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Current state-of-the-art multi-objective optimization solvers, by computing gradients of all 𝑚 objective

functions per iteration, produce after 𝑘 iterations a measure of proximity to critical conditions that is upper-

bounded by 𝑂 (1/
√
𝑘) when the objective functions are assumed to have 𝐿−Lipschitz continuous gradients;

i.e. they require 𝑂 (𝑚/𝜖2) gradient and function computations to produce a measure of proximity to critical

conditions bellow some target 𝜖 . We reduce this to𝑂 (1/𝜖2) with a method that requires only a constant number

of gradient and function computations per iteration; and thus, we obtain for the first time a multi-objective

descent-type method with a query complexity cost that is unaffected by increasing values of𝑚. For this, a

brand new multi-objective descent direction is identified, which we name the central descent direction, and,
an incremental approach is proposed. Robustness properties of the central descent direction are established,

measures of proximity to critical conditions are derived, and, the incremental strategy for finding solutions to

the multi-objective problem is shown to attain convergence properties unattained by previous methods. To

the best of our knowledge, this is the first method to achieve this with no additional a-priori information on

the structure of the problem, such as done by scalarizing techniques, and, with no pre-known information on

the regularity of the objective functions other than Lipschitz continuity of the gradients.
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1 INTRODUCTION
In this paper we deal with the problem of finding critical points of multi-objective optimization

problems. The multi-objective function 𝐹 : R𝑛 → R𝑚 is defined as the concatenation of𝑚 mono-

objective functions as 𝐹 (𝒙) ≡ [𝑓1 (𝒙), ..., 𝑓𝑚 (𝒙)]𝑇 that are assumed to have L-Lipschitz continuous

gradients, i.e. for some 𝐿 ≥ 0 and for all 𝒙,𝒚 ∈ R and all 𝑖 = 1, ...,𝑚 the inequality | |∇𝑓𝑖 (𝒙) −
∇𝑓𝑖 (𝒚) | | ≤ 𝐿 | |𝒙 −𝒚 | | holds. And, following the definition of [9], a point 𝒙 ∈ R𝑛 is said to be critical
(also referred to as stationary) if and only if there does not exist a direction 𝒗 ∈ R𝑛 such that

∇𝑓𝑖 (𝒙)𝑇𝒗 < 0 for all 𝑖 = 1, ...,𝑚.
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0:2 Oliveira and Takahashi

The search for stationary points is motivated by the fact that standard first order conditions

for local optimality, akin to ∇𝑓 (𝒙) = 0 in mono-objective optimization, is that 𝒙 be stationary

[19]. Descent direction algorithms, analogous to those employed in mono-objective problems,

have been devised and analysed extensively for the multi-objective setting, including: (i) steepest
descent strategies [9, 10, 38]; (ii) Newton type methods [8, 28]; (iii) projected gradient strategies
[5, 6]; amongst others [12, 22, 27, 31]. These generally follow the same structure as mono-objective

optimization strategies:

Algorithm 1: Descent direction method

1 initialize �̂� ∈ R𝑛 ;
2 while True do
3 compute a descent direction 𝒅;
4 find an appropriate step-size 𝛼 ∈ R+;
5 update the estimate �̂� ← �̂� + 𝛼𝒅;
6 end

The multi-objective steepest descent method is perhaps the benchmark to which other methods

are typically compared [4, 8–11]. For any given estimate �̂� , the steepest descent method defines 𝒅
as 𝒅 ≡ 𝑽 𝑠 (�̂�) where

𝑽 𝑠 (𝑥) ≡ arg min

𝑽 ∈R𝑛
max

𝑖=1,...,𝑚
∇𝑓𝑖 (�̂�)𝑇 𝑽 +

1

2

| |𝑽 | |2 . (1)

And, if line 3 of Algorithm 1 is implemented with 𝒅 ≡ 𝑽 𝑠 (�̂�), and line 4 is implemented with

step-size 𝛼 produced by Armijo’s backtracking procedure delineated in [9] or the Fibonacci search

of [38], then, under mild technical assumptions, global convergence is guaranteed irrespective of

the starting point, analogous to the guarantees of mono-objective gradient descent. See Theorem

1 of [9] and Theorem 3 of [38] for the details. Furthermore, the computational complexity of

the mono-objective gradient descent method, which upperbounds the norm of the gradient by

𝑂 (1/
√
𝑘) after 𝑘 steps, is also echoed by it’s multi-objective counterpart as the analogous measure

of proximity to critical conditions min𝑙=1,...,𝑘 | |𝑽 𝑠 (�̂�𝑙 ) | | is also upper-bounded by 𝑂 (1/
√
𝑘) after 𝑘

steps under the Lipschitz continuous gradient assumption; see Theorem 3.1 of [10]. This worst case

query complexity, in the mono-objective setting, is known to be optimal and is not improved on

even with the addition of second order information, such as with the use of Newton’s method; see

Section 3 of [3]. Analogous convergence guarantees to those of gradient descent in mono-objective

optimization are also known for convex functions as well as strongly convex functions when the

multi-objective steepest descent method is employed [10, 11]. And furthermore, similar results

have been developed for Newton-type methods as well as projected gradient-type methods in the

multi-objective optimization literature [5, 6, 8, 28].

Problem description. While multi-objective steepest descent recovers the𝑂 (1/
√
𝑘) rate of conver-

gence of mono-objective problem solving, since the computation of 𝒅 in each iteration requires

querying all𝑚 gradients, and, the production of 𝛼 in both exact and inexact line searches requires

querying all𝑚 functions per iteration, the overall query complexity of multi-objective steepest

descent is still𝑚 times that of mono-objective optimization; i.e. when we take into consideration

the dependence on𝑚 the number of calls to gradient and function evaluations to upper-bound the

measure of proximity to critical conditions by 𝜖 is more precisely of the order of 𝑂 (𝑚/𝜖2). That is,
with the same query complexity budget, gradient descent can produce solutions to each of the𝑚

mono-objective minimization problems separately with the similar 𝜖 worst case bounds as one run

of the multi-objective steepest descent method. A close analysis of this complexity gap produces a

somewhat puzzling set of informal propositions:
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An incremental descent method for multi-objective optimization 0:3

P1. The requirement ‘𝑥 is stationary with respect to 𝐹 (𝑥) ≡ [𝑓1 (𝑥), ..., 𝑓𝑚 (𝑥)]𝑇 ’ is a relaxation
of the mono-objective equivalent ‘𝑥 is stationary with respect to 𝐹 (𝑥) ≡ [𝑓1 (𝑥)]’.
P2.Multi-objective steepest descent with𝑚 objective functions collects𝑚 times more queries of gradient
and function values per iteration than gradient descent applied to the mono-objective problem.
P3. Multi-objective steepest descent requires the same amount of iterations as gradient descent to
produce an estimate with similar worst case bounds.

That is, combining P1 to P3 we find that multi-objective steepest descent requires more queries

to produce one estimate that is associated with weaker requirements than the𝑚 mono-objective

solutions produced by gradient descent with the same query complexity budget. One should expect

quite the opposite: to produce an estimate ‘�̃� stationary with respect to 𝐹 (𝒙) ≡ [𝑓1 (𝒙), ..., 𝑓𝑚 (𝒙)]𝑇
(for some pre-specified tolerance)’ should be less computationally demanding than to produce an

estimate ‘�̃� stationary with respect to 𝐹 (𝒙) ≡ [𝑓1 (𝒙)]𝑇 (for some pre-specified tolerance)’. In fact,

a trivial proof that this is the case is obtained by P1 alone: since critical points with respect to

each mono-objective function are also critical with respect to the multi-objective problem, the

computational cost of gradient descent on any one objective function is an upper-bound on the

cost of the task of producing ‘�̃� stationary with respect to 𝐹 (𝒙) ≡ [𝑓1 (𝒙), ..., 𝑓𝑚 (𝒙)]𝑇 (for some

pre-specified tolerance)’.

To the best of our knowledge, and somewhat unsatisfyingly, the strategy of “ignore all but

one objective and employ an off-the-shelf mono-objective optimization algorithm” is still more

computationally efficient than the methods available in the multi-objective optimization literature

when the task at hand is to produce any multi-objective stationary point. This ‘trivial’ approach

of ignoring all but one objective, however unsatisfactory, can be seen as an instance of the well

known scalarization techniques often employed in multi-objective optimization; the most basic of

which involves: (i) selecting a weight vector 𝝅 ∈ R𝑚+ such that 𝜋1 + ... + 𝜋𝑚 = 1; then (ii) defining

a scalarized mono-objective function 𝐹𝝅 (𝒙) ≡
∑𝑚

𝑖=1
𝜋𝑖 𝑓𝑖 (𝒙); and finally (iii) finding a solution to

the mono-objective minimization problem �̂�𝝅 = argmin 𝐹𝝅 (𝒙) via gradient descent (or any other

mono-objective optimization method of choice). These techniques are further discussed ahead,

however, we point out that overall, scalarization choices not only (almost always) stumble on the

same query complexity problems pointed above, but also, have a well documented collection of a

priori shortcomings associated with the use of surrogate loss functions
1
instead of dealing with the

original problem directly. Hence, we consider two questions to address the complexity gap that

arises when considering P1 to P3:

Q1. Is it possible to produce global convergence guarantees to stationary points of 𝐹 (𝒙) ≡ [𝑓1 (𝒙), ..., 𝑓𝑚 (𝒙)]
with a multi-objective approach that has an iteration cost no greater than that of mono-objective
iterative approaches?
Q2. Is it possible to obtain an analogous 𝜖-measure of proximity to critical conditions of 𝐹 (𝒙) ≡
[𝑓1 (𝒙), ..., 𝑓𝑚 (𝒙)] with only 𝑂 (1/𝜖2) queries to gradients and function values using a multi-objective
approach without arbitrary scalarization? That is, a global computational cost that is unaffected by
increasing values of m?

