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USING FIRST-ORDER INFORMATION IN DIRECT MULTISEARCH

FOR MULTIOBJECTIVE OPTIMIZATION

R. ANDREANI ∗, A. L. CUSTÓDIO † , AND M. RAYDAN ‡

Abstract. Derivatives are an important tool for single-objective optimization. In fact, it is
commonly accepted that derivative-based methods present a better performance than derivative-free
optimization approaches. In this work, we will show that the same does not apply to multiobjective
derivative-based optimization, when the goal is to compute an approximation to the complete Pareto
front of a given problem. The competitiveness of Direct MultiSearch (DMS), a robust and efficient
derivative-free optimization algorithm, will be stated for derivative-based multiobjective optimiza-
tion problems. We will then assess the potential enrichment of adding first-order information to the
DMS framework. Derivatives will be used to prune the positive spanning sets considered at the poll
step of the algorithm, highlighting the role that ascent directions, that conform to the geometry of
the nearby feasible region, can have. Both variants of DMS show to be competitive against a state-
of-art derivative-based algorithm. Moreover, for reasonable small budgets of function evaluations,
the new variant is not only competitive with the derivative-based solver but also with the original
implementation of DMS.

AMS Subject Classification: 90C29, 90C56, 90C55, 90C30.
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1. Introduction. Multiobjective optimization (MOO) problems appear frequen-
tly in engineering and scientific applications, in such diverse areas such as civil engi-
neering, environment, medicine or aerospace engineering [2, 31, 35, 36], just to cite
a few. The major feature of a MOO problem is the presence of finitely many com-
ponents in the objective function, associated to conflicting objectives, that have to
be simultaneously optimized. Hardly a single point will optimize all of them at once,
hence a nonstandard notion of optimality is required. The fundamental optimality
concept is that of Pareto optimal point, which is a point such that no improvement
in all the components of the objective function can be achieved by moving to another
feasible point. The image set of all Pareto optimal points (also called the Pareto front)
is usually a continuum that may have disjoint components. In general, for a problem
with p > 1 objectives, the Pareto front is a manifold of dimension p− 1. For example,
if p = 2 the Pareto front will be a curve (or a set of curve segments), which provides in
a compact way all the information required for a user to choose an appropriate Pareto
optimal point as a compromise solution between the usually conflicting components
of the objective function. Like in classical single objective optimization, finding global
Pareto optimal points is difficult, unless additional information is available about the
objective function. Thus, MOO algorithms typically try to find local Pareto optimal
points for the problems, meaning that the definition of Pareto optimality is satisfied
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in a neighborhood of the current point.

There are several classes of MOO algorithms, depending not only on the level
of smoothness of the objective function but also on the time when the user estab-
lishes an order preference for the different components of the objective function [32].
In this work, we will focus on methods with a posteriori articulation of preferences,
which attempt to capture the whole Pareto front of the problem, never establishing
preferences among the several components of the objective function. Evolutionary al-
gorithms, or other similar heuristics, belong to this class. However, these algorithms
lack a well-established convergence analysis and are usually slow in converging to the
Pareto front of the problem, requiring a large number of iterations and function eval-
uations [22]. When derivatives of the different components of the objective function
are available, typical approaches are based on generating a single sequence of iterates
that converges to a point with corresponding image lying on the Pareto front (one
at a time); see, e.g., [8, 23, 24, 25, 34]. Multistart approaches [33] or scalarization
techniques [21], can help in finding approximations to the complete Pareto front of
a given MOO problem. Although, the first can be computational expensive and the
latter generally fails in detecting nonconvex parts of it [17].

Recently, a novel approach has been developed to approximate the entire Pareto
front using first and second order information [26]. The so-called MOSQP method
keeps a list of nondominated points, which approximates the Pareto front of the MOO
problem, that is improved both for spread along the Pareto front and optimality by
solving single-objective constrained optimization problems derived as SQP problems.
In [26], numerical results are reported indicating the superiority of the MOSQP algo-
rithm when compared to other state-of-the-art multiobjective solvers.

In derivative-free optimization, Direct MultiSearch (DMS) [16] is also able to
compute approximations to the complete Pareto front of a given MOO problem. This
is a well-established algorithm, with theoretical results regarding convergence, and
consistently used with good results both for benchmark of new solvers [12, 30] or in
real applications [7, 28].

