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Using the principle of symmetric criticality [Palais 1979], we
construct torus knots and links that extremize the Mobius-
invariant energy introduced by O’Hara [1991] and Freedman,
He and Wang [1993]. The critical energies are explicitly com-
putable using the calculus of residues, a result obtained in
collaboration with Gil Stengle.

Experiments with a discretized version of the Mobius energy—
applicable to the study of arbitrary knots and links—are also
described, and confirm the results of the analytic calculations.

1. INTRODUCTION

Recently Freedman, He and Wang [Freedman et
al.], following work of O’Hara [1991], introduced
an energy F(T') for a simple closed curve I' C R3.
The functional E is continuous on each isotopy
class of curves, and tends to infinity as I' nears
self-intersection. Moreover, E is “proper” on the
set of all isotopy classes, in the sense that there are
only finitely many knot types below a given energy
level.

A useful geometric property of E is Mobius in-
variance: if y is a Mobius transformation of R®*Uoco
and u(T') C R3, then E(u(T)) = E(T). This can
be used to prove [Freedman et al.] that each prime
knot class has an energy-minimizing representative
(of differentiability class C1': see definition in the
beginning of Section 2), and that the round circle
is the unique energy minimizer among all curves,
with E' = 4. It is also a nontrivial result of [Freed-
man et al.] that, at least for C!'! curves, the func-
tional F is sufficiently smooth to have a “gradient”
dE (see Section 3). Thus it becomes an interesting
problem to find E-critical curves, that is, solutions
to dE = 0.
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In this article we construct the first explicit ex-
amples of knotted curves that are critical for E.
Our basic observation is that the Mobius-invariant
energy F extends naturally to simple closed curves
' ¢ R™ (Section 2). In particular, if T' is a simple
closed curve in S ¢ R* and 0 : S - R®*U o
is stereographic projection, then E(o(I")) = E(T)
provided o(T') C R?. Then we use the principle of
symmetric criticality (Section 3) to show that for
each relatively prime pair of integers (p, ¢) there is
a (p,q)-torus knot I', , C S* critical for E. This
curve I, , is a principal orbit of an isometric action
of S' on S2. In the same way, we construct crit-
ical orbital links with more than one component
(Section 4).

The energies E(I',,) can be computed explic-
itly in terms of rational trigonometric integrals.
This makes them ideal benchmarks to check the
accuracy of computer experiments with various dis-
cretized energies. One such discrete model is men-
tioned in Section 5. We have implemented sev-
eral programs using this model, run experiments,
and tabulated some of the results, but clearly more
work needs to be done. In this regard, we mention
that several Japanese mathematicians and, inde-
pendently, Bryson [Bryson et al. 1993] have also
conducted computer experiments to seek nontriv-
ial extrema. In particular, Bryson reports find-
ing a trefoil—that is, a (2, 3)-torus knot—with en-
ergy approximately equal to 74, which is close to
the critical value of 74.4120 (see Table 1 in Sec-
tion 5).

It is well-known (see [Schubert 1953, p. 250],
for example) that torus knots are prime, and it is
tempting to conjecture that the stereographic im-
ages o([', ;) are the energy minimizers guaranteed
to exist by [Freedman et al.]. However, we expect
this to be false when both p and ¢ are large, for
the following reason: We can view I',, as a p- or
g-strand braid lying on the surface of a torus, and
if both p and g are at least three, energy can be
saved when “extra strands” of I', , depart from the
surface of the torus and push into the interiors of
the complementary solid tori.

The right conjecture, which is supported by our
most recent experiments (Section 6), appears to
be this: I', , is a stable local minimum for £ when
p = 2 or ¢ = 2, but is not a minimizer otherwise.
The general E-stability question will be explored
elsewhere [Kusner and Sullivan].

2. MOBIUS INVARIANCE

Suppose ' € R™ is a simple closed curve of class
C11, that is, one that admits a parametrization
[': S' — R™ whose first derivative I/ is Lipschitz.
(Weaker differentiability assumptions are possible
[Freedman et al., §1], but we find C*! best suited
to our purposes.) