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ABSTRACT

The stochastic variational inequality problem (SVIP) is an equilibrium model that
includes random variables and has been widely applied in various fields such as eco-
nomics and engineering. Expected residual minimization (ERM) is an established
model for obtaining a reasonable solution for the SVIP, and its objective function
is an expected value of a suitable merit function for the SVIP. However, the ERM
is restricted to the case where the distribution is known in advance. We extend
the ERM to ensure the attainment of robust solutions for the SVIP under the un-
certainty distribution (the extended ERM is referred to as distributionally robust
expected residual minimization (DRERM), where the worst-case distribution is de-
rived from the set of probability measures in which the expected value and variance
take the same sample mean and variance, respectively). Under suitable assump-
tions, we demonstrate that the DRERM can be reformulated as a deterministic
convex nonlinear semidefinite programming to avoid numerical integration.
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1. Introduction

In this study, we consider the following variational inequality problem with a random
vector ξ: Find x∗ ∈ S such that

〈F (x∗, ξ), x− x∗〉 ≥ 0 ∀x ∈ S, (1)

for ξ ∈ Ξ, almost surely,

where F : ℜn × Ξ → ℜn, and S ⊂ ℜn is closed and convex set. Hereafter, we consider
the case where the probability distribution of the random vector ξ may be unknown
and provided only partial information, and let Ξ ⊆ ℜm be a closed convex set referred
to as the support of distributions of ξ. System (1) is known as the stochastic varia-
tional inequality problem (SVIP), and is applied in several fields such as economics or
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engineering to design a market or traffic model, respectively. In particular, when the
set S is given as the nonnegative orthant ℜn

+ := {x ∈ ℜn | x ≥ 0}, SVIP (1) can be
deduced as the stochastic nonlinear complementarity problem (SNCP): Find x∗ such
that

x∗ ≥ 0, F (x∗, ξ) ≥ 0, 〈F (x∗, ξ), x∗〉 = 0, (2)

and it has also been studied for a long time. If the mapping F is linear, SNCP (2) is
referred to as the stochastic linear complementarity problem (SLCP).

In general, there may be no solution that satisfies (1) or (2) for almost every ξ ∈ Ξ;
thus, the important goal is to find a reasonable solution that minimizes the violation of
(1). To obtain such solutions, several models have been proposed such as the expected
value (EV) model, expected residual minimization (ERM) model, and distributionally
robust model.

The EV model [12] considers the following deterministic variational inequality:

〈F̂ (x∗), x− x∗〉 ≥ 0 ∀x ∈ S, (3)

where F̂ (x) := E [F (x, ξ)]. Note that an alternative way can also be considered for the
expected value of F , such as F (x,E [ξ]); however, this is not equivalent to the mapping

F̂ in general.
On the other hand, the ERMwas proposed by Chen and Fukushima [5] for the SLCP.

The primary purpose was to reformulate (2) as a stochastic optimization problem by
using a merit function for the LCP, e.g., the squared Fischer–Burmeister function.
They verified that the ERM tends to output more conservative solutions compared
with the EV because the ERM is designed to minimize the mean distance to the
solution set of VI for each ξ ∈ Ξ, while the EV only considers the mean F̂ of the
mapping F (·, ξ).

As the natural extension, the ERM for SVIP (1) can be considered as follows by
using a merit function f(·, ξ) : ℜn → ℜ+ for variational inequalities:

(ERM) min E [f(x, ξ)]
s.t. x ∈ S,

where the function f(·, ξ) satisfies the following properties for any fixed ξ ∈ Ξ:

(i) f(x, ξ) ≥ 0 for every x ∈ S;
(ii) x∗ ∈ S is a solution of the VIP if and only if f(x∗, ξ) = 0.

To date, several ERMmodels have been proposed corresponding to each merit function
[7, 15, 16].

However, the ERM has two drawbacks. First, its distribution of the random vector ξ
is assumed to be known in spite of the fact that it may not be observed in various real
situations. Even if one can estimate a distribution from observations, the reliability
and robustness of solutions for SVIP (1) or SNCP (2) are not guaranteed unless the
estimation is sufficiently close to the true distribution, which is referred to as ‘black
swans’ in risk theory. Second, the ERM requires a numerical integration such as the
(quasi-)Monte Carlo method to evaluate the expected residual value. However, the
numerical integration is computationally expensive in general; it is advisable to avoid
such a sample-based approach.
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To tackle these issues, Zhu et al. [25] proposed the following conservative approxi-
mation model for SNCP (2):

min
x∈ℜn

sup
P∈P

{EP [Ψ(x, ξ)] | P ({F (x, ξ) ≥ 0} ∩ Ξ) ≥ 1− ε}
s.t. x ≥ 0,

(4)

where 0 < ε < 1 is a tolerance parameter, and Ψ: ℜn × Ξ → ℜ is a complementarity
measure, e.g., Ψ(x, ξ) = ‖x◦F (x, ξ)‖22, where ◦ denotes the Hadamard product defined
by x ◦ y = (x1y1, x2y2, . . . , xnyn) for the vectors x ∈ ℜn and y ∈ ℜn. Here, EP [·] is
the expected value with respect to a distribution function P (·) ∈ P, where P is an
uncertainty set of the distribution functions supported over Ξ called an ambiguity set.
They considered P as the following moment ambiguity set:

P =
{

P ∈ MΞ

∣

∣

∣
EP [ξ] = µ0,EP [ξξ

⊤] = Σ0 + µ0µ
⊤
0

}

, (5)

where MΞ denotes a set of all probability measures supported over Ξ, and µ0 and Σ0

respectively denote the (estimated) mean and variance of ξ from observation. Then
they reformulated (4) into a nonlinear semidefinite programming problem (NSDP).
In the definition of (5), however, it is implicitly assumed that an observer knows
the exact mean µ0 and variance Σ0. In the absence of this assumption, the model
may not perform properly because observation errors are not considered. In terms of
the distributionally robust optimization (DRO), it is often considered that µ0 and Σ0

cannot be estimated exactly, e.g., the lack of sample data, which motivates us to adopt
a more general moment ambiguity set.

In this study, we propose a distributionally robust model of SVIP (1) under uncer-
tainty of distribution, where the ambiguity set is based on Delage and Ye [8] (eq. (10)
in Assumption 1). Note that our methodology differs from an analysis of the (quali-
tative or quantitative) statistical robustness [11, 13, 14] of a solution obtained from
a sample average approximation approach, whose data may contain noise; this is one
of the key concepts to study a stochastic model under the uncertainty distribution.
This paper rather focuses on distributional robustness by constructing the ambiguity
set with the data. We propose the following distributionally robust ERM (DRERM)
model:

(DRERM) min sup
P∈P

EP [f(x, ξ)]

s.t. x ∈ S.

This model can be regarded as an extension of the ERM and utilizes some remarkable
aspects as stated below: We illustrate a reformulation of (DRERM) into an NSDP
under certain suitable assumptions. Consequently, it is not required to compute nu-
merical integrals to evaluate the expected value of the stochastic gap functions.

In this paper, we mainly focus on the following regularized gap function [10] as a
merit function f in (DRERM):

f(x, ξ) = fα(x, ξ) := max
y∈S

{

〈F (x, ξ), x − y〉 − 1

2α
‖y − x‖2

}

. (6)

where α > 0 is a regularization parameter. When S = ℜn, the regularized gap function
is reduced to (α/2)‖F (x, ξ)‖2 . Therefore, the ERM with fα is regarded as an extension
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of the least square problem, and hence it is popular [1, 6, 15, 16]. Moreover, as we will
see in Section 2.2, (DRERM) with fα can be reformulated into a convex NSDP for
certain SVIPs. Note that the NSDP approximation proposed in [25] is not convex in
general.