The purpose of the current work is twofold. Our first objective is to compare the
performance of the derivative-free DMS method and the derivative-based MOSQP
algorithm. In single objective optimization, it is common to say that if derivatives are
available, or can be obtained at a reasonable cost (e.g. using finite-differences) then
derivative-based optimization is preferable to derivative-free optimization methods [5,
p. 6]. We will provide numerical results on a large set of benchmark MOO problems,
that allow to assess the numerical performance of derivative-based and derivative-free
optimization solvers, when computing approximations to the complete Pareto fronts
of derivative-based MOO problems. Our second objective is to asses the potential
enrichment of adding first-order information, when derivatives are available, to the
DMS framework. We will describe and analyze several different combined techniques
that maintain the search/poll paradigm of DMS, while adding in a convenient way
gradient information to the poll step. Again, the value of the proposed strategies will
be assessed through numerical experiments.

The remaining of this document is organized as follows. In Section 2 we present
the MOO problem and briefly revise the derivative-free optimization method DMS,
since it will be later modified to incorporate first-order information. Section 3 is
devoted to a full numerical comparison between DMS and MOSQPmethods. Section 4
details the use of first-order information to eliminate directions in the poll step of DMS
and assesses the corresponding numerical performance. In Section 5 the usefulness of
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ascent directions is motivated by illustrating their performance on one properly chosen
biobjective problem. Results are then reported in the complete test set. Finally, in
Section 6 we present some concluding remarks.

2. DMS at a glance. We consider multiobjective minimization problems of the
form

min
x∈Ω

F (x) ≡ (f1(x), . . . , fp(x))
⊤, (2.1)

where p ≥ 2, Ω ⊆ R
n represents the feasible region, typically defined as a box Ω =

{x ∈ R
n : l ≤ x ≤ u}, and for each i (1 ≤ i ≤ p) fi : Ω → R ∪ {+∞} denotes a

component of the objective function, which we assume to be strictly differentiable in
Ω (continuity of the partial derivatives is not required).

The Direct MultiSearch (DMS) method was originally proposed in [16], gener-
alizing directional direct search to multiobjective derivative-free optimization. For a
review on single objective derivative-free optimization methods we recommend [5, 13].
The algorithm has also been successfully extended to global multiobjective derivative-
free optimization [15], by coupling it with a multistart initialization technique, where
not all the initialized searches are conducted until the end.

Being a directional direct search method, each iteration of DMS conforms to
the search/poll paradigm. The search step is optional, since the convergence results
derive from the poll step of the algorithm. In fact, in the original presentation of the
method [16], it was left empty and this will be the approach followed in the present
work. Recently, the minimization of quadratic polynomial models, which have always
played a key role in derivative-free methods for single objective optimization, was
used for successfully defining a search step for DMS [6]. First-order information can
surely be used to define appropriate search steps, following the strategies proposed
in [6], but that will not be the subject of the present work, which will focus on the
poll step.

We present a simplified description of the DMS framework, where only the poll
step is considered, and where the globalization strategy is based on the use of integer
lattices, meaning that all the points generated by the algorithm lie on an implicit
mesh. For a more general description, we refer to the original work [16].

The algorithm initializes with a list of feasible, nondominated points (possibly
just one) and corresponding stepsize parameters. Making use of the strict partial
order induced by the cone R

p
+, we say that point x dominates point y when F (x) ≺F

F (y), i.e., when F (y) − F (x) ∈ R
p
+ \ {0}. If x does not dominate y and y does

not dominate x, x and y are said to be nondominated. The list, representing the
current approximation to the Pareto front of the MOO problem, will be updated at
every iteration by generating new feasible points which are compared with the points
already stored in it, only keeping the nondominated ones.

At each iteration, a feasible nondominate point stored in the list and the as-
sociated stepsize parameter, will be selected. Different strategies can be considered
in the selection of this poll center. Currently it is based on a spread metric [16],
in an attempt of reducing the gaps between consecutive points lying in the current
approximation to the Pareto front of the problem.

The poll step of the algorithm consists on a local search around the selected poll
center, by testing a set of directions with an adequate geometry, scaled by the cor-
responding stepsize parameter. Typically, positive spanning sets are considered [18],
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that should conform to the geometry of the nearby active constraints of the current
poll center [29].