1
Information is either lost or added when surrogate optimization strategies are employed thus placing the practitioner at

risk of producing artificial non-realizable solutions, or, at risk of producing sub-optimal solutions, or, to the very least at risk

of producing an artificially narrowed down (meta-parameter dependent) set of alternatives to the decision maker; decision

making alternatives that become difficult to quantify and compared to the hypothetical alternatives that would be produced

by the original problem.
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0:4 Oliveira and Takahashi

In this paper we attempt to answer both Q1 and Q2 separately: Q1 is addressed in Theorem 3.1

and Q2 in Theorem 3.3. Both results provide positive answers to the questions above, and, to the

best of our knowledge, Algorithms 2 and 3, analysed in the aforementioned theorems, provide for

the first time efficient first order descent direction methods for multi-objective optimization. That

is, unlike the descent direction methods proposed so far within the multiobjective literature, our

methods are the first to have a query complexity that is unaffected by increasing values of𝑚 (a

property that can substantially reduce the computational cost of the search the higher the value of

𝑚).

Themethods we propose here are perhaps more similar to what are known as incremental gradient
methods [1, 16, 24] rather than steepest descent methods within the mono-objective literature.

Incremental gradient methods are alternatives to full gradient methods developed to reduce the

computational cost of solving mono-objective minimization problems of the form min 𝐹𝝅 (𝒙) ≡∑𝑚
𝑖=1

𝜋𝑖 𝑓𝑖 (𝒙) by estimating the descent directions with only small number of gradients ∇𝑓𝑖 (·) per
iteration. When done concomitantly with randomization of the sampled gradients, then, these

are some times referred to as stochastic gradient descent methods [29, 36]. Much of the literature

of incremental gradient methods can be directly transposed to the multi-objective setting by

considering scalarizing techniques (discussed ahead). However, as mentioned above scalarizing

with a-priori weights either requires a-priori knowledge of the proper scaling of the objectives

or may produce undesirable solutions associated with the use of surrogate loss functions, and,

despite some analogies between the techniques here developed and the incremental gradient

strategies, our method deals with the multi-objective problem directly thus avoiding such problems

all together. Furthermore, to the best of our understanding, to fully enjoy the theoretical speed-ups

of incremental gradient techniques known so far, strong convexity of the loss function, or to the

very least convexity, must be assumed, whereas here we only assume Lipschitz continuity of the

gradient.

Paper layout. In the remainder of this section we give a brief overview of scalarization techniques

employed to reduce the multi-objective problem to a mono-objective problem as well as a brief

overview of incremental methods. There we point out how mono-objective incremental strategies

are already equipped to tackle scalarized problems with a reduced query complexity when compared

to the state-of-the-art in multi-objective optimization, albeit, with the shortcomings associated with

the use of surrogate loss functions instead of tackling the multi-objective problem directly. In Section

2 we define the central descent direction, an alternative generalization of the mono-objective steepest

descent direction much similar to 𝑽 𝑠 in (1) that plays a key role in our analysis. There we provide

key properties of the central descent direction that separate it from 𝑽 𝑠 as well as descent directions

derived from scalarization. In this section we also provide geometric and robustness properties of

the central descent direction as well as several illustrations to facilitate the understanding of the

methods developed in the following sections. The main results are provided in Section 3. In the

first part of Section 3 we define the incremental central descent algorithm and provide the most

general global convergence guarantees under the assumption of non-additive vanishing step-sizes

irrespective of the starting point; producing either (i) a sub-sequence of estimates with converging

critical conditions or, (ii) a sequence of function values that tends to −∞. Then, in second part we

provide one specific instantiation of the incremental central descent method and we prove that, for

functions bounded from below, the critical conditions converge at the rate of 1/
√
𝑘 irrespective

of the starting point. The algorithm analysed in the first part of Section 3 has an iteration cost

of at most one gradient computation per iteration, and, in the second part at most two gradient

computations per iteration plus a mono-objective Armijo-type line search thus improving the
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An incremental descent method for multi-objective optimization 0:5

current best known complexity guarantees in multi-objective optimization by eliminating the

dependence on𝑚.

1.1 On scalarizing techniques and incremental approaches
Several multi-objective alternatives to descent direction algorithms can be found in the literature,

includingmulti-objective evolutionary approaches [37, 40], multi-objective trust regionmethods [30,

32, 39] amongst others [20, 34]. However, perhaps the most popular approach in dealing with multi-

objective optimization problems is characterized by using mono-objective strategies to scalarized

instances of the multi-objective problem [7, 13, 14, 17, 35]. These have the immediate benefit of

inheriting the convergence guarantees associated with the mono-objective optimization algorithm,

and, can typically be inserted within larger iterative processes that enable the construction of a

representative sample of efficient solutions of the multi-objective problem - a feature that is often the

motivating factor behind adopting a multi-objective formulation in decision making processes [4].

The most basic of these scalarizing approaches involves: (i) selecting a weight vector 𝝅 ∈ R𝑚+ such

that 𝜋1 + ... + 𝜋𝑚 = 1; then (ii) defining a scalarized mono-objective function 𝐹𝝅 (𝒙) ≡
∑𝑚

𝑖=1
𝜋𝑖 𝑓𝑖 (𝒙);

and (iii) finding a solution to the mono-objective minimization problem �̂�𝝅 = argmin 𝐹𝝅 (𝒙) via
gradient descent (or any other mono-objective optimization method of choice). Under this approach,

the computation of the direction 𝒅 is typically much simpler than (1) as the gradient of 𝐹𝝅 (·) is
simply the weighted sum of the individual gradients ∇𝐹𝝅 (𝒙) ≡

∑𝑚
𝑖=1

𝜋𝑖∇𝑓𝑖 (𝒙). More sophisticated

scalarizing methods include constrained optimization formulations in the form “min 𝑓𝑖 (𝒙) subject
to 𝑓𝑗 (𝒙) ≤ 𝑧 𝑗 for all 𝑗 ≠ 𝑖” for varying values of 𝒛 ∈ R𝑚 as well as unconstrained goal-programming

formulations in the form min | |𝐹 (𝒙) − 𝒛 | | for some pre-specified norm | | · | | in R𝑚 and varying

values of 𝒛; see [35] for an extensive list.

Since, scalarization employs off the shelf mono-objective methods to solve an instance of the

multi-objective problem, these can also attain (trivially) the minmax𝑂 (1/
√
𝑘) rate of convergence to

find an efficient solution to the original problem. However, these formulations also (almost always)

require𝑚 gradient computations per iteration and thus they carry the same overall worst-case query

complexity as the multi-objective steepest descent approach in producing a stationary point; i.e.

when the dependence on𝑚 is made explicit, the query complexity is more precisely of𝑂 (𝑚/
√
𝑘). For

example, the goal programming approach of reducing the multi-objective problem by minimizing

𝑔(𝒙) = | |𝐹 (𝒙)−𝒛 | |2 still requires the computation of all𝑚 gradients to calculate a descent direction of

the surrogate loss function just as the weighted sum approach of minimizing 𝐹𝝅 (𝒙) ≡
∑𝑚

𝑖=1
𝜋𝑖 𝑓𝑖 (𝒙).

And, the constrained optimization formulations, when solved with a projected descent direction

type approach will typically require more than one computation of each individual function 𝑓𝑖 (·)
for verifying feasibility, which in turn adds dependency on𝑚 in each step even if the gradient

is computed on one function alone during the iteration. Thus, to the best of our knowledge, the

dependence on𝑚 does not hold only under two exceptions: the first being when the scalarization

parameters trivially discard objectives (such as by taking many null weights 𝜋𝑖 in the minimization

of 𝐹𝝅 (𝒙) ≡
∑𝑚

𝑖=1
𝜋𝑖 𝑓𝑖 (𝒙) ) and the second being when the mono-objective solver is capable of

exploiting the inherit structure of a scalarized problem (such as with the use of incremental gradient

descent approaches).

Incremental gradient descent. The incremental gradient descent is a mono-objective optimization

technique developed to reduce the query complexity of minimization problems with objective

functions of the form 𝐹𝝅 (𝒙) ≡
∑𝑚

𝑖=1
𝜋𝑖 𝑓𝑖 (𝒙). These techniques, together with stochastic gradient

descent methods, have served as the back-bone of practical solvers developed for extremely large

and computationally expensive neural network training problems [1, 16, 24, 29, 36]. The main

difference between both stochastic and deterministic incremental strategies and full gradient
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0:6 Oliveira and Takahashi

methods is that incremental strategies do not compute the full gradient of 𝐹𝝅 (·) in each iteration;

instead, in each iteration 𝑘 a small sample of gradients ∇𝑓𝑖 (𝒙𝑘 ) is collected, typically of size 𝑂 (1),
and a descent direction 𝒅 is estimated/updated with both new and old information available. The

choice of the sampled gradients and the method of producing 𝒅 is where the main difference

between different incremental methods lie.

