate-size, yet diffi-
cult, sparse optimization problems, through three possible formulations: cardinality-
constrained and cardinality-penalized least-squares, and cardinality minimization
under quadratic constraints. A specific tree exploration strategy is built. Continu-
ous relaxation problems involved at each node are reformulated as `1-norm-based
optimization problems, for which a dedicated algorithm is designed. The obtained
certified solutions are shown to better estimate sparsity patterns than standard
methods on simulated variable selection problems involving highly correlated vari-
ables. Problem instances selecting up to 24 components among 100 variables, and up
to 15 components among 1 000 variables, can be solved in less than 1 000s. Unguar-
anteed solutions obtained by limiting the computing time to 1s are also shown to
provide competitive estimates. Our algorithms strongly outperform the CPLEX MIP
solver as the dimension increases, especially for quadratically-constrained problems.
The source codes are made freely available online.

KEYWORDS
Sparse approximation; Subset selection; Cardinality constraint; Branch-and-bound;
Continuous relaxation; Homotopy continuation.

1. Introduction

We are interested in solving optimization problems mixing a quadratic data adjust-
ment term and a sparsity measure. Such problems arise in many application fields,
among which portfolio optimization [4, 13, 27, 40], sparse regularization for inverse
problems [12, 18, 30, 42, 47] or compressed sensing [8, 19], and variable or subset se-
lection in statistics [16, 31, 36, 44]. In operations research, many works addressed the
cardinality-constrained problem [4, 5, 13, 27, 40]:

P2/0 : min
x∈Rn

1
2‖y −Ax‖

2
2 subject to (s.t.) ‖x‖0 ≤ K,

∗CONTACT S. BOURGUIGNON. Author. Email: Sebastien.Bourguignon@ec-nantes.fr

where y ∈ Rm and A ∈ Rm×n with often n > m, ‖x‖0 = Card{i|xi 6= 0} (which will
be called the `0 “norm” in this paper) and K ∈ N is a given cardinality that is fixed a
priori. Without loss of generality, the columns of A are supposed to have unit `2 norm.
In many applications, one may prefer solving the error-constrained problem [31, 33, 45]:

P0/2 : min
x∈Rn

‖x‖0 s.t. 1
2‖y −Ax‖

2
2 ≤ ε.

Such a formulation may be more relevant in signal processing and statistics, where
parameter ε ≥ 0 controls the approximation level and can be tuned according to prior
knowledge about the data. One is then interested in finding the sparsest approximation
compatible with some given noise level (or prediction accuracy). Finally, the penalized
problem:

P2+0 : min
x∈Rn

1
2‖y −Ax‖

2
2 + µ‖x‖0,

where µ > 0 trades off between approximation error and sparsity, is also encountered
in the field of inverse problems, e.g., for Geophysics [30] or ultrasonic non-destructive
testing [35, 47]. In the Bayesian statistical framework, the `0-norm penalization term
corresponds to a Bernoulli-Gaussian prior assumption about the unknown components
in x, and parameter µ then depends on both the noise level and the expected rate of
non-zero values in x [42].

Optimization of such problems is NP-hard due to the discrete nature of the cardi-
nality term [5, 33]. In many applications involving high-dimensional problems (that
is, essentially, high n and high K), exact resolution of such problems may not be com-
putationally tractable and a vast literature has been dedicated to scalable sparsity-
promoting approaches. On the one hand, local optimization methods have been pro-
posed, such as the Iterative Hard Thresholding algorithm [6, 24], the CoSaMP local
exploration strategy [34], or many heuristic-based greedy algorithms [31, 42, 43], even
coupled with local tree-search methods [25]. On the other hand, many works studied
continuous approximations of the discrete-valued `0 norm. In particular, using the `1
norm opens the way to many possible convex optimization methods (see for exam-
ple [45] and references therein). In very particular cases as those addressed within the
compressed sensing theory [19], such an approach may solve the `0-norm problems.
Concave approximations of the `0 norm, coupled with local optimization strategies,
were shown to achieve better performance in practice (see for example [11, 14, 32, 38]).
Iterative methods such as FOCUSS [22] or IRL1 [10] do not have any explicit cost
function and rather iteratively solve a sequence of sparsity-promoting problems, and
may also provide better solutions than standard `1-norm-based optimization. All such
methods, however, do not provide any strong optimality guarantee with respect to the
original `0-norm formulation. More theoretical guarantees may be obtained for alter-
nate problem reformulations such as penalty decomposition [29], DC programming [26]
or complementarity constraints [9]. However, equivalence conditions with the original
problem are weak, and practical implementation may be hard to monitor.

On the other hand, the resolution of `0-norm problems has also been addressed
from a global optimization perspective. In particular, the certified optimal solutions
were shown to provide better estimates than classical sparsity-promoting methods
on low-dimensional problems typically encountered in variable selection [3] and sig-
nal processing [7]. Despite their small size, these problems are made difficult by the
high correlation level between the columns of matrix A. Exact optimization of sparse

2

optimization problems essentially resorts to combinatorial exploration, which can be
performed via tree-search methods. In [3, 7], such problems were reformulated as mixed
integer programs (MIPs), and then solved with a generic MIP solver.

Dedicated optimization algorithms have been proposed for solving P2/0, in the con-
text of sparse portfolio selection and subset selection. To our knowledge, Bienstock
was the first to propose a specific branch-and-cut algorithm for such problems, with
additional non-negativity constraints [5]. Continuous relaxation problems involved in
each iteration were solved via a specific convex quadratic programming algorithm.
In [4], Bertsimas and Shioda extended this work using Lemke’s pivoting method to
solve the continuous relaxation. When the matrix involved in the quadratic term is
the sum of a diagonal positive matrix and a positive definite one, branch-and-bound
techniques using perspective reformulation [20], Lagrangian relaxation [13, 27, 40] or
geometric approaches [21], were shown to give tighter bounds than the continuous
relaxation. In [2], we proposed a branch-and-bound method specific to the penalized
version P2+0. Each node was evaluated by solving an `1-norm-penalized least-squares
problem, for which an active-set method was built. We also mention the preprint [23],
which proposes a specific solver for the penalized formulation with an additional `2-
norm regularization term. Up to our knowledge, problem P0/2 was never addressed
with dedicated exact optimization methods.

In this paper, we address the three problems P2/0, P0/2 and P2+0 with exact res-
olution methods which are specifically designed for such problems. Our goal is to
outperform generic MIP solvers and to increase the size of considered problems, while
maintaining the quality of solutions and global optimality guarantees. Following the
works in [4, 5], our motivation lies in the fact that sparsity-enhancing least-squares
problems are very specific MIPs, that could be advantageously solved by dedicated
algorithms. Starting from the MIP formulation, we propose a branch-and-bound pro-
cedure whose exploration strategy is inspired by local greedy search techniques, betting
on quickly finding high-quality feasible solutions. Then, we show that all continuous
relaxation problems involved in the resolution are particular forms of problems in-
volving the `1 norm. We build a dedicated algorithm for all such problems, inspired
by the homotopy principle [15, 16, 36]. This algorithm is able to solve the relaxation
problems involved in the resolution of any of the three problems P2/0, P0/2 and P2+0

with similar computational burden.
The paper is organized as follows. In Section 2, we give the general architecture of

our branch-and-bound procedure and we study the structure of continuous relaxation
problems involved at each node, which are reformulated as `1-norm-based problems.
A dedicated optimization strategy for such problems is then built in Section 3. In
Section 4, the performance of our method is evaluated through numerical experiments
on simulated subset selection problems. Solutions are compared to that of standard
methods, and computation times are compared to those of the CPLEX MIP solver
through different possible formulations. The discussion in Section 5 closes the paper.

2. Branch-and-bound algorithm and continuous relaxations

In this section, we consider the MIP reformulations of problems P2/0, P0/2 and P2+0.
Binary decision variables bi are introduced to encode the nullity of the model com-
ponents. We use the classical bigM formulation: assuming that solutions of interest
satisfy ∀i, |xi| ≤ M for some known value M , the former logical constraint reads
−Mbi ≤ xi ≤ Mbi. The three problems can then be reformulated as the standard

3

MIPs given in Table 1 (see for example [7]).

Table 1. Initial problems (left) and their MIP reformulations (right).

Sparsity-enhancing problem MIP Reformulation

min
x∈Rn

1
2‖y −Ax‖

2
2

s.t. ‖x‖0 ≤ K
‖x‖∞ ≤M

min
b∈{0,1}n,x∈Rn

1
2‖y −Ax‖

2
2

s.t.
∑n

i=1 bi ≤ K
|x| ≤Mb

min
x∈Rn

‖x‖0
s.t. 1

2‖y −Ax‖
2
2 ≤ ε

‖x‖∞ ≤M

min
b∈{0,1}n,x∈Rn

∑n
i=1 bi

s.t. 1
2‖y −Ax‖

2
2 ≤ ε

|x| ≤Mb

min
x∈Rn

1
2‖y −Ax‖

2
2 + µ‖x‖0

s.t. ‖x‖∞ ≤M
min

b∈{0,1}n,x∈Rn

1
2‖y −Ax‖

2
2 + µ

∑n
i=1 bi

s.t. |x| ≤Mb

Using a tight bound for parameter M is a crucial point, since an artificially high
value for M would strongly impact on the resolution efficiency. In the overdetermined
case n < m, valid (although possibly loose) bounds can be found by solving a convex
continuous optimization problem [3]. In the more general underdetermined case, au-
tomatic tuning of M remains an open question. In practice, however, natural bounds
on the model coefficients can often be obtained from prior knowledge on the problem.
In this paper, the value of M is set to 1.1‖ATy‖∞, where ‖ATy‖∞ corresponds to the
maximum amplitude of 1-sparse solutions [7]. Although empirical, this tuning rule will
be shown to provide valid bounds on the simplest problems addressed in Section 4.3.

