
PRACTICAL PERSPECTIVES ON

SYMPLECTIC ACCELERATED OPTIMIZATION

VALENTIN DURUISSEAUX AND MELVIN LEOK

Abstract. Geometric numerical integration has recently been exploited to design symplectic
accelerated optimization algorithms by simulating the Bregman Lagrangian and Hamiltonian
systems from the variational framework introduced in Wibisono et al.. In this paper, we discuss
practical considerations which can significantly boost the computational performance of these
optimization algorithms, and considerably simplify the tuning process. In particular, we investigate
how momentum restarting schemes ameliorate computational efficiency and robustness by reducing
the undesirable effect of oscillations, and ease the tuning process by making time-adaptivity
superfluous. We also discuss how temporal looping helps avoiding instability issues caused by
numerical precision, without harming the computational efficiency of the algorithms. Finally, we
compare the efficiency and robustness of different geometric integration techniques, and study the
effects of the different parameters in the algorithms to inform and simplify tuning in practice. From
this paper emerge symplectic accelerated optimization algorithms whose computational efficiency,
stability and robustness have been improved, and which are now much simpler to use and tune for
practical applications.

1. Introduction

The field of symplectic optimization grew out of efforts to generalize Nesterov’s accelerated
gradient method [63], which was shown to converge in O(1/k2) to the minimum of the convex
objective function f and improves on the O(1/k) convergence rate exhibited by standard gradient
descent methods. This O(1/k2) convergence rate, referred to as acceleration, was shown in [64]
to be optimal among first-order methods using only information about ∇f at consecutive iterates.
Nesterov’s algorithm was shown in [77] to limit to a second-order ordinary differential equation as
the timestep goes to 0, and that f(x(t)) converges to its optimal value at a rate of O(1/t2) along
any trajectory x(t) of this ODE. It was then shown in [84] that in continuous time, an arbitrary
convergence rate O(1/tp) can be achieved in normed spaces, by considering flow maps generated by
a family of time-dependent Bregman Lagrangian and Hamiltonian systems which is closed under
time-rescaling. This lead to the field of symplectic optimization [47], where symplectic discretizations
of the Bregman Hamiltonian flow are used to construct accelerated optimization algorithms.

Lagrangian and Hamiltonian flows can also be described variationally. This, together with the
time-rescaling property of this family, were exploited in [32] by using time-adaptive geometric
integrators to design efficient explicit algorithms for symplectic accelerated optimization. It was
observed that a careful use of adaptivity and symplecticity could result in a significant gain in
computational efficiency. There has also been work on deriving accelerated optimization algorithms
in the Riemannian manifold setting [1; 3–5; 28–31; 59; 88; 89].

While the symplectic optimization approach provides a broad framework for constructing acceler-
ated optimization algorithms, the real-world performance of these methods depends on the choice of
numerous parameters. In this paper, we will perform a systematic and comprehensive test of a class
of symplectic accelerated optimization algorithms, so as to provide practical guidance on how to
achieve good real-world performance with less tuning.

1

ar
X

iv
:2

20
7.

11
46

0v
3

 [
m

at
h.

O
C

]
 1

8
M

ay
 2

02
3

2 VALENTIN DURUISSEAUX AND MELVIN LEOK

Outline of the paper. After reviewing the basics of geometric integration in Section 2, we intro-
duce variational accelerated optimization and present how to integrate the corresponding dynamics
in Sections 3 and 4. We then analyze the oscillatory behavior of these dynamical systems in Section 5,
and discuss how their unfavorable effect can be neutralized, in particular via the use of momentum
restarting techniques which can dramatically improve computational efficiency and robustness. In
Section 6, we show that momentum restarting makes time-adaptivity futile, which allows us to
simplify the algorithms. Then, in Sections 7 and 8, we compare the different geometric integrators,
and investigate how the computational performance depends on the different parameters, which
allows us to reduce the numbers of parameters to tune in practice. In Section 9, we see that temporal
looping can avoid instability issues due to numerical precision, and finally in Section 10, we test the
resulting algorithms on problems of interest to the machine learning community.

2. Geometric Mechanics and Geometric Numerical Integration

2.1. Lagrangian and Hamiltonian Mechanics.

Given a manifold Q, a Lagrangian is a function L ∶ TQ → R. The corresponding action integral
S is the functional

S(q) = ∫
T

0
L(q, q̇)dt, (2.1)

over the space of smooth curves q ∶ [0, T]→ Q. Hamilton’s variational principle states that δS = 0
where the variation δS is induced by an infinitesimal variation δq of the trajectory q that vanishes
at the endpoints. Given local coordinates (q1, . . . , qn) on the manifold Q, Hamilton’s variational
principle can be shown to be equivalent to the Euler–Lagrange equations,

d

dt
(∂L
∂q̇k

) = ∂L

∂qk
, for k = 1, . . . , n. (2.2)

A Lagrangian L is hyperregular if the Legendre transform FL ∶ TQ → T ∗Q of L, defined fiberwise by

FL ∶ (qi, q̇i)↦ (qi, ∂L
∂q̇i

), is diffeomorphic. A hyperregular Lagrangian on TQ induces a Hamiltonian

system on T ∗Q via

H(q, p) = ⟨FL(q, q̇), q̇⟩ −L(q, q̇) =
n

∑
j=1

pj q̇
j −L(q, q̇)∣

pi=
∂L

∂q̇i

, (2.3)

where pi = ∂L
∂q̇i

∈ T ∗Q is the conjugate momentum of qi. There is a Hamiltonian variational principle

on the Hamiltonian side in momentum phase space which is equivalent to Hamilton’s equations,

ṗk = −
∂H

∂qk
(p, q), q̇k = ∂H

∂pk
(p, q), for k = 1, . . . , n, (2.4)

and these equations are equivalent to the Euler–Lagrange equations (2.2), provided the Lagrangian
is hyperregular. Hamiltonian systems possess a long list of structural invariants and constants
of motion, the most important of which are the conservation of the Hamiltonian energy and the
conservation of the symplectic 2-form.

2.2. Symplectic and Variational Integrators.

Symplectic integrators form a class of geometric numerical integrators of interest since, when
applied to Hamiltonian systems, they yield discrete approximations of the flow that preserve
the symplectic 2-form. The preservation of the symplectic 2-form results in the preservation
of many qualitative aspects of the underlying dynamical system. In particular, the numerical

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 3

solution of a Hamiltonian system obtained using a constant time-step symplectic integrator is
exponentially-near to the exact solution of a nearby Hamiltonian system for an exponentially-
long time [14; 43]. It explains why symplectic integrators exhibit good energy conservation with
essentially no accumulation of errors in time, when applied to Hamiltonian systems, and why
symplectic methods are best suited to integrate Hamiltonian systems. We refer the reader to [45]
for a brief recent overview of geometric numerical integration, and to [17; 43; 53] for a more
comprehensive presentation of structure-preserving integration techniques.

Variational integrators form a class of symplectic integrators, derived by discretizing Hamilton’s
principle instead of discretizing Hamilton’s equations directly. As a result, variational integrators are
symplectic, preserve many invariants and momentum maps, and have excellent long-time near-energy
preservation [60]. Traditionally, variational integrators have been designed based on the Type I
generating function known as the discrete Lagrangian, Ld ∶ Q×Q→ R. The exact discrete Lagrangian
that generates the time-h flow of Hamilton’s equations can be represented both in a variational
form and boundary-value form. The latter is given by

LEd (q0, q1;h) = ∫
h

0
L(q(t), q̇(t))dt, (2.5)

where q(0) = q0, q(h) = q1, and q satisfies the Euler–Lagrange equations over the time interval [0, h].
A variational integrator is defined by constructing an approximation Ld ∶ Q ×Q → R to LEd , and
then applying the discrete Euler–Lagrange equations,

pk = −D1Ld(qk, qk+1), pk+1 =D2Ld(qk, qk+1), (2.6)

where Di denotes a partial derivative with respect to the i-th argument. The error analysis is greatly
simplified via Theorem 2.3.1 of [60], which states that if a discrete Lagrangian, Ld ∶ Q ×Q → R,
approximates the exact discrete Lagrangian LEd ∶ Q ×Q→ R to order r, i.e.,

Ld(q0, q1;h) = LEd (q0, q1;h) +O(hr+1), (2.7)

then the discrete Hamiltonian map F̃Ld ∶ (qk, pk) ↦ (qk+1, pk+1) defined by (2.6) and viewed as a
one-step method, has order of accuracy r. Many properties of the integrator can be determined by
analyzing the associated discrete Lagrangian, as opposed to analyzing the integrator directly.

Variational integrators have been extended to the framework of Type II/III generating functions,
referred to as discrete Hamiltonians [50; 56; 74]. Hamiltonian variational integrators are derived
by discretizing Hamilton’s phase space principle. The boundary-value formulation of the Type II
generating function of the Hamiltonian flow is given by the exact discrete right Hamiltonian,

H+,E
d (q0, p1;h) = p⊺1q1 − ∫

h

0
[p(t)⊺q̇(t) −H(q(t), p(t))]dt, (2.8)

where (q, p) satisfies Hamilton’s equations with boundary conditions q(0) = q0 and p(h) = p1.
A Type II Hamiltonian variational integrator is constructed by using an approximate discrete
Hamiltonian H+

d , and applying the discrete right Hamilton’s equations

p0 =D1H
+
d (q0, p1), q1 =D2H

+
d (q0, p1). (2.9)

Theorem 2.3.1 of [60], which simplifies the error analysis for Lagrangian variational integrators, has
an analogue for Hamiltonian variational integrators. Theorem 2.2 in [74] states that if a discrete

right Hamiltonian H+
d approximates the exact discrete right Hamiltonian H+,E

d to order r, i.e.,

H+
d (q0, p1;h) =H+,E

d (q0, p1;h) +O(hr+1), (2.10)

then the discrete right Hamiltonian map F̃H+
d
∶ (qk, pk)↦ (qk+1, pk+1) defined by (2.9) and viewed

as a one-step method, is order r accurate. Note that discrete left Hamiltonians and corresponding
discrete left Hamilton’s maps can also be constructed in the Type III case (see [32; 56]).

4 VALENTIN DURUISSEAUX AND MELVIN LEOK

Examples of variational integrators include Galerkin variational integrators [56; 60], Taylor
variational integrators [75], and prolongation-collocation variational integrators [54]. In this paper,
we will use Taylor variational integrators, where a discrete approximate Lagrangian or Hamiltonian
is constructed by approximating the flow map and the trajectory associated with the boundary
values using a Taylor method, and approximating the integral by a quadrature rule. The Taylor
variational integrator is generated by the implicit discrete Euler–Lagrange equations associated to the
discrete Lagrangian or by the Hamilton’s equations associated with the discrete Hamiltonian. The
construction of Taylor variational integrator is presented in the context of accelerated optimization
in [31; 32].

In many cases, the Type I and Type II/III approaches produce equivalent integrators, such as for
Taylor variational integrators provided the Lagrangian is hyperregular [75]. However, Hamiltonian
and Lagrangian variational integrators are not always equivalent in practice, even when they are
analytically equivalent, as they might still have different numerical properties because of numerical
conditioning issues [74]. Even more to the point, Lagrangian variational integrators cannot always
be constructed when the underlying Hamiltonian is degenerate, which is the case in the adaptive
Hamiltonian framework for accelerated optimization presented in Section 3.4.2.

3. Variational Framework for Accelerated Optimization

3.1. General Framework.

Efficient optimization has become one of the major concerns in data analysis. Many machine
learning algorithms are designed around the minimization of a loss function or the maximization
of a likelihood function. Due to the ever-growing size of data sets and problems, there has been
a lot of focus on first-order optimization algorithms because of their low cost per iteration, and
many gradient-based optimization methods have been proposed since Cauchy’s first gradient descent
algorithm [22]. Nesterov’s Accelerated Gradient (NAG) method

xk = yk−1 − h∇f(yk−1), yk = xk +
k − 1

k + 2
(xk − xk−1), (3.1)

was introduced in 1983 in [63], and converges in O(1/k2) to the minimum of the convex objective
function f , improving on the O(1/k) convergence rate exhibited by the standard gradient descent
methods. This O(1/k2) convergence rate was shown in [64] to be optimal among first-order
methods using only information about ∇f at consecutive iterates. This phenomenon in which
an algorithm displays this improved rate of convergence is referred to as acceleration, and other
accelerated algorithms have been derived, such as accelerated mirror descent [62], and accelerated
cubic-regularized Newton’s method [65].

It was shown in [77] that Nesterov’s method limits to a second-order ODE, as the step size goes
to 0. The authors also proved that the objective function f(x(t)) converges to its optimal value at a
rate of O(1/t2) along the trajectories of this ODE. It was then shown in [84] that in continuous time,
the convergence rate of f(x(t)) can be accelerated to an arbitrary rate O(1/tp), by considering flow
maps generated by a family of time-dependent Bregman Lagrangian and Hamiltonian systems on
normed vector spaces which is closed under time rescaling. More precisely, in a general space Q,
given a convex, continuously differentiable function h ∶ Q → R such that ∥∇h(q)∥→∞ as ∥q∥→∞,
its corresponding Bregman divergence is given by

Dh(x, y) = h(y) − h(x) − ⟨∇h(x), y − x⟩. (3.2)

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 5

The Bregman Lagrangian and Hamiltonian are defined as

Lα,β,γ(q, v, t) = eαt+γt [Dh(q + e−αtv, q) − eβtf(q)] , (3.3)

Hα,β,γ(q, r, t) = eαt+γt [Dh∗(∇h(q) + e−γtr,∇h(q)) + eβtf(q)] , (3.4)

which are scalar-valued functions of position q ∈ Q, velocity v ∈ Rd, momentum r ∈ Rd, and time t,
and are parametrized by smooth functions of time, α,β, γ. Here, the function h∗ ∶ Q∗ → R denotes
the Legendre transform (or convex dual function) of h, defined by h∗(w) = supz∈Q [⟨w, z⟩ − h(z)].
These parameter functions α,β, γ are said to satisfy the ideal scaling conditions if

β̇t ≤ eαt and γ̇t = eαt . (3.5)

If the ideal scaling conditions are satisfied, then Theorem 1.1 in [84] asserts that

f(q(t)) − f(q∗) ≤ O(e−βt), (3.6)

along the trajectory q(t) associated with the Bregman Lagrangian (3.3) and Bregman Hamilton-
ian (3.4), where q∗ is the desired minimizer of the objective function f .

From now on, we take h(q) = 1
2⟨q, q⟩. Assuming that the parameter functions α,β, γ satisfy the

ideal scaling conditions (3.5), the Bregman Lagrangian and Hamiltonian become

Lα,β,γ(q, v, t) =
1

2
eγt−αt⟨v, v⟩ − eαt+βt+γtf(q), (3.7)

Hα,β,γ(q, r, t) =
1

2
eαt−γt⟨r, r⟩ + eαt+βt+γtf(q), (3.8)

with corresponding Euler–Lagrange equation given by

q̈(t) + (eαt − α̇t) q̇(t) + e2αt+βt∇f(q(t)) = 0. (3.9)

3.2. Polynomial Subfamily.

A subfamily of Bregman dynamics of interest, indexed by a parameter p > 0, is given by the
choice of parameter functions

αt = log p − log t, βt = p log t + logC, γt = p log t, (3.10)

where C > 0 is a constant. These parameter functions satisfy the ideal scaling conditions (3.5), and
the corresponding Lagrangian and Hamiltonian are given by

Lp(q, v, t) =
tp+1

2p
⟨v, v⟩ −Cpt2p−1f(q), (3.11)

Hp(q, r, t) =
p

2tp+1
⟨r, r⟩ +Cpt2p−1f(q), (3.12)

with corresponding Euler–Lagrange equation given by

q̈(t) + p + 1

t
q̇(t) +Cp2tp−2∇f(q(t)) = 0. (3.13)

From Theorem 1.1 in [84], the evolution q(t) resulting from this dynamical system satisfies the
convergence rate

f(q(t)) − f(q∗) ≤ O(1/tp). (3.14)

Note that this Bregman subfamily has been exploited extensively in [16; 31; 32; 84], and that the
special case where p = 2 and C = 1/4 corresponds to the limiting continuous differential equation
introduced in [77] for Nesterov’s Accelerated Gradient method.