For convergence purposes, the poll step can be performed either in a complete or
an opportunistic way. In the latter, the polling procedure is stopped once a new feasi-
ble nondominated point is found. The complete approach tests all the poll directions,
only adding to the list the new feasible nondominated points found (and removing
from the list all the dominated ones). We will follow this last approach, which is
the one corresponding to the original algorithmic implementation of DMS [16], in an
attempt of maximizing the number of feasible nondominated points generated at each
iteration.

The final step of each iteration is the update of the stepsize parameter, which
is increased or kept constant for successful iterations and decreased for unsuccessful
ones. An iteration is said to be successful if the list changes, meaning that at least
one new feasible nondominated point was found. Unsuccessful iterations keep the list
unchanged.

A simplified description of the DMS framework is provided in Algorithm 1. For
a complete description see [16].

Algorithm 1: A simplified description of Direct MultiSearch (DMS).

Initialization

Choose a set of nondominated points {xi
ini ∈ Ω, i ∈ I} with

fj(x
i
ini) < +∞, ∀j ∈ {1, . . . , p}, ∀ i ∈ I, αi

ini > 0, i ∈ I initial stepsizes,
0 < β1 ≤ β2 < 1 the coefficients for stepsize contraction and γ ≥ 1 the
coefficient for stepsize expansion. Let D be a set of positive spanning sets.
Initialize the list of feasible nondominated points and corresponding stepsize
parameters L0 = {(xi

ini;α
i
ini), i ∈ I}.

For k = 0, 1, 2, . . .
1. Selection of an iterate point: Order the list Lk according to some

criteria and select the first item (x;α) ∈ Lk as the current iterate and
stepsize parameter (thus setting (xk;αk) = (x;α)).

2. Poll step: Choose a positive spanning set Dk from the set D.
Evaluate F at the feasible poll points belonging to
{xk + αkd : d ∈ Dk}. Compute Ltrial by removing all dominated
points from Lk ∪ {(xk + αkd;αk) : d ∈ Dk ∧ xk + αkd ∈ Ω}. If
Ltrial 6= Lk declare the iteration (and the poll step) successful and set
Lk+1 = Ltrial. Otherwise, declare the iteration (and the poll step)
unsuccessful and set Lk+1 = Lk.

3. Stepsize parameter update: If the iteration was successful then
maintain or increase the corresponding stepsize parameters, by
considering αk,new ∈ [αk, γαk] and replacing all the new points
(xk + αkd;αk) in Lk+1 by (xk + αkd;αk,new). Replace also (xk;αk), if
in Lk+1, by (xk;αk,new).
Otherwise, decrease the stepsize parameter, by choosing
αk,new ∈ [β1αk, β2αk], and replace the poll pair (xk;αk) in Lk+1 by
(xk;αk,new).

The convergence of DMS has been established in [16], closely following the ar-
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guments used in the analysis of single objective directional direct search methods.
After stating the existence of a subsequence of stepsize parameters converging to
zero, this property is used for establishing Pareto-Clarke-KKT criticality. The result
is formalized in Theorem 2.3 for limit points of convergent refining subsequences.

Definition 2.1. A subsequence {xk}k∈K of iterates corresponding to unsuccess-
ful poll steps is said to be a refining subsequence if {αk}k∈K converges to zero.

The concept of refining direction is associated with convergent refining subse-
quences and is formalized in Definition 2.2.

Definition 2.2. Let x∗ be the limit point of a convergent refining subsequence
{xk}k∈K . If the limit limk∈K′ dk/‖dk‖ exists, where K ′ ⊆ K and dk ∈ Dk, and if
xk + αkdk ∈ Ω, for sufficiently large k ∈ K ′, then this limit is said to be a refining
direction for x∗.

Assuming the density of the set of refining directions in the Clarke tangent cone
to Ω computed at limit points of refining subsequences [11], the convergence of DMS
is established.

Theorem 2.3. (see [16]) Consider a refining subsequence {xk}k∈K converging
to x∗ ∈ Ω. Assume that F is strictly differentiable at x∗ and that the interior of the
tangent cone to Ω at x∗ is nonempty. If the set of refining directions for x∗ is dense
in the Clarke tangent cone to Ω at x∗, then x∗ is a Pareto-Clarke-KKT critical point,
i.e,

∀d ∈ TCl
Ω (x∗), ∃j(d) ∈ {1, 2, . . . , p} : ∇fj(d)(x∗)

⊤d ≥ 0.

Recently, worst-case complexity bounds were provided for DMS, but considering
a globalization strategy that requires sufficient decrease for accepting new points [14].
For a particular algorithmic instance, which considers a stricter criterion for accepting
new nondominated points, DMS presents a worst-case complexity bound of O(ǫ−2).
similar to the one of steepest descent.

3. Comparing DMS and MOSQP. Derivatives are a keystone for optimiza-
tion. As previously mentioned, in single objective optimization, when in presence
of smooth functions, derivative-based methods are preferable to derivative-free opti-
mization algorithms, even if one has to spend some time and effort to obtain good
quality derivatives (see [13, p. 7] or [5, p. 6]). In this section, we will assess the sit-
uation for multiobjective derivative-based optimization, when the goal is to compute
approximations to complete Pareto fronts.

For that, DMS algorithm [16] will be numerically tested against MOSQP [26].
The latter is a recent solver proposed for multiobjective derivative-based optimiza-
tion which uses a SQP approach. MOSQP keeps a list of nondominated points that
is improved both for spread along the Pareto front and optimality by solving single-
objective constrained optimization problems. Thus, MOSQP is able to generate ap-
proximations to complete Pareto fronts, an advantage over classical derivative-based
multiobjective optimization solvers, which compute a single point. At the time of the
release, extensive numerical results were provided for MOSQP, including a compar-
ison with a classical scalarization approach for biobjective problems [26]. The good
results obtained, allowed the authors to conclude that MOSQP should be “the pre-
ferred solution framework for multiobjective optimization problems when derivatives of
objective and constraint functions are available” [26], which justifies our algorithmic
choice as baseline against DMS. Default parameters were considered for both solvers,
with exception to the maximum number of function evaluations allowed, which was
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Problem n p Problem n p Problem n p Problem n p
BK1 2 2 DTLZ4n2 2 2 lovison3 2 2 MOP7 2 3
CL1 4 2 DTLZ6 22 3 lovison4 2 2 SK1 1 2
Deb41 2 2 DTLZ6n2 2 2 lovison5 3 3 SK2 4 2
Deb513 2 2 ex005 2 2 lovison6 3 3 SP1 2 2
Deb521b 2 2 Far1 2 2 LRS1 2 2 SSFYY1 2 2
DG01 1 2 Fonseca 2 2 MHHM1 1 3 SSFYY2 1 2
DPAM1 10 2 IKK1 2 3 MHHM2 2 3 TKLY1 4 2
DTLZ1 7 3 IM1 2 2 MLF1 1 2 VFM1 2 3
DTLZ1n2 2 2 Jin1 2 2 MLF2 2 2 VU1 2 2
DTLZ2 12 3 Jin3 2 2 MOP1 1 2 VU2 2 2
DTLZ2n2 2 2 L2ZDT2 30 2 MOP2 4 2 ZDT2 30 2
DTLZ3 12 3 L3ZDT2 30 2 MOP3 2 2 ZLT1 10 3
DTLZ3n2 2 2 lovison1 2 2 MOP5 2 3
DTLZ4 12 3 lovison2 2 2 MOP6 2 2

Table 3.1: The test set considered in the numerical experiments. Here n represents
the number of variables and p is the number of components of the objective function.

set to 20 000. In some cases, a small budget of 500 function evaluations was addi-
tionally considered, to ensure that the conclusions drawn were not dependent on the
large number of function evaluations allowed.

As test set, we considered the collection of 100 bound constrained multiobjective
optimization problems available at http://www.mat.uc.pt/dms. This collection was
previously used to test DMS and MOSQP, at the time of their first release [16, 26].
From this collection, we selected a total of 54 problems, for which we were able to
guarantee the existence of derivatives. Table 3.1 reports the resulting test set, which
comprises problems with 2 or 3 components in the objective function and a number
of variables, n, between 1 and 30.

For performance assessment, we considered typical metrics from the multiobjec-
tive optimization literature, like is the case of purity and spread metrics, as defined
in [16], and also the hypervolume indicator [39, 40]. While other metrics could have
been considered [4, 10, 37], these are typical choices in recent works [3, 6, 12].