Perhaps the first deterministic results that achieved a speed of convergence independent of𝑚

are found in [2], where the iterations are defined as

𝒙𝑘+1 ≡ 𝒙𝑘 − 𝛼

𝐿

𝐿−1∑︁
𝑙=0

∇𝑓(𝑘−𝑙)𝐿 (𝒙𝑘−𝑙 ); (2)

for some sufficiently small constant 𝛼 ∈ R+ and some 𝐿 ∈ N. There they find that for quadratic

functions an estimate �̂� that satisfies | |𝐹𝝅 (�̂�)−𝐹𝝅 (𝒙∗) | | ≤ 𝜖 can be produced in less than𝑂 (𝑙𝑜𝑔(1/𝜖))
iterations. Since this seminal result, variations of (2) have been produced that extended these

guarantees for general classes of Lipschitz continuous and strongly convex functions [15, 18, 21,

23, 33]; achieving guarantees that are even tighter than full gradient descent methods [21].

The application of incremental descent methods to scalarized versions of the multi-objective

problem are fairly straight forward: it suffices to (i) choose weights; (ii) reduce the multi-objective

problem to a mono-objective problem; and, (iii) employ an off-the-shelf incremental solver to the

scalarized problem. And, given that the objective functions satisfy the convexity requirements

of [15, 18, 21, 23, 33], then a reduced computational complexity that does not depend on𝑚 can

be enjoyed. However, as mentioned above, all the drawbacks associated with the reduction of a

multi-objective to a mono-objective problem are also to be expected. If such a reduction to a mono-

objective problem were known a-priori, then there would be no point in adopting a multi-objective

formulation in the first place; multi-objective formulations are typically chosen precisely because

no such satisfiable reductionistic approach is known. Furthermore, the convexity assumptions

necessary for guaranteed improvements on the convergence speed can be hard to ensure when

multiple objectives (typically of very different natures) are considered. Unlike neural network

training problems where each 𝑓𝑖 is typically the loss functions measured on one training point, in

multi-objective optimization each 𝑓𝑖 typically a measures objectives that are impossible to put on

one common scale: one may represent cost of production, the other safety protocol measures, and

the last variance in quality control etc.

2 THE CENTRAL DESCENT DIRECTION
For non-critical points 𝒙 , any 𝒗 that satisfies ∇𝑓𝑖 (𝒙)𝑇𝒗 < 0 for all 𝑖 = 1, ...,𝑚 is called a descent

direction. In this paper one specific uniquely defined descent direction, which we call the central
descent direction, is of interest. The central descent direction is denoted by 𝑽𝑐 (𝒙) and is defined as:

𝑽𝑐 (𝒙) ≡
{
argmin

1

2
| |𝑽 | |2

st. ∇𝑓𝑖 (𝒙)𝑇 𝑽 ≤ −||∇𝑓𝑖 (𝒙) | | for all i = 1, ..., m

(3)

Problem (3) can only admit a solution if 𝒙 is non-critical or if at least one of the gradients ∇𝑓𝑖 (𝒙) is
null. Otherwise, critical points 𝒙 with non-null gradients ∇𝑓𝑖 (𝒙) do not admit a solution. Hence, the

conditions for a point in R𝑛 to be critical can be restated in terms of the central descent direction:

Lemma 2.1. A point 𝒙 ∈ R𝑛 is critical if and only if (i) at least one gradient ∇𝑓𝑖 (𝒙) is null for some
𝑖 = 1, ...,𝑚 or (ii) the central descent direction 𝑽𝑐 (𝒙) defined in (3) is empty or (iii) both.

Proof. Follows immediately from the definition of critical points. □

Furthermore, the central descent direction provides a means of “measuring” the proximity to

critical conditions (as discussed bellow). To see this we will need the following lemma:

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 0. Publication date: 2019.



An incremental descent method for multi-objective optimization 0:7

Lemma 2.2. Let {𝒙𝑘 }𝑘=1,...,∞ be a sequence of non-critical points converging to 𝒙∞ ∈ R𝑛 . Then, if
neither the gradients ∇𝑓𝑖 (𝒙𝑘 ) goes to zero with 𝑘 → ∞, we have that either (ii) the accumulation
point 𝒙∞ is critical and | |𝑽𝑐 (𝒙𝑘 ) | | → ∞; or (ii) the accumulation point 𝒙∞ is not critical and 𝑽𝑐 (𝒙𝑘 )
converges to 𝑽𝑐 (𝒙∞).

Proof. This proof will use make use of continuity-type results on the dependence of the central

descent direction with respect to the gradients, described in Lemma 2.3 whose proof is found in the

appendix Section A.

Lemma 2.3. Given a collection of vectors𝒈𝑖 for 𝑖 = 1, ...,𝑚 defineS ≡ {𝒗 st. 𝒈𝑇𝑖 𝒗 ≤ −||𝒈𝑖 | | for all i = 1, ...,m }.
Then:
(1) If for some 𝑅 > 0 the intersection of {𝒗 st. | |𝒗 | | ≤ 𝑅} with S is empty, then, there exists an 𝜖 > 0

such that for every collection of �̂�𝑖 ’s such that | |�̂�𝑖 − 𝒈𝑖 | | ≤ 𝜖 for all 𝑖 = 1, ...,𝑚 the intersection
of {𝒗 st. | |𝒗 | | ≤ 𝑅} with {𝒗 |�̂�𝑇𝑖 𝒗 ≤ −||�̂�𝑖 | | for all i = 1, ...,m } is also empty.

(2) If 𝒗𝐼 is vector in R𝑛 that satisfies 𝒈𝑇𝑖 𝒗𝐼 < −||𝒈𝑖 | | for all i = 1, ...,m , then, there exists an 𝜖 > 0

such that for every collection of �̂�𝑖 ’s in R
𝑛 such that | |�̂�𝑖 − 𝒈𝑖 | | ≤ 𝜖 for all 𝑖 = 1, ...,𝑚 the vector

𝒗𝐼 also satisfies �̂�𝑇𝑖 𝒗𝐼 < −||�̂�𝑖 | | for all i = 1, ...,m .
(3) If 𝒗𝐸 is a vector in R𝑛 that satisfies 𝒈𝑇𝑖 𝒗𝐸 > −||𝒈𝑖 | | for some i = 1, ...,m , then, there exists an

𝜖 > 0 such that for every collection of �̂�𝑖 ’s in R
𝑛 such that | |𝒈𝑖 − �̂�𝑖 | | ≤ 𝜖 for all 𝑖 = 1, ...,𝑚 the

vector 𝒗𝐸 also satisfies �̂�𝑇𝑖 𝒗𝐸 > −||�̂�𝑖 | | for some i = 1, ...,m .

Proof. Refer to the Appendix Section A. □

Given that the gradients are L-Lipschitz continuous, we must have that | |∇𝑓𝑖 (𝒙𝑘 )−∇𝑓𝑖 (𝒙∞) | | → 0

as 𝑘 → ∞. Let us assume that 𝒙∞ is critical with ∇𝑓𝑖 (𝒙∞) ≠ 0 for all i = 1, ..., m. Under these

conditions the feasible set S∞ ≡ {𝒗 st. ∇𝑓𝑖 (𝒙∞)𝑇𝒗 ≤ −||∇𝑓𝑖 (𝒙∞) | | for all i = 1, ..., m } is empty, and

thus for any given 𝑅 > 0 the intersection between {𝒗 st. | |𝒗 | | ≤ 𝑅} and S∞ is empty. Hence, as a

consequence of Lemma 2.3 part 1 we have: for any 𝑅 > 0 there will exist an 𝜖 > 0 such that any

collection of �̂�𝑖 ’s in which | |�̂�𝑖 −∇𝑓𝑖 (𝒙∞) | | ≤ 𝜖 for all 𝑖 = 1, ...,𝑚 and any 𝒗 which satisfies | |𝒗 | | ≤ 𝑅

we have that the intersection between {𝒗 st. | |𝒗 | | ≤ 𝑅} and {𝒗 st. �̂�𝑇𝑖 𝒗 ≤ −||�̂�𝑖 | | for all i = 1,...,m }
is also empty. As a consequence of this fact, as ∇𝑓𝑖 (𝒙𝑘 ) approaches ∇𝑓𝑖 (𝒙∞), the value of | |𝑽𝑐 (𝒙𝑘 ) | |
must arbitrarily increase.

