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We report on our implementation of an algorithm due to Neu-
mann and Praeger for deciding whether or not a matrix group
over a finite field contains the special linear group. This is a
Monte Carlo algorithm, and thus has a small but precise prob-
ability of returning the wrong answer; this probability can be
specified in advance by the user. The algorithm requires the
selection of random elements from the group, and the most im-
portant problem that arose in the implementation was to find a
satisfactory procedure for making this selection.

1. INTRODUCTION

The purpose of this article is to report on our im-
plementation of the algorithm described in [Neu-
mann and Praeger 1992] for solving the following
problem. Let ¢ be a prime power, d a positive in-
teger, and GL(d, q) the linear group of nonsingular
d x d matrices over the finite field F| of order q.
Given a finite subset X of GL(d, q), does the group
G generated by X contain the special linear group
SL(d, q)?

This implementation has been carried out in the
GAP system developed by Martin Schonert and
others at Aachen [Schonert et al. 1992]. We have
followed the algorithm described in [Neumann and
Praeger 1992] fairly closely, and so we only need
to report on one or two minor deviations, and on
those parts of the process that were not described
precisely there. The implementation is practical
for values of d up to at least 60 or 70, and it works
reasonably well for all F}, that are currently known
to GAP, namely those with g < 2!% = 65536.

In Section 2 we outline the main steps of the
algorithm and present some running times for our
implementation. We emphasise that we are dealing
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with a Monte Carlo algorithm, which means that
there is a number ¢ (which the user can choose
in advance) such that there is a probability of at
most € that the process will give an incorrect an-
swer. In this particular case, only false negatives
can occur. In other words, the answer “yes” can
always be relied upon, but the answer “no” may
very occasionally be incorrect.

The theoretical analysis of the process requires
that we make a moderately large (up to a few hun-
dred) number of independent choices of random
elements of the group G. A Monte Carlo algo-
rithm to generate (pseudo-)random elements of G
is described in [Babai 1991]. Unfortunately, this
does not seem to be practical for us, on account of
the large number of matrix multiplications that it
requires. We have therefore been forced to adopt
a procedure that does not attempt to cover the
whole group with uniform probability, but merely
to choose elements in such a way that they have
the correct probability of having the desired prop-
erties. We must then rely on heuristical and statis-
tical evidence to support the method that we have
adopted. These matters are discussed in more de-
tail in Section 3.

Finally, since the description in [Neumann and
Praeger 1992] is not quite precise for d < 4, we fill
in the details of these cases in Section 4.

According to a result of Aschbacher [1984], any
matrix group over a finite field lies in one of nine
classes of matrix groups, and one of these classes
consists of groups that contain the special linear
group. We hope that the Neumann-Praeger algo-
rithm will be the first of a series of algorithms that
seek to recognise whether a particular group lies in
one or other of these classes.

In fact, there has already been a suggested im-
provement to the Neumann—Praeger algorithm it-
self by Charles Leedham-Green, which has been
implemented in GAP by Frank Celler. This cur-
rently lacks a precise theoretical probabilistic anal-
ysis, but statistical results suggest that it involves
looking at far fewer random elements of the group.
What seems to be clear, however, is that all algo-
rithms of this type are likely to depend strongly on
the selection of random elements from the group,
and so an investigation of this process is essential.

2. OUTLINE OF THE ALGORITHM AND TIMINGS

We begin with a very brief outline of the Neumann—
Praeger algorithm; readers should consult [Neu-
mann and Praeger 1992] for more details. An el-
ement g of GL(d,q) is called irreducible if it acts
irreducibly on the underlying d-dimensional vector
space V over Fy, and it is called nearly trreducible if
it fixes and acts irreducibly on a (d—1)-dimensional
subspace of V. The element g is called primitive
irreducible if it is irreducible and its order |g| is
divisible by some prime p that divides ¢ — 1 but
does not divide ¢°—1 for any positive integer e < d.
Similarly, g is called primitive nearly irreducible if
it is nearly irreducible and |g| is divisible by a prime
dividing ¢~ — 1 but not dividing ¢* — 1 for any
e < d—1. Finally, g is called ample if no conjugate
of any element gz, with z a scalar matrix, lies in
GL(d,r) for any proper subfield F, of F,.

It is shown in [Neumann and Praeger 1992] that,
with a few precisely described exceptions, any sub-
group of GL(d, q) that contains an ample element,
a primitive irreducible element, and a primitive
nearly irreducible element must contain the whole
of SL(d, q). It is also shown that, if G is a subgroup
of GL(d, q) that contains SL(d, ¢q), the proportion
of ample primitive irreducible elements of G is at
least 1/(d+1), except when d < 3 or (d, q) = (6,2),
and the proportion of ample primitive nearly irre-
ducible elements is at least 1/d, except when d < 4
or (d,q) = (7,2).

The algorithm proceeds as follows, with slight
modifications for small d and the exceptional cases
(d,q) = (6,2) and (7,2). Choose a sample S of n
random elements of the given group G, where n is
such that, if G does contain SL(d, ¢), the probabil-
ity that S does not contain both an ample prim-
itive irreducible element and an ample primitive
nearly irreducible element is less than the chosen
error probability €. (It is easy to calculate n from
e and d; if e = ﬁ, for example, n = %d is suffi-
cient.) Check the elements in the sample for am-
pleness, primitive irreducibility and primitive near-
irreducibility. If the sample does not contain an
ample element, or if it does not contain a primi-
tive irreducible element, or if it does not contain
a primitive nearly irreducible element, return the
answer “no”. If it does contain each of these three
elements, check for the known exceptional exam-
ples, and answer accordingly.
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Now, from our implementation, it turns out that
the proportion of computation time taken by tests
for primitivity, ampleness, and dealing with the ex-
ceptional cases is very small. This is essentially
because they only have to be done once or twice,
rather than for each individual element of the sam-
ple S. The test for primitivity is described in
[Neumann and Praeger 1992, p. 578-579] and con-
sists of raising the element to an appropriate high
power and checking if the result is the identity.
Since raising matrices to high powers is fairly effi-
cient, this is not too time-consuming. The test for
ampleness is described in [Neumann and Praeger
1992, pp. 578], and involves some simple tests on
the coeflicients of the characteristic polynomial of
the element. The exceptional cases are dealt with
by individual tests; typically, these involve some
short orbit calculations. For example, in the case
n = 11,q = 2, the exceptional case in which G is
the Mathieu group Ma, is recognised by the fact
that an eigenvector for the nearly irreducible ele-
ment has precisely 1288 translates under the action
of the group.

The bulk of the time is taken up with calcu-
lating the random elements and testing them for
irreducibility and near-irreducibility. We shall dis-
cuss the first of these operations in the next sec-
tion, but here we simply note that the procedure
we have adopted is to first enlarge the generating
set by using a moderate number (about 10) of rela-
tively long words (length about 30) in the original
generators. This takes a certain amount of time,
but only needs to be done once. We then contin-
ually replace a randomly chosen generator by its
product with another, and use these products as
the elements of S.

For the testing of the elements g in S for ir-
reducibility and near-irreducibility, Neumann and
Praeger suggest calculating the characteristic poly-
nomial f of g, which is irreducible if and only if g is
irreducible, and has an irreducible factor of degree
d — 1 if and only if g is nearly irreducible. There
was already a GAP procedure available, written
by Frank Celler, for calculating the minimal poly-
nomial, and it was a simple matter to adapt it
to calculate the characteristic polynomial instead.
In fact, following a suggestion of the referee, we
can take a short cut by interrupting this procedure
whenever an invariant subspace for g of dimension
lying strictly between 1 and d — 1 is found, since

in that situation g cannot possibly be irreducible
or nearly irreducible. However, it turns out that
this shortcut helps significantly only for very small
fields and relatively large degrees. For large fields
it is extremely rare to find such a subspace: for
example, in the symplectic groups Sp(60,q) with
q = 2,3,5 and 11, such a subspace was found for
about 36%,15%,6% and 1% of the elements, re-
spectively.