In a simplified view, purity measures the percentage of nondominated points
generated by a given solver. For problem p̂ ∈ P and solver s ∈ S, purity is defined by
the ratio

t̄p̂,s =
|Fp̂,s ∩ Fp̂|

|Fp̂,s|
,

where Fp̂,s denotes the approximation to the Pareto front computed for problem p̂ ∈ P
by solver s ∈ S and Fp̂ is a reference Pareto front for problem p̂ ∈ P . This reference
Pareto front is computed by joining the final approximations computed by any of the
solvers tested and removing from it all the dominated points. A value of purity near
one indicates that the majority of the points generated by the corresponding solver
is nondominated. However, these could be concentrated in a single part of the true
Pareto front. Spread metrics are required to have a fair assessment of the solver’s
performance.

Since the goal is to build an approximation to the complete Pareto front of each
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problem, the computation of spread metrics initiates with the computation of the
so-called ‘extreme points’ of the Pareto front (see [16]). The spread Γ measures the
maximum gap between consecutive points lying in the approximated Pareto front.
The metric Γp̂,s > 0 for problem p̂ ∈ P and solver s ∈ S is given by

Γp̂,s = max
j∈{1,...,p}

(

max
i∈{0,...,N}

{δi,j}

)

, (3.1)

where δi,j = (fj(xi+1) − fj(xi)), x1, x2, . . . , xN represent the points generated by
solver s ∈ S for problem p̂ ∈ P , and x0, xN+1 correspond to the ‘extreme points’.
Implicitly, we are assuming that the objective function values have been sorted by
increasing order for each objective j ∈ {1, . . . , p}.

The spread metric ∆ [19] measures the uniformity of the gaps across the approx-
imation to the Pareto front:

∆p̂,s = max
j∈{1,...,p}

(

δ0,j + δN,j +
∑N−1

i=1 |δi,j − δ̄j |

δ0,j + δN,j + (N − 1)δ̄j

)

, (3.2)

where δ̄j , for j = 1, . . . , p, represents the average of the distances δi,j , i = 1, . . . , N−1.
The fourth metric considered is the hypervolume indicator [40], which measures

the volume of the portion of the objective function space that is dominated by the
computed approximation to the Pareto front of the problem, and upper bounded by a
given reference point Up̂ ∈ R

p. This reference point should be dominated by all points
belonging to the approximations computed for the Pareto front of a given problem
p̂ ∈ P . Formally, it can be defined as:

HVp̂,s = V ol{y ∈ R
p| y ≤ Up̂ ∧ ∃x ∈ Fp̂,s : x ≤ y} = V ol





⋃

x∈Fp̂,s

[x, Up̂]



 ,

where V ol(.) denotes the Lebesgue measure of a p-dimensional set of points and [x, Up̂]
denotes the interval box with lower corner x and upper corner Up̂. The approach
proposed in [27] was used for its practical computation and the resulting hypervolume
values were scaled to the interval [0, 1], following the procedure described in [6].

Performance profiles [20] will be depicted for each of the four metrics considered.
Let tp̂,s denote the performance of solver s ∈ S on problem p̂ ∈ P , assuming that
lower values of tp̂,s indicate a better performance. Each performance profile represents
the curve

ρs(τ) =
1

|P|
|{p̂ ∈ P : rp̂,s ≤ τ}|,

with rp̂,s = tp̂,s/min{tp̂,s̄ : s̄ ∈ S}. In the case of purity and hypervolume metrics,
larger values indicate better performance. Thus, when computing performance profiles
for these two metrics, we set tp̂,s = 1/tp̂,s, as proposed in [16].

Figures 3.1 and 3.2 compare DMS against MOSQP, when a maximum budget of
20 000 function evaluations is considered. The two solvers present a similar perfor-
mance in terms of robustness for purity and ∆ metrics, with DMS being more efficient
in terms of purity and MOSQP with respect to the ∆ metric. However, there is a huge
gain in performance with DMS when hypervolume or the Γ metrics are considered.
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Fig. 3.1: Performance profiles for purity and hypervolume metrics, comparing the
original DMS implementation and MOSQP (maximum budget of 20 000 function eval-
uations).
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Fig. 3.2: Performance profiles for Γ and ∆ metrics, comparing the original DMS
implementation and MOSQP (maximum budget of 20 000 function evaluations).

The benefits of an enriched set of directions are clear (and will be even clearer
in the following sections). If derivative-based solvers are preferable to derivative-free
optimization methods for single objective optimization, the same does not necessarily
apply to multiobjective optimization.