6 VALENTIN DURUISSEAUX AND MELVIN LEOK

3.3. Exponential Subfamily.

Another subfamily of Bregman dynamics of interest, indexed by a parameter η > 0, is given by
the choice of parameter functions

αt = log η, βt = ηt + logC, γt = ηt, (3.15)

where C > 0 is a constant. These parameter functions satisfy the ideal scaling conditions (3.5), and
the corresponding Lagrangian and Hamiltonian are given by

Lη(q, v, t) = e
ηt

2η
⟨v, v⟩ −Cηe2ηtf(q), (3.16)

Hη(q, r, t) = η

2eηt
⟨r, r⟩ +Cηe2ηtf(q), (3.17)

with corresponding Euler–Lagrange equation given by

q̈(t) + ηq̇ +Cη2eηt∇f(q(t)) = 0 (3.18)

From Theorem 1.1 in [84], the evolution q(t) resulting from this dynamical system satisfies the
convergence rate

f(q(t)) − f(q∗) ≤ O (e−ηt) . (3.19)

3.4. Geometric Numerical Integration of Time-rescaled Bregman dynamics.

3.4.1. Time-rescaling Property of the Bregman Family.

A very important property of the family of Bregman dynamics is its closure under time dilation:

Theorem 3.1 ([84]). If the curve q(t) satisfies the Euler–Lagrange equations corresponding to the
Bregman Lagrangian Lα,β,γ, then the reparametrized curve y(t) = q(τ(t)) satisfies the Euler–Lagrange
equations corresponding to the Bregman Lagrangian Lα̃,β̃,γ̃ where

Lα̃,β̃,γ̃(q, v, t) = τ̇(t)Lα,β,γ (q,
1

τ̇(t)v, τ(t)) , α̃t = ατ(t) + log τ̇(t), β̃t = βτ(t), γ̃t = γτ(t). (3.20)

Thus, the entire subfamily of Bregman trajectories can be obtained by speeding up or slowing
down along any specific Bregman curve in spacetime. It is natural to exploit this time-rescaling
property with carefully chosen variable time-steps in the integrator to transform the time-dependent
Bregman Hamiltonian or Lagrangian into a simpler autonomous system in some extended phase-
space. This allows the higher-order Bregman dynamics to be integrated in a more computationally
efficient fashion by time-rescaling the lower-order Bregman dynamics. This was first achieved in
[32] with the polynomial subfamily of Section 3.2, where time-rescaling a solution to the p-Bregman

Euler–Lagrange equations via τ(t) = tp̊/p yielded a solution to the p̊-Bregman Euler–Lagrange
equations. We can similarly jump from one solution of Bregman dynamics from the exponential

subfamily from Section 3.3 to another via τ(t) = η̊
η t, or jump from exponential Bregman dynamics

to polynomial Bregman dynamics via τ(t) = p
η log t, and vice-versa via τ(t) = eηt/p.

However, when symplectic integrators were first used in combination with variable time-steps,
they performed poorly [20; 39]. A major advantage of using symplectic integrators on conservative
Hamiltonian systems is that they exhibit excellent long-time near-energy preservation [43]. Backward
error analysis [43] shows that symplectic integrators can be associated with a modified Hamiltonian
in the form of a formal power series in the time-step. Using variable time-steps results in a different
modified Hamiltonian at every iteration, which is the source of the poor energy conservation and
poor overall performance of these symplectic integrators. Fortunately, there are ways to circumvent

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 7

this issue, which will allow us to exploit the time-rescaling property of the Bregman dynamics with
variable time-step integrators, to transform the time-dependent Bregman dynamics into simpler
autonomous systems in an extended space.

3.4.2. Time-adaptive Hamiltonian Integrators.

On the Hamiltonian side, the Poincaré transformation is a way to incorporate variable time-steps
in geometric Hamiltonian integrators without losing their nice conservation properties [32; 41; 87].
Given a Hamiltonian H(q, p, t), consider a desired transformation of time t ↦ τ described by the
monitor function dt

dτ = g(t). The time t shall be referred to as the physical time of the system, while
τ will be referred to as the fictive time. A new Hamiltonian system is constructed using the Poincaré
transformation,

H̄(q̄, p̄) = g(q) (H(q, q, p) + p) , (3.21)

in the extended phase space defined by

q̄ = [q
q
] ∈ Q̄ and p̄ = [p

p
] , (3.22)

where p is the conjugate momentum for q = t with p(0) = −H(q(0), 0, p(0)). Then, using a symplectic
integrator with constant time-step in fictive time τ on the Poincaré transformed Hamiltonian, has
the effect of integrating the original system with the desired variable time-step in physical time t
via the relation dt

dτ = g(t). Note that this framework can be extended to monitor functions which
also depend on position q and momentum p, g = g(q, t, p) (see [32]), but we will only need g = g(t)
in this paper. Also note that the Poincaré transformed Hamiltonian can be thought of as coming
from a variational principle [31].

Going back to accelerated optimization, and denoting momentum by r to avoid confusion, we
can jump from one form of Bregman dynamics to another as follows:

(1) Polynomial-p to Polynomial-p̊: τ(t) = tp̊/p, g(t) = p
p̊ t

1−p̊/p, yielding the Poincaré Hamiltonian

H̄p→p̊(q̄, r̄) =
p2

2p̊qp+p̊/p
⟨r, r⟩ + Cp

2

p̊
q2p−p̊/pf(q) + p

p̊
rq1−p̊/p. (3.23)

(2) Exponential-η to Exponential-̊η: τ(t) = η̊
η t, g(t) =

η
η̊ , yielding the Poincaré Hamiltonian

H̄η→η̊(q̄, r̄) = η2

2η̊eηq
⟨r, r⟩ + Cη

2

η̊
e2ηqf(q) + η

η̊
r. (3.24)

(3) Exponential-η to Polynomial-p: τ(t) = p
η log t, g(t) = η

p t, yielding the Poincaré Hamiltonian

H̄η
→p(q̄, r̄) =

qη2

2peηq
⟨r, r⟩ + Cqη

2

p
e2ηqf(q) + η

p
qr. (3.25)

(4) Polynomial-p to Exponential-η: τ(t) = eηt/p, g(t) = p
ηe

−ηt/p yielding the Poincaré Hamiltonian

H̄→ηp (q̄, r̄) = e−
η
p
q (p2

2ηqp+1
⟨r, r⟩ + Cp

2

η
q2p−1f(q) + p

η
r) . (3.26)

8 VALENTIN DURUISSEAUX AND MELVIN LEOK

3.4.3. Time-adaptive Lagrangian Integrators.

The time-adaptive framework for symplectic integration on the Hamiltonian side presented in the
previous section relies on a degenerate Hamiltonian which has no associated Lagrangian description.
Thus, we cannot exploit the usual correspondence between Hamiltonian and Lagrangian dynamics,
and we follow a different strategy to allow time-adaptivity in Lagrangian integrators. Given a
time-dependent Lagrangian L(q, q̇, t), consider the extended autonomous Lagrangian

L̄(q̄(τ), q̄′(τ)) = q′(τ)L(q(τ), q′(τ)
g(q(τ)) , q(τ)) − λ(τ)

[q′(τ) − g(q(τ))] , (3.27)

defined in the extended space q̄ = (q, q, λ)⊺ where time is viewed as a position coordinate q = t, where
λ is a Lagrange multiplier enforcing the desired time rescaling dt

dτ = g(t), and where apostrophes
denote derivatives with respect to fictive time τ . Now, if (q̄(τ), q̄′(τ)) satisfies the Euler–Lagrange
equations corresponding to the Lagrangian L̄, then its components satisfy dt

dτ = g(t) and the original
Euler–Lagrange equations [31].

A discrete variational formulation of these continuous extended Lagrangian mechanics can be
formulated [31], by considering a discrete Lagrangian

Ld(qk, qk, qk+1, qk+1) ≈ ext
(q,q)∈C2([τk,τk+1],Q×R)

(q,q)(τk)=(qk,qk), (q,q)(τk+1)=(qk+1,qk+1)

∫
τk+1

τk
L(q, q′

g(q) , q)dτ, (3.28)

where 0 = τ0 < τ1 < . . . < τN partitions the time interval of interest, and {(qk, qk)}Nk=0 is a discrete
curve in Q × R such that qk ≈ q(τk) and qk ≈ q(τk). Defining the discrete momenta via the discrete
Legendre transformations, pk = −D1Ld(qk, qk, qk+1, qk+1), and using a constant time-step h in fictive
time τ , the corresponding discrete extended Euler–Lagrange equations can be written as

pk = −D1Ld(qk, qk, qk+1, qk+1),

pk+1 =
g(qk)
g(qk+1)

D3Ld(qk, qk, qk+1, qk+1),

qk+1 = qk + hg(qk),

(3.29)

with two additional equations for pk and pk+1 (see [31]). For accelerated optimization, we are not
interested in the evolution of p, and since it does not appear in the updates for the other variables
we do not need these equations and omit them here. We can then use one of the monitor functions

g(t) = p
p̊
t1−p̊/p, g(t) = η

η̊
, g(t) = η

p
t, g(t) = p

η
e−ηt/p, (3.30)

to transform from one type of Bregman Lagrangian to another.

4. Numerical Methods and Problems of Interest

4.1. Numerical Methods.

We now present four different methods to design symplectic integrators for the time-rescaled
Bregman Lagrangian and Bregman Hamiltonian systems presented in Section 3. Keeping in mind
the desired applications in machine learning where problem sizes and data sets are very large,
we restrict ourselves to explicit first-order optimization algorithms. Each of these four methods
can be used within the four different adaptive approaches presented in Section 3.4.1 (polynomial,
exponential, polynomial-to-exponential, and exponential-to-polynomial), and the resulting sixteen
algorithms are presented in Appendix A.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 9

4.1.1. Hamiltonian Taylor Variational Integrator (HTVI).

Proceeding as in [32, Section 4.4] or [75], we can derive the Hamiltonian Taylor Variational
Integrator (HTVI),

pk+1 = pk − hHq(qk, pk+1),
qk+1 = qk + hHp(qk, pk+1).

(4.1)

These updates recover the Symplectic Euler method [43], which is a popular symplectic integrator
of order 1.

4.1.2. Lagrangian Taylor Variational Integrator (LTVI).

As in [31], we can define a discrete Lagrangian,

Ld(q̄0, q̄1) = hLp (q0,
q1 − q0

hg(q0)
, q0) , (4.2)

and the updates for the Lagrangian Taylor Variational Integrator (LTVI) can be obtained from the
discrete extended Euler–Lagrange equations (3.29).

4.1.3. Störmer-Verlet (SV).

A popular symplectic integrator is the Störmer–Verlet (SV) method,

pk+1/2 = pk −
h

2
Hq(qk, pk+1/2),

qk+1 = qk +
h

2
[Hp(qk, pk+1/2) +Hp(qk+1, pk+1/2)] ,

pk+1 = pk+1/2 −
h

2
Hq(qk+1, pk+1/2),

(4.3)

which is a symmetric symplectic integrator of order 2 (see [43]). A very detailed description of the
Störmer–Verlet method, its different interpretations, and its beneficial numerical properties can
be found in [42]. Note however that in the polynomial and polynomial-to-exponential frameworks,
the update for q in the resulting integrators becomes implicit (see PolySV and PolyToExpoSV
in Appendix A), which makes these integrators less desirable. For the accelerated optimization
application, we will usually be able to combine the first and last updates for the momentum
vector p into a single update and save roughly a third of the computational time. This is because
Störmer–Verlet is conjugate to symplectic Euler.

4.1.4. Symmetric Leapfrog Composition of Component Dynamics (SLC).

The main idea is to decompose the vector field into its components,

d

dτ
= dq
dτ

d

dq
+ dq
dτ

d

dq
+ dr
dτ

d

dr
+ dr

dτ

d

dr
= ∂H
∂r

d

dq
+ ∂H
∂r

d

dq
− ∂H
∂q

d

dr
− ∂H
∂q

d

dr
=A +B +C +D,

and then combine the component dynamics using a symmetric leapfrog composition

Φh = exp(h
2
D) ○ exp(h

2
C) ○ exp(h

2
B) ○ exp (hA) ○ exp(h

2
B) ○ exp(h

2
C) ○ exp(h

2
D) (4.4)

which satisfies Φh = exp (hH)+O(h3) (can be shown using the Baker–Campbell–Hausdorff formula).
This strategy is similar to the integrator from [16, Section 3.3] and the Splitting algorithms in [32].

10 VALENTIN DURUISSEAUX AND MELVIN LEOK

As an example, for

H̄p→p̊(q̄, r̄) =
p2

2p̊qp+p̊/p
⟨r, r⟩ + Cp

2

p̊
q2p−p̊/pf(q) + p

p̊
rq1−p̊/p, (4.5)

the components of the vector field are given by

A = p2

p̊qp+p̊/p
r
d

dq
, B = p

p̊
q1−p̊/p d

dq
, C = −Cp

2

p̊
q2p−p̊/p∇f(q) d

dr
, D = −∂H̄p→p̊

∂q

d

dr
. (4.6)

Then, the corresponding component dynamics are given as follows:

● exp (hA) yields the update q ← q + h p2

p̊qp+p̊/p r

● exp (hC) yields the update r ← r − hCp
2

p̊ q2p−p̊/p∇f(q)

● exp (hB) yields the differential equation q′ = p
p̊q

1−p̊/p, which can be solved exactly to obtain

the update q← (qp̊/p + h)p/p̊

Note that the updates for exp (hA), exp (hB), and exp (hC) do not involve r, and in practice, we
are not interested in the evolution of r, so we can simplify the composition into

Φh = exp(h
2
C) ○ exp(h

2
B) ○ exp (hA) ○ exp(h

2
B) ○ exp(h

2
C), (4.7)

which gives the PolySLC algorithm,

r ← r − Cp
2

2p̊
hq2p−p̊/p∇f(q),

q← (qp̊/p + h
2
)
p/p̊

,

q ← q + hp2

p̊qp+p̊/p
r,

q← (qp̊/p + h
2
)
p/p̊

,

r ← r − Cp
2

2p̊
hq2p−p̊/p∇f(q).

(4.8)

We have chosen to place exp (hA) in the middle of the symmetric composition (4.7) so that the
gradient ∇f only needs to be evaluated at the iterates {qk}k∈N and can also be used without further
computations in stopping criteria or momentum restarting schemes. We have also chosen to place
exp (hC) at the left-hand and right-hand of the symmetric composition (4.7) so that in practice,
we may combine the first and last updates for the vector r into a single update (instead of only
being able to combine the first and last updates for the scalar q into a single update), and thus save
roughly a third of the computational time.

Remarks. It was observed in [32] that the symplecticity of the integrator was essential for
the efficient, robust, and stable discretization of these variational flows describing accelerated
optimization. Therefore, we will not consider non-symplectic methods here.

Higher-order explicit symplectic integrators can be derived, leveraging higher-order compositions
such as Yoshida splittings [86], but it was observed in [32] that these require much more evaluations
of the objective function and its gradient at each step. Thus, the resulting algorithms would not be
competitive in terms of computational time and number of gradient evaluations, since the other
methods usually converge in a similar number of iterations but only require one gradient evaluation
per iteration.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 11

4.2. Problems of Interest.

A subset C of Rd is convex if λx + (1 − λ)y ∈ C for any x, y ∈ C and λ ∈ [0,1]. A differentiable
function f ∶ Rd → R is convex if its domain dom(f) is convex and for any λ ∈ [0,1],

f (λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y), ∀x, y ∈ dom(f), (4.9)

or equivalently if

f(y) ≥ f(x) +∇f(x)⊺(y − x), ∀x, y ∈ dom(f). (4.10)

A differentiable function f ∶ Rd → R is strongly convex if there exists µ > 0 such that f(x)−µ∥x∥2

is convex, or equivalently if

f(y) ≥ f(x) +∇f(x)⊺(y − x) + µ∥y − x∥2, ∀x, y ∈ dom(f). (4.11)

In our numerical experiments, we will use termination criteria of the form,

∣f(xk) − f(xk−1)∣ < δ and ∥∇f(xk)∥ < δ, (4.12)

for various values of the tolerance δ, and solve the following convex problems.

Problem 1. Minimize the quartic polynomial

f(x) = 1 + [(x − 1)⊺Σ(x − 1)]2
, where Σij = 0.9∣i−j∣ and x ∈ Rd. (4.13)

This convex function achieves its global minimum at x∗ = (1,1, . . . ,1)⊺.

Problem 2. Minimize the convex (not strongly convex) function

f(x1, x2) = x1 + x2
2 − ln(x1x2), (4.14)

which achieves its global minimum at x∗ = (1,
√

2/2)⊺.

Problem 3. Minimize the strongly convex function

f(x1, ..., xd) =
d

∑
k=1

xk logxk. (4.15)

This function, known as negative entropy, achieves its global minimum at x∗ = (e−1, e−1, . . . , e−1)⊺.

Problem 4. Minimize the ill-conditioned strongly convex function

f(x1, x2, x3) = 1 + 0.01x2
1 + x2

2 + 100x2
3, (4.16)

which achieves its global minimum at x∗ = (0,0,0)⊺.