Now, let us assume that 𝒙∞ is non-critical, and hence, 𝑽𝑐 (𝒙∞) is non empty. We recall the

definition of the feasible set S∞ as S∞ ≡ {𝒗 st. ∇𝑓𝑖 (𝒙∞)𝑇𝒗 ≤ −||∇𝑓𝑖 (𝒙∞) | | for all i = 1, ..., m }, and,
we will refer to the interior of S∞ as the set of vectors that satisfy all the inequalities strictly, i.e.

the interior of S∞ is the set {𝒗 st. ∇𝑓𝑖 (𝒙∞)𝑇𝒗 < −||∇𝑓𝑖 (𝒙∞) | | for all i = 1, ..., m }. By considering

the vector 𝒗𝛿 ≡ (1 + 𝛿)𝑽𝑐 (𝒙∞) for any 𝛿 > 0 it is easy to see that 𝒗𝛿 is in the interior of S∞. As
a consequence of Lemma 2.3 part 2, for every 𝒗𝐼 in the interior of S∞ there exists an 𝜖 > 0 such

that for every collection of �̂�𝑖 ’s for 𝑖 = 1, ...,𝑚 that satisfy | |�̂�𝑖 − ∇𝑓𝑖 (𝒙∞) | | ≤ 𝜖 we will have 𝒗𝐼
also in the interior of {𝒗 st. �̂�𝑇𝑖 𝒗 ≤ −||�̂�𝑖 | | for all i = 1, ..., m }. The same can be said about points in

the exterior of S∞ by applying Lemma 2.3 part 3, where 𝒗𝐸 is said to be in the exterior of S∞ if

there exists an 𝑖 between 1 and𝑚 such that ∇𝑓𝑖 (𝒙∞)𝑇𝒗𝐸 > −||∇𝑓𝑖 (𝒙∞) | |. Hence, if any subsequence
of 𝑽𝑘 ’s converges, then, since it cannot converge to the interior of S∞ nor the exterior, it must

converge to the subset of S∞ where at least one of the constraints ∇𝑓𝑖 (𝒙∞)𝑇𝒗 ≤ −||∇𝑓𝑖 (𝒙∞) | | is
satisfied with an equality.

Now, notice that every point in the interior ofS𝑘 ≡ {𝒗 st. ∇𝑓𝑖 (𝒙𝑘 )𝑇𝒗 < −||∇𝑓𝑖 (𝒙𝑘 ) | | for all i = 1, ..., m }
provides an upper-bound on the value of | |𝑽𝑐 (𝒙𝑘 ) | | since 𝑽𝑐 (𝒙𝑘 ) is the minimizer of | |𝒗 | | over S𝑘 .
One such upper-bound is sufficient to recognize that 𝑽𝑐 (𝒙𝑘 ) remains bounded for 𝑘 > ¯𝑘 for some

¯𝑘 ∈ N. Thus, since bounded sequences must have at least one converging sub-sequence, all that is

left is to show that every such sub-sequence converges to 𝑽𝑐 (𝒙∞).
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Since every point in the interior of S𝑘 provides an upper-bound on the value of | |𝑽𝑐 (𝒙𝑘 ) | | we
know that lim𝑘→∞ | |𝑽𝑐 (𝒙𝑘 ) | | ≤ lim𝛿→0 | |𝒗𝛿 | | = | |𝑽𝑐 (𝒙∞) | |. Now, to see that lim𝑘→∞ | |𝑽𝑐 (𝒙𝑘 ) | | also
satisfies lim𝑘→∞ | |𝑽𝑐 (𝒙𝑘 ) | | ≥ | |𝑽𝑐 (𝒙∞) | | notice that if {𝒗 st. | |𝒗 | | ≤ 𝑅} ∩ S∞ is empty for some

𝑅 > 0, then, by Lemma 2.3 part 1 we have that for 𝜖 > 0 sufficiently small, any collection of �̂�𝑖 ’s
that satisfy | |�̂�𝑖 − ∇𝑓𝑖 (𝒙∞) | | ≤ 𝜖 will also have an empty intersection between {𝒗 st. | |𝒗 | | ≤ 𝑅} and
{𝒗 st. �̂�𝑇𝑖 𝒗 ≤ −||�̂�𝑖 for all i = 1, ..., m| |}. This is the case for any 𝑅 < | |𝑽𝑐 (𝒙∞) | |, and thus for any

𝑅 < | |𝑽𝑐 (𝒙∞) | | and for any 𝑘 ≥ ¯𝑘 for some sufficiently large
¯𝑘 ∈ N the value of | |𝑽𝑐 (𝒙∞) | | is greater

than or equal to𝑅. Taking the limit of𝑅 to | |𝑽𝑐 (𝒙∞) | | we obtain that lim𝑘→∞ | |𝑽𝑐 (𝒙𝑘 ) | | ≥ | |𝑽𝑐 (𝒙∞) | |.
Defining 𝒗 lim ≡ lim𝑘→∞ 𝑽𝑐 (𝒙𝑘 ), since we have established that | |𝒗 lim | | = | |𝑽𝑐 (𝒙∞) | | while

satisfying ∇𝑓𝑖 (𝒙∞)𝑇𝒗 lim ≤ −||∇𝑓𝑖 (𝒙∞) | | for all i = 1, ..., m (because it cannot be in the interior or

the exterior of S∞); and, since 𝑽𝑐 (𝒙∞) is the unique minimizer of | |𝒗 | | over S∞, we must conclude

that lim𝑘→∞ 𝑽𝑐 (𝒙𝑘 ) = 𝑽𝑐 (𝒙∞). □

Thus, Lemma 2.2 gives us a measure of proximity to critical conditions of multi-objective

optimization problems in terms of the central descent direction. In mono-objective optimization,

convergence to critical conditions are typically measured in terms of the norm of the gradient; that

is, non-critical points with small values of | |∇𝑓 (𝒙) | | are interpreted as “near critical”. From Lemma

2.2, in the multi-objective setting we can analogously interpret non-critical points as “near critical”

if either for some 𝑖 = 1, ...,𝑚 the value of | |∇𝑓𝑖 (𝒙) | | is small, or, if the value of 𝑽𝑐 (𝒙) is large. In
Figure 1 we illustrate a multi-objective optimization problem and the regions that approximate the

efficient set with the measures here delineated.

On the geometric properties and robustness of 𝑽𝑐 . The central descent direction in addition to

providing a measure of proximity to critical conditions that is complimentary to the measure used

in mono-objective optimization, it also enjoys of several geometric and robustness properties. Here

we highlight a few; the first is that

Proposition 2.4. The descent direction 𝑽𝑐 (𝒙)/| |𝑽𝑐 (𝒙) | | is the unit vector maximally distant from
non-descent directions R𝑛 \ {𝒗 st. ∇𝑓𝑖 (𝒙)𝑇𝒗 ≤ 0 for i = 1,...,m}.

Proof. Given a unit vector 𝒖 in {𝒗 st. ∇𝑓𝑖 (𝒙)𝑇𝒗 ≤ 0 for i = 1,...,m}, the 𝐿2 distance of 𝒖 to

R𝑛 \ {𝒗 st. ∇𝑓𝑖 (𝒙)𝑇𝒗 ≤ 0 for i = 1,...,m} is given by 𝑑 (𝒖) = min𝑖=1,...,𝑚 ∇𝑓𝑖 (𝒙)𝑇 𝒖/| |∇𝑓𝑖 (𝒙) | |. There-
fore, the maximization problem that defines the unit vector maximally distant from non-descent

directions can be expressed as

max𝑧,𝒖 𝑧

st. 𝑧 | |∇𝑓𝑖 (𝒙) | | ≤ ∇𝑓𝑖 (𝒙)𝑇 𝒖 for 𝑖 = 1, ...,𝑚;

| |𝒖 | | = 1;

which, by defining 𝑽 ≡ 𝒖/−𝑧 the objective max 𝑧 turns out to be equivalent to min | |𝑽 | |2, and,
the constraint 𝑧 | |∇𝑓𝑖 (𝒙) | | ≤ ∇𝑓𝑖 (𝒙)𝑇 𝒖 for 𝑖 = 1, ...,𝑚; turns out to be equivalent to −||∇𝑓𝑖 (𝒙) | | ≥
∇𝑓𝑖 (𝒙)𝑇 𝑽 for 𝑖 = 1, ...,𝑚. The remaining constraint of | |𝒖 | | = 1 can be dropped by recognizing that

|𝑧 | = 1/| |𝑽 | | is non-restrictive on the remaining variables. □

Proposition 2.4 ensures that the central descent direction is maximally distant from non-descent

directions as measured by the 𝐿2 norm. As a consequence, numerical errors or approximations in

the calculation of 𝑽𝑐/| |𝑽𝑐 | | are less likely to produce a non-descent direction when compared to any

other descent directions in the negative cone of the gradients. A similar claim can be done if only

orthogonal perturbations to the descent direction are considered, that is, the direction 𝑽𝑐/| |𝑽𝑐 | | also
happens to bemaximally distant fromnon-descent directions if the distance of 𝒖 in {𝒗 st. ∇𝑓𝑖 (𝒙)𝑇𝒗 ≤
0 for i = 1, ..., m} to non descent directions R𝑛 \ {𝒗 st. ∇𝑓𝑖 (𝒙)𝑇𝒗 ≤ 0 for i = 1,...,m} is measured only
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Fig. 1. The top figure depicts the level curves and the efficient set of the multi-objective optimization problem
with objective functions 𝑓1 (𝒙) ≡ (𝑥1 + 2)2 + 3𝑥2

2
and 𝑓2 (𝒙) ≡ 3𝑥2

1
+ (𝑥2 + 2)2. The bottom left depicts the

level curves of min{| |∇𝑓1 (𝒙) | |; | |∇𝑓1 (𝒙) | |} and the bottom right depicts the level curves of | |𝑽𝑐 (𝒙) | |. Both
measures are complementary to quantify proximity to critical conditions; the min{| |∇𝑓1 (𝒙) | |; | |∇𝑓1 (𝒙) | |}
measures proximity to local minima of the mono objective sub-problems, and, | |𝑽𝑐 (𝒙) | | measures proximity
to intermediate solutions of the multi-objective problem.

over the orthogonal plane defined by {𝒙 st. (𝒙 − 𝒖)𝑇 𝒖 = 0}. Hence, the direction 𝑽𝑐/| |𝑽𝑐 | | seems

to be a natural choice if the descent direction 𝒅 in line 3 of Algorithm 1 is obtained through

approximations rather than exact computations.