The remainder of this paper is organized as follows. In Section 2, we propose an
NSDP model that conservatively approximates (DRERM). In addition, we show the
convexity of the NSDP under certain assumptions. In Section 3, we conduct two types
of numerical experiments to illustrate the behavior of our reformulation model. In
Section 4, we conclude this study.

Throughout this paper, we use the following notation. Let 〈X,Y 〉 := tr(XY ) =
∑m

i,j=1XijYij be the matrix inner product of X ∈ S
m and Y ∈ S

m, where S
m is the

set of symmetric matrices included in ℜm×m. If X and Y are column vectors, 〈X,Y 〉
is the Euclidean inner product. Let S

m
++ (Sm+ ) be the set of positive (semi)definite

matrices on S
m.

2. Reformulation and convexity of distributionally robust ERM

First, we introduce several approaches to solve (DRERM). Second, we reformulate
(DRERM) into a deterministic NSDP to find its solution efficiently. Finally, we provide
a sufficient condition for the convexity of the NSDP when the mapping F is affine with
respect to x.

A general technique for solving (DRERM), regardless of the definition of P, is to
reformulate it into the following semi-infinite programming and apply the cutting-
surface method [17]:

min
x,θ

θ

s.t. θ ≥ EP [fα(x, ξ)] ∀P ∈ P,
x ∈ S.

(7)

Moreover, when Ξ is a finite sample space, i.e., Ξ :=
{

ξ1, ξ2, . . . , ξL
}

, problem (7) is
consequently reduced to the following robust optimization problem because P can be
regarded as a subset of ℜL:

min
x,θ

θ

s.t. θ ≥ 1

L

L
∑

k=1

fα(x, ξ
k)Pk ∀P ∈ P ⊂ {P ∈ ℜL

+ |∑L
k=1 Pk = 1},

x ∈ S.

(8)

Thus, nonlinear robust optimization frameworks can be directly applied to (8). For
more details, see [2–4].

Another strategy to solve (DRERM) is to consider the duality of the inner supremum
part:

sup
P∈P

EP [fα(x, ξ)] , (9)

and solve the dual problem. We adopt this approach and demonstrate that (DRERM)
can be reformulated as a deterministic NSDP under certain assumptions. For more
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detailed techniques to deal with general DRO, see [19].
In the remainder of this study, we assume that ξ is a continuous random variable,

and the ambiguity set P is assumed to be given as the following moment set [8], which
has been widely applied in existing literature on DRO.

Assumption 1 (Delage and Ye [8]). The ambiguity set P is given by

P :=

{

P ∈ MΞ

∣

∣

∣

∣

∣

(EP [ξ]− µ0)
⊤Σ−1

0 (EP [ξ]− µ0) ≤ γ1

EP

[

(ξ − µ0) (ξ − µ0)
⊤
]

� γ2Σ0

}

(10)

where γ1 ≥ 0, γ2 ≥ 1, µ0 ∈ Ξ, and Σ0 ∈ S
m
++.

The first condition of (10), i.e., (EP [ξ]− µ0)
⊤Σ−1

0 (EP [ξ]− µ0) ≤ γ1, represents
the uncertainty of the true mean EP [ξ] given by an ellipsoid centered on the es-
timated mean µ0. In addition, if γ1 = 0, then EP [ξ] = µ0. The second condition
EP [(ξ−µ0)(ξ−µ0)

⊤] � γ2Σ0 refers to the uncertainty of the true variance-covariance
EP [(ξ − µ0)(ξ − µ0)

⊤]. The parameters γ1 and γ2 determine the strength of the confi-
dence of estimations µ0 and Σ0, respectively; hence, they are referred to as confidence
parameters. A method for determining suitable γ1 and γ2 from observed samples is
introduced in Section 3.4 in [8].

Remark 1. When γ1 = 0, γ2 = 1, and the equality holds in the variance-covariance
condition in (10), the set P is reduced to (5) considered by Zhu et al [25].

Under Assumption 1, we obtain the following property.

Theorem 2.1. Suppose that Assumption 1 holds. Then (DRERM) is equivalently

reformulated as the following semi-infinite programming with second-order cone con-

straints:

(SIP) min
(x,y0,y,Y,z0)∈V

y0 + z0 + µ⊤
0 y +

〈

γ2Σ0 + µ0µ
⊤
0 , Y

〉

s.t. z0 ≥
√
γ1

∥

∥

∥
Σ
1/2
0 (y + 2Y µ0)

∥

∥

∥
,

ξ⊤Y ξ + ξ⊤y + y0 ≥ fα(x, ξ) ∀ξ ∈ Ξ,
x ∈ S, Y ∈ S

m
+ ,

where V := ℜn ×ℜ× ℜm × S
m ×ℜ.

Proof. From Assumption 1 and Lemma 1 of [8], for any fixed x, the optimal value of
(9), which is denoted by Ψ(x; γ1, γ2), is equal to that of the following dual problem of
(9):

min
y0,y,Y,z0

y0 + z0 + µ⊤
0 y +

〈

γ2Σ0 + µ0µ
⊤
0 , Y

〉

s.t. z0 ≥ √
γ1

∥

∥

∥
Σ
1/2
0 (y + 2Y µ0)

∥

∥

∥
,

ξ⊤Y ξ + ξ⊤y + y0 ≥ fα(x, ξ) ∀ξ ∈ Ξ,
Y ∈ S

m
+ .

(11)

Thus, we obtain the equivalent reformulation of (DRERM) by considering min
{Ψ(x; γ1, γ2) | x ∈ S}. Since optimal values of (SIP) and (DRERM) are equal, the
assertion is shown.
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2.1. Reformulation of SIP into NSDP

The goal of this section is to prove that the semi-infinite constraint

ξ⊤Y ξ + ξ⊤y + y0 ≥ fα(x, ξ) ∀ξ ∈ Ξ, (12)

can be reformulated as a semidefinite constraint by using the duality for the inner
maximization of (6).

In the remainder of this paper, we assume that the closed convex set S is given as
a polyhedron:

S := {x ∈ ℜn | Ax = b, x ≥ 0},

where A ∈ ℜl×n and b ∈ ℜl.
First, we provide an equivalent form of (12) by using the strong duality of the

maximization problem in (6).

Lemma 2.2. The point (x, y0, y, Y ) satisfies (12) if and only if there exists (λ, µ) ∈
ℜl ×ℜn

+ such that

ξ⊤Y ξ + ξ⊤y + y0 ≥ ωα(x, λ, µ; ξ) ∀ξ ∈ Ξ. (13)

Here,

ωα(x, λ, µ; ξ) :=
α

2
‖F (x, ξ) +A⊤λ− µ‖2 + 〈b−Ax, λ〉+ 〈µ, x〉 . (14)

Proof. First, we prove (13) implies (12). We have the following minimization problem
by considering the duality of the maximization problem included in (6).

min
(λ,µ)∈ℜl×ℜn

ωα(x, λ, µ; ξ)

s.t. µ ∈ ℜn
+

(15)

From the weak duality, we have ωα(x, λ, µ; ξ) ≥ fα(x, ξ) for each (x, ξ) ∈ S ×Ξ. Thus,
if there exists (λ, µ) ∈ ℜl×ℜn

+ such that (x, λ, µ, y0, y, Y ) satisfies (13), then the point
(x, y0, y, Y ) satisfies (12).

Next, we prove the converse, i.e., (12) implies (13). The inner maximization in the
function fα is a convex optimization problem whose optimal value is finite for any
x ∈ S. Moreover, owing to the strong duality, there exists (λ, µ) ∈ ℜl ×ℜn

+ such that
fα(x, ξ) = ωα(x, λ, µ; ξ) for each (x, ξ) ∈ S × Ξ. Therefore, if (x, y0, y, Y ) satisfies the
condition (12), there exists (λ, µ) ∈ ℜl ×ℜn

+ such that (13) holds.