There were already some GAP procedures avail-
able for factorising polynomials over finite fields,
and we were able to adapt them to test only for
irreducibility and near-irreducibility. These proce-
dures work by first finding the linear factors of the
polynomial f, then finding the quadratic factors,
and so on. Since the existence of any proper factor
will rule out irreducibility (and usually also near-
irreducibility), this means that we can often stop
long before f has been factorised completely. This
process will therefore take longest when f really is
irreducible, but that does not matter, since it is an
irreducible element that we are seeking.

Table 1 shows some running times for our im-
plementation, obtained on a Solbourne 5/600, a
workstation similar in performance to a Sun Sparc-
station 2. Since this algorithm only runs to com-
pletion when G does not contain SL(d,q), all of
the rows except the last represent examples with
a negative answer. In the last example, the time
given is an average over 500 runs. Times can vary
by at least 10% on different runs of the same exam-
ple; this applies particularly to t..q, which depends
strongly on the polynomials involved.

We have tried to choose examples that demon-
strate the effects of changing the degree, the field
and the group. Thus, the basic example, of which
the others are variations, is G = Sp(40,17?). It
appears to be ¢y, that is most affected by the de-
gree, whereas t..q is most affected by changing the
field or the group. Concerning the field, it seems
to be increasing the characteristic rather than in-
creasing the size that has the worse effect; it is not
clear why this should be the case, but it stems from
the basic field and matrix operations within GAP.
The two cyclic groups C; and C> were chosen as
examples that we expected to be particularly quick
and particularly slow, respectively. Thus C; (of or-
der 17% — 1) consists entirely of diagonal matrices,
and so all of the operations involved are as quick as
they ever could be, whereas Cy (of order 17%° — 1)
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G d q n tpre tran tminp tred ttot
Sp(20,17%) 20 17?2 110 13 3 18 35 71
Sp(40,17%) 40 17?2 215 82 47 188 178 496
Sp(60,17%) 60 172 320 254 220 698 916 2119
Sp(40,2) 40 2 215 14 9 63 22 109
Sp(40,2'9) 40 216 215 107 78 193 955 934
Sp(40, 1009) 40 1009 215 88 56 168 339 652
Sp(40, 5003) 40 5003 215 204 119 230 1289 1844
Sp(40,10007) 40 10007 215 354 197 315 1790 2658

C 40 172 215 10 5) 58 39 114
Cs 40 17 215 36 19 80 1057 1193
GL(20,17%) 20 172 30 35

TABLE 1.

Timings, in seconds, for representative runs of our implementation of the Neumann—Praeger algo-

rithm, on a Solbourne 5/600. The column labeled n gives the number of random elements considered; tyo4 is
the total CPU time for the run, broken down into the preprocessing time tp.. for extending the original set of
generators, the time ¢.,, to calculate the random elements, the time fyin, to compute their minimal polynomi-
als, and the time t,.4 to decide whether they are reducible or nearly irreducible. Sp(d, q) are symplectic groups,
and C7 and Cy are particular cyclic groups (see text). The last row shows averages over 500 runs.

is generated by an element g of which the minimal
polynomial is a product of two distinct irreducible
factors of degree 20. This should be the worst pos-
sible situation for the reducibility test.

3. THE SELECTION OF RANDOM GROUP ELEMENTS

We have put a considerable amount of effort into
trying to find a satisfactory method of choosing
random elements from the given matrix group; this
seems to be worthwhile, because such a method
will be needed in the future for many other ma-
trix group algorithms. The main problem is that,
if the chosen procedure involves more than about
five matrix multiplications for each random ele-
ment, the total time t,,, taken for this part of the
procedure becomes inordinately large in compari-
son with the time for the other parts. After much
experimentation, the procedure that we eventu-
ally adopted involves a certain amount of prepro-
cessing, but thereafter requires only a single ma-
trix multiplication for each random element. This
procedure, based on ideas of Charles Leedham-
Green and Leonard Soicher, was suggested to us by
the referee of the original version of this paper (in
which a slightly different method was described).
We had first considered two procedures that at-
tempted to choose every element in the group with
roughly equal probability (which is of course what
is necessary for a truly random process). The first