Proposition 2.5. Given a collection objective functions 𝑓1, ..., 𝑓𝑚 and a collection of strictly in-
creasing and differentiable transformations 𝑔1, ..., 𝑔𝑚 : R → R, the central descent direction 𝑽𝑐 (𝒙)
calculated with respect to the objective functions 𝑓1, ..., 𝑓𝑚 is equal to the central descent direction
calculated with respect to the objective functions 𝑔1 ◦ 𝑓1, ..., 𝑔𝑚 ◦ 𝑓𝑚 .
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Proof. The proof follows immediately from the chain rule:
𝜕
𝜕𝑥 𝑗
(𝑔𝑖 (𝑓𝑖 (𝒙))) = 𝑔′𝑖 (𝑓𝑖 (𝒙)) · 𝜕

𝜕𝑥 𝑗
𝑓𝑖 (𝒙).

Applying the chain rule to the central descent direction on the monotonically transformed problem

we find that argmin{ 1

2
| |𝑽 | |2 st. 𝑔′𝑖 (𝑓𝑖 (𝒙))∇𝑓𝑖 (𝒙)𝑇 𝑽 ≤ −||𝑔′𝑖 (𝑓𝑖 (𝒙))∇𝑓𝑖 (𝒙) | |} is equal to argmin{ 1

2
| |𝑽 | |2 st. ∇𝑓𝑖 (𝒙)𝑇 𝑽 ≤

−||∇𝑓𝑖 (𝒙) | |} since the terms 𝑔′𝑖 (𝑓𝑖 (𝒙)) cancel out. □

Thus, Proposition 2.5 ensures that the central descent direction is invariant to changes on the

scales of the objective functions. In contrast, the steepest descent direction in (1) is not only sensitive

to monotone transformations, but also, sensitive to linear transformations of the objectives; i.e. the

direction 𝑽 𝑠 (𝒙) obtained by considering the objective functions in 𝐹 (𝒙) ≡ [𝑓1 (𝒙), 𝑓2 (𝒙)]𝑇 is not

the same as the one obtained by considering 𝐹 (𝒙) ≡ [𝑓1 (𝒙), ^ 𝑓2 (𝒙)]𝑇 for ^ > 0 with ^ ≠ 1. This

property can dramatically warp the path taken by the descent direction algorithm if the scales

are not a-priori fine tuned, a requirement that might be difficult to meet since multi-objective

optimization is adopted precisely when the relative weights of the objectives is unknown. We

illustrate this contrast between 𝑽 𝑠 and 𝑽𝑐 in Figures 2 to 4. Figure 2 depicts the level sets of the

measure of proximity to critical conditions induced by 𝑽 𝑠 as well as the stream-lines (the curves

produced by “releasing a particle to flow in the direction of 𝑽 𝑠” ) of the problem illustrated in

Figure 1 when the objective functions are multiplied by different constants. The warping effect

can over-weigh one objective over the other producing contour-lines and stream-lines that can

even parallel the efficient set making the descent direction algorithm unnecessarily “go arround”

close-by solutions to converge at distant ones. And, this effect can be dramatically intensified

with different monotone transformations. Figure 3 shows both the contour-lines as well as the

stream-lines induced by 𝑽𝑐 , and, as can be seen the curves follow a more natural path towards a

close-by efficient solution irrespective of the scale adopted in the representation of the objective

functions. Finally, Figure 4 depicts 𝑽 𝑠 and 𝑽𝑐 for varying values of | |∇𝑓𝑖 (𝒙) | | for 𝑖 = 1, 2 as well as

an approximate the construction of 𝑽𝑐 .

3 INCREMENTAL CENTRAL DESCENT METHOD
In this section we delineate our main results. Here we describe a multi-objective incremental descent

approach and analyse both global guarantees as well as theoretical speed of convergence. The

choice of performing incremental approximations to the central descent, rather than the steepest

descent, seems to be well justified since, as demonstrated in the last section, the central descent

direction is robust under monotone transformations of the objective functions (i.e. no a priori

fine-tuning of the scales is necessary to avoid warping of the directions) and more importantly, it

is the direction farthest away from the non-descent directions. Hence, small errors in the estimate

ˆ𝒅 of 𝑽𝑐/| |𝑽𝑐 | | are less likely to produce a non-descent direction when compared to any other unit

vector in {𝒗 st. ∇𝑓𝑖 (𝒙)𝑇𝒗 ≤ 0 for i = 1,...,m}.
First we provide our global guarantees for vanishing step-sizes:

3.1 Global guarantees for vanishing step-sizes
In the following, all that is assumed is that the sequence of step-sizes {𝛼𝑘 }𝑘=1,2,... satisfy 𝛼𝑘 > 0 for

all 𝑘 and lim𝑘→∞ 𝛼𝑘 = 0 and

∑
𝑘∈N 𝛼𝑘 = ∞. This condition can be ensured by pre-specifying the
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Fig. 2. The top two images depict the level sets of the measure of proximity induced by the steepest descent
(1), i.e the level sets of min𝑽 ∈R𝑛 max𝑖=1,...,𝑚 ∇𝑓𝑖 (𝒙)𝑇 𝑽 + 1

2
| |𝑽 | |2. Since the steepest descent direction is not

metric-independent, the level sets of the measure of proximity can be warped (as it is on the left side) when
the objectives are not measured with some comparable scale (as on the right side). The path taken by the
steepest descent method is affected by the warping and can produce curves that are arbitrarily closet to the
efficient set and yet parallel the efficient set. The path of the steepest descent method (when the steps are
sufficiently small) will follow the stream lines depicted on the two lower images.

step-sizes (e.g. 𝛼𝑘 = 1/𝑘) or by performing a search in vanishing intervals. The algorithm described

bellow is initiated with arbitrary values for �̂� ∈ R𝑛 and non-null �̂�
1
, ..., �̂�𝑚 ∈ R𝑛 .

Algorithm 2: Increment central descent

1 initialize �̂� ∈ R𝑛 and �̂�
1
, ..., �̂�𝑚 ∈ R𝑛 \ 0 and 𝑘 ← 1 and 𝛼 ← 𝛼𝑘 and 𝑡 ← 1;

2 while True do
3 �̂�𝑡 ← ∇𝑓𝑡 (𝑥) and if �̂�𝑡 is null then stop;

4 �̂� ← argmin{| |𝑽 | |2 st. �̂�𝑇𝑖 𝑽 ≤ −||�̂�𝑖 | | for 𝑖 = 1, ...,𝑚} and if �̂� is empty then stop;

5 �̂� ← �̂� + 𝛼 �̂�/| |�̂� | | and 𝑘 ← 𝑘 + 1 and 𝛼 ← 𝛼𝑘 and 𝑡 ← (𝑡 + 1) mod𝑚;

6 end

We will now prove the convergence properties of Algorithm 2.

Theorem 3.1. Algorithm 2 produces a subsequence of estimates {�̂�𝑘 𝑗
} 𝑗=1,2,... such that as 𝑗 →∞

either (i) the gradient ∇𝑓𝑖 (�̂�𝑘 𝑗
) vanishes for some 𝑖 = 1, ...,𝑚; or (ii) the the central descent direction
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Fig. 3. The top image depicts the level sets of | |𝑽𝑐 (𝒙) | | (the same as the bottom right of Figure 1); and, the
bottom image depicts the stream lines induced by the central descent direction. Notice that since the central
descent direction is unaffected by the rescaling of the objective functions, these level sets are not warped
by different scales/representations of the same collection of objectives. Also, notice that proximity to the
minima of the mono-objective functions is not measured by this metric, as the level curves meet at a sharp
angle at each individual minima; instead it measures the angle between the gradients independently of their
norms. This produces (on the bottom figure) stream lines that are metric independent and are not warped by
arbitrary scaling choices.
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Fig. 4. The background image depicts the effect of changing the scales of the objective functions. The
adoption of different scales on the objective functions alter the sizes of the gradients 𝒈𝑖 ≡ ∇𝑓𝑖 (𝒙) for 𝑖 = 1, 2,
but not the directions of the gradients. Both size and direction of the central descent are unaffected by
these changes in scale, however the direction of 𝑽𝑠 described in (1) is affected by these changes in scale.
The size of 𝑽𝑠 is also affected by such changes, however, here we only depict the projections of the vectors
𝑽𝑠 and 𝑽𝑐 to the unit ball for ease of visualization. The smaller image in the bottom right circle depicts the
geometric construction of the vector 𝑽𝑐 . The central descent direction can be obtained by bisecting the angle
between −∇𝑓1 (𝒙) and −∇𝑓2 (𝒙); and, the value of | |𝑽𝑐 (𝒙) | | is obtained by intersecting perpendicular lines
from 𝒈

1
/| |𝒈

1
| | and 𝒈

2
/| |𝒈

2
| |. The longer the vector depicting 𝑽𝑐 (·) the closer 𝒈1

and 𝒈
2
are from pointing in

opposite directions.