In Section 2.1, we describe our branch-and-bound implementation to solve such
MIPs, in particular by using specific variable selection and branching rules. Then, the
mathematical properties of the continuous relaxation problems involved at the root
node and at any node of the algorithm are studied in Sections 2.2 and 2.3 respectively,
leading to their reformulation as `1-norm-based optimization problems, and removing
the binary variables.

2.1. Branch-and-bound implementation

We consider a resolution strategy based on a branch-and-bound procedure, as adopted
by most MIP solvers. The initial problem defines the root node. At each iteration
of the algorithm, one node is selected from the list of subproblems that have not
been processed yet, and a lower bound for the node is computed via the continuous
relaxation of the binary variables. If this bound is greater than the current upper bound
(defined as the value of the cost function at the best feasible solution found), then the
subproblem is discarded. Otherwise, two children of this node are built through the
addition of constraints fixing one of the binary variables to 0 and 1. The two new
nodes are then added to the list.

We use depth-first search, and our branching rule is based on selecting the binary
variable, say bi, with the highest value in the solution of the relaxed problem. We
branch up first, that is, we first explore the branch corresponding to the decision bi = 1.
This strategy, similar to the principle of greedy forward selection algorithms [31], aims
at activating first the most prominent nonzero variables in x, therefore focusing on

4

quickly finding satisfactory feasible solutions and subsequent upper bounds of good
quality. It is particularly well adapted for problems P2/0, in which the depth limit
is imposed by the cardinality constraint. It also allows one to quickly find feasible
solutions for problems P2+0 and P0/2 with limited depth search, since we know in
advance that their solutions are sparse.

The general procedure is summarized in Algorithm 1, using the following notations:

• L is the set of active subproblems;
• (b?,x?) is the best known feasible solution;
• zU is the current upper bound (the value of the objective function at (b?,x?));
• QR(i) is the continuous relaxation of subproblem i;
• (bR(i),xR(i)) is the solution to QR(i);
• zR(i) = minQR(i) is the lower bound on the value of subproblem i;
• zL = mini∈Lz

R(i) is the global lower bound on the problem.

Note that, contrary to generic MIP solvers, we do not set any duality gap or ε precision
on zU − zL as a stopping condition. Our procedure is run until all nodes have been
evaluated or removed. Indeed, feasible solutions of the MIP are systematically com-
puted throughout the procedure. More precisely, at each node, the initialization step
of our continuous relaxation algorithm requires the computation of box-constrained
least-squares problems on cardinality-limited subsets (see Equations 7a and 7b), which
are feasible solutions for P2/0 and P2+0. For P0/2, feasible solutions are found when
the corresponding least-squares error is lower than the given parameter ε. Thus, our
branch-and-bound algorithm converges towards an optimal solution of the problem up
to machine precision.

2.2. Continuous relaxation at the root node

At the root node, no decision has been made concerning any binary variable. The
continuous relaxation of binary variables in P2/0 then reads:

PR2/0 : min
b∈[0,1]n,x∈Rn

1
2‖y −Ax‖

2
2 s.t.

{∑n
i=1 bi ≤ K

|x| ≤Mb
.

The following proposition reformulates PR2/0 as an `1-norm-constrained problem in-

volving only the continuous variables x.

Proposition 1. Let P2/1 be the following problem:

P2/1 : min
x∈Rn

1
2‖y −Ax‖

2
2 s.t.

{
‖x‖1 ≤ KM
‖x‖∞ ≤M

.

Then, PR2/0 and P2/1 have the same minimum value.

Proof. Let (bR,xR) be a minimizer of PR2/0 and let x1 be a minimizer of P2/1. Let

b1 := 1
M

∣∣x1
∣∣. Then, (b1,x1) is clearly feasible for PR2/0, therefore ‖y −AxR‖22 ≤

‖y −Ax1‖22. Conversely, xR is feasible for P2/1 because ‖xR‖1 ≤ M‖bR‖1 =

M
∑N

i=1 b
R
i ≤ KM and ‖xR‖∞ ≤ M‖bR‖∞ ≤ M . Consequently, ‖y −Ax1‖22 ≤

5

0. Initialization: L← {Initial problem} ; zU ← +∞.
1. Optimality: If L = ∅, then (b?,x?) is the certified optimal solution.
2. Node selection: Choose subproblem i in L (depth-first search) and remove
it from L.

3. Node evaluation:
begin

Solve the continuous relaxation problem QR(i).
if QR(i) has no solution then

return to Optimality step; . Pruning
else

let (bR(i),xR(i)) and zR(i) be the solution and the optimum value
of QR(i);

end

if zR(i) ≥ zU then
return to Optimality step; . Pruning

else

if all variables in bR(i) are binary then

update the best-known solution: (b?,x?)← (bR(i),xR(i));
update the upper bound zU ← zR(i);
remove from L all subproblems j such that zR(j) ≥ zU ; . Pruning
update the global lower bound zL = mini∈L z

R(i);
return to Optimality step; . Pruning

else
go to Branching step;

end

end

end

4. Branching: Choose index i0 = arg max
k∈{1,...,n},bR(i)

k <1
b
R(i)
k , subdivide problem

i into two sub-problems by fixing bi0 = 1 and bi0 = 0, add them to L and
return to Optimality step.

Algorithm 1: Branch-and-bound algorithm for the resolution of any of the three
problems P2/0, P0/2 and P2+0.

6

‖y −AxR‖22 and the proposition follows.

We note that this result was given by [4, 5] for problems with non-negativity con-
straints, and by [3] in our case.

A similar result holds for PR0/2, the continuous relaxation of P0/2 :

PR0/2 : min
b∈[0,1]n,x∈Rn

n∑
i=1

bi s.t.

{
1
2‖y −Ax‖

2
2 ≤ ε

|x| ≤Mb

Proposition 2. Let P1/2 be the following problem:

P1/2 : min
x∈Rn

1

M
‖x‖1 s.t.

{
1
2‖y −Ax‖

2
2 ≤ ε

‖x‖∞ ≤M
.

Then, PR0/2 and P1/2 have the same minimum value.

Proof. Let (bR,xR) be a minimizer of PR0/2. We show that |xR| = MbR, from which

the proof is straightforward. Suppose that |xRi | < MbRi for some component i. Let
b′ := 1

M |x
R|, such that b′i < bRi . Then, (b′,xR) is feasible for PR0/2, with

∑n
i=1 b

′
i <∑n

i=1 b
R
i , which contradicts the definition of (bR,xR).

Finally, consider the continuous relaxation of binary variables in the penalized prob-
lem P2+0 as follows:

PR2+0 : min
b∈[0,1]n,x∈Rn

1
2‖y −Ax‖

2
2 + µ

n∑
i=1

bi s.t. |x| ≤Mb .

Proposition 3. Let P2+1 be the following problem:

P2+1 : min
x∈Rn

1
2‖y −Ax‖

2
2 + µ

M ‖x‖1 s.t. ‖x‖∞ ≤M.

Then, PR2+0 and P2+1 have the same minimum value.

Proof. The proof is similar to that of Proposition 2.

2.3. Continuous relaxation in the branch-and-bound algorithm

We now consider a given node of the branch-and-bound algorithm and the correspond-
ing continuous relaxation sub-problem. Let AS denote the sub-matrix formed by all
columns of the matrix A indexed by S. Similarly, zS denotes the corresponding sub-
vector of z. Let S0 (respectively, S1) denote the index set of binary variables that
have been set to 0 (respectively, to 1) after a series of branching operations. Then,
∀i ∈ S0, bi = 0 and xi = 0, so that the variables xS0 can be removed from the sub-
problem. Similarly, ∀i ∈ S1, bi = 1 and variables xi are only box-constrained by M .
Last, let S̄ index the remaining (undetermined) binary variables, for which bi ∈ [0, 1]
and |xi| ≤Mbi.

For problem P2/0, the continuous relaxation of variables bS̄ in the corresponding

7

sub-problem reduces to:

QR2/0 : min
xS1 ∈ Rn1

bS̄ ∈ [0, 1]n̄

xS̄ ∈ Rn̄

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 s.t.


∑

i∈S̄ bi ≤ K − n1

|xS̄| ≤MbS̄

‖xS1‖∞ ≤M
,

where n1 and n̄ denote the size of S1 and S̄, respectively. Then, similarly to the
developments in Section 2.2, one can show that QR2/0 and Q2/1 have the same minimum

value, with:

Q2/1 : min
xS1 ∈ Rn1

xS̄ ∈ Rn̄

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 s.t.


‖xS̄‖1 ≤M(K − n1)

‖xS̄‖∞ ≤M
‖xS1‖∞ ≤M

.

Applying a similar reasoning to the two other formulations, we finally obtain the
equivalent problems summarized in Table 2.

Table 2. Continuous relaxation problems at any node in the branch-and-bound procedure (left), and equiv-
alent problems involving the `1 norm, without binary variables (right), for the three considered formulations.

Continuous relaxation problem Equivalent problem without binary variables

QR2/0 : min
b∈[0,1]n,x∈Rn

1
2‖y −Ax‖

2
2

s.t.
∑n

i=1 bi ≤ K
|x| ≤Mb
bS1 = 1
bS0 = 0

Q2/1 : min
xS1∈Rn1 ,xS̄∈Rn̄

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2

s.t. ‖xS̄‖1 ≤M(K − n1)
‖xS̄‖∞ ≤M
‖xS1‖∞ ≤M

QR0/2 : min
b∈[0,1]n,x∈Rn

∑n
i=1 bi

s.t. 1
2‖y −Ax‖

2
2 ≤ ε

|x| ≤Mb
bS1 = 1
bS0 = 0

Q1/2 : min
xS1∈Rn1 ,xS̄∈Rn̄

1
M ‖xS̄‖1 + n1

s.t. 1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 ≤ ε

‖xS̄‖∞ ≤M
‖xS1‖∞ ≤M

QR2+0 : min
b∈[0,1]n,x∈Rn

1
2‖y −Ax‖

2
2

+µ
∑n

i=1 bi

s.t. |x| ≤Mb
bS1 = 1
bS0 = 0

Q2+1 : min
xS1∈Rn1 ,xS̄∈Rn̄

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2

+ µ
M ‖xS̄‖1 + µ n1

s.t. ‖xS̄‖∞ ≤M
‖xS1‖∞ ≤M

These properties are of major interest for our work, with two main consequences:

• whatever the formulation (constrained or penalized), all continuously relaxed
subproblems involved in the evaluation of each node in the branch-and-bound
algorithm can be reformulated without binary variables.
• They all reduce to optimization problems mixing a least-squares function, `1-

norm terms involving only a part of the variables, and box constraints.