Problem 5 (Linear Regression or Least Squares). Given a matrix A ∈ Rm×n with m ≥ n and a
vector b ∈ Rm, consider the problem of finding a vector x ∈ Rn such that ∥Ax− b∥2 is minimized. The
least squares problem has many applications in data-fitting and interpolation. It can be formulated
as the minimization of

f(x) = 1

2
x⊺A⊺Ax − b⊺Ax, (4.17)

with a gradient given by ∇f(x) = A⊺Ax −A⊺b. A vector x ∈ Rn is a solution of the least squares
problem if and only if it satisfies the normal equation A⊺Ax = A⊺b. Furthermore, the least squares
problem has a unique solution, given by x∗ = (A⊺A)−1A⊺b, if and only if A has full rank [82].

12 VALENTIN DURUISSEAUX AND MELVIN LEOK

There are also regularized versions of the least squares problem or linear regression [15; 19], to
penalize larger values of x. A common form of regularization is Tikhonov regularization [69; 80; 81]
(or `2 regularization), where we minimize the convex function

f(x) = ∥Ax − b∥2
2 + λ∥x∥2

2, (4.18)

for some λ > 0, which has a unique minimizer x∗ = (A⊺A+λb)−1A⊺b. Another regularized version is
the `1 penalized linear regression (also known as the Lasso problem [79]), where we minimize the
convex (not strongly convex) function

f(x) = 1

2
∥Ax − b∥2

2 + λ∥x∥1. (4.19)

Problem 6 (Logistic Regression for Binary Classification). Given a set of feature vectors
x1, . . . , xm ∈ Rn and associated labels y1, . . . , ym ∈ {−1,1}, we want to find a vector w ∈ Rn such that
sign(w⊺x) is a good model for y(x). This can be formulated as the problem of minimizing the convex
(not strongly convex) function

f(w) =
m

∑
i=1

log (1 + exp (−yiw⊺xi)). (4.20)

As for linear regression, there are also regularized versions of logistic regression, such as `1 and `2

regularized logistic regression:

f(w) =
m

∑
i=1

log (1 + exp (−yiw⊺xi)) + λ∥x∥1, f(w) =
m

∑
i=1

log (1 + exp (−yiw⊺xi)) + λ∥x∥2
2. (4.21)

Problem 7 (Fermat–Weber Location Problem [13; 18; 26]). Given a set of points y1, . . . , ym ∈
Rn and associated positive weights w1, . . . ,wm ∈ R, we want to find the location x ∈ Rn whose sum of
weighted distances from the points y1, . . . , ym is minimized. In other words, we wish to minimize the
convex function

f(x) =
m

∑
j=1

wj∥x − yj∥. (4.22)

The Fermat–Weber location problem is at the heart of Location Theory and has countless applications
across many fields of science and engineering.

Remark 4.1. A Tikhonov-type regularization can also be achieved by modifying the second-order
differential equation instead of adding a penalty to the objective function (see [2; 7; 8; 46] for
instance). The idea is to add an extra term ε(t)x(t) with ε(t) → 0 as t → ∞ to the second-order
differential equation of interest:

ẍ(t) + α(t)ẋ(t) + γ(t)∇f(x(t)) + ε(t)x(t) = 0. (4.23)

This extra term forces the generated trajectory to converge to a solution of minimal norm. This type
of modified differential equation can be generated from a variational framework via Lagrangians and
Hamiltonians of the form

L(x, v, t) = 1

2
α(t)⟨v, v⟩ + ε(t)⟨v, x⟩ − γ(t)f(x), (4.24)

H(x, p, t) = 1

2α(t)⟨p − ε(t)x, p − ε(t)x⟩ + γ(t)f(x), (4.25)

whose Euler–Lagrange equation reads

α(t)ẍ(t) + α̇(t)ẋ(t) + γ(t)∇f(x(t)) + ε̇(t)x(t) = 0. (4.26)

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 13

5. Controlling the Oscillatory Behavior

The Bregman Euler–Lagrange equation (3.9) can be written in the form

ẍ(t) + d(t)ẋ(t) + b(t)∇f(x(t)) = 0. (5.1)

The introduction of momentum in the dynamical system causes the solution to this ordinary differ-
ential equation to overshoot frequently in its path towards the minimizer of the objective function f ,
and as a result the solution can be highly oscillatory. Therefore, this differential equation can be
thought of as modeling a nonlinear oscillator with damping, and the convergence of the function f to
its minimum value is not monotone along Bregman trajectories. This is similar to what was observed
for the limiting continuous differential equation for Nesterov’s accelerated gradient method [61; 77]
and for most momentum methods. These oscillations are problematic since they can significantly slow
down optimization algorithms that are derived from the discretization of these Bregman differential
equations. Indeed, to resolve the fast oscillations of the differential equation, the time-step in the
discretization has to be reduced sufficiently, which can considerably increase the number of iterations
and gradient evaluations needed to achieve convergence. If the time-step is not taken small enough,
the momentum in the algorithms can lead to large overshoots which can result in divergence. It
would therefore be desirable to have a mechanism to neutralize these oscillations. Fortunately, there
are ways to reduce the effect of these oscillations, which we will discuss in the remainder of this section.

5.1. Momentum Restarting.

Momentum causes the solution to the Bregman Euler–Lagrange equation to overshoot frequently
on its path towards the minimizer of f . One strategy to control these overshoots and reduce the
effect of the resulting oscillations is to use restarting or momentum restarting schemes, previously
explored in [23; 25; 35; 36; 38; 66; 70–72; 77]. We will consider three different momentum restarting
schemes:

● Function Scheme: Restart momentum whenever f(qk) > f(qk−1)
This scheme restarts the momentum r whenever the function evaluation at the new update
moves away from the minimum value, to try to avoid wasting iterations in a bad direction.

● Gradient Scheme: Restart momentum whenever ∇f(qk)(qk − qk−1) > 0
This restarts the momentum variable r whenever momentum seems to take the new updates
in a bad direction, measured using the gradient at that point.

● Velocity Scheme: Restart momentum whenever ∥qk+1 − qk∥ < ∥qk − qk−1∥
This scheme restarts the momentum variable r whenever the norm of the (discrete version
of the) velocity ∥q̇∥ starts decreasing, to try to maintain a high velocity along the trajectory.

Note that the quantities needed to implement these restarting schemes are already calculated in
the standard versions of the optimization algorithms, and thus there is a negligible difference in the
computational costs of each iteration in the restarted and non-restarted schemes.

We can also require a minimum number of iterations between momentum restarts, to avoid having
consecutive restarts that are too close to each other. In practice however, it did not seem to really
improve the computational efficiency of the algorithm and could sometimes negatively impact the
overall performance. For simplicity, we will not impose a minimum number of iterations between
consecutive restarts.

14 VALENTIN DURUISSEAUX AND MELVIN LEOK

In our first numerical experiment, we compared the performance of the standard algorithms to
their restarted versions on three different problems for fixed values of all the parameters except the
time-step h. Figure 1 shows the resulting error plots after tuning the value of h optimally. We can
clearly see that the restarted versions of the algorithms are much less oscillatory, and they can allow
for much larger time-steps leading to significantly faster algorithms, as is the case for Problems 2
and 3. Problem 1 is a special instance where larger time-steps cannot be taken in the restarted
algorithms, despite their non-oscillatory nature. It should be noted however that although the use
of momentum restarting does not lead to significant improvements in computational efficiency, it
does not penalize computational efficiency either.

100 101 102 103 10410-16

10-8

100

102 103 104 10510-16

10-8

100

102 103 10410-16

10-8

100

100 101 102 10310-16

10-8

100

102 103 104 10510-16

10-8

100

102 103 104 10510-16

10-8

100

Figure 1. Error vs. Iterations number as the standard PolyHTVI and ExpoHTVI
algorithms and their restarted versions (Function (F), Gradient (G) and Velocity (V))
are applied to Problem 1 (left), Problem 2 (middle), and Problem 3 (right).

We have performed additional experiments to obtain a better idea of the benefits of momentum
restarting in terms of computational efficiency, robustness and stability. More precisely, we solved
optimization problems using the different versions of the algorithms on a 100 × 100 grid with
logarithmic spacing in the parameter (C,h)-plane, and recorded the number of iterations required
to achieve certain convergence criteria. Figures 2, 3, 4, and 5 display the results as filled contour
plots (where the absence of color indicates either divergence or failure of the algorithm to converge
in less than 106 iterations). Table 1 displays the number of iterations required to converge by each
version of the algorithms with its optimal (C,h) pair on the 100 × 100 logarithmically-spaced grid.

Figure 2 confirms the earlier observation that restarting can significantly reduce the number of
iterations needed to converge, and we can also see that the restarted versions of the algorithm are
more robust, since the regions of fast convergence are larger than for the standard algorithm. As a
result, it is easier to tune the restarted algorithms to achieve fast convergence. Note as well from
Figure 3 that a restarting scheme can significantly improve the stability of the algorithms. Indeed,
we can that as the convergence criteria are made stricter going from Figure 2 to Figure 3, the
regions of fast convergence have not shrunk as dramatically for the restarted algorithms as for the
standard version. Given a converging (C,h) pair for a restarted algorithm in Figure 2, the restarted
algorithm usually remains convergent for that (C,h) pair with the stricter criteria in Figure 2 with
a slightly increased number of iterations required. This is not true for the standard algorithm where

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 15

the increase in number of iterations is much more significant, and there is a larger region of initially
convergent (C,h) pairs where the standard algorithm diverges when the stricter convergence criteria
is imposed.

5000
10000

2000050000

150000
300000

300000

600000

10-10 10-8 10-6 10-4 10-2 100

10-4

10-2

100

100200
500

10002000
50001000020000

50000
150000

300000600000

10-10 10-8 10-6 10-4 10-2 100

10-4

10-2

100

102

103

104

105

100
200
500

1000
2000
50001000020000

50000
150000300000600000

10-10 10-8 10-6 10-4 10-2 100

10-4

10-2

100

100200
500100020005000100002000050000150000300000600000

10-10 10-8 10-6 10-4 10-2 100

10-4

10-2

100

102

103

104

105

Figure 2. Contour plot of the number of iterations required to achieve convergence
with δ = 10−5 in the (C,h)-plane, for p = p̊ = 4 PolyHTVI applied to Problem 2.

150000
300000600000

10-10 10-8 10-6 10-4 10-2 100

10-4

10-2

100

200
50010002000

5000
2000050000150000300000600000

10-10 10-8 10-6 10-4 10-2 100

10-4

10-2

100

102

103

104

105

100
200
500

1000
2000
5000

20000
50000

150000300000600000

10-10 10-8 10-6 10-4 10-2 100

10-4

10-2

100

100200
500100020005000

2000050000150000300000600000

10-10 10-8 10-6 10-4 10-2 100

10-4

10-2

100

102

103

104

105

Figure 3. Contour plot of the number of iterations required to achieve convergence
with δ = 10−8 in the (C,h)-plane, for p = p̊ = 4 PolyHTVI applied to Problem 2.

16 VALENTIN DURUISSEAUX AND MELVIN LEOK

As was observed earlier in Figure 1, we can see from Figure 4 that momentum restarting does
not lead to significant improvements in computational efficiency for Problem 1, but also does not
penalize computational efficiency in that case. From Figure 4, we see that this observation extends
to robustness and stability. since all the different versions of the algorithm share similar convergence
regions given the same parameter values and convergence criteria.

100
200

500

2000
5000

20000

50000
150000
400000

10-10 10-5 100 105
10-6

10-4

10-2

100
100

200
500

2000
5000

20000
50000

150000400000

10-10 10-5 100 105
10-6

10-4

10-2

100

102

103

104

105

100
200

500

2000
5000

20000
50000

150000400000

10-10 10-5 100 105
10-6

10-4

10-2

100
200

500

2000
5000

20000
50000

150000
400000

10-10 10-5 100 105
10-6

10-4

10-2

100

102

103

104

105

Figure 4. Contour plot of the number of iterations required to achieve convergence
in the (C,h)-plane, for the p = p̊ = 8 PolyHTVI algorithm applied to Problem 1.

All the observations made so far also extend to the other Bregman subfamilies of dynamics
and other algorithms, as can be seen, for instance, in Figure 5 for the ExpoSLC algorithm, where
momentum restarting leads to significant gains in computational efficiency, robustness and stability.
Table 1 provides additional data supporting the significant gain in efficiency that can be achieved
using momentum restarting.

Algorithm Problem δ No Restart Function Scheme Gradient Scheme Velocity Scheme
PolyHTVI Problem 1 10−12 52 52 52 108
PolyHTVI Problem 2 10−5 621 39 23 34
PolyHTVI Problem 2 10−8 15994 80 51 57
PolyHTVI Problem 3 10−8 4121 60 11 16
PolyHTVI Problem 4 10−8 14723 60 12 14
PolyHTVI Problem 5 10−5 3917 104 33 38
ExpoLSC Problem 1 10−12 75 68 64 155
ExpoLSC Problem 2 10−5 3929 50 20 21
ExpoLSC Problem 2 10−8 204598 91 27 32
ExpoLSC Problem 3 10−8 17081 66 15 18
ExpoLSC Problem 4 10−8 58028 72 10 12
ExpoLSC Problem 5 10−5 21440 54 27 41

Table 1. Comparison of the fastest convergence achieved by the standard algorithms
and the restarting schemes on various problems with different tolerances δ (displayed
in terms of number of iterations required to achieve the termination criteria).

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 17

50000
150000

500000

10-10 10-5 100 105 1010

10-6

10-4

10-2

25070015005000
15000

50000

150000

500000

10-10 10-5 100 105 1010

10-6

10-4

10-2

102

103

104

105

100

100

250
70015005000

15000
50000

150000

500000

10-10 10-5 100 105 1010

10-6

10-4

10-2

100
250

700
15005000

15000
50000

150000
500000

10-10 10-5 100 105 1010

10-6

10-4

10-2

102

103

104

105

Figure 5. Contour plot of the number of iterations required to achieve convergence
with δ = 10−5 in the (C,h)-plane, for η = η̊ = 1 ExpoLSC applied to Problem 2.

Overall, all the numerical experiments conducted in this section unequivocally support the use
of momentum restarting in the algorithms for accelerated optimization, and it can be seen from
Figures 2, 3, 4, and 5 and Table 1 that the gradient-based restarting scheme consistently outperforms
the other two restarting schemes in terms of computational efficiency, robustness and stability.
Unless stated otherwise, we will now always use momentum restarting based on the gradient scheme
in the remainder of this paper, without explicitly stating it every time.

5.2. The Effect of the Parameter C.

The parameter C in the polynomial and exponential subfamilies of Bregman dynamics, presented
in Sections 3.2 and 3.3, can sometimes provide a simple way to control the oscillatory behavior of the
second-order differential equation. From the point of view of perturbation theory, the polynomial
and exponential Bregman Euler–Lagrange equations (3.13) and (3.18),

q̈(t) + p + 1

t
q̇(t) +Cp2tp−2∇f(q(t)) = 0, and q̈(t) + ηq̇ +Cη2eηt∇f(q(t)) = 0, (5.2)

can be thought of as perturbations of the simpler differential equations,

ü(t) + p + 1

t
u̇(t) = 0, and v̈(t) + ηv̇ = 0. (5.3)

The solutions to these two unperturbed equations are given by

u(t) = (k1t
−p + k2)1, and v(t) = (k3e

−ηt + k4)1, (5.4)

for some constants k1, k2, k3, k4 depending on the initial conditions. They are non-oscillatory, and
converge monotonically to a constant vector at the respective rates of O(t−p) and O(e−ηt). We
can thus think of the terms Cp2tp−2∇f(q(t)) and Cη2eηt∇f(q(t)) as perturbations steering the
dynamical system towards the minimizer of the objective function f , in an oscillatory fashion. The
parameter C, which appears in front of these two perturbation terms, should therefore be chosen, in
theory, to be small enough to control the oscillations but also large enough to guide the dynamical

18 VALENTIN DURUISSEAUX AND MELVIN LEOK

system towards the minimizer of the objective function. The situation is similar in the ExpoToPoly
and PolyToExpo subfamilies of Bregman dynamics.

This perturbation theoretic point of view and the numerical results which will be presented in
this section suggest that the parameter C can play a very important role reducing the effect of
oscillations and improving the performance of optimization algorithms. The benefits that tuning
the parameter C can provide have not been sufficiently explored in the literature exploiting the
variational framework for accelerated optimization (in [16; 21; 32; 47; 84] for instance), and the
resulting dynamical systems were highly-oscillatory and thus required smaller time-steps for their
discretizations. As a consequence, the resulting optimization algorithms might not be as competitive
as they could have been. Note as well that the limiting continuous differential equation for Nesterov’s
Accelerated Gradient introduced in [77] can be thought of as the p = 2 polynomial Bregman dynamics
with C = 1/4, which results in the highly oscillatory behavior observed in the continuous dynamics
associated to most objective functions, and in the numerous discretizations of these dynamics
which can be found in the literature. This observation also extends to the Riemannian manifold
generalization of this variational framework for accelerated optimization [30], where the constant C
might not have been optimally tuned in practice (in [28–31; 52; 78] for instance).