4. Pruning the poll set. At each iteration of DMS a positive spanning set is
selected as poll set. The poll points correspond to directions in the poll step scaled
by the stepsize parameter. The objective function will then be evaluated at all the
feasible poll points, independently of corresponding or not to descent directions.

The following result is well-known for positive spanning sets (see Theorem 2.3
in [13]).

Theorem 4.1. If {v1, . . . , vr}, with vj 6= 0 for all j ∈ {1, . . . , r} positively spans
R

n then for every vector d ∈ R
n there is an index j ∈ {1, . . . , r} such that d⊤vj > 0.

Considering strict differentiability of each component of the objective function F ,
and setting d = ∇fi(x) or d = −∇fi(x), for i ∈ {1, . . . , p}, Theorem 4.1 allows us
to conclude that in every positive spanning set, for each component of the objective
function, we can find at least one ascent and one descent direction.

Thus, at each iteration, for i ∈ {1, . . . , p}, if ∇fi(xk) 6= 0, dk = −∇fi(xk) can
be used to prune the positive spanning set, only keeping directions that are descent
according to at least one component of the objective function. Since we are only
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discarding directions that are ascent according to all components of the objective
function, the convergence results of Section 2 still hold. The pruned set of directions,
DP

k , to be considered as poll directions for DMS at Step 2 of Algorithm 1, will then
be:

DP
k =

⋃

i∈{1,...,p}

{d ∈ Dk : −∇fi(xk)
⊤d > 0}.

This strategy can be ineffective when the number of components of the objective
function is high (p > 3), what is commonly known as many-objective optimization [9].
However, for problems comprising two or three components in the objective function,
it could lead to considerable savings in function evaluations at each poll step.

The idea of pruning positive spanning sets was already proposed in single objective
derivative-free optimization [1]. In this setting, it is easy to see that the cardinality
of the pruned set will be 1 ≤ |DP

k | ≤ |Dk| − 1. The authors were even able to provide
a particular enriched positive spanning set, that always reduces to a singleton after
pruning.

If the goal is to generate an approximation to the complete Pareto front of a given
problem, we do not wish to reduce the poll directions to a singleton, as we do not
wish to use opportunistic approaches, which would generate at most a new feasible
nondominated point at each iteration. Moreover, in multiobjective optimization, due
to the presence of conflicting objectives, we cannot ensure the presence of a descent
direction, according to all the components of the objective function [16]. In fact, it
is possible to build examples where the cone of descent directions, considering all
components of the objective function, can be as narrow as one would desire.

The proposed strategy was implemented and numerically tested against the orig-
inal DMS algorithm [16]. Figures 4.1 and 4.2 report the corresponding comparison,
again considering the budget of 20 000 function evaluations.
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Fig. 4.1: Performance profiles for purity and hypervolume metrics, comparing the
original DMS implementation and a new version, where poll directions are pruned
using first order information (maximum budget of 20 000 function evaluations).

In its current form, it is clear that the pruning strategy is not successful. In
fact, there is a considerable decrease in performance regarding the hypervolume and
Γ metrics. While it could seem surprising, as we will see in Section 5, ascent directions
play an important role when the goal is to compute an approximation to the complete
Pareto front of a given MOO problem.

9



0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
  performance profile 

DMS
DMS prune

0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
  performance profile 

DMS
DMS prune

Fig. 4.2: Performance profiles for Γ and ∆ metrics, comparing the original DMS
implementation and a new version, where poll directions are pruned using first order
information (maximum budget of 20 000 function evaluations).

5. The role of ascent directions. In the presence of constraints, pruning
ascent directions is not always a good strategy. Consider the biobjective minimization
problem ZDT2, with n = 30 [38]. In this case, if we provide as initialization one Pareto
critical point, the algorithm stalls, being unable to generate other Pareto critical
points in the Pareto front. This behavior is accordingly to the convergence results
derived for DMS, which only guarantee convergence to a single Pareto critical point.
By providing ascent directions, that conform to the geometry of the nearby feasible
region, the algorithm is able to proceed and generate a large number of Pareto critical
points. Figure 5.1 illustrates the situation.
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Fig. 5.1: Final approximations to the Pareto front of problem ZDT2, generated by
two different algorithmic variants of DMS. On the left, positive spanning sets are
pruned to sets only comprising descent directions. On the right, ascent directions are
considered at some iterations.