8

In Section 3, we build a dedicated algorithm which solves the three problems Q2/1,
Q1/2 and Q2+1.

3. A dedicated homotopy continuation algorithm for relaxed problems

Optimization involving a quadratic misfit and the `1 norm has been a very active field
of research in the past ten years. Many dedicated convex, non-smooth, optimization
algorithms have been developed (see for example [1, 45] and references therein), for
solving problems:

Pτ1 : min
x∈Rn

1
2‖y −Ax‖

2
2 s.t. ‖x‖1 ≤ τ ; Pε1 : min

x∈Rn
‖x‖1 s.t. 1

2‖y −Ax‖
2
2 ≤ ε;

and Pλ1 : min
x∈Rn

1
2‖y −Ax‖

2
2 + λ‖x‖1.

The homotopy method [15, 16, 36] was shown to be a particularly efficient algorithm
for highly sparse solutions in moderate dimension, as addressed in this paper [1]. It
computes the set of solutions to Pλ1 as a function of λ, which is piecewise linear in λ.
Starting from λ(0) = ‖ATy‖∞ (such that the solution is identically zero ∀λ > λ(0)),

a decreasing sequence of breakpoints
{
λ(t)
}
t=1,...,T

is computed iteratively, such that

the support of the solution (the set of non-zero components and their sign) is constant
over intervals [λ(t+1), λ(t)]. On such interval, non-zero components vary linearly with λ,
which allows one to find an analytical expression of the next breakpoint. The algorithm
stops at iteration T when the target value λ belongs to [λ(T), λ(T−1)]. Since the two
objectives are convex, the three problems Pτ1 , Pε1, and Pλ1 are equivalent. Therefore,
problems Pτ1 and Pε1 can be similarly solved by stopping the algorithm when the
corresponding value of τ or ε is reached, respectively.

In this section, we generalize the homotopy method to the class of problems Q2/1,
Q1/2 and Q2+1 defined in Table 2, where free variables (that is, variables that are not
involved in the `1-norm term) and box constraints are included. Our algorithm still
belongs to the class of exact methods, where the solution can be computed after a finite
number of operations. More precisely, we show that i) the solution is still piecewise
linear in intervals of the form [λ(t+1), λ(t)], ii) an analytical expression can still be ob-
tained for the sequence of breakpoints λ(t) and iii) the solution in intervals [λ(t+1), λ(t)]
can still be found analytically. The presence of free variables then impacts initializa-
tion and somewhat complicates all analytical expressions. Box constraints increase the
number of tests that need to be computed in order to predict the next breakpoint.
Note that the homotopy method with box constraints was recently proposed in [28],
which also established convergence proofs. We first obtain optimality conditions for
Q2+1 in Section 3.1. Then, the algorithm is built in Section 3.2, and it is adapted
to problems Q2/1 and Q1/2 in Section 3.3. Implementation details are discussed in
Section 3.4.

3.1. Optimality conditions

We first focus on problem Q2+1 in Table 2, that is, the relaxed problem involved in
the cardinality-penalized form. We consider equivalently the optimization problem of

9

the form:

min
x∈Rn

F (x) := J(x) + λh(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . , n, (1)

with J(x) := 1
2‖y −AS1xS1 −AS̄xS̄‖

2
2,

h(x) := ‖xS̄‖1,
gi(x) := |xi| −M,

where index sets S1 and S̄ are defined in Section 2.3. The function J is differentiable
with∇J(x) = −AT (y−Ax). The subdifferentials of h(x) and of gi(x) are respectively:

∂h(x) =

z ∈ Rn
∣∣∣∣∣∣
zi = 0 if i ∈ S1

zi = sgn(xi) if i ∈ S̄ and xi 6= 0
zi ∈ [−1, 1] if i ∈ S̄ and xi = 0

 (2)

and

∂gi(x) =

z ∈ Rn
∣∣∣∣∣∣
zj = 0 for j 6= i
zi = sgn(xi) if xi 6= 0
zi ∈ [−1, 1] if xi = 0

 . (3)

The vector x∗ is a minimizer of (1) if and only if there exists π ∈ Rn such that (x∗,π)
satisfies the Karush-Kuhn-Tucker optimality conditions applied to continuous, convex,
non-differentiable functions (see for example [39]):

0 ∈ −AT (y −Ax∗) + λ∂h(x∗) + ∂

n∑
i=1

πigi(x
∗)

gi(x
∗) ≤ 0 ∀i = 1, . . . , n

πi ≥ 0 ∀i = 1, . . . , n

πigi(x
∗) = 0 ∀i = 1, . . . , n.

(4a)

(4b)

(4c)

(4d)

Particular points are those which activate the bound constraints (x∗i = ±M for i ∈
S̄∪S1) or non-differentiability points (x∗i = 0 for i ∈ S̄). Therefore, we split the variable
indices into the five possible cases.

(1) Let S̄0 := {i ∈ S̄ | |x∗i | = 0}. From equation (4d), πS̄0
= 0 and using equations (2)

and (4a), optimality conditions of x∗
S̄0

become:

|AT
S̄0

(y −AS1x∗S1 −AS̄x
∗
S̄)| < λ. (5a)

(2) Let S̄in := {i ∈ S̄ | 0 < |x∗i | < M}. From equation (4d), πS̄in
= 0 and using

equations (2) and (4a), optimality conditions of x∗
S̄in

become:

−AT
S̄in

(y −AS1x∗S1 −AS̄x
∗
S̄) + λsgn(x∗S̄in

) = 0. (5b)

(3) Let S̄� := {i ∈ S̄ | |x∗i | = M}. From equation (4c), πS̄�
≥ 0 and using equa-

10

tions (3) and (4a), optimality conditions of x∗
S̄�

become:

−AT
S̄�

(y−AS1x∗S1−AS̄x
∗
S̄)+λsgn(x∗S̄�

)+πS̄�
� sgn(x∗S̄�

) = 0, πS̄�
≥ 0, (5c)

where � denotes the Hadamard (entrywise) product.
(4) Let S1

in := {i ∈ S1 | 0 ≤ |x∗i | < M}. From equation (4d), πS1
in

= 0 and using
equations (2) and (4a), optimality conditions of x∗

S1
in

become:

−AT
S1
in

(y −AS1x∗S1 −AS̄x
∗
S̄) = 0. (5d)

(5) Let S1
� := {i ∈ S1 | |x∗i | = M}. From equation (4c), πS1

�
≥ 0 and using

equations (3) and (4a), optimality conditions of xS1
�

∗ become:

−AT
S1
�

(y −AS1x∗S1 −AS̄x
∗
S̄) + πS1

�
� sgn(x∗S1

�
) = 0, πS1

�
≥ 0. (5e)

Let us remark that equations (5b), (5c) and (5e) concern non-zero variables, there-
fore the corresponding sign function is well-defined.

3.2. Homotopy continuation algorithm

We now build the homotopy algorithm that solves problem (1). Let r := y−AS̄�
x∗

S̄�
−

AS1
�
x∗

S1
�

, where each component in xS̄�
and xS1

�
equals ±M . Equations (5b) and (5d)

are linear systems in x∗
S̄in

and x∗
S1
in

, whose solution is:x
∗
S̄in

=
(
AT

S̄in
(I − P S1

in)AS̄in

)−1 (
AT

S̄in
(I − P S1

in)r − λ sgn(x∗S̄in
)
)
,

x∗S1
in

= (AT
S1
in
AS1

in
)−1(AT

S1
in
r −AT

S1
in
AS̄in

x∗S̄in
),

(6a)

(6b)

where P S1
in := AS1

in
(AT

S1
in
AS1

in
)−1AT

S1
in

and I is the identity matrix of appropri-

ate size. These equations show that, in a given configuration of the index sets
{S̄in, S1

in, S̄�, S
1
�, S̄0}, which we call the support configuration, the solution of the prob-

lem (1) is linear in λ (recall that variables in S̄� and S1
� are fixed to ±M , and variables

in S̄0 are zero). The homotopy method then constructs the solution path (the set of
all solutions as a function of λ) by identifying iteratively the different breakpoints that
lead to changes in the support configuration. These breakpoints will occur at specific
values of λ, for which (at least) one of the conditions in equations (5a)–(5e) is violated.
The algorithm works as follows:

(1) First, it is clear that as λ → +∞, `1-norm-penalized variables xS̄ are zero. In
that case, other variables xS1 are found by solving the least-squares problem:

min
−M≤xS1≤M

1
2‖y −AS1xS1‖22. We note x(0) the vector defined by

x
(0)
S1 := argmin

−M≤xS1≤M

1
2‖y −AS1xS1‖22,

x
(0)

S̄
:= 0.