is described in [Babai 1991] and is a very gen-
eral method, applicable whenever we know an up-
per bound N on the group order and can multi-
ply group elements. It yields elements that are
guaranteed to be random, so long as a certain pre-
processing algorithm succeeds; this happens with
probability at least 1 — &, where € can be cho-
sen beforehand. Unfortunately, the method has
a lengthy preprocessing phase involving O(log® N)
group multiplications, after which each random el-
ement itself requires O(log N) multiplications. We
have log N = d*logq for matrix groups; since we
are aiming to go up to at least d = 60 and logq =
16, this process involves far too many operations.

The second suggestion is made by Neumann and
Praeger themselves in their paper. It consists of
choosing products of powers of the form

9792 9"

where [ < 2d, the g; are randomly chosen elements
from the given set of generators of G, and the m;
are random integers in the range 1 < m; < ¢?. The
reason for considering powers is that they can be
computed fairly efficiently and, provided that the
generators do not all have small order, there are
sufficiently many products of this form to make it
heuristically plausible that they should cover the
set of all group elements with equal probability.
However, we timed this process with the group
GL(40,5°) and found that calculating each such
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product in GAP required about 278 seconds on
average and, since we would need to find up to
215 such products in dimension 40, this would still
make this part of the complete procedure dispro-
portionately slow in comparison with the rest.

We therefore decided to abandon the aim of se-
lecting all group elements with equal probability.
After all, we only need to select our sample in such
a way that the probability of an element chosen
being irreducible or nearly irreducible is about the
same as the proportion of such elements in the
whole group. The difficulty with this is that we
can conceive of no method of justifying such a pro-
cedure theoretically or of estimating any small de-
viation between the actual and the expected prob-
abilities. This is unfortunate, since it mars the
otherwise impeccable mathematical analysis of the
algorithm. However, we believe that we have ex-
tremely convincing statistical evidence to justify
the procedure that we eventually chose.

Here we have a new problem. Any statistical
argument will be based on experiments, and any
experiment will use a particular set of generators.
But we want our procedure to be equally valid for
all generators, and we cannot possibly test all pos-
sible sets of generators; choosing random genera-
tors is definitely not helpful, since procedures like
this are almost by definition likely to perform best
on random collections of elements. It is rather the
improbable generating sets that we need to worry
about, whatever this may mean. In fact, we are go-
ing to rely on the slightly dubious assumption that
the generators for GL(d, ¢) and SL(d, q) described
in [Taylor 1987] are as improbable as any. The two
generators of GL(d, q) are A and B, where A is a di-
agonal matrix with A;; = w (a field generator) and
A;; =1 for i > 1, and B is defined by B;; = —1,
Biyy=1,B;;.1=—-1for2<i<d, and B;; =0
otherwise. They are both extremely sparse and A,
at least, is highly improbable in the sense that the
proportion of diagonalisable elements in the group
is vanishingly small except for very small values
of d.

We used the following statistical test to evaluate
selection procedures. For a matrix A, let h(A) be
the highest degree of an irreducible factor of the
minimal polynomial of A. Now, if G is any group
with SL(d, q) C G and k is any integer with k > 1d,
arguments similar to those in [Neumann and Prae-
ger 1992] show that, if d > 2 and A is a random

element of G, the probability that h(A) = k lies be-
tween 1/k and 1/(k + 1). In fact, unless ¢ is very
small, this probability lies much closer to 1/k. We
therefore used the proposed procedure to select a
large sample of elements, computed h(A) for each
of these elements, and compared the expected fre-
quencies with the observed frequencies, grouping
all elements with h(A) < 1d into a single class.
We could then carry out a x? test for significant
deviation.