Now, we make assumptions on the mapping F and the support Ξ in SVIP (1).
Similar assumptions on F and Ξ have already been considered by Zhu et al. [25] for
SNCP (2)1. For certain examples that satisfy the following assumptions on SVIP (1),
see [1].

Assumption 2.

1Only when the complementarity measure is evaluated by ‖x ◦ F (x, ξ)‖∞, the mapping F of (4) is allowed
up to second-order with respect to ξ.
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(i) The i-th element of the mapping F is affine with respect to ξ:

Fi(x, ξ) :=
(

ci(x)
)⊤

ξ + ci0(x), i = 1, 2, . . . , n.

(ii) The support Ξ is given as

Ξ := {ξ ∈ ℜm | gi(ξ) ≤ 0, i = 1, 2, . . . , p} . (16)

Here, gi : ℜm → ℜ is defined by

gi(ξ) := ξ⊤Ãiξ + 2b̃⊤i ξ + c̃i, i = 1, 2, . . . , p, (17)

where Ãi ∈ S
m, b̃i ∈ ℜm, and c̃i ∈ ℜ.

As preliminaries, let us introduce the S-procedure and its special case.

Lemma 2.3 (S-procedure Derinkuyu and Pınar [9]). Let Ξ be given as (16) and

g0(ξ) := ξ⊤Ā0ξ + 2ξ⊤b̄0 + c̄0, (18)

where Ā0 ∈ S
m, b̄0 ∈ ℜm, and c̄0 ∈ ℜ. Assume that there exists s ∈ ℜp

+ such that

g0(ξ) +

p
∑

i=1

sigi(ξ) ≥ 0 ∀ξ ∈ ℜm. (19)

Then, g0(ξ) ≥ 0 for all ξ ∈ Ξ.

The following lemma indicates that the converse also holds when p = 1 in
Lemma 2.3.

Lemma 2.4 (Pólik and Terlaky [18]). Suppose that Ξ is given by (16) with p = 1 and

let g0(ξ) be defined as (18). Assume that there exists ξ̂0 such that g1(ξ̂0) < 0. Then,
the statements (i) and (ii) are equivalent:

(i) For all ξ ∈ ℜm, g1(ξ) ≤ 0 implies g0(ξ) ≥ 0;
(ii) there exists some nonnegative number s ≥ 0 such that

g0(ξ) + sg1(ξ) ≥ 0 ∀ξ ∈ ℜm.

We further introduce an equivalence between nonnegative quadratic functions on
ℜm and semidefiniteness.

Lemma 2.5 (Proposition 2 in Sturm and Zhang [21]). Let Ã ∈ S
m, b̃ ∈ ℜm, and

c̃ ∈ ℜ be given. Then, the following two conditions (i) and (ii) are equivalent:

(i)
[

1, ξ⊤
]

[

c̃ b̃⊤

b̃ Ã

] [

1
ξ

]

≥ 0 ∀ξ ∈ ℜm;

(ii)

[

c̃ b̃⊤

b̃ Ã

]

� O.

7



Zhu et al. [25] proposed a certain NSDP that conservatively approximates DRO (4),
where the conservative approximation denotes that the optimal value of the NSDP is
not less than that of DRO (4). In this paper, we also provide the following conservative
approximation of (DRERM) based on their technique.

(NSDP) min
(w,z0,s)∈W×ℜ×ℜp

z0 + y0 + µ⊤
0 y +

〈

γ2Σ0 + µ0µ
⊤
0 , Y

〉

s.t. z0 ≥ √
γ1

∥

∥

∥
Σ
1/2
0 (y + 2Y µ0)

∥

∥

∥
,

Dα(w) +

p
∑

i=1

siÃi � O,

x ∈ S, µ ∈ ℜn
+, Y ∈ S

m
+ , s ∈ ℜp

+,

where w := (x, λ, µ, y0, y, Y ) ∈ W := ℜn×ℜl×ℜn×ℜ×ℜm×S
m, and Dα : W → S

m+1

is a symmetric-matrix-valued function defined as follows:

Dα(w) :=

[

y0 1/2y⊤

1/2y Y

]

−
{

G(x, λ, µ) +
α

2

n
∑

i=1

H i(x, λ, µ)

}

, (20)

where

G(x, λ, µ) :=

[

〈b−Ax, λ〉 + 〈µ, x〉 0⊤

0 Om×m

]

,

H i(x, λ, µ) :=

[

pi0(x, λ, µ)
2 pi0(x, λ, µ)c

i(x)⊤

pi0(x, λ, µ)c
i(x) ci(x)ci(x)⊤

]

, i = 1, 2, . . . , n,

pi0(x, λ, µ) := ci0(x) +

l
∑

j=1

ajiλj − µi, i = 1, 2, . . . , n,

and Ãi is defined as

Ãi :=

[

c̃i b̃⊤i
b̃i Ãi

]

i = 1, 2, . . . , p.

Next, we provide several definitions and lemmas to prove that (NSDP) gives a
conservative approximation of (DRERM). Now, we define

Ã0 := Y − α

2

n
∑

i=1

ci(x)ci(x)⊤, b̃0 :=
y

2
− α

2

n
∑

i=1

pi0(x, λ, µ)c
i(x),

c̃0 := y0 − 〈b−Ax, λ〉 − 〈µ, x〉 − α

2

n
∑

i=1

pi0(x, λ, µ)
2,

and

h(ξ) := ξ⊤Ã0ξ + 2ξ⊤b̃0 + c̃0. (21)

8



Under Assumption 2–(i), (14) is written as

ωα(x, λ, µ; ξ) =
[

1, ξ⊤
]

{

G(x, λ, µ) +
α

2

n
∑

i=1

H i(x, λ, µ)

}

[

1
ξ

]

. (22)

Through the straightforward calculation, we obtain the following equalities:

[

1, ξ⊤
]

Dα(w)

[

1
ξ

]

= ξ⊤Y ξ + ξ⊤y + y0 − ωα(x, λ, µ; ξ) = h(ξ). (23)

Lemma 2.6. The nonlinear semidefinite constraint included in (NSDP), i.e.,

Dα(w) +

p
∑

i=1

siÃi � O, (24)

is equivalent to

h(ξ) +

p
∑

i=1

sigi(ξ) ≥ 0 ∀ξ ∈ ℜm. (25)

Proof. By Lemma 2.5, (24) is equivalent to

[

1, ξ⊤
]

(

Dα(w) +

p
∑

i=1

siÃi

)

[

1
ξ

]

≥ 0 ∀ξ ∈ ℜm. (26)

Since [1, ξ⊤]Dα(w)

[

1
ξ

]

= h(ξ) from (23) and [1, ξ⊤]Ãi

[

1
ξ

]

= gi(ξ), (26) can be

equivalently represented as (25).

The next lemma provides a sufficient condition for semi-infinite constraint (12).

Lemma 2.7. Suppose that Assumption 2 holds. Whenever p ≥ 1, if there exists

(w, s) ∈ W ×ℜp such that µ ∈ ℜn
+, s ∈ ℜp

+, and (24), i.e.,

Dα(w) +

p
∑

i=1

siÃi � O,

then the subvector (x, y0, y, Y ) satisfies the semi-infinite constraint (12), i.e.,

ξ⊤Y ξ + ξ⊤y + y0 ≥ fα(x, ξ) ∀ξ ∈ Ξ.

Furthermore, when p = 1 and the assumption of Lemma 2.4 holds, the converse is also

true, i.e., if (x, y0, y, Y ) satisfies (12), then there exists (λ, µ, s) ∈ ℜl ×ℜn
+ ×ℜp

+ such

that (24) satisfies.

Proof. First, we prove the general case where p ≥ 1. Assume that there exist w ∈ W
and s ∈ ℜp

+ such that semidefinite constraint (24) holds. Then, by Lemma 2.6, we
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have (25), i.e.,

h(ξ) +

p
∑

i=1

sigi(ξ) ≥ 0 ∀ξ ∈ ℜm.

By regarding h(ξ) as g0(ξ) in Lemma 2.3, (25) implies h(ξ) ≥ 0 for all ξ ∈ Ξ, and it
then follows from (23) that (13) holds, i.e.,

ξ⊤Y ξ + ξ⊤y + y0 ≥ ωα(x, λ, µ; ξ) ∀ξ ∈ Ξ.

Finally, Lemma 2.2 states that w satisfies (13) if and only if its subvector (x, y0, y, Y )
satisfies semi-infinite constraint (12). The first part of the proof is completed.

Next, we prove that the converse when p = 1 and the assumption of Lemma 2.4
holds. Suppose that (x, y0, y, Y ) satisfies (12). By Lemma 2.2, (12) holds if and only if
there exists (λ, µ) ∈ ℜl ×ℜn

+ such that (13) holds. Note that under Assumption 2–(i),

the function ωα(x, λ, µ; ξ) is given as (22). Then, ξ⊤Y ξ+ ξ⊤y+ y0 −ωα(x, λ, µ; ξ) ≥ 0
and (23) yield h(ξ) ≥ 0. Note that h(ξ) ≥ 0 for all ξ ∈ Ξ if and only if for all ξ ∈ ℜm,
g1(ξ) ≤ 0 implies h(ξ) ≥ 0. It then follows from Assumption 2–(ii) with p = 1 and
Lemma 2.4 that there exists s ∈ ℜ+ such that h(ξ) + sg1(ξ) ≥ 0 for all ξ ∈ ℜm. By
Lemma 2.6, this condition is equivalent to semidefinite constraint (24) in (NSDP).
Thus, we have proved the converse.

The following result shows the feasibility between constraints of (SIP) and (NSDP).

Proposition 2.8. Suppose that Assumption 2 holds. Whenever p ≥ 1, if (w, z0, s) ∈
W × ℜ × ℜp is feasible to (NSDP), then its subvector (x, y0, y, Y, z0) ∈ V is also

feasible to (SIP). Moreover, when p = 1 and the assumption of Lemma 2.4 holds, if

(x, y0, y, Y, z0) ∈ V is feasible to (SIP), then there exists (λ, µ, s) ∈ ℜl ×ℜn
+ ×ℜp

+ such

that (w, z0, s) ∈ W ×ℜ× ℜ+ is also feasible to (NSDP).

Proof. Note that all constraints in (NSDP) except (24) coincide with those in (SIP)
excluding semi-infinite constraint (12). This statement and Lemma 2.7 ensure that if
p ≥ 1, and (w, s, z0) is the feasible solution of (NSDP), then its subvector (x, y0, y, Y, z0)
is the feasible solution to (SIP). Thus, we showed the general case where p ≥ 1.

Suppose that p = 1, and (x, y0, y, Y, z0) ∈ V is a feasible solution to (SIP). As
mentioned above, (w, z0, s) satisfies the constraints of (NSDP) except (24). Moreover,
Lemma 2.7 guarantees that there exists (λ, µ, s) ∈ ℜl × ℜn

+ × ℜp
+ such that (w, z0, s)

satisfies constraint (24). We have completed the proof.

By using the above lemmas, we show one of the main results.

Theorem 2.9. Suppose that Assumptions 2 holds. Then, (SIP) can be conservatively

approximated as (NSDP).

Proof. Suppose that (w, z0, s) ∈ W × ℜ × ℜp
+ is a feasible point of (NSDP). It then

follows from Proposition 2.8 that the subvector (x, y0, y, Y, z0) satisfies the constraints
of (SIP). From the above facts, the optimal value of (NSDP) can never be less than
that of (SIP). Therefore, (NSDP) is a conservative approximation of (SIP). The proof
is completed.

Here, we provide some examples of Ξ that can be expressed as the intersection of
nonnegative quadratic functions.
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Example 1 (Box set). Consider Ξ given by the following box set:

Ξ :=
{

ξ ∈ ℜm | ξli ≤ ξi ≤ ξui , i = 1, 2, . . . ,m
}

.

By using a quadratic function, ξli ≤ ξ ≤ ξui can be rewritten as follows:

gi(ξ) = ξi(ξ
u
i + ξli)− ξui ξ

l
i − ξ2i =

[

1, ξ⊤
]

Ti

[

1
ξ

]

≥ 0,

where

Ti :=

[

−ξui ξ
l
i −1

2ξi(ξ
u
i + ξli)(e

i)⊤

−1
2ξi(ξ

u
i + ξli)e

i −Ĩi

]

.

Here, ei ∈ ℜm is the i-th column vector of the identity matrix, and Ĩi ∈ ℜm×m is a
matrix whose elements are all zero except the (i, i) entry which is 1.

This example corresponds to the case where Ãi = Ĩi, b̃i =
1
2ξi(ξ

u
i +ξli)e

i, and c̃i = ξui ξ
l
i

in (NSDP).

Example 2 (Ellipsoids). Consider Ξ given by the following ellipsoids:

Ξ :=
{

ξ ∈ ℜm | (ξ − ξ̂i)⊤P−1
i (ξ − ξ̂i) ≤ 1, i = 1, 2, . . . , p

}

, (27)

where the vector ξ̂i ∈ ℜm is the center of the i-th ellipsoid, and the matrix Pi is
supposed to be positive definite. This example corresponds to the case where Ãi =
P−1, b̃i = −P−1

i ξ̂i, and c̃i = (ξ̂i)⊤P−1
i ξ̂i − 1 in (NSDP).

Next, we illustrate the special case of Theorem 2.9, which ensures that a solution
of (NSDP) solves (DRERM).

Corollary 2.10. Suppose that p = 1 in (27), and that the assumption of Lemma 2.4

holds. Then, if (w, z0, s) ∈ W × ℜ × ℜ is a global optimum of (NSDP), then

(x, y0, y, Y, z0) and x are also global optima to (SIP) and (DRERM), respectively. In
addition, the optimal value of (NSDP) is equal to those of (SIP) and (DRERM).

Proof. Let (w, z0, s) be a global optimum to (NSDP). Assume that its subvector
(x, y0, y, Y, z0) is not a global optimum of (SIP). Note that (x, y0, y, Y, z0) is the feasible
solution to (SIP) from Proposition 2.8. By the assumption, there exists a feasible
solution (x′, y′0, y

′, Y ′, z′0) in (SIP) such that

z′0 + y′0 + µ⊤
0 y

′ +
〈

γ2Σ0 + µ0µ
⊤
0 , Y

′
〉

< z0 + y0 + µ⊤
0 y +

〈

γ2Σ0 + µ0µ
⊤
0 , Y

〉

. (28)

Proposition 2.8 guarantees that if the solution (x′, y′0, y
′, Y ′, z′0) is the feasible point

to (SIP), then there exists (λ′, µ′, s′) ∈ ℜl × ℜn
+ × ℜ+ such that (w′, z′0, s

′) ∈ W ×
ℜ × ℜ+ is the feasible solution to (NSDP), where w′ := (x′, λ′, µ′, y′0, y

′, Y ′) ∈ W.
Because the objective functions of (SIP) and (NSDP) coincide, the solution (w′, z′0, s

′)
of (NSDP) also satisfies the inequality (28). Hence, it contradicts that (w, z0, s) is a
global optimum to (NSDP). We have that (x, y0, y, Y, z0), which is the subvector of the
global optimum (w, z0, s) of (NSDP), is also the global optimum in (SIP), and optimal
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values are equal because their objective functions coincide. Moreover, since (DRERM)
is equivalent to (SIP) from Theorem 2.1, x is also a global optimum to (DRERM),
and their optimal values are equal.

In addition, when Ξ = ℜm, then we can show an equivalence between (SIP) (or
(DRERM)) and the following NSDP:

(NSDP′) min
(w,z0)∈W×ℜ

z0 + y0 + µ⊤
0 y +

〈

γ2Σ0 + µ0µ
⊤
0 , Y

〉

s.t. z0 ≥
√
γ1

∥

∥

∥
Σ
1/2
0 (y + 2Y µ0)

∥

∥

∥
,

Dα(w) � O,
x ∈ S, µ ∈ ℜn

+.

To show this property, we prepare a lemma below.

Lemma 2.11. Let (x, y0, y, Y ) be given. Then, the following two statements are equiv-

alent:

(i) There exists (λ, µ) ∈ ℜl ×ℜn
+ such that Dα(w) � O;

(ii) Y ∈ S
m
+ and

ξ⊤Y ξ + ξ⊤y + y0 ≥ fα(x, ξ) ∀ξ ∈ Ξ = ℜm. (29)

Proof. First, we show that (i) implies (ii). By Lemma 2.5 and the first equality of
(23), Dα(w) � O if and only if

ξ⊤Y ξ + ξ⊤y + y0 ≥ ωα(x, λ, µ; ξ) ∀ξ ∈ ℜm. (30)

As we mentioned in Lemma 2.2, ωα(x, λ, µ; ξ) is the dual function of the maximiza-
tion problem in fα. This implies that for any x ∈ S and ξ ∈ ℜm, ωα(x, λ, µ; ξ) ≥
fα(x, ξ) ≥ 0. Then, (30) implies ξ⊤Y ξ + ξ⊤y + y0 ≥ 0, and by Lemma 2.5, we have

[

y0 1/2y⊤

1/2y Y

]

� O.

By the Schur complement, this ensures the positive semidefiniteness of Y . Furthermore,
(30) implies (29) by Lemma 2.2. We have proved the former part of the proof.

Next, we prove that (ii) implies (i). Suppose that Y ∈ S
m
+ and (29) holds. Then, by

Lemma 2.2, there exists (λ, µ) ∈ ℜl ×ℜn
+ such that (30) holds, and it is immediately

observed that Dα(w) � O. Hence, the proof is completed.

We obtain the relation regarding the feasibility between (SIP) and (NSDP′) by using
Lemma 2.11.

Proposition 2.12. The point (x, y0, y, Y, z0) ∈ V is a feasible solution to (SIP) if and
only if there exists (λ, µ) ∈ ℜl×ℜn

+ such that (w, z0) ∈ W×ℜ is also a feasible solution

to (NSDP′).

Proof. Similar to the proof of Proposition 2.8, all the constraints in (NSDP′) ex-
cept the semidefinite constraint Dα(w) � O coincide with those in (SIP) excluding
semi-infinite constraint (12). This statement and Lemma 2.11 ensure that for given

12



(x, y0, y, Y ), the point (x, y0, y, Y, z0) is feasible to (SIP) if and only if there exists
(λ, µ) ∈ ℜl ×ℜn

+ such that (w, z0) is feasible to (NSDP′).

Finally, the optimality between (NSDP′) and (SIP) is obtained as follows.

Theorem 2.13. Suppose that Assumption 2–(i) holds, and that Ξ = ℜm. If (w, z0) is
a global optimum to (NSDP′), then its subvector (x, y0, y, Y, z0) and x are also global

optima for (SIP) and (DRERM), respectively.

Proof. Let (w, z0) be a global optimum to (NSDP′). Assume that its subvector
(x, y0, y, Y, z0) is not a global optimum of (SIP). Note that (x, y0, y, Y, z0) is a feasible
solution to (SIP) by Proposition 2.12. Since (x, y0, y, Y, z0) is not a global optimum of
(SIP), there exists a feasible solution (x′, y′0, y

′, Y ′, z′0) such that

z′0 + y′0 + µ⊤
0 y

′ +
〈

γ2Σ0 + µ0µ
⊤
0 , Y

′
〉

< z0 + y0 + µ⊤
0 y +

〈

γ2Σ0 + µ0µ
⊤
0 , Y

〉

. (31)

Moreover, by Proposition 2.12, the feasible solution (x′, y′0, y
′, Y ′, z′0) of (SIP) is also

feasible to (NSDP′) for some (λ′, µ′) ∈ ℜl × ℜn
+. This statement and (31) contradict

each other; thus, (x, y0, y, Y, z0) is a global optimum of (SIP).
Since (DRERM) is equivalent to (SIP), x, which is the subvector of the global

optimum (x, y0, y, Y, z0) of (SIP), is also a global optimum to (DRERM). Thus, the
optimal value of (NSDP′) coincides with those of (SIP) and (DRERM), respectively.

Remark 2. Zhu et al. [25] have only shown a conservative NSDP approximation for
problem (4); that is, the subvector x ≥ 0 of a global optimal solution of the conservative
approximated NSDP may not globally solve (4) in general. However, as Theorem 2.13
and Corollary 2.10 state, if Ξ is ℜm or a single ellipsoid, the variable x ∈ S of a global
optimal point obtained from (NSDP) or (NSDP′) solves (DRERM).

2.2. Convexity of NSDP

First, the sufficient condition is presented under which (NSDP) and (NSDP′) are
convex.

Assumption 3. The mapping F is affine with respect to x, i.e.,

F (x, ξ) := M(ξ)x+ q(ξ),

where M : Ξ → ℜn×n and q : Ξ → ℜn. Here, the (i, j)-entry of M(ξ) is denoted by

(M(ξ))ij :=
(

mij
)⊤

ξ + mij
0 , and the i-th element of q(ξ) is (q(ξ))i :=

(

qi
)⊤

ξ + qi0,

where mij, qi ∈ ℜm, mij
0 , q

i
0 ∈ ℜ. Hence, ci(x) and ci0(x) defined in Assumption 2 can

be rewritten as follows:

ci(x) := qi + M̄ix ∈ ℜm, i = 1, 2, . . . , n,

ci0(x) := qi0 + (m̄i
0)

⊤x ∈ ℜ, i = 1, 2, . . . , n,
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where

M̄i := [mi,1,mi,2, . . . ,mi,n] ∈ ℜm×n, i = 1, 2, . . . , n,

m̄i
0 := [mi,1

0 ,mi,2
0 , . . . ,mi,n

0 ]⊤ ∈ ℜn, i = 1, 2, . . . , n.

Remark 3. In Assumption 3, suppose that

M(ξ) = M · repvec(ξ;n) +M0, q(ξ) = Qξ + q0,

where

M :=











(m1,1)⊤ (m1,2)⊤ . . . (m1,n)⊤

(m2,1)⊤ (m2,2)⊤ . . . (m2,n)⊤

...
...

. . .
...

(mn,1)⊤ . . . . . . (mn,n)⊤











∈ ℜn×mn,

repvec(ξ;n) :=











ξ
ξ

. . .

ξ











∈ ℜmn×n, M0 := [m̄1
0, m̄

2
0, . . . , m̄

n
0 ]

⊤ ∈ ℜn×n,

Q := [q1, q2, . . . , qn]⊤ ∈ ℜn×m, q0 := [q10 , q
2
0 , . . . , q

n
0 ] ∈ ℜn.

Then, F (x, ξ) can also be written as

F (x, ξ) = (M · repvec(ξ;n) +M0) x+ (Qξ + q0).

Let us introduce the convexity of nonlinear matrix-valued functions and its related
property.

Definition 2.14 (Shapiro [20]). A nonlinear matrix-valued function X : ℜm → S
n is

said to be positive semidefinite (psd-) convex if

X(γx+ (1− γ)y)− γX(x) − (1− γ)X(y) � O (32)

for all x, y ∈ ℜm and γ ∈ [0, 1].

Proposition 2.15. The mapping X is psd-convex if and only if for any v ∈ ℜn with

v1 = 1, the function φ(·; v) : ℜm → ℜ defined by

φ(x; v) :=
[

1, v⊤
]

X(x)

[

1
v

]

is convex with respect to x ∈ ℜm.

Proof. Lemma 2.5 ensures that matrix inequality (32) is equivalent to

[

1, v′⊤
]

(X(γx+ (1− γ)y)− γX(x)− (1− γ)X(y))

[

1
v′

]

≤ 0,
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for any v′ ∈ ℜn−1. Hence, we have

φ(γx+ (1− γ)y; v) ≤ γφ(x; v) + (1− γ)φ(y; v)

for any v ∈ ℜn with v1 = 1. Therefore, X is psd-convex if and only if φ(·, v) is convex
with respect to x ∈ ℜm for every v ∈ ℜn.

We show the convexity of (NSDP) and (NSDP′).

Theorem 2.16. Suppose that Assumption 3 holds and that the matrix M(ξ) defined

in Assumption 3 satisfies the following condition: There exists β0 > 0 such that

inf
ξ∈Ξ,‖v‖=1

v⊤M(ξ)v ≥ β0. (33)

Then the matrix-valued function −Dα is psd-convex for all α ≥ 1/(2β0); thus, (NSDP)
and (NSDP′) are convex.

Proof. Note that if the matrix-valued function −Dα is psd-convex, (NSDP) and
(NSDP′) are convex optimization problems. Therefore, we verify that −Dα is psd-
convex for all α ≥ 1/(2β0).

Suppose that α ≥ 1/(2β0). Proposition 2.15 states that −Dα is psd-convex if and
only if for all ξ ∈ ℜm, the following function φα(·, ξ) : W → ℜ is convex with respect
to w:

φα(w; ξ) :=
[

1, ξ⊤
]

(−Dα(w))

[

1
ξ

]

= −y0 − ξ⊤y − ξ⊤Y ξ + ωα(x, λ, µ; ξ),

where the last equality follows from (23).
Now, since the function φα(·, ξ) is linear with respect to (y0, y, Y ), it suffices to show

that ωα is convex with respect to (x, λ, µ) for all α ≥ 1/(2β0). The Hessian of ωα in
regard to (x, λ, µ) is given by

∇2
(x,λ,µ)ωα(x, λ, µ; ξ) = α

[

M(ξ)⊤M(ξ) (M(ξ) − 1

α
I)⊤A⊤ −M(ξ)⊤ + 1

α
I

A(M(ξ)− 1

α
I) AA⊤ −A

−M(ξ) + 1

α
I −A⊤ I

]

.

By considering the Schur complement of the above matrix,
[

M(ξ)⊤M(ξ) (M(ξ)− 1

α
I)⊤A⊤

A(M(ξ)− 1

α
I) AA⊤

]

−
[

−M(ξ)⊤ + 1

α
I

−A

] [

−M(ξ) +
1

α
I −A⊤

]

=
1

α

[

(M(ξ)⊤ +M(ξ))− 1

α
I O

O O

]

� O

if and only if ∇2
(x,λ,µ)ωα(x, λ, µ; ξ) � O. Since (M(ξ)⊤ + M(ξ)) − 1/α I � O from

α ≥ 1/(2β0), it can be easily seen that ∇2
(x,λ,µ)ωα(x, λ, µ; ξ) � O, i.e., −Dα is psd-

convex for all α ≥ 1/(2β0). Hence, (NSDP) and (NSDP′) are convex optimization
problems.

Remark 4. Condition (33) is rather restrictive for some applications. One remedy is
to add a proximal term ǫ(x−xk) to the mapping F , where ǫ > 0 is a sufficiently small
constant.
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Remark 5. When S = ℜn
+, problem (4) for the SLCP proposed by Zhu et al. [25]

may not be reformulated as a convex NSDP because the objective function Ψ(x, ξ) =
‖x ◦ F (x, ξ)‖22 is not convex with respect to x in general.

Although we adopt the regularized gap function for the NSDP approximation, the
similar results may also be obtained by utilizing another merit function, such as
f∞(x, ξ) := maxz∈S〈F (x, ξ), x− z〉. However, it would be necessary to discuss whether
the DRERM with f∞ is reasonable method for solving the SVIP. In fact, the ERM
with f∞ may be unsuitable to measure the distance to solutions of SVIP (1) because
f∞(x, ξ) takes +∞ for some x ∈ S and is not differentiable in general. For such reasons,
we did not adopt f∞ for (DRERM).

3. Numerical experiments

This section provides numerical results to demonstrate the validity of the DRERM
model. In particular, we first compare the DRERMwith the ERM proposed by Luo and
Lin [15] in terms of robustness. Second, we quantitatively investigate the robustness
of solutions obtained from the DRERM model when the confidence parameters γ1
and γ2 for the mean and variance of the ambiguity set P, respectively, are gradually
changed.

Throughout this section, we use the following example.

Example 3 (Two-person noncooperative games). Two players are competing with
each other to minimize their own cost functions. Each player ν ∈ {1, 2} solves the
following optimization problem:

min
xν∈ℜnν

1

2
(xν)⊤Mνx

ν + vν(xν , x−ν , ξ) + qν(ξ)⊤xν

s.t. Aνx
ν ≤ bν ,

(34)

where Mν ∈ S
nν

++, Aν ∈ ℜlν×nν , bν ∈ ℜlν , and qν(ξ) ∈ ℜnν . Here, vν(xν , x−ν , ξ) is a
zero-sum function defined by

vν(xν , x−ν , ξ) :=

{

(

x1
)⊤

R(ξ)x2 if ν = 1,

−
(

x2
)⊤

R(ξ)⊤x1 if ν = 2,

where R(ξ) ∈ ℜn1×n2 , and x−ν ∈ ℜn
−ν is the decision variable of the rival player.

The above noncooperative game can be reformulated as SVIP (1) when the mapping
F (·, ξ) : ℜn → ℜn and the set S ⊂ ℜn are given as follows:

F (x, ξ) =

[

M1 R(ξ)
−R(ξ)⊤ M2

]

x+

[

q1(ξ)
q2(ξ)

]

, (35)

S =

{

x ∈ ℜn

∣

∣

∣

∣

[

A1 O
O A2

]

x ≤
[

b1

b2

]}

,

x =
[

(x1)⊤, (x2)⊤
]⊤

∈ ℜn1+n2 .

Note that it is easy to verify that the coefficient matrix in (35) satisfies the assumption
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of Theorem 2.16; hence, we solve a convex NSDP in the experiments.
We generate numerical instances of problem (34) according to the following manners:

• We set n1 = n2 = 2, m = n1n2 + 2 = 6, and l1 = l2 = 2.
• The matrix Mν is generated by LνLν

⊤+ I, where the matrix Lν ∈ ℜ2×2 is lower
triangular and its elements are randomly generated from the interval [−5, 5).

• Each element of the matrix Aν ∈ ℜ2×2 and the vector bν ∈ ℜ2 is randomly
generated from [−2, 2) and [0, 10), respectively.

• We set the regularization parameter α by 1/β0 to ensure that the derived NSDP
is convex, where β0 is the minimum eigenvalue of the matrix

[

M1 On1×n2

On2×n1
M2

]

∈ ℜ4×4.

• We define the random variable ξ ∈ ℜm by ξ = [ξ1, . . . , ξ6]
⊤.

• The matrix R(ξ) is defined by

R(ξ) :=

[

ξ1 ξ2
ξ3 ξ4

]

+R0 ∈ ℜ2×2, R0 :=

[

r1,10 r1,20

r2,10 r2,20

]

∈ ℜ2×2

where ri,j0 , i, j = 1, 2 are nominal values generated randomly from [−5, 5).

• The vector q(ξ) :=
(

q1(ξ)⊤, q2(ξ)⊤
)⊤ ∈ ℜ4 is defined by

q(ξ) = Qξ + q0,

where

Q =









0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1









, q0 = −
[

M1 R0

−R⊤
0 M2

]

x∗0,

and the vector x∗0 ∈ ℜ4 is randomly generated from [−2, 2).

In the experiments, all programs are implemented with Python 3.8 and run on a
machine with Intel Core i7-8700K @ 3.70GHz CPU and 32 GB RAM.

3.1. Comparison to the ERM model

Here, we suppose that Ξ = ℜ6 and ξ follows the normal distribution N (µ0,Σ0), where
the mean µ0 and the variance-covariance matrix Σ0 are given as follows:

µ0 = 0, Σ0 =











2 1.6 · · · 1.6
1.6 2 · · · 1.6
...

...
. . .

...
1.6 1.6 · · · 2











. (36)

In the ERM model, we use the regularized gap function fα proposed by Luo and
Lin [15] as the merit function f . In the experiments, because it is difficult to exactly
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compute the expected value E[fα(x, ξ)], we obtain its approximate value using a quasi-
Monte Carlo method described below:

E[fα(x, ξ)] ≈ θk(x) :=
1

Nk

∑

ξ̂k∈Ξk

fα(x, ξ̂
k)p(ξ̂k),

where the uniform random vector ξ̂k ∈ Ξk is generated by

ξ̂k =
(

(µ0 − 3
√
2) + (µ0 + 3

√
2)ζ i

)

1m,

and ζ i is a Sobol point from the interval [0, 1). The set Ξk := {ξ̂i | i = 1, 2, . . . , Nk} ⊂
Ξ is the collection of the samples ξ̂k, which approximates the support Ξ, and p(·)
is the probability density function of the normal distribution N (µ0,Σ0). Note that
as the number of samples Nk and dimensions m increased, it may face underflow
and subsequently fail to evaluate θk(x). To avoid this, we multiply θk(x) by 1/p(µ0).
Summarizing the above arguments, we solve the following approximate problem for
(ERM) with the regularized gap function:

min θk(x)/p(µ0)
s.t. x ∈ S,

(37)

We use SLSQP package, which is based on sequential quadratic programming methods,
in Scipy.Optimize module to obtain a solution to problem (37). The initial point is
set to 0, and the termination criterion for the residual of the Karush–Kuhn–Tucker
condition is set to 10−7.

In the DRERM, because we know the exact values µ0 and Σ0 in advance, the
ambiguity set P is given by (5). When Ξ = ℜ6 and P is given as (5), (DRERM) can
be reformulated as the following NSDP, which can be regarded as the special case of
(NSDP′):

min
(x,λ,y0,y,Y )

y0 + µ⊤
0 y +

〈

Σ0 + µ0µ
⊤
0 , Y

〉

s.t. Dα(x, λ, y0, y, Y ) � O,
Ax ≤ b, λ ∈ ℜ2

−,

(38)

where ℜ2
− := {λ ∈ ℜ2 | λ ≤ 0}. To solve (38), we utilize an interior point method,

which is a hybrid method of [23] and [24]. The initial point and termination criterion
are the same as the method for (37).

We prepare 10 numerical instances of SVIP (1) and solve them via (37) and (38),
where we set two cases where Nk = 80 and Nk = 10000 in (37). Let xi∗ERM and
xi∗DRERM be solutions to (37) and (38) at the i-th instance, respectively. In what follows,

for a realization ξ̄j of the random variable ξ, f ij
ERM and f ij

DRERM respectively denote
fα(x

i∗
ERM, ξ̄j) and fα(x

i∗
DRERM, ξ̄j) for simplicity.

To quantitatively evaluate the solutions xi∗ERM and xi∗DRERM, we conduct the follow-
ing steps:

(i) Generate N := 5000 realizations {ξ̄j}Nj=1, where each realization ξ̄j follows the
normal distribution N (µ1,Σ1). Here, µ1 and Σ1 are respectively the perturba-
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tions of µ0 and Σ0 as follows:

µ1 := µ0 + δµ, Σ1 := Σ0 +∆Σ,

where each element of δµ ∈ ℜ6 and ∆Σ ∈ S
6 are uniformly generated from the

interval [−0.1, 0.1).

(ii) Compute the regularized gap function values {f ij
ERM}Nj=1 and {f ij

DRERM}Nj=1 by

using the realizations {ξ̄j}Nj=1 for each solution.

(iii) Evaluate the solutions xi∗ERM and xi∗DRERM by using the following five indicators,
which represent the rates of change (RC):

• Minimum:

(min
j

f ij
DRERM −min

j
f ij
ERM)/min

j
f ij
ERM, (39)

• Maximum:

(max
j

f ij
DRERM −max

j
f ij
ERM)/max

j
f ij
ERM, (40)

• Mean:

(mean f i
DRERM −mean f i

ERM)/mean f i
ERM, (41)

where mean f i
· :=

1
N

∑N
j=1 f

ij
· .

• Median:

(med f i
DRERM −med f i

ERM)/med f i
ERM, (42)

where med f i
· := (f

i[N/2]
· + f

i[N/2+1]
· )/2, and f

i[j]
· denotes the j-th largest

regularized gap function value in the 5000 realizations.
• Standard deviation (SD):

(sd f i
DRERM − sd f i

ERM)/sd f i
ERM, (43)

where sd f i
· :=

√

1
N−1

∑N
j=1(f

ij
· −mean f i

· )
2.

The computational results are shown in Figure 1. In each graph, the horizontal and
the vertical axes represent the instance number and the RC, respectively. Figures 1(a)
and 1(b) indicate the RC evaluated by (39) for Nk = 80 and Nk = 10000, respectively,
and Figures 1(c) and 1(d) represent the RC evaluated by (40)–(43) for each Nk. Note
that the vertical axis of Figure 1(a) is a logarithmic scale.

First, we focus on the minimum values, i.e., Figures 1(a) and 1(b). We observe
that for most of instances of Nk = 80 and Nk = 10000, the minimum values of the
ERM tend to be small compared with the DRERM. In particular, the 8-th instance in
Figure 1(a) indicates a significant difference between the ERM and DRERM models.

Indeed, minj f
8j
ERM = 0.0023 and minj f

8j
DRERM = 1.5784, and they have a 690-fold

difference. In the case of Nk = 10000, the gaps between the ERM and DRERM are
small for all instances compared with Nk = 80.
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Next, we focus on Figures 1(c) and 1(d). Notably, the values of the gap function
of maximum and SD on the DRERM are smaller than the ERM for all instances for
Nk = 80 and Nk = 10000. This is an important result that shows that the DRERM is
reasonably designed to consider the distributionally worst case in terms of the expected
value of the regularized gap function.

From the above results, we confirm that the DRERM can obtain more robust solu-
tions that consider outliers, while the ERM is not as robust as the DRERM even when
Nk is sufficiently large in spite of using the exact distribution function for evaluating
the expected value. This is because the ERM is designed to minimize the expected
value of the regularized gap function; hence, it cannot directly consider the variance
and maximum value. In fact, the median of f ij

ERM with Nk = 10000 is less than the
DRERM; however, outliers of realizations ξ̄j adversely affect the mean of the regu-
larized gap values. As a result, the difference between the mean of f ij

ERM with Nk =

10000 and that of f ij
DRERM is insignificant.
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(a) RC (39) when Nk = 80

0 1 2 3 4 5 6 7 8 9
Seed  alue (instance no.)