(7a)

(7b)

11

Equation (5a) shows that x(0) is the solution of the problem (1) as long as
λ ≥ λ(0), with:

λ(0) := ‖AT
S̄ (y −AS1x

(0)
S1)‖∞. (7c)

(2) As λ decreases below λ(0), indices j ∈ S̄ such that |aTj (y−AT
S1x

(0)
S1)| = λ(0) leave

S̄0 to form the new subset S̄in. This new support configuration remains valid for
any λ ∈ [λ(1), λ(0)], where λ(1) defines the next breakpoint, etc. A monotonically
decreasing sequence {λ(k)}k is built iteratively, by testing all possible changes
that can occur to the support configuration, and selecting the one(s) correspond-
ing to the smallest decrease in λ. Then, the support configuration is updated,
and a new breakpoint in λ is searched. Since the solution path is piecewise linear
as a function of λ, the solution x(k) at the k-th breakpoint reads:{

x(k) = x(k−1) + γ(k)d(k)

and λ(k) = λ(k−1) − γ(k),

(8a)

(8b)

where d(k) represents the vector of slope changes and γ(k) > 0 represents the
length of interval [λ(k), λ(k−1)]. From equations (6a) and (6b), the direction d(k)

is obtained by: 
d

(k)

S̄in
= (AT

S̄in
(I − P S1

in)AS̄in
)−1sgn(x

(k−1)

S̄in
)

d
(k)
S1
in

= −(AT
S1
in
AS1

in
)−1AT

S1
in
AS̄in

d
(k)

S̄in

d
(k)
i = 0 ∀i /∈ {S̄in ∪ S1

in},

(9a)

(9b)

(9c)

where the last equality concerns variables that are fixed to zero or to ±M .
The step size γ(k) is obtained as the smallest positive value γ > 0 such that
x(k−1) + γd(k) reaches a new breakpoint. Five different cases can occur, which
are detailed hereafter. We introduce the following notations:

t(k−1) := y −AS̄x
(k−1)

S̄
−AS1x

(k−1)
S1 , u(k) := AS̄in

d
(k)

S̄in
+AS1d

(k)
S1 ,

v(k−1) := AT t(k−1), w(k) := ATu(k). (10)

(a) A component with index ` ∈ S̄0 becomes nonzero when equality in equa-
tion (5a) is reached. Inserting equations (6a) and (6b) into equation (5a),
one can show that it may become positive (respectively, negative) when:

γ =
λ(k−1) + v

(k−1)
`

1− w(k)
`

(
respectively, when γ =

−λ(k−1) + v
(k−1)
`

−1− w(k)
`

)
. (11a)

(b) A component with index ` ∈ S̄in becomes zero. From equation (8a), this
may occur when:

γ =
−x(k−1)

`

d
(k)
`

. (11b)

12

(c) A component with index ` ∈ S̄in or S1
in yields the bound M or −M , de-

pending on its current sign. From (8a), this may occur when:

γ =
Msgn(x

(k−1)
`)− x(k−1)

`

d
(k)
`

. (11c)

(d) The bound constraint for some component with index ` ∈ S̄� becomes
inactive. This may occur when the corresponding Lagrange multiplier π` =
0 in equation (5c), which yields:

γ =
sgn(x

(k−1)
`)λ(k−1) − v(k−1)

`

sgn(x
(k−1)
`)− w(k)

`

. (11d)

(e) The bound constraint for some component with index ` ∈ S1
� becomes

inactive. This may occur when the corresponding Lagrange multiplier π` =
0 in equation (5e), which yields:

γ =
−v(k−1)

`

w
(k)
`

. (11e)

The shortest step size γ(k) is then defined as the shortest positive step among
all possible ones, defined by equations (11a)–(11e). In theory, γ(k) may be ob-
tained by several conditions above simultaneously; should this happen, the sup-
port configuration is updated correspondingly.

(3) The algorithm stops when the target λ, say λ?, is reached, that is, after iteration
k such that λ? ∈ [λ(k), λ(k−1)]. Then, the optimal solution x? for λ = λ? is found
by:

x? = x(k−1) + γ?d(k), (12)

with γ? = λ? − λ(k).

The homotopy algorithm is summarized in Algorithm 2. Figure 1 shows a typical
solution path for a toy example with 5 variables: S̄ = {1, 2, 3} and S1 = {4, 5}.

Set k = 0. Initialize x(0) and λ(0) by equations (7a)–(7c).
while λ(k) > λ? do

k ← k + 1.
Update d(k) by equations (9a)–(9b).
Determine the step size γ(k) as the smallest positive value among all cases
in equations (11a)–(11e).

Compute accordingly (x(k), λ(k)) by equations (8a)–(8b).
Update index sets {S̄in, S1

in, S̄�, S
1
�, S̄0}.

end
Compute x? by equation (12).

Algorithm 2: Homotopy algorithm for solving the problem Q2+1 in Table 2,
reformulated as the problem (1) with λ = λ?.

13

M

−M

λ

x∗

x∗1

x∗2

x∗3

x∗4

x∗5
λ(0)λ(1)λ(2)λ(3)λ(4)λ(5)λ(6)λ(7)λ∗

γ(0)γ(1)γ(2)γ(3)γ(4)γ(5)γ(6)

γ?

Figure 1. Example of solution path x∗ giving the solutions of the problem (1) as a function of λ, with
5 variables: S̄ = {1, 2, 3} and S1 = {4, 5}. Circles represent the events that cause a change in the support

configuration. Vertical dotted lines represent the breakpoints.

3.3. Solutions to constrained problems Q2/1 and Q1/2

As λ is continuously decreased, the `1 norm of the penalized variables ‖x∗
S̄
‖

1
is continu-

ously increased and the least-squares function 1
2‖y −AS̄x

∗
S̄
−AS1x∗

S1‖22 is continuously
decreased. Therefore, the homotopy method can also solve the constrained problems
Q2/1 and Q1/2 in Table 2. More precisely:

• For Q2/1, iterations stop at the first breakpoint such that the `1 norm of the

penalized variables ‖x(k)

S̄
‖

1
exceeds the threshold value τ := M(K−n1). Then, in

the corresponding interval [λ(k), λ(k−1)], the solution is given by equation (12). By
construction, there is no sign change between x(k−1) and the optimal solution x∗

such that ‖x∗‖1 = τ . One can then easily show that the value of γ such that
‖x?‖1 = τ is:

γ? :=
τ − ‖x(k−1)‖1

sgn(x(k−1))Td(k)
.

• Similarly, for Q1/2, iterations stop at the first breakpoint such that

1
2‖y −AS̄x

(k)

S̄
−AS1x

(k)
S1 ‖

2

2
≤ ε. Substituting equation (12) in the least-squares

expression, the value of γ such that 1
2‖y −AS̄x

?
S̄
−AS1x?

S1‖22 = ε can be found
by solving a scalar quadratic equation, whose solution is:

γ? :=
t(k−1)Tu(k) −

√
(t(k−1)Tu(k))

2
− u(k)Tu(k)(t(k−1)T t(k−1) − 2ε)

u(k)Tu(k)
,

where t(k−1) and u(k) are defined in equation (10).

14

3.4. Implementation and practical issues

Some practical remarks concerning the numerical implementation of the homotopy
algorithm 2 are detailed in this section.

First, each iteration mostly consists of solving linear systems of equations (9a)–
(9b), whose size respectively corresponds to the current number of variables in S̄in
and S1

in. By construction, the support configuration only slightly changes between two
breakpoints: S̄in and S1

in are generally modified by at most one element at each break-
point, corresponding to the activation of one condition among equations (11a)–(11e).
Therefore, the matrix inverses in equations (9a)–(9b) can be computed recursively
by performing rank-one updates. In our simulations, using the block matrix inversion
formulas [37] appeared to be the most efficient strategy.

We also note that, for each non-zero component with index ` ∈ S̄in, only one of
the two computations defined by equations (11b) and (11c) is necessary. In particular,

if x
(k−1)
` > 0 and d

(k)
` > 0 (respectively, d

(k)
` < 0), then the only possible change in

the support configuration is when x` hits the upper bound M (respectively, x` = 0),
corresponding to case 2c in Section 3.2 (respectively, to case 2b). A similar reasoning
applies to negative components.

We conclude this section with an important remark concerning the resolution of the
error-constrained problem P0/2. At each node, the continuous relaxation brought by
the solution to problems such as Q1/2 in Table 2 provides a lower bound on the global
optimum value of P0/2. This lower bound is compared to the global upper bound,
say zu, provided by the best-known feasible solution. Since zu is discrete, it is clear
that the node can be pruned if the corresponding lower bound exceeds zu − 1. With
the homotopy method, the objective function in Q1/2 monotonically increases at each
iteration. Therefore, the homotopy algorithm is stopped and the node is pruned as
soon as the `1 norm of the current iterate exceeds zu − 1, as shown in Figure 2.

1
2‖y −Ax

∗‖2

1
M ‖x

∗
S̄
‖

1
+ n1

zu − 1

ε∗ λ(0)λ(1)

λ(2)

λ(3)

λ(4)

λ∗

Figure 2. Set of optimal solutions in the coordinate system
(

1
2
‖y −Ax∗‖22,

1
M
‖x∗

S̄
‖

1
+ n1

)
as a function of

λ, and illustration of a stopping criterion of the homotopy algorithm for Q1/2. The algorithm can be stopped

(and the corresponding node is pruned) as soon as 1
M
‖x∗

S̄
‖

1
+ n1 ≥ zu − 1, where zu is the cardinality of the

best-known feasible solution to P0/2 at a given iteration of the branch-and-bound procedure.

4. Experimental results

In this section, we evaluate the performance of the proposed algorithm, that we name
B&Bsparse, where the continuous relaxation algorithms built in Section 3 are inserted
into the branch-and-bound implementation described in Section 2.1, for the resolution
of the three problems P2/0, P0/2, and P2+0.

15

Test cases and implementation details are first described in Section 4.1. Then, in
Section 4.2, we evaluate the quality of the solutions obtained by our algorithm, com-
pared to several state-of-the-art sparse estimation algorithms. Finally, a comparison
of computing times between our approach and the MIP resolution with CPLEX is
provided in Section 4.3.