As a first example, Figures 6 and 7 display the changes in the polynomial and exponential
Bregman dynamics for Problem 1 as the parameter C is decreased. The oscillations are clearly
neutralized in the continuous Bregman dynamics as C decreases. Although the convergence happens
later in time for lower values of C, this is usually not an issue since the neutralization of the
oscillations allows for larger time-steps when discretizing, as can be seen in Figure 8. This could
also be seen in the ‘No Restart’ contour plots presented in Figures 2, 3, 4, and 5, where lower values
of C allowed for larger time-steps h. Unfortunately, this behavior as C is decreased does not seem
to be universal, as can be seen from Figure 9 for Problem 4.

2 4 6 8 10
10-16

10-8

100

2 4 6 8 10
10-16

10-8

100

10 20 30 40
10-16

10-8

100

10 20 30 40 50 60
10-16

10-8

100

20 40 60 80 100
10-16

10-8

100

50 100 150 200
10-16

10-8

100

Figure 6. Error as a function of time t along the p = p̊ = 6 polynomial Bregman
dynamics for Problem 1, with different values of the constant C.

We will now try to obtain a better understanding of the dependence on C of the computational
efficiency of the optimization algorithms, and of how a good choice of parameter C depends on the
other variables. Preliminary experiments showed that the convergence regions are very similar for
the different algorithms within the same adaptive family of Bregman dynamics, so we will only use
the HTVI algorithms here but the results extend to the other algorithms. We will return to the
comparison of the different geometric integrators later in Section 7.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 19

10 20 30

10-16

10-8

100

10 20 30

10-16

10-8

100

10 20 30 40 50

10-16

10-8

100

10 20 30 40 50

10-16

10-8

100

10 20 30 40 50 60

10-16

10-8

100

20 40 60

10-16

10-8

100

Figure 7. Error as a function of time t along the η = η̊ = 0.5 exponential Bregman
dynamics for Problem 1, with different values of the constant C.

100 101 102 103 104

10-12

10-6

100

106

Figure 8. Discretization of the polynomial Bregman dynamics using PolyHTVI
with different values of C for Problem 1 (without momentum restarting).

Let us first investigate whether the regions of optimal convergence in the (C,h)-plane are problem-
dependent. Figures 11 and 12 display the convergence regions obtained when using the HTVI
algorithm for the polynomial and exponential Bregman dynamics on four different objective functions.
Unfortunately, these results show that the regions of optimal convergence are problem-dependent
and as a result we will not be able to find a single value of C which will achieve almost-optimal
performance on all problems.

20 VALENTIN DURUISSEAUX AND MELVIN LEOK

0 20 40 60 80 100

10-16

10-8

100

0 20 40 60 80 100

10-16

10-8

100

0 50 100 150 200

10-16

10-8

100

0 100 200 300 400

10-16

10-8

100

0 200 400 600

10-16

10-8

100

0 500 1000 1500 2000

10-16

10-8

100

Figure 9. Error as a function of time t along the p = p̊ = 6 polynomial Bregman
dynamics for Problem 4, with different values of the constant C.

10 20 30 40

10-16

10-8

100

10 20 30 40

10-16

10-8

100

10 20 30 40

10-16

10-8

100

10 20 30 40

10-16

10-8

100

10 20 30 40 50

10-16

10-8

100

10 20 30 40 50 60

10-16

10-8

100

Figure 10. Error as a function of time t along the η = η̊ = 0.5 exponential Bregman
dynamics for Problem 4, with different values of the constant C.

However, from Figures 13, 14 and 15, we can see that for fixed values of p, p̊, η, η̊, the convergence
regions in the (C,h)-plane are left almost unchanged as the dimension of the problem is increased
from d = 3 to d = 100, although the numbers of iterations required increase slightly with d. This
observation can improve significantly the process of tuning the optimization algorithm for high-
dimensional problems by first tuning the algorithm on a similar low-dimensional problem, which
could be particularly helpful for certain machine learning applications.

Note that all the observations made in this section extend to the ExpoToPoly and PolyToExpo
subfamilies of time-adaptive Bregman dynamics.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 21

Figure 11. Contour plot of the number of iterations required to achieve convergence
(δ = 10−6) in the (C,h)-plane, for p = p̊ = 6 PolyHTVI applied to Problems 1, 2, 3, 4.

100
250

7001500

500015000
50000

10-15 10-10 10-5 100 105 1010 1015

10-10

10-5

100

100

250

7001500
5000

15000
50000

10-10 100 1010

10-10

10-5

100

102

103

104

100

25070015005000
15000

50000

10-15 10-10 10-5 100 105 1010 1015

10-10

10-5

100

100
250

7001500
5000

15000

50000

10-10 100 1010

10-10

10-5

100

102

103

104

Figure 12. Contour plot of the number of iterations required to achieve convergence
(δ = 10−6) in the (C,h)-plane, for η = η̊ = 6 ExpoHTVI applied to Problems 1, 2, 3, 4.

22 VALENTIN DURUISSEAUX AND MELVIN LEOK

50
200

500
1500

500015000
50000

10-15 10-10 10-5 100 105 1010

10-8

10-6

10-4

10-2

50
200

500
1500

5000

15000

50000

10-15 10-10 10-5 100 105 1010

10-8

10-6

10-4

10-2

102

103

104

50
200

500
1500

5000
15000

50000

10-15 10-10 10-5 100 105 1010

10-8

10-6

10-4

10-2 200
500

1500
5000

15000
50000

10-15 10-10 10-5 100 105 1010

10-8

10-6

10-4

10-2

102

103

104

75
200

500
1500

500015000
50000

10-15 10-10 10-5 100 105 1010

10-8

10-6

10-4

10-2
75
200

500
1500

5000

15000

50000

10-15 10-10 10-5 100 105 1010

10-8

10-6

10-4

10-2

102

103

104

75
200

500
1500

5000
15000

50000

10-15 10-10 10-5 100 105 1010

10-8

10-6

10-4

10-2
75

200
500

1500
5000

15000
50000

10-15 10-10 10-5 100 105 1010

10-8

10-6

10-4

10-2

102

103

104

Figure 13. Contour plot of the number of iterations required to achieve convergence
(δ = 10−6) in the (C,h)-plane, for p = 6, p̊ = 2 PolyHTVI applied to Problem 1 with
different dimensions d.

Figure 14. Contour plot of the number of iterations required to achieve convergence
(δ = 10−6) in the (C,h)-plane, for p = 6, p̊ = 2 PolyHTVI applied to Problem 3 with
different dimensions d.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 23

100
200

500

1500

5000
15000

50000

10-15 10-10 10-5 100 105

10-6

10-4

10-2

100
200

500

1500

5000
15000

50000

10-15 10-10 10-5 100 105

10-6

10-4

10-2

102

103

104

100
200

500

1500

5000

15000

50000

10-15 10-10 10-5 100 105

10-6

10-4

10-2
200

500

1500

5000
15000

50000

10-15 10-10 10-5 100 105

10-6

10-4

10-2

102

103

104

Figure 15. Contour plot of the number of iterations required to achieve convergence
(δ = 10−6) in the (C,h)-plane, for η = 2, η̊ = 1 ExpoHTVI applied to Problem 1 with
different dimensions d.

5.3. Other Approaches to Control Oscillations.

There are other possible approaches to control the oscillations in second-order nonlinear differential
equations. One such method is Hessian-driven damping [6; 9–11], where the idea is to add a damping
term which involves the Hessian of the objective function, β(t)∇2f(x(t))ẋ(t), to the differential
equation of interest:

ẍ(t) + γ(t)ẋ(t) + β(t)∇2f(x(t))ẋ(t) + b(t)∇f(x(t)) = 0. (5.5)

The addition of this Hessian-driven damping term appears to neutralize the oscillations in the
continuous solution to the differential equation. Furthermore, it was shown using Lyapunov analysis
that under suitable assumptions, solutions to the modified equation not only satisfied a similar
convergence rate to the minimizer as solutions to the original equation, but also benefited from
additional convergence properties for the norm of the gradient ∇f . First-order optimization
algorithms were also derived by discretizing the modified differential equation, after rewriting
∇2f(x(t))ẋ(t) as d

dt∇f(x(t)). Unfortunately, we cannot derive a simple variational formulation for
this modified differential equation, so we cannot easily incorporate Hessian-driven damping into our
framework which relies on geometric numerical integration of Lagrangian or Hamiltonian systems.

Another possible approach to control oscillations consists in simplifying the Bregman dynamics
using local approximations. For instance, one could integrate local linearizations of the Bregman
Hamilton’s equations, or start from local quadratic Hamiltonian approximations to the Bregman
Hamiltonian, or use a local quadratic model for the objective function. We will not consider these
methods here because they can suffer from additional numerical stability issues coming from the
approximations at play, and it can be very challenging to design a symplectic integrator which
preserves the nice properties of the dynamics across all the different local approximations.

24 VALENTIN DURUISSEAUX AND MELVIN LEOK

A different approach consists in designing a symplectic integrator which can travel faster along
the oscillations via larger time-steps. This may be achievable using Spectral or Galerkin variational
integrators [44; 55; 56; 60], which rely on a choice of basis functions that span a good approximation
space for the Bregman dynamics (for instance, simulations of the polynomial Bregman dynamics
suggest that the error usually follows a trajectory which can be well-approximated using functions of
the form t−γ cos (αtβ) or t−γ sin (αtβ), where γ is the decay rate, α tunes the frequency of oscillations,
and β ∈ (0,1) characterizes the slowing down of the oscillation frequency). Due to the oscillatory
nature of the dynamical system, it might also be advantageous to use Filon-type [37] or Levin-type
[57; 58] quadrature rules in the construction of the integrators, since they are designed specifically
for highly oscillatory integrals (see [24] for a thorough presentation).

Another possibility involves averaging techniques [34; 73; 74; 83]. The extended Bregman
Hamiltonians or Lagrangians can be split as

H(q̄, r̄) =HA(q̄, r̄) +CHB(q̄), (5.6)

or
L(q̄, q̄′) = LA(q̄, q̄′) +CLB(q̄), (5.7)

where the A-component is dominating and can be solved exactly (or efficiently approximated with
high accuracy), and the B-component generates small perturbations affecting the overall dynamics.
One can then hope to integrate the dominating dynamics very accurately with larger time-steps
and incorporate the influence of the small perturbations by averaging them out. Unfortunately,
although this approach seemed to neutralize the oscillations in the solution in practice, it did not
allow the use of larger time-steps, and the resulting algorithm was actually less competitive and
robust because of the implicit nature of the update for the momentum r.

6. Time-Adaptivity in the Momentum Restarted Algorithms

We will first investigate how the optimization algorithms behave as the parameters p̊ and η̊ are
varied. In [28–32], numerical experiments with the polynomial Bregman dynamics suggested that
time-adaptivity (i.e. using p̊ ≠ p) could result in significantly faster optimization algorithms due
to the exponentially growing time-steps that they use (instead of constant time-steps for p̊ = p).
These numerical experiments were however carried with the standard versions of the algorithms and
without a careful tuning of the parameter C.

New numerical experiments carried in this paper suggest that the introduction of momentum
restarting schemes in the algorithms enables significantly faster optimization and seems to remove
the advantages of the time-adaptive formulation. Indeed, the contour plots in (C,h)-space presented
in Figures 16, 17, 18, 19, 20, 21 show that the performance and robustness of the PolyHTVI
and ExpoHTVI algorithms with momentum restarting is almost unaffected by the introduction of
time-adaptivity, regardless of which of Problems 1, 2, 3, 4 they are applied to. This is confirmed by
the contour plots in (p̊, h)-space and (η̊, h)-space presented in Figures 22 and 23 where we can see
that for fixed p or η, the value of p̊ or η̊ has very little effect on the performance of the algorithms.

Overall, the use of time-adaptivity allows for a larger family of algorithms from which one might
be able to extract a more efficient algorithm than without time-adaptivity. However, our numerical
experiments suggest that with momentum restarting, the benefits time-adaptivity may provide are
very limited and are not worth the computational effort of tuning one additional parameter p̊ or η̊.
For this reason, we will now discard time-adaptivity, and focus on the non-adaptive approaches.
More precisely, we will not consider the ExpoToPoly and PolyToExpo Bregman subfamilies anymore,
and will only focus on the p = p̊ polynomial and η = η̊ exponential Bregman subfamilies.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 25

100
250

750
2500

12000
50000

250000

10-20 10-15 10-10 10-5 100

10-5

100

100
250

750
2500

12000
50000

250000

10-20 10-15 10-10 10-5 100

10-5

100

101

102

103

104

105

100
250

750
2500

12000
50000

250000

10-20 10-15 10-10 10-5 100

10-5

100

100
250

750
2500

12000
50000

250000

10-20 10-15 10-10 10-5 100

10-5

100

101

102

103

104

105

Figure 16. Contour plot of the number of iterations required to achieve convergence
(δ = 10−6) in the (C,h)-plane, for PolyHTVI applied to Problem 1.

Figure 17. Contour plot of the number of iterations required to achieve convergence
(δ = 10−6) in the (C,h)-plane, for PolyHTVI applied to Problem 2.

26 VALENTIN DURUISSEAUX AND MELVIN LEOK

Figure 18. Contour plot of the number of iterations required to achieve convergence
(δ = 10−6) in the (C,h)-plane, for PolyHTVI applied to Problem 3.

100
2507502500

12000
50000

250000

10-15 10-10 10-5 100 105 1010 1015

10-10

10-5

100

100

250750
2500

12000
50000

250000

10-10 100 1010

10-10

10-5

100

102

103

104

105

100
250750

2500
12000

50000
250000

10-15 10-10 10-5 100 105 1010 1015

10-10

10-5

100

100
250

750

2500
12000

50000
250000

10-10 100 1010

10-10

10-5

100

102

103

104

105

Figure 19. Contour plot of the number of iterations required to achieve convergence
(δ = 10−8) in the (C,h)-plane, for PolyHTVI applied to Problem 4.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 27

100
250

750
2500

12000

50000

250000

10-20 10-15 10-10 10-5 100

10-6

10-4

10-2

100
250

750

2500

12000

50000

250000

10-20 10-15 10-10 10-5 100

10-6

10-4

10-2

101

102

103

104

105

100
250

750
2500

12000

50000

250000

10-20 10-15 10-10 10-5 100

10-6

10-4

10-2

100
250

750

2500

12000

50000

250000

10-20 10-15 10-10 10-5 100

10-6

10-4

10-2

101

102

103

104

105

Figure 20. Contour plot of the number of iterations required to achieve convergence
(δ = 10−7) in the (C,h)-plane, for ExpoHTVI applied to Problem 1.

100250
75025001200050000

250000

10-15 10-10 10-5 100 105 1010 1015

10-10

10-5

100

100

2507502500
12000

50000

250000

10-10 100 1010

10-10

10-5

101

102

103

104

105

100250
75025001200050000

250000

10-15 10-10 10-5 100 105 1010 1015

10-10

10-5

100

100
250

750
2500

12000

50000

250000

10-10 100 1010

10-10

10-5

101

102

103

104

105

Figure 21. Contour plot of the number of iterations required to achieve convergence
(δ = 10−5) in the (C,h)-plane, for ExpoHTVI applied to Problem 2.

28 VALENTIN DURUISSEAUX AND MELVIN LEOK

75 250 750

2500

10000

50000

250000

1 2 3 4 5 6 7 8 9 1010-8

10-6

10-4

10-2

100 75

250
750

2500

10000

50000

250000

5 10 15 20 25 3010-8

10-6

10-4

10-2

101

102

103

104

105

75

250
750

2500

10000

50000

250000

1 2 3 4 5 6 7 8 9 1010-8

10-6

10-4

10-2
75

250

750

2500

10000

50000

250000

5 10 15 20 25 3010-8

10-6

10-4

10-2

101

102

103

104

105

Figure 22. Contour plot of the number of iterations required to achieve convergence
(δ = 10−6) in the (p̊, h)-plane, for PolyHTVI applied to Problems 1 (with C = 10−5)
and 3 (with C = 1). The dotted line represents the non-adaptive algorithm p = p̊.

75
250 750

2500

10000

50000

250000

1 2 3 4 5 6 7 8 9 10

10-6

10-4

10-2

100
75

250
750

2500

10000

50000

250000

5 10 15 20 25 30 35 40

10-6

10-4

10-2

100

101

102

103

104

105

75

250
750

2500

10000

50000

250000

1 2 3 4 5 6 7 8 9 10

10-10

10-8

10-6

10-4
75

250

750

2500

10000

50000

250000

5 10 15 20 25 30 35 40

10-10

10-8

10-6

10-4

101

102

103

104

105

Figure 23. Contour plot of the number of iterations required to achieve convergence
(δ = 10−6) in the (η̊, h)-plane, for ExpoHTVI applied to Problems 1 (with C = 10−5)
and 3 (with C = 105). The dotted line represents the non-adaptive algorithm η = η̊.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 29

7. Comparison of Integrators

Without time-adaptivity, the accelerated optimization algorithms derived in Section 4.1 can be
simplified into the symplectic algorithms presented in Appendix B, and are now all explicit. It
should be noted that the HTVI and LTVI algorithms are now equivalent, and will be referred to as
LTVI from now on (since the construction of LTVIs extends to Riemannian manifolds, while that of
HTVIs does not). Note that we are still using momentum restarting based on the gradient scheme
in all our numerical experiments.

Regions of convergence in the (C,h) and (p, h) planes for the different algorithms were computed
based on 100×100 grids of points and are presented in Figures 24, 25, 26. We can see that the
regions of fast convergence both in the (C,h)-plane and (p, h)-plane for the different algorithms are
almost identical, regardless of the termination criteria. It seems that the three algorithms perform
in a very similar way in terms of computational efficiency, robustness, and stability.

We pushed the numerical experimentation further and solved Problems 1, 2, 3, 4 on a 3-dimensional
grid of 1003 points in (C,p, h)-space. The results are displayed in Figures 27, 28, 29, 30.

The top barplots investigate the overall robustness and efficiency of the algorithms. They display
the percentages of time each algorithm met the convergence criteria under certain numbers of
iterations. For instance, the first bar in the top plot of Figure 27 shows that SV converged in < 50
iterations roughly 5% of the time, in < 100 iterations close to 10% of the time, and so on.

Each bar in the middle barplots compares the performance of two algorithms for a specific
problem, by displaying the percentages of times they outperformed each other. For instance, the
last bar in the middle plot of Figure 27 shows that SV outperformed LTVI about 21% of the time,
while LTVI outperformed SV roughly 11% of the time.

The bottom barplots quantify the gain in efficiency of each algorithm versus the others, by
displaying the speedups observed in terms of number of iterations required. For instance, the
last bar in the bottom plot of Figure 27 shows that LTVI, when compared to SV, achieves a
speedup > 1.5× roughly 4.5% of the time, > 2× roughly 3.5% of the time, etc... Note that for each
bar, we only considered triplets (C,h, p) for which both algorithms converged within 10000 iterations.

Let us first focus on the polynomial Bregman family, based on the numerical results displayed in
Figures 27 and 28. The top plots confirm the earlier observation that the 3 algorithms have very
similar regions of fast convergence, and are thus comparable in terms of robustness. The middle and
bottom plots indicate that SLC outperforms SV more often than vice-versa, although both scenarios
occur rather rarely. Although LTVI seems to outperform SLC/SV roughly as regularly as vice-versa,
the speedups LTVI allows when compared to SLC/SV are not as significant and frequent as the
slowdowns it entails. It should also be noted that as the termination criteria are made stricter,
the differences and significant speedups between the methods become much rarer (although this is
partially due to the fact that smaller tolerances require more iterations and we stopped iterating
after 10000 iterations). Overall, the 3 algorithms perform very similarly, but the numerical results
presented here suggest that SLC might be slightly better within the polynomial Bregman family.

Let us now focus on the exponential Bregman family, based on the numerical results displayed in
Figures 29 and 30. As was the case for the polynomial family, the 3 algorithms perform very similarly
in terms of robustness, and the differences in performance between the algorithms become less
significant as the convergence criteria are made stricter. SLC and SV perform almost identically on
all problems, regardless of the convergence criteria. Now, it seems that LTVI outperforms SLC/SV
slightly more often than vice-versa with the more relaxed tolerances, but with less significant
speedups, and as the convergence criteria is made stricter, SLC/SV algorithms seem to outperform
LTVI. Overall, the 3 algorithms perform very similarly, but the numerical results suggest that
SLC/SV might be the slightly better choices for the exponential Bregman family.

30 VALENTIN DURUISSEAUX AND MELVIN LEOK

150400200010000
40000

10-10

10-5

150400200010000
40000

1504002000
10000

40000

101

102

103

104

150

400200010000
40000

100 1010

10-10

10-5

150

400200010000
40000

100 1010

150

400200010000
40000

100 1010 101

102

103

104

100400200010000

50000
10-10

10-5

100400200010000
50000

1004002000
10000

50000

101

102

103

104

100400200010000

50000

50000

100 1010

10-10

10-5

100400200010000

50000

50000

100 1010

100400200010000

50000

50000

100 1010 101

102

103

104

Figure 24. Convergence regions in the (C,h)-plane for PolyLTVI, PolySLC and
PolySV applied to Problems 1, 2, 3 with p = 8.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 31

200
500

1500
5000

15000

50000

10-10

10-5

200500

1500
5000

15000

50000

200500

1500

5000

15000

50000

101

102

103

104

200
500

1500
5000

15000

50000

100 101010-10

10-5

200

200
500

1500
5000

15000

50000

100 1010

200

200
500

1500
5000

15000

50000

100 1010 101

102

103

104

Figure 25. Convergence regions in the (C,h)-plane for ExpoLTVI, ExpoSLC and
ExpoSV applied to Problems 1, 2 with η = 6.

Figure 26. Convergence regions in the (p, h)-plane for PolyLTVI, PolySLC and
PolySV applied to Problems 1, 4.

32 VALENTIN DURUISSEAUX AND MELVIN LEOK

0% 5% 10% 15% 20% 25% 30%

P
ro

bl
em

 1
P

ro
bl

em
 2

P
ro

bl
em

 3
P

ro
bl

em
 4

LTVI

LTVI

LTVI

LTVI

SLC

SLC

SLC

SLC

SV

SV

SV

SV
<50 <100 <250 <500 <1000 <2500 <10000

0% 1% 2% 3% 4% 5% 6% 7% 8% 9%

LTVI vs. SV

SV vs. LTVI

LTVI vs. SLC

SLC vs. LTVI

SLC vs. SV

SV vs. SLC >1.5x >2.0x >2.5x >3.0x >6.0x

Figure 27. Results for the polynomial Bregman family with δ = 10−5.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 33

0% 5% 10% 15% 20% 25%

P
ro

bl
em

 1
P

ro
bl

em
 2

P
ro

bl
em

 3
P

ro
bl

em
 4

LTVI

LTVI

LTVI

LTVI

SLC

SLC

SLC

SLC

SV

SV

SV

SV
<50 <100 <250 <500 <1000 <2500 <10000

0% 5% 10% 15% 20% 25%

P
ro

bl
em

 1
P

ro
bl

em
 2

P
ro

bl
em

 3
P

ro
bl

em
 4

SV

SV

SV

SV

SLC

SLC

SLC

SLC

SLC

SLC

SLC

SLC

LTVI

LTVI

LTVI

LTVI

LTVI

LTVI

LTVI

LTVI

SV

SV

SV

SV

0% 0.02% 0.04% 0.06% 0.08% 0.1% 0.12% 0.14% 0.16% 0.18% 0.2%

LTVI vs. SV

SV vs. LTVI

LTVI vs. SLC

SLC vs. LTVI

SLC vs. SV

SV vs. SLC >1.5x >1.75x >2.0x >4.0x >8.0x

Figure 28. Results for the polynomial Bregman family with δ = 10−10.

34 VALENTIN DURUISSEAUX AND MELVIN LEOK

0% 5% 10% 15% 20% 25% 30% 35% 40%

P
ro

bl
em

 1
P

ro
bl

em
 2

P
ro

bl
em

 3
P

ro
bl

em
 4

LTVI

LTVI

LTVI

LTVI

SLC

SLC

SLC

SLC

SV

SV

SV

SV
<50 <100 <250 <500 <1000 <2500 <10000

0% 5% 10% 15% 20% 25% 30% 35%

P
ro

bl
em

 1
P

ro
bl

em
 2

P
ro

bl
em

 3
P

ro
bl

em
 4

SV

SV

SV

SV

SLC

SLCD

SLC

SLC

SLC

SLC

SLC

SLC

LTVI

LTVI

LTVI

LTVI

LTVI

LTVI

LTVI

LTVI

SV

SV

SV

SV

0% 1% 2% 3% 4% 5% 6% 7%

LTVI vs. SV

SV vs. LTVI

LTVI vs. SLC

SLC vs. LTVI

SLC vs. SV

SV vs. SLC >1.5x >2.0x >2.5x >3.0x >6.0x

Figure 29. Results for the exponential Bregman family with δ = 10−5.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 35

0% 5% 10% 15% 20% 25% 30% 35%

P
ro

bl
em

 1
P

ro
bl

em
 2

P
ro

bl
em

 3
P

ro
bl

em
 4

LTVI

LTVI

LTVI

LTVI

SLC

SLC

SLC

SLC

SV

SV

SV

SV
<50 <100 <250 <500 <1000 <2500 <10000

0% 5% 10% 15% 20% 25% 30% 35%

P
ro

bl
em

 1
P

ro
bl

em
 2

P
ro

bl
em

 3
P

ro
bl

em
 4

SV

SV

SV

SV

SLC

SLC

SLC

SLC

SLC

SLC

SLC

SLC

LTVI

LTVI

LTVI

LTVI

LTVI

LTVI

LTVI

LTVI

SV

SV

SV

SV

0% 0.05% 0.1% 0.15% 0.2% 0.25%

LTVI vs. SV

SV vs. LTVI

LTVI vs. SLC

SLC vs. LTVI

SLC vs. SV

SV vs. SLC >1.5x >1.75x >2.0x >5.0x >10x

Figure 30. Results for the exponential Bregman family with δ = 10−10.

36 VALENTIN DURUISSEAUX AND MELVIN LEOK

To conclude this section, all the algorithms seem to perform very well and with very small dis-
crepancies, but if we had to choose an algorithm to use to integrate the Bregman dynamics, it seems
that the SLC algorithms with momentum restarting are the slightly better choice. Algorithms 1, 2
show more detailed pseudocodes for the SLC algorithms:

Algorithm 1: Symmetric Leapfrog Composition of Component Dynamics for the
Polynomial Bregman dynamics, with Momentum Restarting (PolySLC-R)

Input: An objective function f ∶ Rd → R. An initial guess q ∈ Rd. Parameters C,h, p > 0.
1 q← 1, G← ∇f(q), r ← −1

2Chpq
2p−1G

2 while convergence criteria are not met do

3 ∆q ← hp (q + h
2
)−p−1

r

4 q ← q +∆q

5 G← ∇f(q)
6 if G⊺∆q > 0 then restart momentum: r ← 0

7 q← q + h
8 r ← r −Chpq2p−1G

Algorithm 2: Symmetric Leapfrog Composition of Component Dynamics for the
Exponential Bregman dynamics, with Momentum Restarting (ExpoSLC-R)

Input: An objective function f ∶ Rd → R. An initial guess q ∈ Rd. Parameters C,h, η > 0.
1 q← 1, G← ∇f(q), r ← −1

2Cηhe
2ηqG

2 while convergence criteria are not met do

3 ∆q ← ηhe−η(q+
h
2
)r

4 q ← q +∆q

5 G← ∇f(q)
6 if G⊺∆q > 0 then restart momentum: r ← 0

7 q← q + h
8 r ← r −Cηhe2ηqG

8. Tuning the Algorithms

We will now investigate how the PolySLC-R and ExpoSLC-R algorithms perform as the parameters
C,h, p, η are varied, and try to reduce the number of parameters needing tuning in practice.

8.1. Tuning PolySLC-R.

We solved Problems 1, 2, 3, 4 and two distinct randomly generated instances of Problem 5 using
PolySLC-R on a 3-dimensional grid of 500×153×500 points in (C,p, h)-space (logarithmically-spaced
in C between 10−12 and 1012, logarithmically-spaced in h between 10−6 and 103, and linearly-spaced
in p between 2 and 40), and recorded the number of iterations needed to achieve convergence
with δ = 10−10. Figure 31 displays the number of (C,h) pairs for which convergence was achieved
under 200 and 50 iterations for each value of p. We can see that the value of p does not seem to
significantly affect the number of (C,h) pairs that exhibit fast convergence, once it is taken to be
sufficiently large, so tuning the parameter p carefully might not be very helpful and necessary. For
numerical stability reasons, which will be discussed in Section 9, it is preferable to use lower values
of p, so we will set p = 6 since this is a small value of p which performed very well in Figure 31.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 37

5000

10000

15000

20000

25000 < 200 Iterations

5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000
< 50 Iterations

Figure 31. Number of (C,h) pairs (out of 5002) for which convergence was achieved
under 200 and 50 iterations using PolySLC-R, as the value of p is varied.

0

200

400

600

800

1000

1200

1400

10-15 10-10 10-5 100 105 1010 1015
0

200

400

600

800

1000

Figure 32. Number of values of h (out of 104) for which convergence was achieved
under 200 iterations using PolySLC-R with p = 6, as the value of C is varied.

38 VALENTIN DURUISSEAUX AND MELVIN LEOK

We solved the same problems using PolySLC-R with p = 6 on a 2-dimensional grid of 200 × 10000
logarithmically-spaced points in (C,h)-space (C between 10−15 and 1015, h between 10−8 and 104).
The results, presented in Figure 32, confirm the observation made in Section 5.2 that there is no
universally optimal value of C. However, C = 0.1 is an intermediate value which seems to work well
for most problems, so we will set it as the default value, but it might need some tuning in practice.
A similar experiment was conducted for 105 logarithmically-spaced values of h using PolySLC-R
with p = 6 and C = 0.1, and Figure 33 shows that h = 0.01 could be a good default value.

Figure 33. The top two plots display the values of h for which PolySLC-R with
p = 6 and C = 0.1 converged in less than 200 iterations for each of the six problems
considered. The bottom two plots display the number of problems (out of 6) that
PolySLC-R with p = 6 and C = 0.1 was able to solve in less than 200 iterations.

8.2. Tuning ExpoSLC-R.

We solved Problems 1, 2, 3, 4 and two distinct randomly generated instances of Problem 5 using
ExpoSLC-R on a 3-dimensional grid of logarithmically-spaced 500×100×500 points in (C,η, h)-space
(C between 10−12 and 1012, h between 10−6 and 103, η between 10−5 and 102), and recorded the
number of iterations needed to achieve convergence with δ = 10−10. Figure 34 displays the number
of (C,h) pairs for which convergence was achieved under 200 and 50 iterations for each value of
η. As for the polynomial Bregman algorithm, the value of η does not seem to significantly affect
the number of (C,h) pairs of fast convergence, as long as it falls between 0.001 and 10. Therefore,
tuning the parameter η carefully might not be very helpful and necessary, so we will fix it to η = 0.01.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 39

0

5000

10000

15000

20000

< 200 Iterations

10-5 10-4 10-3 10-2 10-1 100 101 102
0

500

1000

1500

2000

2500

3000

3500

< 50 Iterations

Figure 34. Number of (C,h) pairs (out of 5002) for which convergence was achieved
under 200 and 50 iterations using ExpoSLC-R, as the value of η is varied.

0

200

400

600

800

1000

1200

1400

10-15 10-10 10-5 100 105 1010 1015
0

200

400

600

800

1000

Figure 35. Number of values of h (out of 104) for which convergence was achieved
under 200 iterations using ExpoSLC-R with η = 0.01, as the value of C is varied.

40 VALENTIN DURUISSEAUX AND MELVIN LEOK

We then solved Problems 1, 2, 3, 4 and two distinct randomly generated instances of Problem 5
using ExpoSLC-R with η = 0.01 on a 2-dimensional grid of 200× 10000 logarithmically-spaced points
in (C,h)-space (C between 10−15 and 1015, h between 10−8 and 104). The results, presented in
Figure 35 confirm the observation made in Section 5.2 that there is no value of C which is universally
optimal. However, C = 1 seems to work well for most problems, so we will set it as the default value,
but it might need some tuning in practice.

A similar experiment was conducted for 105 logarithmically-spaced values of h using PolySLC-R
with η = 0.01 and C = 1, and Figure 36 shows that h = 4 seems to perform well on most problems
considered here.

Figure 36. The top two plots display the values of h for which ExpoSLC-R with
η = 0.01 and C = 1 converged in less than 200 iterations for each of the six problems
considered. The bottom two plots display the number of problems (out of 6) that
convergence was achieved in less than 200 iterations.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 41

9. Temporal Looping to Improve Numerical Stability

There is an important caveat to the promising performance observed for the optimization
algorithms constructed in this paper. The evolution of the variables q, q and r associated with the
exponential Poincaré Hamiltonian,

H̄η(q̄, r̄) = η

2eηq
⟨r, r⟩ +Cηe2ηqf(q) + r, (9.1)

is guided by Hamilton’s equations,

q̇ = ηe−ηqr, ṙ = −Cηe2ηq∇f(q), q̇ = 1. (9.2)

From these equations of motion, we can see that the time variable q grows linearly without bound,
and as a result quantities like eηq grow exponentially without bound. More precisely, looking at the
updates of the ExpoSLC algorithm,

r ← r −Cηhe2ηq∇f(q), q← q + h, q ← q +∆q = q + ηhe−η(q+
h
2
)r, (9.3)

we have at every iteration that the new update is given by

(∆q)new ← A(∆q)previous +Beηq∇f(q), (9.4)

for some constants A and B.
If we could perform all the operations exactly, the gradient ∇f would converge to 0 with arbitrary

precision and neutralize the unbounded growth of eηq, and the quantity Beηq∇f(q) would remain
very small. However, in practice, we can only perform operations with finite precision in floating-
point arithmetic. As a result, ∇f only decays to 0 up to machine precision while eηq grows without
bound. Eventually, Beηq∇f(q) becomes large again and the position variable q moves away from
the equilibrium it found near its optimal value. Something analogous happens in the polynomial
family of Bregman dynamics, except that the unbounded growing exponential is replaced by an
unbounded growing polynomial. This numerical instability phenomenon is illustrated in Figure 37
which displays the evolution of the error ∣f(xk) − f(x∗)∣ when the SLC algorithms are applied to
Problem 2. We see that both algorithms first achieve convergence to machine precision, stay at the
minimizer for a few hundred iterations, and finally are expelled away from the minimizer due to
numerical instability.

50 100 200 400

10-16

10-8

100

108

Figure 37. The PolySLC-R and ExpoSLC-R algorithms applied to Problem 2.

42 VALENTIN DURUISSEAUX AND MELVIN LEOK

In all our numerical experiments so far, the algorithms stopped when they reached a desired
convergence criterion, so we did not observe this numerical instability issue as it happens only after
convergence is achieved. However, in practice, optimization algorithms are often terminated after a
specified number of iterations instead of a specified convergence criterion. Thus, we need a strategy
to avoid this numerical instability phenomenon. Since the numerical instability results from the
limitation imposed by machine precision on accurately representing the decay to 0 of ∇f(q) while
the term eηq grows without bound, it is natural to try to restrict the growth of the term eηq, by
restricting the growth of q (and similarly in the polynomial case).

One possibility is to reset time whenever a certain numerical instability criterion is met, via
q← βq for some β ∈ (0,1). A larger β is preferable to keep enough momentum in case convergence
to the minimizer was only suboptimal when the numerical instability criterion was met, or if the
algorithm is used in an online fashion or with a stochastic or mini-batch approach. It is also
preferable to avoid values of β very close to 1, since the algorithm would then always remain close to
numerical instability, and could possibly become unstable if the criterion is not chosen very carefully.
In practice, taking β between 0.6 and 0.95 works well, by ensuring that a reasonable amount of
momentum is kept while avoiding the numerical instability region.

Alternatively, one could reset time via q ← q − νh for some ν > 1. A smaller ν is preferable to
retain momentum, while ν should not be too close to 1 to avoid numerical instability.

In practice, we will reset time via q←max(ε, βq) or q←max(ε, q−νh), where ε is a small positive
number, to avoid very small or negative values of time q. This phenomenon where the time variable
q is stuck in a loop by resetting q← βq or q← q − νh whenever numerical instability is near will be
referred to as Temporal Looping.

Improving the ExpoSLC-R algorithm via temporal looping yields Algorithm 3:

Algorithm 3: ExpoSLC-RTL: Symmetric Leapfrog Composition for the Exponential
Bregman dynamics, with Restarting and Temporal Looping

Input: An objective function f ∶ Rd → R. An initial guess q ∈ Rd.
Parameters C,h, p > 0, β ∈ (0,1) or ν > 1.

1 ε← 0.001, q← 1, G← ∇f(q), r ← −1
2Cηhe

2ηqG

2 while convergence criteria are not met do

3 ∆q ← ηhe−η(q+
h
2
)r

4 q ← q +∆q

5 G← ∇f(q)
6 if G⊺∆q > 0 then restart momentum: r ← 0

7 if numerical instability criterion is met then q←max(ε, βq) or q←max(ε, q − νh)
8 q← q + h
9 r ← r −Cηhe2ηqG

In our numerical experiments with ExpoSLC-RTL, we use the instability criterion

Ch2η2eηq∥G∥ > e−ηh∥∆q∥, (9.5)

to reset time. This criterion roughly ensures that

∣B∣eηq∥∇f(q)∥ < ∣A∣∥(∆q)previous∥ (9.6)

in equation (9.4), so that (∆q)new is not significantly larger in norm than (∆q)previous.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 43

Improving the PolySLC-R algorithm via temporal looping yields Algorithm 4:

Algorithm 4: PolySLC-RTL: Symmetric Leapfrog Composition for the Polynomial
Bregman dynamics, with Restarting and Temporal Looping

Input: An objective function f ∶ Rd → R. An initial guess q ∈ Rd.
Parameters C,h, p > 0, β ∈ (0,1) or ν > 1.

1 ε← 0.001, q← 1, G← ∇f(q), r ← −1
2Chpq

2p−1G

2 while convergence criteria are not met do

3 ∆q ← hp (q + h
2
)−p−1

r

4 q ← q +∆q

5 G← ∇f(q)
6 if G⊺∆q > 0 then restart momentum: r ← 0

7 if numerical instability criterion is met then q←max(ε, βq) or q←max(ε, q − νh)
8 q← q + h
9 r ← r −Chpq2p−1G

In our numerical experiments, we have chosen the numerical instability criterion

Ch2p2(q + h)p+1∥G∥ > q∥∆q∥, (9.7)

which roughly ensures that the new position update is not significantly larger than the previous one.
Figure 38 shows that temporal looping takes care of the numerical instability issue experienced

earlier in Figure 37 for Problem 2:

50 100 200 400
10-16

10-8

100

108

102 103 104 105
10-16

10-8

100

108

Figure 38. The effect of temporal looping in PolySLC-R and ExpoSLC-R.

44 VALENTIN DURUISSEAUX AND MELVIN LEOK

It can be seen from Figures 39 and 40 that temporal looping, with the q←max(ε, βq) scheme or
q←max(ε, q − νh) scheme, does not negatively affect the performance of the algorithms, although
the algorithms with temporal looping might sometimes require a larger number of iterations to
achieve convergence for a fixed (C,h)-pair. Indeed the regions of fast convergence might be shifted
slightly, but remained at least as large if not larger when using temporal looping.

100
400

2000

1000050000

10-10

10-5

100

400

200010000
50000

101

102

103

104

100
400

2000

10000

50000

10-10 100 101010-10

10-5

100
100

4002000
10000

50000

10-10 100 1010 101

102

103

104

Figure 39. Contour plot of the number of iterations required to achieve convergence
(δ = 10−8) in the (C,h)-plane, for the ExpoSLC-R and ExpoSLC-RTL algorithms,
when applied with η = 0.01 to Problems 1 and 2.

Figure 40. Contour plot of the number of iterations required to achieve convergence
(δ = 10−8) in the (C,h)-plane, for the PolySLC-R and PolySLC-RTL algorithms,
when applied with p = 10 to Problems 3 and 4.

Overall, we have seen that temporal looping can be very helpful to deal with post-convergence
numerical instability, and that it does not affect negatively the initial performance of the algorithm.
Note that temporal looping could be improved by tuning the parameters β or ν, or by designing a
better suited numerical instability criterion.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 45

10. Testing for Machine Learning Applications

We now test our algorithms on more challenging optimization problems for machine learning
with a variety of model architectures, loss functions, and applications. For most of the problems
considered in this section, the gradients are evaluated in a mini-batch fashion. For reference, we
will also solve these optimization problems using gradient descent and the most commonly used
optimizer in machine learning, Adam [48]:

ADAM

mk+1 = β1mk + (1 − β1)∇f(xk)
vk+1 = β2vk + (1 − β2)∇f(xk)⊙∇f(xk)

xk+1 = xk − h [(1 − βk+1
1) (

√
(1 − βk+1

2)−1vk+1 + ε)]
−1

mk+1

Here, u⊙ v denotes elementwise multiplication, and the update for xk+1 is performed elementwise.
The variable ε present in the updates of the Adam algorithm is there to avoid numerical instability
associated with division by 0 (with default value ε = 10−8 in [48] and PyTorch). The three parameters
of Adam are β1, β2 used for computing running averages of gradients, and the learning rate h (with
default values β1 = 0.9, β2 = 0.999, h = 0.001 in [48], PyTorch and TensorFlow).

The ExpoSLC-RTL and PolySLC-RTL algorithms have been implemented under the more
evocative names eBrAVO and pBrAVO (Bregman Accelerated Variational Optimizer) in Python
so that they can be used within the TensorFlow and PyTorch frameworks. These algorithms are
available at github.com/vduruiss/AccOpt via GNI, and can be called in a similar way as the Adam
algorithm in TensorFlow and PyTorch:

optimizer = tf.keras.optimizers.Adam(learning_rate = 0.001)

optimizer = BrAVO_tf.eBravo(learning_rate = 1)

optimizer = torch.optim.Adam(model.parameters (), lr = 0.01)

optimizer = BrAVO_torch.eBravo(model.parameters (), lr = 1)

The purpose of this section is not to do a very careful computational comparison of the BrAVO
algorithms with commonly used optimization algorithms in machine learning but rather to show that
the BrAVO algorithms can be used conveniently within the PyTorch and TensorFlow frameworks
for numerous concrete machine learning applications, and that they might be worth considering and
improving in the future. A very careful computational comparison of optimization algorithms for
machine learning is a much more ambitious goal which is beyond the scope of this paper, and would
be more meaningful once the implementation of the BrAVO algorithms within the PyTorch and
TensorFlow frameworks has been highly-optimized.

We have first tested the performance of our algorithms with automatic differentiation on instances
of the Binary Classification Problem 6 and the Fermat–Weber Location Problem 7. Figure 41 shows
the evolution of the loss function (4.20) when formulating a model separating blue and red regions
of 2-dimensional space using a line based on the displayed 500 randomly generated points. Figure 42
shows the evolution of the loss function (4.22) when solving the Fermat–Weber Location Problem 7
with 5000 randomly generated vectors in R1000 and 5000 randomly generated corresponding scalar
weights. We can see from Figures 41 and 42 that our algorithms solve the binary classification and
location problems with an accuracy and efficiency comparable to those of the Adam and standard
gradient descent (SGD) algorithms implemented in TensorFlow.

https://github.com/vduruiss/AccOpt_via_GNI

46 VALENTIN DURUISSEAUX AND MELVIN LEOK

Figure 41. Comparison of algorithms applied to a Binary Classification Problem 6.

Figure 42. Comparison of algorithms applied to a Location Problem 7.

Next, we tested our algorithm on the popular multi-label image classification problem based
on the Fashion–MNIST dataset [85]: ‘Fashion–MNIST is a dataset of Zalando’s article images
consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a
28×28 grayscale image, associated with a label from 10 classes (t-shirt/top, trouser, pullover, dress,
coat, sandal, shirt, sneaker, bag, ankle boot)’. We use nn.CrossEntropyLoss() as the loss function,
and the following neural network architecture in PyTorch as our classification model:

Layer (type) Output Shape Parameters

==

dense (Dense) [-1, 784] 0

dense_1 (Dense) [-1, 64] 50 ,240

dense_2 (Dense) [-1, 64] 0

dense_3 (Dense) [-1, 64] 4,160

==

Total Number of Parameters: 55,050

Figure 43 shows that the BrAVO algorithms achieve comparable accuracy and efficiency on the
Fashion–MNIST classification problem as the Adam and gradient descent (SGD) algorithms. Note
that the momentum restarting scheme and the temporal looping strategy are essential to the good
behavior of the algorithms. Indeed, we can see from Figure 44 that without them, the algorithms
eventually lose convergence due to numerical instability. Note as well that these strategies can also
allow for larger time-steps which usually translates into faster convergence.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 47

Figure 43. Evolution of the loss function and accuracy (in %) of Adam, standard
gradient descent (SGD) and the BrAVO algorithms, when applied to the Fashion–
MNIST multi-label classification problem.

Figure 44. Convergence and loss of convergence for the BrAVO algorithms without
momentum restarting and temporal looping, when applied to the Fashion–MNIST
multi-label classification problem.

We then tested our algorithm on another popular multi-label image classification problem based
on the CIFAR-10 dataset [49]: ‘the CIFAR-10 dataset consists of 60000 32×32 color images in 10
mutually exclusive classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck), with
6000 images per class’. The results are displayed in Figure 45.

We used nn.CrossEntropyLoss() as the loss function to minimize and a small Convolutional
Neural Network in PyTorch very similar to the LeNet-5 architecture first described in [51]:

Layer (type) Output Shape Parameters

==

Conv2d -1 [-1, 6, 28, 28] 456

Conv2d -2 [-1, 16, 10, 10] 2,416

Linear -3 [-1, 120] 48,120

Linear -4 [-1, 84] 10 ,164

Linear -5 [-1, 10] 850

==

Total Number of Parameters: 62,006

48 VALENTIN DURUISSEAUX AND MELVIN LEOK

Figure 45. Evolution over 20 epochs of the loss function and accuracy of various
algorithms when applied to the CIFAR–10 multi-label image classification problem.

Let us now consider the Natural Language Processing problem of constructing a multi-label text
classifier which can provide suggestions for the most appropriate subject areas for arXiv papers
based on their abstracts. The code and architecture used are based on the Keras tutorial [68]. An
arXiv paper can belong to multiple categories, so the prediction task can be divided into a series of
multiple binary classification problems, and we can use the Binary Cross Entropy loss. We will use
the following neural network architecture:

model = keras.Sequential ()

model.add(layers.Dense(units =256, activation=’relu’))

model.add(layers.Dense(units =256, activation=’relu’))

model.add(layers.Dense(units=lookup.vocabulary_size (), activation=’sigmoid ’))

The evolution of the loss on the training and validation datasets is displayed in Figure 46.
Although the Adam optimizer achieves the smallest loss on the training dataset, the resulting
optimized model does not outperform the models generated by the other optimizers on the validation
dataset. Its validation loss actually worsens as the epoch number increases (unlike for the other
algorithms) which indicates that the optimized model might be suffering from overfitting.

Figure 46. Evolution of the Binary Cross Entropy loss function on training and
validation datasets for several algorithms, when applied to the Natural Language
Processing problem of multi-label text classification of arXiv papers.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 49

Next, we consider timeseries forecasting for weather prediction, based on the Keras tutorial [12].
We use the Mean Squared Error (MSE) as the loss function and the following Long Short-Term
Memory (LSTM) model (with 5,153 parameters):

inputs = layers.Input(shape=(inputs.shape[1], inputs.shape [2]))

lstm_out = layers.LSTM (32)(inputs)

outputs = layers.Dense (1)(lstm_out)

model = keras.Model(inputs=inputs , outputs=outputs)

The evolution of the mean squared error on the training and validation sets is displayed in
Figure 47. We can see that the four different algorithms generate similar losses on the training and
validation datasets.

Figure 47. MSE evolution on training and validation datasets for several algorithms,
when used to optimize a LSTM model for timeseries forecasting for weather prediction.

Then, we solved a data fitting problem: given 500 data points from a noisy version of the function
10x∣ cos 2x∣ + 10 exp (− sinx) on the interval [−2, 2], we wish to obtain a model which fits these data
points as well as possible. We used the following neural network architecture (with 4,355 parameters)
and loss function in TensorFlow:

model = keras.Sequential ()

model.add(layers.Dense(units = 1, activation = ’linear ’, input_shape =[1]))

model.add(layers.Dense(units = 64, activation = ’relu’))

model.add(layers.Dense(units = 64, activation = ’relu’))

model.add(layers.Dense(units = 1, activation = ’linear ’))

The results are displayed in Figures 48 and 49. We see that all the algorithms achieve very small
mean squared error, and all generate models, plotted as blue curves in Figure 49, which fit the green
data points very well.

Finally, we test our algorithms for dynamics learning and control on the rotation group SO(3).
We consider the same problem as in [27; 33], where we wish to learn the dynamics of a fully-actuated
pendulum with dynamics given by ϕ̈ = −15 sinϕ + 3u, where ϕ is the angle of the pendulum with
respect to its vertically downward position and u is a scalar control input. The data is collected
from an OpenAI Gym environment, provided by [91]. We can see from Figure 50 that Adam and the
BrAVO algorithms can achieve good training and test losses on this system identification problem
using the Hamiltonian-based neural ODE network from [27] (with 231,310 parameters), inspired by
[40; 91]. Note that we were unable to tune SGD to obtain a similar performance.

50 VALENTIN DURUISSEAUX AND MELVIN LEOK

Figure 48. Evolution of the mean squared error for various algorithms, when
applied to the problem of fitting a model to a set of 500 data points.

Figure 49. Models obtained after 2000 epochs using various algorithms to fit the
500 data points displayed in green.

Overall, we have demonstrated that the BrAVO algorithms can be used conveniently within the
PyTorch and TensorFlow frameworks, and that they can perform very well on more challenging
optimization problems arising in machine learning applications, with a variety of model architectures,
loss functions, and applications. We reiterate that this was the main purpose of this section, and that
it is not our intention to make a very careful computational comparison of the BrAVO algorithms
with other optimization algorithms that are commonly used by the machine learning community.

A very careful computational comparison of optimization algorithms for machine learning is a
much more ambitious goal which is beyond the scope of this paper. Such a comparison would be
more meaningful once the current rudimentary implementation of the BrAVO algorithms within the
PyTorch and TensorFlow frameworks has been highly-optimized, to take advantage of hardware
architectures and highly-optimized PyTorch/TensorFlow operations. Aside from the quality of the
implementation, other practical aspects of the algorithm could be investigated and improved further
before carrying a careful comparison, for instance by looking into ways to boost the performance of
the temporal looping technique or of the momentum restarting scheme.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 51

Figure 50. Evolution of the training and test losses for various algorithms, when
learning the 231,310 parameters of a neural ODE network for dynamics learning.

An important advantage of our methods is that they are derived by discretizing continuous-time
dynamical systems. We might be able to derive theoretical results about the algorithm by considering
the associated continuous-time dynamical system and the discretization used. Furthermore, by
considering the associated continuous-time dynamical system, we may be able to leverage numerous
results from the theory of differential equations, dynamical systems, and geometric numerical
integration. As a first example, in Section 5.2, we exploited perturbation theory for continuous-time
dynamical systems to gain insight into the effect of the parameter C on the performance of the
algorithms, which enabled us to improve tuning. As a second example, numerous ideas from the
continuous-time theory of dynamical systems have been exploited in [6; 9–11] and in particular
the notions of dissipation, of viscous and Hessian-driven damping, and of inertia, in second-order
differential equations. As a last example, the notion of momentum itself is better understood as a
physical property of a continuous-time dynamical system, and we can also gain a lot of insight into
the mechanism allowing the accelerated convergence towards the minimizer by considering these
dynamical systems. There might be many other ways in which the performance of our algorithms
can be improved by leveraging the associated continuous-time dynamical system.

Conclusion and Future Directions

In this paper, we have discussed practical considerations which can significantly boost the
computational performance and ease the tuning of symplectic accelerated optimization algorithms
that are constructed by integrating Lagrangian and Hamiltonian systems coming from the variational
framework for optimization introduced in [84].

We showed that momentum restarting can lead to a significant gain in computational efficiency
and robustness by reducing the undesirable effect of oscillations, and that a temporal looping strategy
helps to avoid instability issues caused by numerical precision without impairing the computational
performance of the algorithms. We also observed that time-adaptivity and the choice of symplectic
integrator hardly make a difference once a momentum restarting scheme is incorporated in the
optimization algorithms. This observation, along with other numerical experiments designed to
study the effects of the different parameters, has provided insights that allowed to inform and ease
the tuning process by simplifying the algorithms and by reducing the number of parameters to tune.

Overall, we have designed symplectic accelerated optimization algorithms whose computational
efficiency and stability have been improved using temporal looping and momentum restarting, and
which are now more user-friendly. We tested these algorithms on machine learning optimization
problems with numerous different model architectures, loss functions, and applications, and saw
that they can achieve very good results when tuned properly.

52 VALENTIN DURUISSEAUX AND MELVIN LEOK

Preliminary experiments suggest that the benefits of momentum restarting and temporal looping
uncovered in this paper extend to the Riemannian manifold framework for accelerated optimization
introduced in [30]. We intend to explore that direction to improve the computational efficiency and
stability of symplectic accelerated optimization algorithms on Riemannian manifolds.

It would be nice to have further theoretical guarantees about the convergence of the discrete
algorithm. However, this could be very difficult to obtain because momentum methods lack
contraction, are nondescending, and are highly oscillatory [67]. While it is hoped that the continuous
analysis will eventually guide the convergence analysis of the discrete-time algorithms, this does not
appear to be a straightforward exercise, as one would first need to reconcile the arbitrarily fast rates
of convergence of the continuous-time trajectories with Nesterov’s barrier theorem of O(1/k2) for
discrete-time algorithms. We note however that some theoretical guarantees for certain integrators
applied to the polynomial subfamily were obtained in the case where p > 2 in [90], although this was
already a very complicated task achieved under additional assumptions on the objective function
and its derivatives. In the future, we intend to try to build upon the results of [90] to derive more
general theoretical guarantees for our discrete algorithms, and see how momentum restarting and
temporal looping affect those guarantees.

The temporal looping technique could also be improved by designing different numerical instability
criteria. Instead of temporal looping strategies, one could also try to implement very popular
techniques in machine learning such as decaying learning rates via a learning rate scheduler, or to
progressively increase the batch size [76], or a combination of these different approaches.

The current implementation of the algorithms within the PyTorch and TensorFlow frameworks
is rather rudimentary, and can certainly be improved to reduce computational time by taking
advantage of hardware architectures and highly-optimized PyTorch/TensorFlow operations. With
the same objective in mind, one could also replace the gradient scheme for momentum restarting by
the function scheme if the latter can be implemented more efficiently.

Once the algorithms have been improved further, possibly leveraging the theory of continuous-time
dynamical systems, and once the implementation of the algorithms has been highly-optimized, it
would be very interesting to perform a very careful computational comparison with other popular
algorithms on many different types of problems to see whether the BrAVO algorithms can outperform
the state-of-the-art algorithms on certain classes of machine learning problems.

Data Availability Statement

Simple implementations of the optimization algorithms in MATLAB and Python, and more
sophisticated Python code implementations which allow the optimizers to be called conveniently
within the TensorFlow and PyTorch frameworks can be found at

github.com/vduruiss/AccOpt via GNI

Acknowledgments

The authors were supported in part by NSF under grants DMS-1411792, DMS-1345013, DMS-
1813635, CCF-2112665, by AFOSR under grant FA9550-18-1-0288, and by the DoD under grant
HQ00342010023 (Newton Award for Transformative Ideas during the COVID-19 Pandemic).

https://github.com/vduruiss/AccOpt_via_GNI

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 53

Appendix A. List of Time-Adaptive Algorithms

PolyHTVI

qk+1 = qk + h
p

p̊
q

1−p̊/p
k

rk+1 = rk −
p2

p̊
Chq

2p−p̊/p
k ∇f(qk)

qk+1 = qk +
p2

p̊
hq

−p−p̊/p
k rk+1

PolySLC

r ← r − Cp
2

2p̊
hq2p−p̊/p∇f(q)

q← (qp̊/p + h
2
)
p/p̊

q ← q + hp2

p̊qp+p̊/p
r

q← (qp̊/p + h
2
)
p/p̊

r ← r − Cp
2

2p̊
hq2p−p̊/p∇f(q)

PolyLTVI

qk+1 = qk + h
p

p̊
q

1−p̊/p
k

qk+1 = qk +
hp3

p̊2q
p−1+2p̊/p
k

rk −
Ch2p4

p̊2
q
p−2p̊/p
k ∇f(qk)

rk+1 =
p̊2q

p+p̊/p
k

hp3q
1−p̊/p
k+1

(qk+1 − qk)

PolySV

rk+ 1
2
= rk −

p2

2p̊
Chq

2p−p̊/p
k ∇f(qk)

Solve qk+1 = qk +
hp

2p̊
(q1−p̊/p
k + q

1−p̊/p
k+1)

qk+1 = qk +
hp2

2p̊
(q−p−p̊/pk + q

−p−p̊/p
k+1) rk+ 1

2

rk+1 = rk+ 1
2
− p

2

2p̊
Chq

2p−p̊/p
k+1 ∇f(qk+1)

ExpoHTVI

qk+1 = qk +
η

η̊
h

rk+1 = rk −
η2

η̊
Che2ηqk∇f(qk)

qk+1 = qk +
η2

η̊
he−ηqkrk+1

ExpoSLC

r ← r − Chη
2

2η̊
e2ηq∇f(q)

q← q + hη
2η̊

q ← q + hη2

η̊eηq
r

q← q + hη
2η̊

r ← r − Chη
2

2η̊
e2ηq∇f(q)

ExpoLTVI

qk+1 = qk +
η

η̊
h

qk+1 = qk +
hη3

η̊2
e−ηqkrk −

Ch2η4

η̊2
eηqk∇f(qk)

rk+1 =
η̊2

hη3
eηqk(qk+1 − qk)

ExpoSV

rk+ 1
2
= rk −

η2

2̊η
Che2ηqk∇f(qk)

qk+1 = qk +
η

η̊
h

qk+1 = qk +
hη2

2η̊
(e−ηqk+1 + e−ηqk) rk+ 1

2

rk+1 = rk+ 1
2
− η

2

2̊η
Che2ηqk+1∇f(qk+1)

54 VALENTIN DURUISSEAUX AND MELVIN LEOK

ExpoToPolyHTVI

qk+1 = (1 + ηh
p

) qk

rk+1 = rk −
η2

p
Chqke

2ηqk∇f(qk)

qk+1 = qk +
hη2

peηqk
qkrk+1

ExpoToPolySLC

r ← r − Chqη
2

2p
e2ηq∇f(q)

q← qe
ηh
2p

q ← q + hqη
2

peηq
r

q← qe
ηh
2p

r ← r − Chqη
2

2p
e2ηq∇f(q)

ExpoToPolyLTVI

qk+1 = (1 + ηh
p

) qk,

qk+1 = qk +
hq2

kη
3

p2eηqk
rk −

Ch2η4

p2
q2
ke
ηqk∇f(qk),

rk+1 =
p(p + ηh)
hη3q2

k

eηqk(qk+1 − qk).

ExpoToPolySV

rk+ 1
2
= rk −

η2

2p
Chqke

2ηqk∇f(qk),

qk+1 =
2p + ηh
2p − ηhqk,

qk+1 = qk +
hη2

2p
(qke−ηqk + qk+1e

−ηqk+1) rk+ 1
2
,

rk+1 = rk+ 1
2
− η

2

2p
Chqk+1e

2ηqk+1∇f(qk+1),

PolyToExpoHTVI

qk+1 = qk + h
p

η
e
−
η
p
qk

rk+1 = rk −
Chp2

ηe
η
p
qk
q2p−1
k ∇f(qk)

qk+1 = qk + h
p2

ηqp+1
k

e
−
η
p
qkrk+1

PolyToExpoSLC

r ← r − hCp
2

2η
q2p−1e

−
η
p
q∇f(q)

q← p

η
log (e

η
p
q + h

2
)

q ← q + hp2

ηqp+1
e
−
η
p
q
r

q← p

η
log (e

η
p
q + h

2
)

r ← r − hCp
2

2η
q2p−1e

−
η
p
q∇f(q)

PolyToExpoLTVI

qk+1 = qk + h
p

η
e
−
η
p
qk

qk+1 = qk +
hp3

η2qp+1
k e

2η
p
qk
rk −

Ch2p4

η2e
2η
p
qk
qp−2
k ∇f(qk)

rk+1 =
η2qp+1

k

hp3
e
η
p
(qk+1+qk)(qk+1 − qk)

PolyToExpoSV

rk+ 1
2
= rk −

p2

2η
Chq2p−1

k e
−
η
p
qk∇f(qk)

Solve qk+1 = qk +
hp

2η
(e−

η
p
qk + e−

η
p
qk+1)

qk+1 = qk +
hp2

2η
(q−p−1
k e

−
η
p
qk + q−p−1

k+1 e
−
η
p
qk+1) rk+ 1

2

rk+1 = rk+ 1
2
− p

2

2η
Chq2p−1

k+1 e
−
η
p
qk+1∇f(qk+1)

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 55

Appendix B. List of Non-Adaptive Algorithms

PolyHTVI

rk+1 = rk −Chpq2p−1
k ∇f(qk)

qk+1 = qk + hpq−p−1
k rk+1

qk+1 = qk + h

PolySLC

r ← r − 1

2
Chpq2p−1∇f(q)

q← q + h
2

q ← q + hpq−p−1r

q← q + h
2

r ← r − 1

2
Chpq2p−1∇f(q)

PolyLTVI

qk+1 = qk + hpq−p−1
k rk −Ch2p2qp−2

k ∇f(qk)

rk+1 =
qp1k
hp

(qk+1 − qk)

qk+1 = qk + h

PolySV

rk+ 1
2
= rk −

1

2
Chpq2p−1

k ∇f(qk)
qk+1 = qk + h

qk+1 = qk +
h

2
p (q−p−1

k + q−p−1
k+1) rk+ 1

2

rk+1 = rk+ 1
2
− 1

2
Chpq2p−1

k+1 ∇f(qk+1)

ExpoHTVI

rk+1 = rk −Cηhe2ηqk∇f(qk)
qk+1 = qk + ηhe−ηqkrk+1

qk+1 = qk + h

ExpoSLC

r ← r − 1

2
Cηhe2ηq∇f(q)

q← q + h
2

q ← q + ηhe−ηqr

q← q + h
2

r ← r − 1

2
Cηhe2ηq∇f(q)

ExpoLTVI

qk+1 = qk + hηe−ηqkrk −Cη2h2eηqk∇f(qk)

rk+1 =
eηqk

ηh
(qk+1 − qk)

qk+1 = qk + h

ExpoSV

rk+ 1
2
= rk −

1

2
Cηhe2ηqk∇f(qk)

qk+1 = qk + h

qk+1 = qk +
1

2
ηh (e−ηqk+1 + e−ηqk) rk+ 1

2

rk+1 = rk+ 1
2
− 1

2
Cηhe2ηqk+1∇f(qk+1)

56 VALENTIN DURUISSEAUX AND MELVIN LEOK

References

[1] K. Ahn and S. Sra. From Nesterov’s estimate sequence to Riemannian acceleration. In
Proceedings of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of
Machine Learning Research, pages 84–118. PMLR, 09–12 Jul 2020.

[2] C. D. Alecsa and S. C. László. Tikhonov regularization of a perturbed heavy ball system with
vanishing damping. SIAM Journal on Optimization, 31(4):2921–2954, 2021. doi: 10.1137/
20M1382027.

[3] F. Alimisis, A. Orvieto, G. Bécigneul, and A. Lucchi. Practical accelerated optimization on
Riemannian manifolds. 2020. URL https://arxiv.org/abs/2002.04144.

[4] F. Alimisis, A. Orvieto, G. Bécigneul, and A. Lucchi. A continuous-time perspective for
modeling acceleration in Riemannian optimization. In Proceedings of the 23rd International
AISTATS Conference, volume 108 of PMLR, pages 1297–1307, 2020.

[5] F. Alimisis, A. Orvieto, G. Bécigneul, and A. Lucchi. Momentum improves optimization on
Riemannian manifolds. In AISTATS, 2021.

[6] F. Alvarez, H. Attouch, J. Bolte, and P. Redont. A second-order gradient-like dissipative
dynamical system with Hessian-driven damping: Application to optimization and mechanics.
Journal de Mathématiques Pures et Appliquées, 81(8):747–779, 2002. ISSN 0021-7824. doi:
10.1016/S0021-7824(01)01253-3.

[7] H. Attouch and Z. Chbani. Combining fast inertial dynamics for convex optimization with
Tikhonov regularization. 2016.

[8] H. Attouch and M. Czarnecki. Asymptotic behavior of gradient-like dynamical systems involving
inertia and multiscale aspects. Journal of Differential Equations, 262(3):2745–2770, 2017. ISSN
0022-0396. doi: 10.1016/j.jde.2016.11.009.

[9] H. Attouch, Z. Chbani, J. Fadili, and H. Riahi. First-order optimization algorithms via
inertial systems with Hessian driven damping. Mathematical Programming, Nov 2020. doi:
10.1007/s10107-020-01591-1.

[10] H. Attouch, Z. Chbani, J. M. Fadili, and H. Riahi. Convergence of iterates for first-order
optimization algorithms with inertia and Hessian driven damping. Optimization, 2021. doi:
10.1080/02331934.2021.2009828.

[11] H. Attouch, A. Balhag, Z. Chbani, and H. Riahi. Fast convex optimization via inertial dynamics
combining viscous and Hessian-driven damping with time rescaling. Evolution Equations and
Control Theory, 11(2):487–514, 2022.

[12] P. Attri, Y. Sharma, K. Takach, and F. Shah. Timeseries forecasting for weather prediction.
Keras Tutorial, 2020. URL https://keras.io/examples/timeseries/timeseries_weather_

forecasting/.
[13] A. Beck and M. Teboulle. Gradient-based algorithms with applications to signal-recovery

problems. Convex Optimization in Signal Processing and Communications, pages 42–88, 2009.
doi: 10.1017/CBO9780511804458.003.

[14] A. Benettin, G.and Giorgilli. On the Hamiltonian interpolation of near-to-the identity symplectic
mappings with application to symplectic integration algorithms. Journal of Statistical Physics,
74:1117–1143, 03 1994. doi: 10.1007/BF02188219.

[15] D. Bertsekas. Convex Optimization Algorithms. Athena Scientific, 2009.
[16] M. Betancourt, M. I. Jordan, and A. Wilson. On symplectic optimization. 2018. URL

https://arxiv.org/abs/1802.03653.
[17] S. Blanes and F. Casas. A Concise Introduction to Geometric Numerical Integration. 2017.

ISBN 9781482263442. doi: 10.1201/b21563.
[18] V. Boltyanski, H. Martini, V. Soltan, and V.P. Soltan. Geometric Methods and Optimization

Problems. Combinatorial Optimization. Springer US, 1999. doi: 10.1007/978-1-4615-5319-9.

https://arxiv.org/abs/2002.04144
https://keras.io/examples/timeseries/timeseries_weather_forecasting/
https://keras.io/examples/timeseries/timeseries_weather_forecasting/
https://arxiv.org/abs/1802.03653

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 57

[19] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. doi:
10.1017/CBO9780511804441.

[20] J. P. Calvo and J. M. Sanz-Serna. The development of variable-step symplectic integrators,
with application to the two-body problem. SIAM J. Sci. Comp., 14(4):936–952, 1993.

[21] C. M. Campos, A. Mahillo, and D. Mart́ın de Diego. A discrete variational derivation of
accelerated methods in optimization. 2021. URL https://arxiv.org/abs/2106.02700.

[22] A. L. Cauchy. Méthode générale pour la résolution des systèmes d’équations simultanées. Acad.
Sci. Paris, 25:536–538, 1847.

[23] Y.-H. Dai, L.-Z. Liao, and D. Li. On restart procedures for the conjugate gradient method:
Theory and practice in optimization. Numerical Algorithms, 35, 04 2004. doi: 10.1023/B:
NUMA.0000021761.10993.6e.

[24] A. Deaño, D. Huybrechs, and A. Iserles. Computing Highly Oscillatory Integrals. SIAM,
Philadelphia, January 2018.

[25] K. Donghwan and J. Fessler. Adaptive restart of the optimized gradient method for convex
optimization. Journal of Optimization Theory and Applications, 178, 07 2018. doi: 10.1007/
s10957-018-1287-4.

[26] Z. Drezner and H.W. Hamacher. Facility Location: Applications and Theory. Springer Berlin
Heidelberg, 2002. ISBN 9783540213451.

[27] T. Duong and N. Atanasov. Hamiltonian-based neural ODE networks on the SE(3) manifold
for dynamics learning and control. In Proceedings of Robotics: Science and Systems, July 2021.
doi: 10.15607/RSS.2021.XVII.086.

[28] V. Duruisseaux and M. Leok. Accelerated optimization on Riemannian manifolds via discrete
constrained variational integrators. Journal of Nonlinear Science, 32(42), 2022. URL https:

//doi.org/10.1007/s00332-022-09795-9.
[29] V. Duruisseaux and M. Leok. Accelerated optimization on Riemannian manifolds via projected

variational integrators. 2022. URL https://arxiv.org/abs/2201.02904.
[30] V. Duruisseaux and M. Leok. A variational formulation of accelerated optimization on Rie-

mannian manifolds. SIAM Journal on Mathematics of Data Science, 4(2):649–674, 2022. URL
https://doi.org/10.1137/21M1395648.

[31] V. Duruisseaux and M. Leok. Time-adaptive Lagrangian variational integrators for accelerated
optimization on manifolds. Journal of Geometric Mechanics, 15(1):224–255, 2023. ISSN
1941-4889. URL https://doi.org/10.3934/jgm.2023010.

[32] V. Duruisseaux, J. Schmitt, and M. Leok. Adaptive Hamiltonian variational integrators and
applications to symplectic accelerated optimization. SIAM Journal on Scientific Computing,
43(4):A2949–A2980, 2021. URL https://doi.org/10.1137/20M1383835.

[33] V. Duruisseaux, T. Duong, M. Leok, and N. Atanasov. Lie group forced variational integrator
networks for learning and control of robot systems. 5th Learning for Dynamics and Control
Conference (L4DC), 2023. URL https://arxiv.org/pdf/2211.16006.pdf.

[34] W. M. Farr. Variational integrators for almost-integrable systems. Celestial Mechanics and
Dynamical Astronomy, 102(2):105–118, 2009.

[35] O. Fercoq and Z. Qu. Restarting accelerated gradient methods with a rough strong con-
vexity estimate. Research Report 1609.07358, Télécom ParisTech, 2016. URL https:

//hal.telecom-paris.fr/hal-02287730.
[36] O. Fercoq and Z. Qu. Adaptive restart of accelerated gradient methods under local quadratic

growth condition. IMA Journal of Numerical Analysis, March 2019. doi: 10.1093/imanum/
drz007.

[37] L. N. G. Filon. On a quadrature formula for trigonometric integrals. Proceedings of the Royal
Society of Edinburgh, 49:38–47, 1930. doi: 10.1017/S0370164600026262.

[38] P. Giselsson and S. Boyd. Monotonicity and restart in fast gradient methods. Proceedings of
the IEEE Conference on Decision and Control, 2015:5058–5063, 02 2015. doi: 10.1109/CDC.

https://arxiv.org/abs/2106.02700
https://doi.org/10.1007/s00332-022-09795-9
https://doi.org/10.1007/s00332-022-09795-9
https://arxiv.org/abs/2201.02904
https://doi.org/10.1137/21M1395648
https://doi.org/10.3934/jgm.2023010
https://doi.org/10.1137/20M1383835
https://arxiv.org/pdf/2211.16006.pdf
https://hal.telecom-paris.fr/hal-02287730
https://hal.telecom-paris.fr/hal-02287730

58 VALENTIN DURUISSEAUX AND MELVIN LEOK

2014.7040179.
[39] B. Gladman, M. Duncan, and J. Candy. Symplectic integrators for long-time integrations in

celestial mechanics. Celestial Mech. Dynamical Astronomy, 52:221–240, 1991.
[40] S. Greydanus, M. Dzamba, and J. Yosinski. Hamiltonian Neural Networks. In Advances in

Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
[41] E. Hairer. Variable time step integration with symplectic methods. Applied Numerical

Mathematics, 25(2-3):219–227, 1997.
[42] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration illustrated by the

Störmer–Verlet method. Acta Numerica, 12:399 – 450, 2003.
[43] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration, volume 31 of Springer

Series in Computational Mathematics. Springer-Verlag, Berlin, 2nd edition, 2006.
[44] B. Hall. Lie Groups, Lie Algebras, and Representations. Graduate Texts in Mathematics.

Springer Cham, second edition, 2015. doi: 10.1007/978-3-319-13467-3.
[45] A. Iserles and G. R. W. Quispel. Why geometric numerical integration? In Kurusch Ebrahimi-

Fard and Maŕıa Barbero Liñán, editors, Discrete Mechanics, Geometric Integration and Lie–
Butcher Series. Springer International Publishing, 2018.

[46] M. Jendoubi and R. May. On an asymptotically autonomous system with Tikhonov type
regularizing term. Archiv der Mathematik, 95:389–399, 10 2010. doi: 10.1007/s00013-010-0181-6.

[47] M. I. Jordan. Dynamical, symplectic and stochastic perspectives on gradient-based optimization.
In Proceedings of the International Congress of Mathematicians (ICM 2018), pages 523–549.
doi: 10.1142/9789813272880 0022.

[48] D. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, 12 2014.

[49] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[50] S. Lall and M. West. Discrete variational Hamiltonian mechanics. J. Phys. A, 39(19):5509–5519,
2006.

[51] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

[52] T. Lee, M. Tao, and M. Leok. Variational symplectic accelerated optimization on Lie groups.
2021.

[53] B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics, volume 14 of Cambridge Mono-
graphs on Applied and Computational Mathematics. Cambridge University Press, Cambridge,
2004.

[54] M. Leok and T. Shingel. Prolongation-collocation variational integrators. IMA J. Numer.
Anal., 32(3):1194–1216, 2012.

[55] M. Leok and T. Shingel. General techniques for constructing variational integrators. Front.
Math. China, 7(2):273–303, 2012.

[56] M. Leok and J. Zhang. Discrete Hamiltonian variational integrators. IMA Journal of Numerical
Analysis, 31(4):1497–1532, 2011.

[57] D. Levin. Procedures for computing one- and two-dimensional integrals of functions with rapid
irregular oscillations. Mathematics of Computation, 38(158):531–538, 1982.

[58] D. Levin. Fast integration of rapidly oscillatory functions. Journal of Computational and
Applied Mathematics, 67(1):95–101, 1996. ISSN 0377-0427. doi: 10.1016/0377-0427(94)00118-9.

[59] Y. Liu, F. Shang, J. Cheng, H. Cheng, and L. Jiao. Accelerated first-order methods for
geodesically convex optimization on Riemannian manifolds. In NeurIPS, volume 30, pages
4868–4877, 2017.

[60] J. E. Marsden and M. West. Discrete mechanics and variational integrators. Acta Numer., 10:
357–514, 2001.

PRACTICAL PERSPECTIVES ON SYMPLECTIC ACCELERATED OPTIMIZATION 59

[61] M. Muehlebach and M. I. Jordan. A dynamical systems perspective on Nesterov acceleration.
In Proceedings of the 36th International Conference on Machine Learning, volume 97 of PMLR,
Long Beach, CA, USA, 2019.

[62] A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization.
Wiley - Interscience series in discrete mathematics. Wiley, 1983.

[63] Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[64] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87 of
Applied Optimization. Kluwer Academic Publishers, Boston, MA, 2004.

[65] Y. Nesterov. Accelerating the cubic regularization of Newton’s method on convex problems.
Math. Program., 112:159–181, 2008.

[66] B. O’donoghue and E. Candès. Adaptive restart for accelerated gradient schemes. Found.
Comput. Math., 15(3):715–732, jun 2015. ISSN 1615-3375. doi: 10.1007/s10208-013-9150-3.

[67] A. Orvieto and A. Lucchi. Shadowing properties of optimization algorithms. In Advances in
Neural Information Processing Systems, volume 32, pages 12692–12703, 2019.

[68] S. Paul and S. Rakshit. Large-scale multi-label text classification. Keras Tutorial, 2020. URL
https://keras.io/examples/nlp/multi_label_classification/.

[69] D. L. Phillips. A technique for the numerical solution of certain integral equations of the first
kind. J. ACM, 9(1):84–97, jan 1962. ISSN 0004-5411. doi: 10.1145/321105.321114.

[70] M. J. D. Powell. Restart procedures for the conjugate gradient method. Mathematical
Programming, 12:241–254, 1977.

[71] J. Renegar and B. Grimmer. A simple nearly optimal restart scheme for speeding up first-
order methods. Found. Comput. Math., 22(1):211–256, feb 2022. ISSN 1615-3375. doi:
10.1007/s10208-021-09502-2.

[72] V. Roulet and A. d’Aspremont. Sharpness, restart, and acceleration. SIAM Journal on
Optimization, 30(1):262–289, 2020. doi: 10.1137/18M1224568.

[73] J. A. Sanders, F. Verhulst, and J. Murdock. Averaging Methods in Nonlinear Dynamical
Systems. Applied Mathematical Sciences. Springer New York, 2007. ISBN 9780387489186.

[74] J. M. Schmitt and M. Leok. Properties of Hamiltonian variational integrators. IMA Journal of
Numerical Analysis, 38(1):377–398, 03 2017.

[75] J. M. Schmitt, T. Shingel, and M. Leok. Lagrangian and Hamiltonian Taylor variational
integrators. BIT Numerical Mathematics, 58:457–488, 2018. doi: 10.1007/s10543-017-0690-9.

[76] S. Smith, P. Kindermans, C. Ying, and Q. V. Le. Don’t decay the learning rate, increase the
batch size. 2018.

[77] W. Su, S. Boyd, and E. Candes. A differential equation for modeling Nesterov’s Accelerated
Gradient method: theory and insights. Journal of Machine Learning Research, 17(153):1–43,
2016.

[78] M. Tao and T. Ohsawa. Variational optimization on Lie groups, with examples of leading
(generalized) eigenvalue problems. In Proceedings of the 23rd International AISTATS Conference,
volume 108 of PMLR, 2020.

[79] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288, 1996. ISSN 00359246.

[80] A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method.
Sov. Math., Dokl., 5:1035–1038, 1963. ISSN 0197-6788.

[81] A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems. V. H. Winston & Sons,
1977.

[82] L. N. Trefethen and D. Bau. Numerical Linear Algebra. Other Titles in Applied Mathematics.
SIAM, 1997. ISBN 9780898719574.

[83] F. Verhulst. Nonlinear Differential Equations and Dynamic Systems. 1996. ISBN 978-3-540-
60934-6. doi: 10.1007/978-3-642-61453-8.

https://keras.io/examples/nlp/multi_label_classification/

60 VALENTIN DURUISSEAUX AND MELVIN LEOK

[84] A. Wibisono, A. Wilson, and M. Jordan. A variational perspective on accelerated methods in
optimization. Proceedings of the National Academy of Sciences, 113(47):E7351–E7358, 2016.

[85] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms, 2017.

[86] H. Yoshida. Construction of higher order symplectic integrators. Physics Letters A, 150(5):
262–268, 1990. ISSN 0375-9601. doi: 10.1016/0375-9601(90)90092-3.

[87] K. Zare and V. G. Szebehely. Time transformations in the extended phase-space. Celestial
mechanics, 11:469–482, 1975.

[88] H. Zhang and S. Sra. First-order methods for geodesically convex optimization. In 29th Annual
Conference on Learning Theory, pages 1617–1638, 2016.

[89] H. Zhang and S. Sra. An estimate sequence for geodesically convex optimization. In Proceedings
of the 31st Conference On Learning Theory, volume 75 of Proceedings of Machine Learning
Research, pages 1703–1723, 2018.

[90] J. Zhang, A. Mokhtari, S. Sra, and A. Jadbabaie. Direct Runge-Kutta discretization achieves
acceleration. In Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[91] Y. D. Zhong, B. Dey, and A. Chakraborty. Symplectic ODE-Net: learning Hamiltonian
dynamics with control. In International Conference on Learning Representations, 2019.

	1. Introduction
	Outline of the paper.

	2. Geometric Mechanics and Geometric Numerical Integration
	2.1. Lagrangian and Hamiltonian Mechanics
	2.2. Symplectic and Variational Integrators

	3. Variational Framework for Accelerated Optimization
	3.1. General Framework
	3.2. Polynomial Subfamily
	3.3. Exponential Subfamily
	3.4. Geometric Numerical Integration of Time-rescaled Bregman dynamics
	3.4.1. Time-rescaling Property of the Bregman Family
	3.4.2. Time-adaptive Hamiltonian Integrators
	3.4.3. Time-adaptive Lagrangian Integrators

	4. Numerical Methods and Problems of Interest
	4.1. Numerical Methods
	4.1.1. Hamiltonian Taylor Variational Integrator (HTVI)
	4.1.2. Lagrangian Taylor Variational Integrator (LTVI)
	4.1.3. Störmer-Verlet (SV)
	4.1.4. Symmetric Leapfrog Composition of Component Dynamics (SLC)

	4.2. Problems of Interest

	5. Controlling the Oscillatory Behavior
	5.1. Momentum Restarting
	5.2. The Effect of the Parameter C
	5.3. Other Approaches to Control Oscillations

	6. Time-Adaptivity in the Momentum Restarted Algorithms
	7. Comparison of Integrators
	8. Tuning the Algorithms
	8.1. Tuning PolySLC-R
	8.2. Tuning ExpoSLC-R

	9. Temporal Looping to Improve Numerical Stability
	10. Testing for Machine Learning Applications
	Conclusion and Future Directions
	Data Availability Statement
	Acknowledgments
	Appendix A. List of Time-Adaptive Algorithms
	Appendix B. List of Non-Adaptive Algorithms
	References