𝑽𝑐 (�̂�𝑘 𝑗
) is unbounded; or (iii) all functions are unbounded from bellow and decrease indefinitely:

(𝑖) lim𝑗→∞ | |∇𝑓𝑖 (�̂�𝑘 𝑗
) | | = 0 or (𝑖𝑖) | |𝑽𝑐 (�̂�𝑘 𝑗

) | | → ∞ or (𝑖𝑖𝑖) lim𝑗→∞ 𝑓𝑖 (�̂�𝑘 𝑗
) = −∞.

for some i = 1,...,m for all i = 1,...,m
(4)

Proof. In this proof we will show that if (i) does not occur, then either (ii) or (iii) must occur.

The negation of (i) implies that | |∇𝑓𝑖 (�̂�𝑘 ) | | is lower-bounded by some positive real value 𝑐1 for all

𝑖 = 1, ...,𝑚 and all 𝑘 ∈ N is thus assumed henceforth.

Notice that for any iteration 𝑘 ≥ 𝑚 + 1 and any 𝑖 = 1, ...,𝑚 we have that | |∇𝑓𝑖 (�̂�𝑘 ) − �̂�𝑖,𝑘 | | =
| |∇𝑓𝑖 (�̂�𝑘 ) − ∇𝑓𝑖 (�̂�𝜏 ) | | ≤ 𝐿 | |�̂�𝑘 − �̂�𝜏 | | for some 𝜏 between 𝑘 −𝑚 and 𝑘 ; and furthermore | |�̂�𝑘 − �̂�𝜏 | | ≤
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| |�̂�𝑘 − �̂�𝑘−1 | | + | |�̂�𝑘−1 − �̂�𝑘−2 | | + ... + ||�̂�𝑘−𝑚+1 − �̂�𝑘−𝑚 | | =
∑𝑘

𝑘−𝑚 𝛼 𝑗 ; and therefore

| |∇𝑓𝑖 (�̂�𝑘 ) − �̂�𝑖,𝑘 | | ≤ 𝐿

𝑘∑︁
𝑘−𝑚

𝛼 𝑗 for any 𝑘 ≥ 𝑚 + 1 and 𝑖 = 1, ...𝑚; (5)

and thus | |∇𝑓𝑖 (�̂�𝑘 ) − �̂�𝑖,𝑘 | | goes to zero as 𝑘 increases. With this fact established we will now analyse

two complementary cases:

Case 1. There exists a subsequence {𝑘 𝑗 } 𝑗=1,...,∞ for which lim𝑗→∞ | |�̂�𝑘 𝑗
| | = ∞.

Case 2. There exists an upper-bound 𝑐2 > 0 for which | |�̂�𝑘 | | ≤ 𝑐2 for every 𝑘 ∈ N.

Analysis of Case 1.
Under the conditions of Case 1 all that is needed is to show thatwhen | |�̂�𝑘 𝑗

| | → ∞ for 𝑗 →∞, then
the points �̂�𝑘 produce a subsequence of central descent directions 𝑽𝑘 ≡ argmin{| |𝑽 | |2 st. 𝑓𝑖 (�̂�𝒌 )𝑇𝑉 ≤
−||∇𝑓𝑖 (�̂�𝑘 ) | |} that diverge. For this, notice that over the subsequence in which | |�̂�𝑘 𝑗

| | diverges we
have: (A) the vectors �̂�𝑖,𝑘/| |�̂�𝑖,𝑘 | | are contained in a unit ball, and thus, there must exist a converging

subsequence where lim𝑘→∞ �̂�𝑖,𝑘/| |�̂�𝑖,𝑘 | | = 𝒖𝑖 ; and (B) | |∇𝑓𝑖 (�̂�𝑘 ) | | is lower-bounded by some positive

real value 𝑐1 for all 𝑖 = 1, ...,𝑚 and all 𝑘 ∈ N; and (C) the value of | |∇𝑓𝑖 (�̂�𝑘 ) − �̂�𝑖,𝑘 | | goes to zero as 𝑘
increases. The combination of (A), (B) and (C) imply that ∇𝑓𝑖 (�̂�𝑘 )/| |∇𝑓𝑖 (�̂�𝑘 ) | | also converges to 𝒖𝑖 ,
and thus, by Lemma 2.3 part 1 we conclude that the points �̂�𝑘 produce a subsequence of central

descent directions 𝑽𝑘 ≡ argmin{| |𝑽 | |2 st. 𝑓𝑖 (�̂�𝑘 )𝑇𝑉 ≤ −||∇𝑓𝑖 (�̂�𝑘 ) | |} that diverge.

Analysis of Case 2.
Lipschitz continuity of the gradients ensures that for each i = 1,...,m we have

𝑓𝑖 (�̂�𝑘+1) − 𝑓𝑖 (�̂�𝑘 ) ≤ ∇𝑓𝑖 (�̂�𝑘 )𝑇 (�̂�𝑘+1 − �̂�𝑘 ) + 1

2
𝐿 | |�̂�𝑘+1 − �̂�𝑘 | |2; (6)

and thus

𝑓𝑖 (�̂�𝑘+1) − 𝑓𝑖 (�̂�𝑘 ) ≤ 𝛼𝑘∇𝑓𝑖 (�̂�𝑘 )𝑇 �̂�𝑘/| |�̂�𝑘 | | + 1

2
𝐿𝛼2

𝑘
= 𝛼𝑘 [�̂�𝑖,𝑘 + (∇𝑓𝑖 (�̂�𝑘 ) − �̂�𝑖,𝑘 )]𝑇 �̂�𝑘/| |�̂�𝑘 | | + 1

2
𝐿𝛼2

𝑘

≤ 𝛼𝑘 �̂�
𝑇
𝑖,𝑘
�̂�𝑘/| |�̂�𝑘 | | + 𝛼𝑘𝐿

𝑘∑︁
𝑘−𝑚

𝛼 𝑗 + 1

2
𝐿𝛼2

𝑘
≤ −𝛼𝑘 | |�̂�𝑖,𝑘 | |/| |�̂�𝑘 | | + 𝛼𝑘𝐿

𝑘∑︁
𝑘−𝑚

𝛼 𝑗 + 1

2
𝐿𝛼2

𝑘
;

where the first inequality of the second line is a consequence of (5) and the second inequality is a con-

sequence of the definition of �̂�𝑘 . Now, using (5) a second time on the first term we obtain −||�̂�𝑖,𝑘 | | ≤
−||∇𝑓𝑖 (�̂�𝑘 ) | |+𝐿

∑𝑘
𝑘−𝑚 𝛼 𝑗 and thus −𝛼𝑘 | |�̂�𝑖,𝑘 | |/| |�̂�𝑘 | | ≤ −𝛼𝑘 | |∇𝑓𝑖 (�̂�𝑘 ) | |/| |�̂�𝑘 | |+𝛼𝑘𝐿(

∑𝑘
𝑘−𝑚 𝛼 𝑗 )/| |�̂�𝑘 | |,

and since by construction | |�̂�𝑘 | | ≥ 1 (when it exists) and by assumption | |∇𝑓𝑖 (�̂�𝑘 ) | | ≥ 𝑐1, then

we conclude that the first term is upper-bounded by −𝛼𝑘𝑐1/| |�̂�𝑘 | | + 𝛼𝑘𝐿
∑𝑘

𝑘−𝑚 𝛼 𝑗 . Hence for every

𝑖 = 1, ...,𝑚 and every 𝑘 ≥ 𝑚 + 1 we have

𝑓𝑖 (�̂�𝑘+1) − 𝑓𝑖 (�̂�𝑘 ) ≤ 𝛼𝑘

(
2𝐿

𝑘∑︁
𝑘−𝑚

𝛼 𝑗 + 1

2
𝐿𝛼𝑘 −

𝑐1

| |�̂�𝑘 | |

)
. (7)

Furthermore, under the conditions of Case 2, there exists a constant 𝑐2 > 0 such that | |�̂�𝑘 | | ≤ 𝑐2

and thus −𝑐1/| |�̂�𝑘 | | ≤ −𝑐1/𝑐2. Inserting this back into (7) we obtain

𝑓𝑖 (�̂�𝑘+1) − 𝑓𝑖 (�̂�𝑘 ) ≤ 𝛼𝑘

(
2𝐿

𝑘∑︁
𝑘−𝑚

𝛼 𝑗 + 1

2
𝐿𝛼𝑘 − 𝑐1/𝑐2

)
.

Now notice that the first term within the brackets vanishes with increasing values of 𝑘 , and thus

for sufficiently large 𝑘 we have 2𝐿
∑𝑘

𝑘−𝑚 𝛼 𝑗 + 1

2
𝐿𝛼𝑘 ≤ 1

2
𝑐1/𝑐2. Hence, for all 𝑖 = 1, ...,𝑚 and for all
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𝑘 ≥ ¯𝑘 , for some
¯𝑘 ∈ N, we have

𝑓𝑖 (�̂�𝑘+1) − 𝑓𝑖 (�̂�𝑘 ) ≤ − 1

2
𝛼𝑘𝑐1/𝑐2 . (8)

Summing up the terms for 𝑘 ≥ ¯𝑘 in equation (8) we obtain:[
lim

𝑘→∞
𝑓𝑖 (�̂�𝑘 )

]
− 𝑓𝑖 (�̂� ¯𝑘 ) ≤ − 1

2

𝑐1

𝑐2

∑︁
𝑘≥ ¯𝑘

𝛼𝑘 = −∞.