4.1. Experimental setup

We consider synthetic subset selection problems with random entries following the
simulation setup proposed in [3]. The rows ai of matrix A are independently drawn
from an n-dimensional multivariate centered normal distribution: ai ∼ N (0,Σ), with
covariance matrix Σ whose entries equal σij = ρ|i−j|, (i, j) ∈ {1, . . . , n}2, where ρ
controls the correlation level between close columns of A. Columns are then scaled
to have unit `2 norm. We consider two values ρ = 0.8 and ρ = 0.9, corresponding
to medium and high correlation levels. The higher ρ, the more difficult the estima-
tion problem. Sparse vectors x0 are generated with equidistant non-zero coordinates
(rounding non-integer values when necessary), and the corresponding amplitudes are
set to one. Data are generated as y = Ax0 + ξ, where ξ contains samples of a white
noise process with normal distribution ξ ∼ N (0, σ2I), and σ controls the signal to

noise ratio SNR := ‖Ax0‖22/(mσ2), which is fixed to 7.
We set m = 500 and n ∈ {100; 500; 1 000}, and the cardinality ‖x0‖0 varies from 3

to 50 for ρ = 0.8, and from 3 to 30 for ρ = 0.9. For problems P2/0, parameter K is

set to the true value ‖x0‖0. For problems P0/2 and P2+0, the respective parameters ε
and λ are tuned from statistical rules accounting for the noise level and the sparsity
degree (see [7] for details): ε is tuned such that the probability P (‖ξ‖22 ≤ ε) = 95 %,
and λ = 2σ2 log(1/φ−1), where φ = ‖x0‖0/n. As proposed in [7], the bound M on the

absolute values of the coefficients is set to M = 1.1‖ATy‖∞. B&Bsparse is implemented
in C++ and all methods are executed on a UNIX machine equipped with 16 Go RAM
and Intel i7-8650U central processing units (CPUs) clocked at 1.9 GHz. Computations
are restricted to one core in order to focus on the algorithm performance, disabling
parallelization capacities.

4.2. Quality of estimated solutions

In this section, we evaluate the ability of our algorithm to recover the exact solution.
Only the formulation P2/0 is considered, and B&Bsparse is compared to the following
sparse estimation methods:

• convex regularization by the `1 norm or BPDN (Basis Pursuit De-Noising), com-
puted here by the homotopy algorithm [44];
• Subspace Pursuit (SP) [34];
• A? Orthogonal Matching Pursuit (A?OMP) [25];
• Continuation Single Best Replacement (CSBR) [43];
• nonconvex regularization by the CEL0 penalty [41], locally optimized by an IRL1

strategy (code provided by the author), referred to as CEL0;
• nonconvex regularization by the `1/2-norm penalty, locally optimized by the prox-

imal algorithm provided with paper [46], referred to as `1/2.

On the addressed problems, the running time of such methods time never exceeds
0.1 s for BPDN, SP, `1/2 and CEL0, whereas the highest computation times for CSBR

16

and A?OMP is respectively about 3 s and 10 s for the largest problems. Let us recall
that all these algorithms are able to cope with higher-dimensional problems, but do
not provide any guarantee on the global optimality of their solutions. Conversely,
B&Bsparse is theoretically guaranteed to compute an optimal solution to P2/0, but
requires more computation time. In order to evaluate intermediate solutions found
by B&Bsparse, we consider several values of the maximum time, say Tmax, allowed
for each resolution: 1, 10, 100, and 1 000 s. If the maximum time is reached, then the
current solution is considered, which is the best solution found, without any optimality
guarantee.

All algorithms are tuned so that solutions have the true number of non-zero com-
ponents. We focus on the capacity of the methods to correctly estimate the sparsity
pattern of x0. For each value of n, ρ and K, the exact recovery rate ER is computed,
which is the average number of simulations for which the algorithm correctly identifies
the true support. In the presence of noise, even the global optimum does not neces-
sarily identify the true nonzero components of x0. In particular, for a given value of
K and ρ, as n decreases, atoms in the true solution become more correlated, there-
fore identifying the true support becomes harder from an informational point of view.
Averaged results over 20 instances are reported in Figure 3.

For all algorithms, the exact recovery rate naturally decreases as the sparsity level
increases. When allowed Tmax = 1 000 s, B&Bsparse always gives better solutions than
the other approaches, except for n = 100, where `1/2 and CSBR slightly outperform
B&Bsparse for the highest values of K. Among the competitors, BPDN always performs
worse and CSBR performs best. On the smallest problems with n = 100, most methods
(except BPDN and CEL0 which perform worse) have similar performance, where ER
quickly decays as K increases (from K = 15 for ρ = 0.8 and from K = 9 for ρ = 0.9).

For n ∈ {500 ; 1 000}, B&Bsparse always performs better than other methods as long
as Tmax ≥ 10 s for ρ = 0.8, and Tmax ≥ 1 s for ρ = 0.9. With n = 500 and ρ = 0.8,
B&Bsparse always finds the right support in less than 1 s up to K = 21 (as also does
CSBR); in less than 10 s, this is the only algorithm which still achieves ER = 100%
up to K = 27. Most of the other methods achieve ER = 100% up to K = 15 only.
Similar conclusions can be drawn for n = 500 and ρ = 0.9, although the decrease in
ER occurs at lower values of K. For the largest test problems with n = 1 000, 100%
exact recovery is achieved by B&Bsparse (even in 1 s) and CSBR up to K = 21 for
ρ = 0.8, and up to K = 12 for ρ = 0.9. For higher K, B&Bsparse outperforms all
competitors as long as Tmax ≥ 10 s (respectively Tmax ≥ 1 s) for ρ = 0.8 (respectively,
for ρ = 0.9).

These results show that, if obtaining a proof on the global optimality is not a crit-
ical point, following our global optimization strategy, even restricted to partial tree
exploration by limiting the computation time, may provide a competitive alternative
to other existing sparse estimation methods (which may often converge toward a lo-
cal optimum) in a reasonable amount of time—1 s to 10 s on these problem classes.
Nevertheless, in order to certify the solution, it is necessary to let the algorithm run
until convergence. In the next section, we focus on the computing time of guaranteed
methods, by comparing B&Bsparse with the resolution of different MIP formulations
by the CPLEX solver.

17

n = 100, ρ = 0.8 n = 100, ρ = 0.9

0 5 10 15 20 25 30

K

0

0.2

0.4

0.6

0.8

1

E
x
a
c
t
R

e
c
o
v
e
ry

 R
a
te

 (
%

)

0 5 10 15 20 25

K

0

0.2

0.4

0.6

0.8

1

E
x
a
c
t
R

e
c
o

v
e

ry
 R

a
te

 (
%

)

 B&B
1000

sparse

 B&B
100

sparse

 B&B
10

sparse

 B&B
1

sparse

 CSBR

 A*OMP
 SP

 CEL0
 L

1/2

 L
1

n = 500, ρ = 0.8 n = 500, ρ = 0.9

0 10 20 30 40 50

K

0

0.2

0.4

0.6

0.8

1

E
x
a
c
t
R

e
c
o
v
e

ry
 R

a
te

 (
%

)

0 5 10 15 20 25 30

K

0

0.2

0.4

0.6

0.8

1

E
x
a
c
t
R

e
c
o
v
e

ry
 R

a
te

 (
%

)

n = 1 000, ρ = 0.8 n = 1 000, ρ = 0.9

0 10 20 30 40 50

K

0

0.2

0.4

0.6

0.8

1

E
x
a
c
t
R

e
c
o
v
e
ry

 R
a
te

 (
%

)

0 5 10 15 20 25 30

K

0

0.2

0.4

0.6

0.8

1

E
x
a
c
t
R

e
c
o
v
e
ry

 R
a
te

 (
%

)

Figure 3. Quality of solutions obtained by B&Bsparse by limiting the computation time to 1, 10, 100 and

1 000 s, compared to other state-of-the-art sparse estimation methods: exact recovery rate as a function of the
cardinality of the solution for medium (left) and high (right) correlation levels of the columns of A, and for
problems involving n = 100 (top), n = 500 (center) and n = 1 000 (bottom) variables. Results are averaged

over 20 instances.

18

4.3. Computing times

We finally compare the computing times of our algorithm B&Bsparse to other global
optimization approaches based on different reformulation techniques:

• CPLEXbigM: we use CPLEX v12.8 to solve the MIP problems based on bigM
constraints and given in Table 1;
• CPLEXSOS: we use CPLEX v12.8 to solve the formulation proposed in [3] based

on specially ordered set (SOS) constraints. Originally, this reformulation was
solved in [3] with Gurobi, which is a generic global optimization solver equivalent
to CPLEX;
• CPLEXM

SOS: we use CPLEX v12.8 to solve the SOS approach, where box con-
straints are added to the continuous variables with the same value M as for
B&Bsparse and CPLEXbigM.

The maximum time allowed for all methods is set to 1 000 s, and all computations
with CPLEX are run with its default settings. An additional reformulation introducing
variables z = y−Ax was necessary for solving underdetermined problems of the form
P2/0 with CPLEX. For other problems, such a reformulation resulted less efficient and
was therefore not considered.

Note that the only available code that was found implementing a specific solver
for this kind of problems is the BBLS algorithm1 associated to [23], which considers
the formulation P2+0 with an additional quadratic regularization term. As mentioned
in [23], this `2 regularization plays a key rule in the resolution performance. Here, in
order to solve the same global optimization problems as addressed in this paper, the
quadratic weight was set to 0 and, as could be expected, BBLS revealed to be poorly
efficient. Therefore, we did not include it in our results.

Figures 4, 5 and 6 show the computation times of each method for 10 random
instances of each problem with n ∈ {100 ; 500 ; 1 000} and ρ ∈ {0.8; 0.9}, as a function
of K, until no instance could be solved in 1 000 s, for the three formulations P2/0,
P2+0, and P0/2, respectively. Tables 3, 4 and 5 give the corresponding number of
instances that were successfully solved in less than 1 000 s, the average computation
times and numbers of explored nodes, for B&Bsparse and CPLEXbigM, which is the
best competing approach.

As could be expected, all computation times quickly increase with K. Indeed, as K
increases, the number of explored nodes increases (due to combinatorial complexity)
and the computing time per node also increases, especially for B&Bsparse due to the
structure of our relaxation algorithm: sparser solutions to the `0-norm problems involve
sparser solutions to the `1-norm-based relaxed problems, for which the homotopy
algorithm requires fewer iterations.

CPLEXbigM performs better than CPLEXSOS and CPLEXM
SOS on all instances. For

n = 100, with formulations P2/0 and P2+0, B&Bsparse is much faster than CPLEXbigM

up to K = 12 for ρ = 0.8, and up to K = 9 for ρ = 0.9. Then, for higher K,
CPLEXbigM becomes more efficient and solves more instances than B&Bsparse. Both
methods can solve some instances of P2/0 up to K = 24 (ρ = 0.8) and to K = 12
(ρ = 0.9). Averaging computing times over instances that could solved by the two
methods, B&Bsparse is about 30 times faster than CPLEXbigM for P2/0 and 50 times
faster for P2+0. For P0/2, both methods are able to solve some instances up to K = 15
(ρ = 0.8) and to K = 9 (ρ = 0.9), but B&Bsparse is always much faster.

For n = 500 and n = 1 000, B&Bsparse outperforms every CPLEX formulation on

1https://github.com/alisaab/l0bnb

19

https://github.com/alisaab/l0bnb

n = 100, ρ = 0.8 n = 100, ρ = 0.9

3 6 9 12 15 18 21 24

10
-1

10
0

10
1

10
2

10
3

3 6 9 12

10
-1

10
0

10
1

10
2

10
3

n = 500, ρ = 0.8 n = 500, ρ = 0.9

3 6 9 12 15 18

10
-1

10
0

10
1

10
2

10
3

3 6 9 12 15

10
-1

10
0

10
1

10
2

10
3

n = 1 000, ρ = 0.8 n = 1 000, ρ = 0.9

3 6 9 12 15 18

10
-1

10
0

10
1

10
2

10
3

3 6 9 12

10
-1

10
0

10
1

10
2

10
3

 B&B
sparse

 CPLEX
bigM

 CPLEX
SOS

M

 CPLEX
SOS

 CPLEX
bigM

||

Figure 4. Exact optimization of P2/0: computation times for B&Bsparse and for different MIP formulations

solved with CPLEX as a function of the solution cardinality, for medium (left) and high (right) correlation
levels ρ of the columns of A, and for problems involving n = 100 (top), n = 500 (center) and n = 1 000 (bottom)

variables. Each marker corresponds to one instance, and points are split horizontally around the corresponding
cardinality level.

20

n = 100, ρ = 0.8 n = 100, ρ = 0.9

3 6 9 12 15 18

10
-1

10
0

10
1

10
2

10
3

3 6 9 12

10
-1

10
0

10
1

10
2

10
3

n = 500, ρ = 0.8 n = 500, ρ = 0.9

3 6 9 12 15

10
-1

10
0

10
1

10
2

10
3

3 6 9 12

10
-1

10
0

10
1

10
2

10
3

n = 1 000, ρ = 0.8 n = 1 000, ρ = 0.9

3 6 9 12

10
-1

10
0

10
1

10
2

10
3

3 6 9

10
-1

10
0

10
1

10
2

10
3

 B&B
sparse

 CPLEX
bigM

 CPLEX
SOS

M

 CPLEX
SOS

 CPLEX
bigM

||

Figure 5. Exact optimization of P2+0: computation times for B&Bsparse and for different MIP formula-

tions solved with CPLEX as a function of the solution cardinality, for medium (left) and high (right) correlation
levels ρ of the columns of A, and for problems involving n = 100 (top), n = 500 (center) and n = 1 000 (bottom)

variables. Each marker corresponds to one instance, and points are split horizontally around the corresponding
cardinality level.

21

n = 100, ρ = 0.8 n = 100, ρ = 0.9

3 6 9 12 15

10
-1

10
0

10
1

10
2

10
3

3 6 9

10
-1

10
0

10
1

10
2

10
3

n = 500, ρ = 0.8 n = 500, ρ = 0.9

3 6 9 12 15 18

10
-1

10
0

10
1

10
2

10
3

3 6 9 12

10
-1

10
0

10
1

10
2

10
3

n = 1 000, ρ = 0.8 n = 1 000, ρ = 0.9

3 6 9 12 15

10
-1

10
0

10
1

10
2

10
3

3 6 9 12

10
-1

10
0

10
1

10
2

10
3

 B&B
sparse

 CPLEX
bigM

 CPLEX
SOS

M

 CPLEX
SOS

 CPLEX
bigM

||

Figure 6. Exact optimization of P0/2: computation times for B&Bsparse and for different MIP formulations

solved with CPLEX as a function of the solution cardinality, for medium (left) and high (right) correlation
levels ρ of the columns of A, and for problems involving n = 100 (top), n = 500 (center) and n = 1 000 (bottom)

variables. Each marker corresponds to one instance, and points are split horizontally around the corresponding
cardinality level.

22

Table 3. Exact optimization of P2/0: computation times for B&Bsparse and CPLEXbigM as a function of

the cardinality of the solution for medium (left) and high (right) correlation levels ρ of the columns of A, and

for problems involving n = 100 (top), n = 500 (center) and n = 1 000 (bottom) variables, averaged over 10
instances. The column ‘S’ indicates the number of instances that were successfully solved in less than 1 000 s.

Computing times and numbers of explored nodes are averaged over instances which could be solved in less

than 1 000 s.

Problem ρ = 0.8 ρ = 0.9

P2/0 B&Bsparse CPLEXbigM B&Bsparse CPLEXbigM

S Time Nodes S Time Nodes S Time Nodes S Time Nodes

(s) (×103) (s) (×103) (s) (×103) (s) (×103)

n = 100

K = 3 10 0.05 0.01 10 3.71 0 10 0.04 0.01 10 3.27 0

K = 6 10 0.09 0.01 10 7.50 0.01 10 0.22 0.04 10 12.3 0.04

K = 9 10 0.32 0.05 10 16.3 0.06 10 8.10 1.52 10 13.2 1.27

K = 12 10 1.51 0.22 10 14.6 0.31 8 347 56.3 10 96.0 118

K = 15 10 28.3 4.17 10 25.5 8.25 – – – – – –

K = 18 8 347 50.8 10 145 206 – – – – – –

K = 21 2 671 108 4 306 535 – – – – – –

K = 24 1 558 80.1 1 142 241 – – – – – –

Average TCPLEXbigM
/TB&Bsparse = 27.3 Average TCPLEXbigM

/TB&Bsparse = 32.9

n = 500

K = 3 10 0.15 0.01 10 13.0 0 10 0.14 0.01 10 13.0 0

K = 6 10 0.30 0.02 10 19.9 0.02 10 0.37 0.04 10 22.8 0.05

K = 9 10 1.48 0.12 10 32.3 0.15 10 3.90 0.41 10 56.4 0.49

K = 12 10 9.57 0.69 10 104 0.91 10 107 9.61 4 358 4.86

K = 15 10 127 7.22 8 370 3.82 1 353 27.3 – – –

K = 18 5 582 34.5 – – – – – – – – –

Average TCPLEXbigM
/TB&Bsparse = 37.5 Average TCPLEXbigM

/TB&Bsparse = 44.0

n = 1 000

K = 3 10 0.27 0.01 10 21.3 0.00 10 0.26 0.01 10 20.3 0.00

K = 6 10 0.43 0.02 10 31.4 0.02 10 0.76 0.05 10 39.7 0.06

K = 9 10 3.28 0.15 10 77.4 0.18 10 16.3 1.00 10 251 1.06

K = 12 10 51.3 2.04 9 336 1.23 6 270 14.6 1 454 2.62

K = 15 5 469 17.1 1 709 2.51 – – – – – –

K = 18 1 820 28.7 – – – – – – – – –

Average TCPLEXbigM
/TB&Bsparse = 36.5 Average TCPLEXbigM

/TB&Bsparse = 36.8

all test problems. It also successfully solves more instances in 1 000 s. For P2/0 and
P2+0, B&Bsparse is faster than CPLEXbigM by a factor of 35 to 50, and of even more
than 100 for P2+0 and n = 1 000. This ratio increases for more correlated problems
(ρ = 0.9) and for larger problems (n = 1 000). Results are even much more contrasted

23

Table 4. Exact optimization of P2+0: computation times for B&Bsparse and CPLEXbigM as a function

of the cardinality of the solution for medium (left) and high (right) correlation levels ρ of the columns of A,

and for problems involving n = 100 (top), n = 500 (center) and n = 1 000 (bottom) variables, averaged over 10
instances. The column ‘S’ indicates the number of instances that were successfully solved in less than 1 000 s.

Computing times and numbers of explored nodes are averaged over instances which could be solved in less

than 1 000 s.

Problem ρ = 0.8 ρ = 0.9

P2+0 B&Bsparse CPLEXbigM B&Bsparse CPLEXbigM

S Time Nodes S Time Nodes S Time Nodes S Time Nodes

(s) (×103) (s) (×103) (s) (×103) (s) (×103)

n = 100

K = 3 10 0.04 0.01 10 5.48 0.00 10 0.04 0.01 10 6.78 0.00

K = 6 10 0.12 0.04 10 11.0 0.07 10 0.87 0.37 10 14.4 0.55

K = 9 10 0.72 0.29 10 13.4 0.74 10 157 54.4 10 41.0 44.4

K = 12 10 10.3 3.19 10 22.1 7.15 – – – 3 563 1556

K = 15 9 432 109 10 64.8 94.3 – – – – – –

K = 18 – – – 7 562 1389 – – – – – –

Average TCPLEXbigM
/TB&Bsparse = 48.6 Average TCPLEXbigM

/TB&Bsparse = 57.8

n = 500

K = 3 10 0.14 0.01 10 12.0 0.00 10 0.14 0.01 10 16.3 0.01

K = 6 10 0.29 0.07 10 21.4 0.10 10 0.78 0.26 10 23.6 0.30

K = 9 10 3.10 0.85 10 35.3 1.29 10 47.4 8.43 10 260 11.9

K = 12 10 46.0 10.8 10 222 17.7 1 607 181 – – –

K = 15 6 539 119 3 777 82.2 – – – – – –

Average TCPLEXbigM
/TB&Bsparse = 35.4 Average TCPLEXbigM

/TB&Bsparse = 51.8

n = 1 000

K = 3 10 0.41 0.01 10 103 0.01 10 0.37 0.01 10 137 0.01

K = 6 10 0.49 0.08 9 82.1 0.09 10 2.98 0.43 10 202 0.45

K = 9 10 6.72 1.37 10 197 1.81 9 152 22.0 3 752 5.93

K = 12 9 135 23.0 1 462 7.07 – – – – – –

Average TCPLEXbigM
/TB&Bsparse = 113 Average TCPLEXbigM

/TB&Bsparse = 147

with problems P0/2, where CPLEXbigM only solves the sparsest problems: almost no
instance is solved for K > 6, whereas B&Bsparse can solve instances up to K = 15
(ρ = 0.8) and to K = 12 (ρ = 0.9).

For P2/0, the number of explored nodes is in general smaller for B&Bsparse than for
CPLEXbigM, revealing the efficiency of our tree exploration strategy. A similar con-
clusion holds for P2+0 and P0/2, although the number of explored nodes for B&Bsparse

(and therefore the computing time) is often superior to those obtained with P2/0 for
the same problem complexity. One possible explanation holds in the fact that the ex-
ploration strategy, which first branches on active variables (bi = 1), more efficiently
limits the depth of the tree for cardinality-constrained problems. Most of all, on all
instances, thanks to our specific relaxation algorithm, the time dedicated to each node

24

Table 5. Exact optimization of P0/2: computation times for B&Bsparse and CPLEXbigM as a function of

the cardinality of the solution for medium (left) and high (right) correlation levels ρ of the columns of A, and

for problems involving n = 100 (top), n = 500 (center) and n = 1 000 (bottom) variables, averaged over 10
instances. The column ‘S’ indicates the number of instances that were successfully solved in less than 1 000 s.

Computing times and numbers of explored nodes are averaged over instances which could be solved in less

than 1 000 s.

Problem ρ = 0.8 ρ = 0.9

P0/2 B&Bsparse CPLEXbigM B&Bsparse CPLEXbigM

S Time Nodes S Time Nodes S Time Nodes S Time Nodes

(s) (×103) (s) (×103) (s) (×103) (s) (×103)

n = 100

K = 3 9 0.04 0.01 9 11.9 0.19 10 0.04 0.01 10 13.5 0.95

K = 6 10 0.08 0.02 10 20.3 7.32 10 0.26 0.08 10 29.0 4.18

K = 9 9 0.46 0.13 9 28.9 4.58 10 43.9 12.1 4 519 191

K = 12 10 13.2 3.27 10 380 113 – – – – – –

K = 15 10 416 94.7 1 882 179 – – – – – –

Average TCPLEXbigM
/TB&Bsparse = 126 Average TCPLEXbigM

/TB&Bsparse = 154

n = 500

K = 3 10 0.13 0.01 10 25.0 0.19 10 0.12 0.01 10 32.9 0.56

K = 6 10 0.19 0.02 10 386 20.0 10 0.20 0.03 5 382 26.1

K = 9 10 1.16 0.15 1 580 10.8 10 4.82 0.91 – – –

K = 12 10 17.0 1.83 – – – 10 172 21.9 – – –

K = 15 9 204 19.2 – – – – – – – – –

K = 18 2 787 60.3 – – – – – – – – –

Average TCPLEXbigM
/TB&Bsparse = 908 Average TCPLEXbigM

/TB&Bsparse = 1086

n = 1 000

K = 3 10 1.81 0.14 8 32.1 0.07 10 0.25 0.01 10 84.7 0.33

K = 6 10 0.31 0.01 10 445 1.50 10 0.43 0.03 5 685 1.60

K = 9 10 2.80 0.17 – – – 10 26.8 2.16 – – –

K = 12 10 32.1 1.37 – – – 6 509 24.2 – – –

K = 15 4 417 14.9 – – – – – – – – –

Average TCPLEXbigM
/TB&Bsparse = 736 Average TCPLEXbigM

/TB&Bsparse = 976

evaluation is reduced by several orders of magnitude. For P0/2, both the number of
nodes explored by CPLEXbigM and the computing time per node become much higher
than with the two other formulations, and largely exceed those of B&Bsparse, revealing
the inefficiency of CPLEXbigM to tackle quadratically-constrained problems. Note that
this analysis is not always reflected in the results of Tables 4 to 6, because averages
are performed only over instances which could be solved in less than 1 000 s by each
algorithm.

The formulation CPLEXM
SOS is always less efficient than CPLEXbigM, except for

the smallest problems (n = 100, low K), where the two approaches perform rather

25

similarly. For n = 500, it only solves instances of P2/0 (respectively, of P2+0) up to
K = 6 (respectively, K = 9), and no instance of P0/2 could be solved. For n = 1 000,

no instance could be solved by CPLEXM
SOS. Although CPLEXbigM and CPLEXM

SOS
solve exactly the same MIP problem, introducing the box constraints under the bigM
formulation (|xi| ≤ M |bi|) is therefore more efficient than SOS constraints, especially
when the dimension of the problem increases.

Finally, as could be expected, CPLEXSOS is even less efficient than CPLEXM
SOS. It

is only able to solve the sparsest instances of problems with n = 100, up to K = 18 for
P2/0 and ρ = 0.8, and to K = 12 otherwise. No instance with n = 500 and n = 1 000
could be solved by CPLEXSOS. We note that in all our experiments where CPLEXSOS

could be run successfully, the same solution was found than in the box-constrained
case, thus proving the validity of the value of M (solving the bounded problem did
not affect the solution).

We conclude this section by a comment regarding parallelization. Figures 4, 5 and 6
also show the computing times obtained by solving the bigM formulations in Table 1,
allowing parallelization of CPLEX over 8 cores (recall that, up to now, B&Bsparse

and all CPLEX implementations were restricted to one core). The computing times of
CPLEXbigM are obviously reduced, especially for n = 100. For formulations P2/0 and

P2+0 and for n = 100, the multicore version CPLEX
||
bigM outperforms B&Bsparse for

K ≥ 9. In all other cases, however, B&Bsparse is still more—and often much more—
efficient, although it does not exploit any parallelization.

5. Conclusion

We proposed exact optimization algorithms for least squares problems with low car-
dinality, based on a dedicated branch-and-bound strategy. It was shown that such
algorithms can be designed without resorting to MIP reformulations, removing the
corresponding binary variables. An algorithm was built for solving the relaxation prob-
lems involved at any node of the search tree, which were recast as convex non-smooth
optimization problems, involving the `1 norm of some components and box constraints.
This algorithm can be applied with similar efficiency to the relaxation problems in-
volved in the resolution of the three addressed formulations: cardinality-constrained
and cardinality-penalized least-squares, and cardinality minimization under quadratic
constraints.

Depending on the problem formulation and on the correlation level between the
columns of the dictionary A, solutions were successfully computed with optimality
proof in less than 1 000 seconds on simulated noisy subset selection problems with
m = 500 data points, up to cardinality K ∈ [9, 24] for n = 100 variables, K ∈ [12, 18]
for n = 500, and K ∈ [9, 15] for n = 1 000. Our B&Bsparse strategy was compared with
the resolution of the same MIP formulations with the generic solver CPLEX, under the
same box-constrained assumption—which resulted much more efficient than solving
SOS-based formulations. For cardinality-constrained problems (the most frequently
encountered formulation in the exact optimization literature) and n = 100, CPLEX
performs quite competitively and it is more efficient than B&Bsparse for higher cardi-
nalities. For n ∈ {500 ; 1 000}, however, B&Bsparse always outperforms CPLEX: it can
solve instances with higher cardinality, and it is more than 30 times faster in average.
Similar conclusions hold for cardinality-penalized problems. In particular, B&Bsparse is
more than 100 times faster than CPLEX for n = 1 000. Although this formulation may

26

be of lower interest in practice, the proposed algorithm can still provide a benchmark-
ing reference for evaluating the quality of local optimization methods which specifically
consider the penalized form. For the quadratically constrained formulation, which is of
major interest in many applications, results are even more in favor of B&Bsparse, where
CPLEX could only solve problems with very small cardinality, on which B&Bsparse was
100 to 1 000 times faster.

This work therefore contributes to pushing the limits of computationally tractable
low-cardinality least-squares problems that can be addressed from a global optimiza-
tion perspective. Although the computational complexity of the proposed algorithms
is incomparably higher than that of standard sparse estimation methods, which limits
their applicability to moderate-size problems, our results also show that most compu-
tational effort is dedicated to proving optimality. In particular, combining a deep-first-
search strategy with variable selection rules which first activate the most explanatory
variables, quickly guides the search to good feasible solutions. Therefore, the optimal
solution may be found at a much earlier step. Solutions obtained by limiting our al-
gorithm to a smaller computing time, although not guaranteed, can also represent
competitive alternatives to standard sparse estimation methods.

The superiority of B&Bsparse over generic MIP resolution was achieved by exploit-
ing mathematical properties of the problem, which are not considered by a generic
solver. Further works may be developed following the same guideline. Building tighter
relaxations, e.g. based on Lagrangian relaxation or on non-convex relaxations of the
`0 norm, developing more sophisticated tree search strategies, for example exploiting
greedy local exploration algorithms [42] or building dedicated cutting-plane methods
are some possibilities. The three formulations considered in the paper could also be
tackled jointly from a multi-objective optimization perspective, involving dedicated
branch-and-bound techniques [17]. Finally, parallelization may also represent an im-
portant lever for accelerating our method. In this paper, multicore architecture was
not exploited in the implementation of B&Bsparse, whereas it was shown to signifi-
cantly reduce the computing times of the CPLEX solver. Adapting different possible
parallelization strategies to the specificity of sparse optimization problems is also a
perspective of interest.