We soon concluded that simply choosing words
in the original generators is inadequate. Even with
words of length 20, the value of x? was outside of
the 0.05 probability zones, whereas with length 50,
a sample of size 1000 still contained 61 elements
A with h(A) = 1, but the proportion of such ele-
ments in G is much smaller. When we started with
two random elements as generators rather than the
elements from [Taylor 1987], we still found that
choosing random words of length 5 in them was
completely inadequate, and words of length 10 was
suspect. The solution was therefore to start with a
much larger set of generators; this seemed to have
the desired effect of eliminating or at least greatly
reducing any biases resulting from the effects of
particular generators.

The procedure we have finally employed is the
following. If there are n generators to begin with,
we introduce max(10,n) new generators, each of
which is chosen as a random word of length about
30 in the existing generators. This is part of the
preprocessing phase. We then perform the follow-
ing process repeatedly. We choose two distinct gen-
erators x and y at random, and replace = by xy.
We do this n? times (where n is now the current
number of generators) as part of the preprocessing
phase. Thereafter, we use the new generator zy as
the required random element. It is quite plausible
(and may even be provable) that the resulting el-
ements will eventually cover the whole group with
equal probability, although of course successively
chosen elements will not be distributed uniformly
amongst pairs of group elements.

We carried out our significance test with this
procedure on a variety of examples with different
values of d and ¢, and we never obtained a value of
x? outside of the 0.005 probability zone. (In fact,
we suspect that we are doing rather more prepro-
cessing than is necessary for our purposes.) We
present one such set of results in Figure 1.
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FIGURE1. Expected frequency (line) and observed
frequency (dots) for each value of h(A) from 31 to
60, in a 5000-element sample in GL(60,5%). Ex-
pected and observed frequencies for h(A) < 30
were 1576 and 1609. The x? for this data is 30.14,
almost the same as the expected value of 30.

4. THE LOW-DIMENSIONAL CASES

The algorithm in [Neumann and Praeger 1992] is
only specified precisely for dimensions d > 4, and a
more general matrix group recognition procedure is
described for d < 4. Since we preferred to make our
program uniformly applicable in all dimensions, we
shall quickly describe the necessary modifications
necessary for the low-dimensional cases.

For d = 4, it follows from [Neumann and Praeger
1992, Theorem 2] that the only exceptional groups
G containing primitive irreducible and nearly irre-
ducible elements are those with G/Z = A7, where
Z denotes the subgroup of scalar matrices in G.
Furthermore, this can only occur when ¢ = 2 or
qg > 23. In the first case, we can simply calcu-
late the order of GG, which is 2520 if and only if
G = A;. In the second case, we consider the ac-
tion of GG on the set €2 of one-dimensional subspaces
of V, and compute the length [ of the orbit of (v)
under G, where (v) is fixed by a primitive nearly
irreducible element of G. Then G/Z = A; if and
only if [ < 120.

For d = 3, to maintain the validity of the proba-
bilistic analysis [Neumann and Praeger 1992, Lem-
mas 2.5 and 2.6], we drop our requirement that

the nearly irreducible element that we are seek-
ing should be primitive. By considering the list
in [Neumann and Praeger 1992, Proposition 8.2],
we find that the exceptional groups are the semi-
linear groups I'L(1,¢%) and groups with G/Z =
PSL(2,7). These are all among the list of excep-
tions for general d, so we already have procedures
to recognise them.

For d = 2, we deal with the very small fields
(¢ < 5) simply by calculating the order of G. For
g > 7, it is easy to show that, if SL(2,q) C G, at
least |G|/4 of the elements g of G have the prop-
erty that g is ample and ¢? is irreducible. We now
seek an element with this property, and consider
enough random elements to guarantee that fail-
ure occurs with probability at most . If we find
such an element, the exceptional possibilities are
G 2 T'L(1,¢%) and G/Z = A4, Sy or As. The last
three can be tested for by calculating the length [
of the orbit of a subspace (v) under G, as above.
If [ < 60, we have one of the exceptions.

Finally, if d = 1, we return the answer “yes”.
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