In this case all functions are unbounded and the sequence produces a subsequence of points in

which all functions are simultaneously decreased indefinitely. This concludes our proof. □

3.2 A global 1/
√
𝑘 convergence of critical conditions for bounded functions

Assuming all 𝑓𝑖 are bounded from bellow we include one additional gradient computation per

iteration and an Armijo-type sufficient decrease condition with some pre-specified parameter

𝛽 ∈ (0, 1) for the construction of the step size:

Algorithm 3: Increment central descent w/ inexact line-search

1 initialize �̂� ∈ R𝑛 and �̂�
1
, ..., �̂�𝑚 ∈ R𝑛 \ 0 and 𝑘 ← 1 and 𝑗 ← 1 and 𝑡 ← 2;

2 while While True do
3 �̂� 𝑗 ← ∇𝑓𝑗 (𝑥); �̂�𝑡 ← ∇𝑓𝑡 (𝑥) and if �̂� 𝑗 or �̂�𝑡 is null then stop;

4 �̂� ← argmin{| |𝑽 | |2 st. �̂�𝑇𝑖 𝑽 ≤ −||�̂�𝑖 | | for 𝑖 = 1, ...,𝑚} and if �̂� is empty then stop;

5 𝛼 ← max𝑙=0,1,...,∞𝛼 = (1/2)𝑙 st. 𝑓𝑗 (�̂� + 𝛼 �̂�/| |�̂� | |) − 𝑓𝑗 (�̂�) ≤ 𝛽𝛼�̂�𝒋
𝑇 �̂�/| |�̂� | |;

6 �̂� ← �̂� + 𝛼 �̂�/| |�̂� | | and 𝑘 ← 𝑘 + 1 ;

7 choose 𝑡 ≠ 𝑗 between 1 and𝑚 and if 𝑓𝑡 (�̂�) < 𝑓𝑗 (�̂�) then swap 𝑗 and 𝑡 ;

8 end

Lemma 3.2.

𝛼 ≥ 𝛼min ≡ min

{
1−𝛽
2𝐿𝑗

, 1

}
| |�̂� 𝑗 | |/| |�̂� | | (9)

Proof. When 2𝛼 does not satisfy sufficient decrease condition we have

𝑓𝑗 (�̂� + 2𝛼 �̂�/| |�̂� | |) − 𝑓𝑗 (�̂�) > 𝛽2𝛼∇𝑓𝑗 (�̂�)𝑇 �̂�/| |�̂� | |
From Lipschits condition:

𝑓𝑗 (�̂� + 2𝛼 �̂�/| |�̂� | |) − 𝑓𝑗 (�̂�) ≤ 2𝛼∇𝑓𝑗 (�̂�)𝑇 �̂�/| |�̂� | | +
𝐿𝑗

2
| |2𝛼 �̂�

| |�̂� | |
| |2

=⇒ 2𝛼 (1 − 𝛽)∇𝑓𝑗 (�̂�)𝑇 �̂�/| |�̂� | | + 2𝐿 𝑗𝛼
2 ≥ 0

=⇒ −𝐿 𝑗𝛼 ≤ (1 − 𝛽)∇𝑓𝑗 (�̂�)𝑇 �̂�/| |�̂� | | ≤ −(1 − 𝛽) | |∇𝑓𝑗 (�̂�) | |/| |�̂� | |

=⇒ 𝛼 ≥ 1 − 𝛽
𝐿 𝑗

| |∇𝑓𝑗 (�̂�) | |/| |�̂� | | = 1−𝛽
2𝐿𝑗
| |�̂� 𝑗 | |/| |�̂� | |

□

Theorem 3.3. Suppose all functions 𝑓𝑖 are bounded from bellow and let 𝑓 min be a lower bound on
all 𝑓𝑖 . The incremental central descent method with inexact line searching generates a sequence such
that:

min

0≤𝑙≤𝑘−1

min𝑡=1,...,𝑚 | |∇𝑓𝑡 (�̂�𝑙 ) | |
| |�̂� 𝑙 | |

≤

√√√√√√
1

𝑘

©«
𝑓1 (�̂�0) − 𝑓 min

min

{
𝛽 (1−𝛽)

2𝐿
, 𝛽

} ª®®¬. (10)
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Proof. In each iteration the following inequality holds for the objective function indexed by 𝑗

𝑓𝑗 (�̂�𝑘+1) − 𝑓𝑗 (�̂�𝑘 ) ≤ 𝛽𝛼𝑘∇𝑓𝑗 (�̂�𝑘 )𝑇 �̂�/| |�̂� | | ≤ −𝛽𝛼𝑘 | |∇𝑓𝑗 (�̂�𝑘 ) | |/| |�̂�
𝑘 | |

and therefore

𝑓𝑗 (�̂�𝑘 ) − 𝑓𝑗 (�̂�𝑘+1) ≥ 𝛽𝛼𝑘 | |∇𝑓𝑗 (�̂�𝑘 ) | |/| |�̂� | | ≥ 𝛽𝛼min | |∇𝑓𝑗 (�̂�𝑘 ) | |/| |�̂�
𝑘 | |

= 𝛽 min

{
1 − 𝛽

2𝐿
, 1

}
| |∇𝑓𝑗 (�̂�𝑘 ) | |2/| |�̂� | |2 ≥ min

{
𝛽 (1 − 𝛽)

2𝐿
, 𝛽

}
min

𝑡=1,...,𝑚
| |∇𝑓𝑡 (�̂�𝑘 ) | |2/| |�̂� | |2 .

Now, let the index 𝑗 of iteration 𝑘 ′ be represented by 𝑗 (𝑘 ′). Notice that because of line 7 of Algorithm
3 we have 𝑓𝑗 (𝑘′) (�̂�𝑘

′+1) ≥ 𝑓𝑗 (𝑘′+1) (�̂�𝑘
′+1). Thus,

𝑓𝑗 (𝑘′) (�̂�𝑘
′) − 𝑓𝑗 (𝑘′+1) (�̂�𝑘

′+1) ≥ 𝑓𝑗 (𝑘′) (�̂�𝑘
′) − 𝑓𝑗 (𝑘′) (�̂�𝑘

′+1)
and therefore, between iterations, we obtain a decrease in the function values indexed by 𝑗 lower-

bounded by

𝑓𝑗 (𝑘′) (�̂�𝑘
′) − 𝑓𝑗 (𝑘′+1) (�̂�𝑘

′+1) ≥ min

{
𝛽 (1 − 𝛽)

2𝐿
, 𝛽

}
min

𝑡=1,...,𝑚
| |∇𝑓𝑡 (�̂�𝑘

′) | |2/| |�̂�𝑘′ | |2. (11)

By summing the terms in equation (11) for varying for values of 𝑘 ′ between 0 and 𝑘 − 1 we find:

𝑓𝑗 (0) (�̂�0) − 𝑓𝑗 (𝑘−1) (�̂�𝑘−1) ≥ min

{
𝛽 (1 − 𝛽)

2𝐿
, 𝛽

} 𝑘−1∑︁
𝑙=0

min

𝑡=1,...,𝑚
| |∇𝑓𝑡 (�̂�𝑙 ) | |2/| |�̂�

𝑙 | |2.

And therefore

𝑓𝑗 (0) (�̂�0) − 𝑓 min ≥ 𝑘 min

{
𝛽 (1 − 𝛽)

2𝐿
, 𝛽

}
min

0≤𝑙≤𝑘−1

min

𝑡=1,...,𝑚
| |∇𝑓𝑡 (�̂�𝑙 ) | |2/| |�̂�

𝑙 | |2

=⇒ 1

𝑘

©«
𝑓1 (�̂�0) − 𝑓 min

min

{
𝛽 (1−𝛽)

2𝐿
, 𝛽

} ª®®¬ ≥ min

0≤𝑙≤𝑘−1

min

𝑡=1,...,𝑚
| |∇𝑓𝑡 (�̂�𝑙 ) | |2/| |�̂�

𝑙 | |2.

Which completes our proof. □

Theorem 3.3 provides, for the first time, a positive answer to question Q2; i.e. it is possible to
produce the same 𝑂 (1/

√
𝑘) query complexity as mono-objective optimization with a global cost

that is unaffected by increasing values of𝑚. The method delineated makes use of two gradients per

iteration and one mono-objective inexact line search irrespective of the value of𝑚. Furthermore,

since the inexact search problem solved by Algorithm 3 is identical to the one tackled in [26], if line

5 were substituted with modern line search alternatives with sub-logarithmic complexity, such as

the ones described in [25, 26], we can furthermore guarantee that the inexact Armijo-type search

has a vanishing contribution to the overall cost when compared to the gradient computations.

4 DISCUSSIONS
Current state-of-the-art solvers for multi-objective optimization problems require computing the

gradients of all𝑚 objective functions per iteration and one𝑚 dimensional line-search to produce

a worst case convergence to critical conditions at the rate of 𝑂 (1/
√
𝑘), where 𝑘 is the iteration

count. Here, we propose an incremental descent method that achieves the same rate of 𝑂 (1/
√
𝑘)

with at most two gradient computations per iteration and one mono-objective line search; i.e.

a reduction in the computational cost by a factor of 𝑚. Furthermore, unlike other incremental

strategies developed in the mono-objective literature which require convexity type requirements,
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these results are obtained solely under the assumption that the objective functions have 𝐿−Lipschitz
continuous gradients.