Thus, the approach taken was to return to the original positive spanning set Dk

(without pruning) at some iterations. Assume that at a given iteration the original
positive spanning set was pruned and DP

k was used as poll set, but the algorithm
was unable to proceed because every poll point was infeasible. At the next iteration
pruning will not be applied, and the original positive spanning set Dk will be con-
sidered as the set of poll directions. Again, since we are only disregarding directions
that are ascent according to all components of the objective function, and only at
some iterations, the convergence results of Section 2 continue to hold. Figures 5.2
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and 5.3 report performance profiles comparing this new approach with the original
implementation of DMS.
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Fig. 5.2: Performance profiles for purity and hypervolume metrics, comparing the
original DMS implementation and a new version, where poll directions are pruned
using first order information, but not at all the iterations (maximum budget of 20 000
function evaluations).
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Fig. 5.3: Performance profiles for Γ and ∆ metrics, comparing the original DMS
implementation and a new version, where poll directions are pruned using first or-
der information, but not at all the iterations (maximum budget of 20 000 function
evaluations).

Now, the two variants of DMS are extremely close in terms of performance, but
the new approach brings some advantage in terms of efficiency for the Γ metric.
However, the advantages of the new approach are clearer if the computational budget
is reduced from 20 000 to only 500 functions evaluations (see Figures 5.4 and 5.5).

Savings in function evaluations, allow clear improvements in terms of efficiency,
both for purity and hypervolume. Regarding the Γ metric, there is a clear advantage
of the new variant over the classical DMS approach.

Comparing with MOSQP, again considering a budget of only 500 function eval-
uations, there is also a clear advantage of the new variant in three of the metrics
considered, namely purity, hypervolume and Γ metric, with an equal performance for
the ∆ metric. Figures 5.6 and 5.7 report the results. Thus, the good performance
of derivative-free optimization solvers over derivative-based ones is not the result of
large budgets of function evaluations, but a consequence of richer sets of directions,
including ascent ones.
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Fig. 5.4: Performance profiles for purity and hypervolume metrics, comparing the
original DMS implementation and a new version, where poll directions are pruned
using first order information, but not at all the iterations (maximum budget of 500
function evaluations).
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Fig. 5.5: Performance profiles for Γ and ∆ metrics, comparing the original DMS im-
plementation and a new version, where poll directions are pruned using first order
information, but not at all the iterations (maximum budget of 500 function evalua-
tions).
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Fig. 5.6: Performance profiles for purity and hypervolume metrics, comparing
MOSQP and the new version of DMS, where poll directions are pruned using first
order information, but not at all the iterations (maximum budget of 500 function
evaluations).
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Fig. 5.7: Performance profiles for Γ and ∆ metrics, comparing MOSQP and the new
version of DMS, where poll directions are pruned using first order information, but
not at all the iterations (maximum budget of 500 function evaluations).

6. Concluding remarks. DMS was proposed in [16] as a robust and efficient
algorithm, able to generate approximations to the complete Pareto front of MOO
problems. Surprisingly, it showed to be a strong competitor against the derivative-
based solver MOSQP, evidencing that in MOO, when the goal is to generate an
approximation to the complete Pareto front of a given problem, even if first-order
derivatives are available, derivative-free solvers can be good alternatives to derivative-
based approaches.

Derivatives can be used to prune the positive spanning sets to be considered as
poll directions. However, care should be taken because ascent directions, that conform
to the geometry of the nearby feasible region, can have an important role in the ability
of generating a complete approximation to the Pareto front of a given problem.

The new variant of DMS, which prunes the poll set of directions, but that at some
iterations considers its enrichment with ascent directions, showed to be competitive
both with the derivative-based solver MOSQP and with the original implementation of
DMS. For low computational budgets of function evaluations, it allows an increase in
the percentage of nondominated points generated in the approximation to the Pareto
front of the MOO problem and also a reduction in the largest gap across the generated
Pareto front, when compared with the original implementation of DMS. In the case
of MOSQP, there are additional advantages regarding the hypervolume associated to
the computed approximation to the Pareto front.

Future work could include the definition of a search step taking advantage of first
order information for building Taylor models, which will be minimized considering an
approach similar to the one proposed and analyzed in [6].
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[14] A. L. Custódio, Y. Diouane, R. Garmanjani, and E. Riccietti, Worst-case complexity

bounds of directional direct-search for multiobjective derivative-free optimization, J. Optim.
Theory Appl., 188 (2021), pp. 73–93.
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