Data availability statement

The C++ code of our solver for the resolution of the three formulations is publicly
available at https://github.com/ramzi-benmhenni/BBsparse.

Problem instances and results corresponding to Section 4.2 are available at
https://box.ec-nantes.fr/index.php/s/CwgPyHcftipJgMD.

Problem instances and results corresponding to Section 4.3 are available at
https://box.ec-nantes.fr/index.php/s/fmYWYnEDWRqBLYn.

Acknowledgements

The authors would like to thank Emmanuel Soubies for sharing his IRL1 code for
optimization of the CEL0-regularized least-squares cost function.

27

https://github.com/ramzi-benmhenni/BBsparse
https://box.ec-nantes.fr/index.php/s/CwgPyHcftipJgMD
https://box.ec-nantes.fr/index.php/s/fmYWYnEDWRqBLYn

Funding

This work has been partially funded by the French national research agency (ANR),
project ANR-16-CE33-0005.

References

[1] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Optimization with sparsity-inducing
penalties, Foundations and Trends in Machine Learning (2011).

[2] R. Ben Mhenni, S. Bourguignon, M. Mongeau, J. Ninin, and H. Carfantan, Sparse Branch
and Bound for Exact Optimization of L0-Norm Penalized Least Squares, in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing. IEEE, 2020, pp. 5735–5739.

[3] D. Bertsimas, A. King, and R. Mazumder, Best subset selection via a modern optimization
lens, The Annals of Statistics 44 (2016), pp. 813–852.

[4] D. Bertsimas and R. Shioda, Algorithm for cardinality-constrained quadratic optimization,
Computational Optimization and Applications 43 (2009), pp. 1–22.

[5] D. Bienstock, Computational study of a family of mixed-integer quadratic programming
problems, Mathematical Programming 74 (1996), pp. 121–140.

[6] T. Blumensath and M. Davies, Iterative thresholding for sparse approximations, Journal
of Fourier Analysis and Applications 14 (2008), pp. 629–654.

[7] S. Bourguignon, J. Ninin, H. Carfantan, and M. Mongeau, Exact sparse approximation
problems via mixed-integer programming: Formulations and computational performance,
IEEE Transactions on Signal Processing 64 (2016), pp. 1405–1419.

[8] A.M. Bruckstein, D.L. Donoho, and M. Elad, From sparse solutions of systems of equa-
tions to sparse modeling of signals and images, SIAM Review 51 (2009), pp. 34–81.

[9] O. Burdakov, C. Kanzow, and A. Schwartz, On a Reformulation of Mathematical Pro-
grams with Cardinality Constraints, in Advances in Global Optimization, D. Gao, N. Ruan,
and W. Xing, eds., Cham. Springer International Publishing, 2015, pp. 3–14.

[10] E. Candès, M. Wakin, and S. Boyd, Enhancing sparsity by reweighted l1 minimization,
Journal of Fourier Analysis and Applications 14 (2007), pp. 877–905.

[11] R. Chartrand and Wotao Yin, Iteratively reweighted algorithms for compressive sensing, in
IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2008,
pp. 3869–3872.

[12] S.S. Chen, D.L. Donoho, and M.A. Saunders, Atomic decomposition by basis pursuit,
SIAM Journal on Scientific Computing 20 (1998), pp. 33–61.

[13] X. Cui, X. Zheng, S. Zhu, and X. Sun, Convex relaxations and MIQCQP reformulations
for a class of cardinality-constrained portfolio selection problems, Journal of Global Op-
timization 56 (2013), pp. 1409–1423.

[14] D. DiLorenzo, G. Liuzzi, F. Rinaldi, F. Schoen, and M. Sciandrone, A concave
optimization-based approach for sparse portfolio selection, Optimization Methods and
Software 27 (2012), pp. 983–1000.

[15] D.L. Donoho and Y. Tsaig, Fast solution of `1-norm minimization problems when the
solution may be sparse, IEEE Transactions on Information Theory 54 (2008), pp. 4789–
4812.

[16] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle regression, The Annals
of Statistics 32 (2004), pp. 407–499.

[17] M. Ehrgott, Multicriteria Optimization, Springer Berlin Heidelberg, Berlin, Heidelberg,
2005.

[18] M. Elad, Sparse and Redundant Representations. From Theory to Applications in Signal
and Image Processing, Springer-Verlag New York, 2010.

[19] Y. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications, Cambridge
University Press, 2012.

28

[20] A. Frangioni and C. Gentile, Perspective cuts for a class of convex 0–1 mixed integer
programs, Mathematical Programming 106 (2006), pp. 225–236.

[21] J. Gao and D. Li, Optimal cardinality constrained portfolio selection, Operations Research
61 (2013), pp. 745–761.

[22] I.F. Gorodnitsky and B.D. Rao, Sparse signal reconstruction from limited data using FO-
CUSS: a re-weighted minimum norm algorithm, IEEE Transactions on Signal Processing
45 (1997), pp. 600–616.

[23] H. Hazimeh, R. Mazumder, and A. Saab, Sparse regression at scale: Branch-and-bound
rooted in first-order optimization, arXiv preprint, arXiv:2004.06152 (2020).

[24] K. Herrity, A. Gilbert, and J. Tropp, Sparse approximation via iterative thresholding, in
IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 3. IEEE,
2006, pp. 624–627.

[25] N.B. Karahanoglu and H. Erdogan, A* orthogonal matching pursuit: Best-first search for
compressed sensing signal recovery, Digital Signal Processing 22 (2012), pp. 555 – 568.

[26] H. Le Thi, T. Pham Dinh, H. Le, and X. Vo, Dc approximation approaches for sparse
optimization, European Journal of Operational Research 244 (2015), pp. 26 – 46.

[27] D. Li, X. Sun, and J. Wang, Optimal lot solution to cardinality constrained mean–variance
formulation for portfolio selection, Mathematical Finance 16 (2006), pp. 83–101.

[28] X. Liang and Y. Wang, Homotopy algorithm for box-constrained LASSO and its conver-
gence, International Journal of Pure and Applied Mathematics 112 (2017), pp. 333–340.

[29] Z. Lu and Y. Zhang, Sparse approximation via penalty decomposition methods, SIAM
Journal on Optimization 23 (2013), pp. 2448–2478.

[30] J.M. Mendel, Optimal Seismic Deconvolution, Academic Press, 1983.
[31] A. Miller, Subset selection in regression, Chapman and Hall/CRC, 2002.
[32] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, A fast approach for overcomplete sparse

decomposition based on smoothed `0 norm, IEEE Transactions on Signal Processing 57
(2009), pp. 289–301.

[33] B.K. Natarajan, Sparse approximate solutions to linear systems, SIAM Journal on Com-
puting 24 (1995), pp. 227–234.

[34] D. Needell and J.A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inac-
curate samples, Applied and Computational Harmonic Analysis 26 (2009), pp. 301–321.

[35] M.S. O’Brien, A.N. Sinclair, and S.M. Kramer, Recovery of a sparse spike time series by
L1 norm deconvolution, IEEE Transactions on Signal Processing 42 (1994), pp. 3353–3365.

[36] M. Osborne, B.P. B, and B.T. BAD, A new approach to variable selection in least squares
problems, IMA Journal of Numerical Analysis (2000).

[37] K.B. Petersen and M.S. Pedersen, The matrix cookbook (2012). Available at http://

www2.compute.dtu.dk/pubdb/pubs/3274-full.html, Version 20121115.
[38] F. Rinaldi, F. Schoen, and M. Sciandrone, Concave programming for minimizing the zero-

norm over polyhedral sets, Computational Optimization and Applications 46 (2008), pp.
467–486.

[39] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
[40] D.X. Shaw, S. Liu, and L. Kopman, Lagrangian relaxation procedure for cardinality-

constrained portfolio optimization, Optimization Methods and Software 23 (2008), pp.
411–420.

[41] E. Soubies, L. Blanc-Féraud, and G. Aubert, A continuous exact `0 penalty (CEL0) for
least squares regularized problem, SIAM Journal on Imaging Science 8 (2015), pp. 1607–
1639.

[42] C. Soussen, J. Idier, D. Brie, and J. Duan, From Bernoulli Gaussian deconvolution to
sparse signal restoration, IEEE Transactions on Signal Processing 59 (2011), pp. 4572–
4584.

[43] C. Soussen, J. Idier, J. Duan, and D. Brie, Homotopy based algorithms for l0-regularized
least-squares, IEEE Transactions on Signal Processing 63 (2015), pp. 3301–3316.

[44] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal
Statistical Society, Series B 58 (1996), pp. 267–288.

29

http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html

[45] J.A. Tropp and S.J. Wright, Computational methods for sparse solution of linear inverse
problems, Proceedings of the IEEE 98 (2010), pp. 948–958.

[46] F. Wen, L. Chu, P. Liu, and R. Qiu, A survey on nonconvex regularization-based sparse
and low-rank recovery in signal processing, statistics, and machine learning, IEEE Access
6 (2018), pp. 69883–69906.

[47] C. Zala, High-resolution inversion of ultrasonic traces, IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control 39 (1992), pp. 458–463.

30

	Introduction
	Branch-and-bound algorithm and continuous relaxations
	Branch-and-bound implementation
	Continuous relaxation at the root node
	Continuous relaxation in the branch-and-bound algorithm

	A dedicated homotopy continuation algorithm for relaxed problems
	Optimality conditions
	Homotopy continuation algorithm
	Solutions to constrained problems Q2/1 and Q1/2
	Implementation and practical issues

	Experimental results
	Experimental setup
	Quality of estimated solutions
	Computing times

	Conclusion