The methods here developed make use of a brand new descent direction much similar to the

Cauchy’s steepest descent, which we term the central descent direction. The central descent is
shown to have improved robustness and geometric guarantees which are not shared by other

directions considered so far in the literature. And, when approximated incrementally, it allows

the construction of the method here proposed with a computational cost that is unaffected by

increasing values of𝑚.

Future work. The results here attained produce a convergence with a query complexity matching

that of mono-objective optimization. However, as mentioned in the discussion of P1 to P3, since
multi-objective optimization can be seen as a relaxation to mono-objective optimization, it is natural

to expect that increasing values of𝑚 should reduce the overall computational cost of the search,

specifically when the dependence on the stopping criteria is made explicit. This is so because a

larger area of the solution space is considered near-critical with the increase in the number of

objectives. Since in this paper we focused solely on the iteration cost, the dependence on the

stopping criteria remained open, and thus, with future work the methods here developed may

prove to have a diminishing cost with increasing values of𝑚 rather than a fixed cost as the results

reported here. Furthermore, our formulation despite having attained a reduced query complexity,

it still requires a memory cost that is dependent and increasing with𝑚. It might be possible to

exploit the fact that each gradient only shows up as a restriction in the formulation of (3), and,

formulate an update scheme in the computation of �̂� that might mitigate and even eliminate the

increasing memory cost with increasing values of𝑚. Another compelling direction of research is

to investigate if it is possible to exploit the “opposite direction” of scalarization; i.e. to formulate

multi-objective relaxations of mono-objective problems with the intent of reducing the overall

query complexity of the problem. We are unaware of any research done in this direction and we

believe a mapping of the trade-offs associated with such a relaxation might prove to open brand

new methods of solving classical problems.
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A PROOF OF AUXILIARY LEMMA 2.3
Proof. Part 1.Define 𝜖 (𝑅) as any positive value strictly less than 𝜖∗ (𝑅) ≡ 𝑧 (𝑅)+1

𝑅+1 min𝑗 {| |𝒈 𝑗 | | for j = 1, ..., m}
where 𝑧 (𝑅) is uniquely defined as:

𝑧 (𝑅) ≡


min𝑧∈R,𝒗∈R𝑛 𝑧

st. 𝒈𝑇𝑖 𝒗 ≤ 𝑧 | |𝒈𝑖 | | for all i = 1,...,m;

| |𝒗 | | ≤ 𝑅.

(12)

Notice that since the intersection of {𝒗 st. | |𝒗 | | ≤ 𝑅} with S is empty, it must be that 𝑧 (𝑅) is
strictly greater than −1 which implies that 𝜖∗ (𝑅) is strictly greater than zero. Furthermore, notice

that for any 𝒗 which satisfies | |𝒗 | | ≤ 𝑅 we will have that for some 𝑖 between 1 and𝑚 the relation

𝒈𝑇𝑖 𝒗 ≥ 𝑧 (𝑅) | |𝒈𝑖 | | holds. This is because only for the minimizers 𝒗∗, 𝑧∗ of (12) that 𝒈𝑇𝑖 𝒗 equates to

𝑧 (𝑅) | |𝒈𝑖 | | on (at least) one value of i between 1 and m. For non-optimal values of 𝒗, there will exist
an 𝑖 where the condition 𝒈𝑇𝑖 𝒗 ≤ 𝑧 (𝑅) | |𝒈𝑖 | | must be broken. Thus, consider a collection of �̂�𝑖 ’s in
which | |�̂�𝑖 − 𝒈𝑖 | | ≤ 𝜖 (𝑅) for all 𝑖 = 1, ...,𝑚 and any 𝒗 which satisfies | |𝒗 | | ≤ 𝑅; then, we have that

for some 𝑖 the following must hold:

�̂�𝑇𝑖 𝒗 = 𝒈𝑇𝑖 𝒗 + (�̂�𝑖 − 𝒈𝑖 )𝑇𝒗 ≥ 𝑧 (𝑅) | |𝒈𝑖 | | − 𝜖 (𝑅) · 𝑅. (13)

What we must show is that the right hands side of (13) is strictly greater than −||�̂�𝑖 | |. This follows
from

𝑧 (𝑅) | |𝒈𝑖 | | − 𝜖 (𝑅) · 𝑅 > −||𝒈𝑖 | | ⇐⇒ −𝜖 (𝑅) · 𝑅 > −𝑧 (𝑅) | |𝒈𝑖 | | − | |�̂�𝑖 | |,
which holds if and only if

1

𝑅

[
𝑧 (𝑅) | |𝒈𝑖 | | + | |�̂�𝑖 | |

]
> 𝜖 (𝑅). (14)

Now observing that

1

𝑅

[
𝑧 (𝑅) | |𝒈𝑖 | | + | |�̂�𝑖 | |

]
≥ 1

𝑅

[
𝑧 (𝑅) | |𝒈𝑖 | | + | |𝒈𝑖 | | − 𝜖 (𝑅)

]
;

and, the right hand side is greater then 𝜖 (𝑅) because
1

𝑅

[
𝑧 (𝑅) | |𝒈𝑖 | | + | |𝒈𝑖 | | − 𝜖 (𝑅)

]
> 𝜖 (𝑅)

⇐⇒ 1

𝑅

[
𝑧 (𝑅) | |𝒈𝑖 | | + | |𝒈𝑖 | |

]
> (1 + 1/𝑅)𝜖 (𝑅)

⇐⇒ 𝑧 (𝑅)+1
𝑅+1 | |𝒈𝑖 | | > 𝜖 (𝑅);

and, by the definition of 𝜖 (𝑅), this inequality holds.

Part 2. If 𝒗𝐼 satisfies 𝒈𝑇𝑖 𝒗𝐼 < −||𝒈𝑖 | | for all i = 1, ...,m , then clearly 𝑠𝑖 = 𝒈𝑇𝑖 𝒗𝐼 + ||𝒈𝑖 | | < 0 for all

𝑖 = 1, ...,𝑚. Now, chose any 𝜖 > 0 such that 𝜖 (1 + ||𝒗𝐼 | |) < −𝑠𝑖 for all 𝑖 = 1, ...,𝑚. Notice that

�̂�𝑇𝑖 𝒗𝐼 = 𝒈𝑇𝑖 𝒗𝐼 + (�̂�𝑖 − 𝒈𝑖 )𝑇𝒗𝐼 = 𝒈𝑇𝑖 𝒗𝐼 + ||𝒈𝑖 | | − | |𝒈𝑖 | | + (�̂�𝑖 − 𝒈𝑖 )𝑇𝒗𝐼 ;
and thus

�̂�𝑇𝑖 𝒗𝐼 ≤ 𝑠𝑖 − ||𝒈𝑖 | | + 𝜖 | |𝒗𝐼 | | ≤ 𝑠𝑖 − ||�̂�𝑖 | | + 𝜖 + 𝜖 | |𝒗𝐼 | | = 𝑠𝑖 − ||�̂�𝑖 | | + 𝜖 (1 + ||𝒗𝐼 | |);

and, since 𝜖 was chosen to satisfy 𝜖 (1 + ||𝒗𝐼 | |) < −𝑠𝑖 for all 𝑖 = 1, ...,𝑚, we have that �̂�𝑇𝑖 𝒗𝐼 < −||�̂�𝑖 | |
for all 𝑖 = 1, ...,𝑚.
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Part 3. If 𝒗𝐸 satisfies 𝒈𝑇𝑖 𝒗𝐸 > −||𝒈𝑖 | | for some i = 1, ...,m , then clearly for one such 𝑖 = 𝑖∗

that satisfies this inequality we have 𝑠𝑖∗ = 𝒈𝑇
𝑖∗𝒗𝐸 + ||𝒈𝑖∗ | | > 0. Now, chose any 𝜖 > 0 such that

𝜖 (1 + ||𝒗𝐸 | |) < 𝑠𝑖∗ . Notice that

�̂�𝑇𝑖∗𝒗𝐸 = 𝒈𝑇𝑖∗𝒗𝐸 + (�̂�𝑖∗ − 𝒈𝑖∗ )𝑇𝒗𝐸 = 𝒈𝑇𝑖∗𝒗𝐸 + ||𝒈𝑖∗ | | − | |𝒈𝑖∗ | | + (�̂�𝑖∗ − 𝒈𝑖∗ )𝑇𝒗𝐸 ;

and thus

�̂�𝑇𝑖∗𝒗𝐸 ≥ 𝑠𝑖∗ − ||𝒈𝑖∗ | | − 𝜖 | |𝒗𝐸 | | ≥ 𝑠𝑖∗ − ||�̂�𝑖∗ | | − 𝜖 − 𝜖 | |𝒗𝐸 | | = 𝑠𝑖∗ − ||�̂�𝑖∗ | | − 𝜖 (1 + ||𝒗𝐸 | |);
and, since 𝜖 was chosen to satisfy 𝜖 (1 + ||𝒗𝐸 | |) < 𝑠𝑖∗ we have that �̂�

𝑇
𝑖∗𝒗𝐸 > −||�̂�𝑖∗ | |. □
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