−1

0

1

2

3

4

5

Ra
te
 o
f C

ha
ng

e 
(3
9)

(b) RC (39) when Nk = 10000
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Figure 1. The rate of change between the ERM and the DRERM.

3.2. Analysis of solution by varying confidence parameters

In this section, we assume that Ξ = ℜ6 and the estimated mean µ̃0 and variance-
covariance matrix Σ̃0 are given as follows:

µ̃0 := µ0 + u6, Σ̃0 := Σ0 + U6,
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where each element of u6 ∈ ℜ6 and U6 ∈ S
6 are uniformly generated from [−0.25, 0.25)

and [−0.2, 0.2), respectively. Here, the true µ0 and Σ0 are the same as (36), and the
confidence regions of µ̃0 and Σ̃0 in the ambiguity set P are given as follows:

(EP [ξ]− µ̃0)
⊤ Σ̃−1

0 (EP [ξ]− µ̃0) ≤ γ1, (44)

EP

[

(ξ − µ̃0) (ξ − µ̃0)
⊤
]

� γ2Σ̃0. (45)

In this setting, we solve the following NSDP:

min
(x,λ,y0,y,Y,z0)

z0 + y0 + µ̃⊤
0 y + 〈γ2Σ̃0 + µ̃0µ̃

⊤
0 , Y 〉

s.t. z0 ≥
√
γ1

∥

∥

∥
Σ̃
1/2
0 (y + 2Y µ̃0)

∥

∥

∥
,

Dα(x, λ, y0, y, Y ) � O,
Ax ≤ b, λ ∈ ℜ2

−.

(46)

Here, we solve (46) using the interior point method, which is the same method for
solving (38). The initial point is set as 0, and the stopping criterion is 10−7. Note that
we set α > 0 to ensure that problem (46) is convex. Let x∗γ1,γ2

be a solution of problem
(46) for given γ1 and γ2.

In the first experiment, we quantitatively analyze the characteristics of the solu-
tions in the case where γ1 is incremented by 0.1 from 0.1 to 2, and γ2 is set to 1
or 2. We prepare realizations {ξ̄j}Nj=1, where each ξ̄j follows N (µ0,Σ0) and N =
5000. After obtaining a solution x∗γ1,γ2

, we compute the maximum, mean, and SD of

{fα(x∗γ1,γ2
, ξ̄j)}Nj=1.

Figure 2 shows the results of the first experiment. In each graph, the horizontal and
vertical axes represent the values of γ1 and the regularized gap function, respectively.
The curves in Figures 2(a) and 2(b) indicate the maximum of {fα(x∗γ1,γ2

, ξ̄j)}Nj=1 for
fixed γ2 = 1 and γ2 = 2, respectively, and Figures 2(c) and 2(d) represent the mean
and SD of {fα(x∗γ1,γ2

, ξ̄j)}Nj=1 for fixed γ2 = 1 and γ2 = 2, respectively.
In Figures 2(a) and 2(c) (when γ2 = 1), the maximum, mean, and SD of regularized

gap function values increase as γ1 increases. However, Figures 2(b) and 2(d) (when
γ2 = 2) indicate that the values of the maximum and SD are entirely smaller than the
case where γ2 = 1; we will discuss the reason in the next experiment. In particular,
from Figure 2(d), the curve of the mean gradually decreases for 0.1 ≤ γ1 ≤ 1, unlike
the case where γ2 = 1. Moreover, Figures 2(a) and 2(c) indicate that the optimal
solutions x∗γ1,1 to problem (46) are not changed for 1 ≤ γ1 ≤ 2.

To summarize the first experiment, as γ1 increases, the solution x∗γ1,γ2
tends to focus

on decreasing the mean of realizations of fα for the case of γ2 = 2. Moreover, the mean
increases as γ1 becomes larger when γ2 = 1. This implies that the uncertainty of the
estimated variance-covariance Σ̃0 is not sufficiently considered for the case of γ2 = 1.

In the second experiment, we investigate the characteristics of the solutions in the
case where γ2 is incremented by 0.1 from 1 to 3, and γ1 is set to 0.1 or 1. We prepare
5000 realizations {ξ̄j}Nj=1, which are the same samples used in the first experiment and

compute the maximum, mean, and SD of {fα(x∗γ1,γ2
, ξ̄j)}Nj=1 for the solution x∗γ1,γ2

to
problem (46).

Figure 3 depicts the results of the second experiment. In particular, Figures 3(a)
and 3(b) are maxj fα(x

∗
γ1,γ2

, ξ̄j) for fixed γ1 = 0.1 and γ1 = 1, respectively. Figures 3(c)

and 3(d) are the mean and SD of {fα(x∗γ1,γ2
, ξ̄j)}Nj=1 for fixed γ1 = 0.1 and γ1 = 1,

respectively.
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Figure 2. Maximum, mean, and SD of 5000 realizations of the regularized gap function when γ1 is varied.

For fixed γ1 = 0.1, the maximum and SD gradually decrease as γ2 increases, whereas
the mean increases. For fixed γ1 = 1, the maximum and SD also decrease; however,
the values of fα are larger than the case where γ1 = 0.1 entirely. Moreover, there is
diminutive change in the curve of the mean in Figure 3(d) compared with that of
Figure 3(c).

To summarize the second experiment, as γ2 increases, the DRERM outputs the
solutions x∗γ1,γ2

that tend to decrease the maximum and SD of fα. This is because, by
the definition of the moment ambiguity set (10), increasing γ2 leads to the conservative
behavior regarding the variance of ξ. Consequently, fα also behaves conservatively, and
its outlier tends to be decreased as well. Meanwhile, when γ2 is very large, the mean
increases.

Consequently, from the results of both the experiments, we confirm that there are
trade-off relations between the mean and the SD, and the mean and the maximum,
respectively, in response to the confidence parameters γ1 and γ2.

Remark 6. When the support Ξ is compact, the reasonable γ1 and γ2 can be analyt-
ically obtained depending on the number of observations (refer to [8]). However, if Ξ
is not compact, such as this experiment, one can obtain desired γ1, γ2, and solutions
to SVIP (1) by approximating Ξ into a compact set.
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Figure 3. Maximum, mean, and SD of 5000 realizations of the regularized gap function when γ2 is varied.

4. Concluding remarks

We have proposed a DRERM model for an SVIP under uncertainty of distribution
by incorporating the idea of the DRO into the ERM model with the regularized gap
function. In particular, we have shown that the DRERM can be conservatively ap-
proximated into a deterministic NSDP, and under suitable assumptions, the solution
of the NSDP also solves the DRERM. Furthermore, for the SVIP whose mapping F is
affine with respect to x, we have provided a sufficient condition of the regularization
parameter of the regularized gap function to ensure that the reformulated NSDP is a
convex optimization problem. Meanwhile, the reformulated NSDP proposed in the ex-
isting research is not convex in general. In numerical experiments, we have confirmed
the reasonability of the DRERM model by comparing it with the ERM in terms of
robustness, and we have analyzed their solutions by varying confidence parameters γ1
and γ2 included in the ambiguity set P.

A remaining challenge is an NSDP approximation for more general cases of the
following ambiguity sets described in [22]:

P
′ =

{

P ∈ MΞ

∣

∣

∣

∣

EP [Ψi(ξ)] = O, i = 1, 2, . . . , t′

EP [Ψi(ξ)] � O, i = t′ + 1, t′ + 2, . . . , t

}

,

where Ψi (i = 1, 2, . . . , t) is a symmetric matrix- or scalar-valued function over Ξ with
measurable random components. We expect that our approach can be extended into
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the case of P ′ because the DRO with P ′ can be equivalently reformulated to a semi-
infinite programming problem, such as (SIP), by assuming a ‘Slater-type’ condition
on P ′.
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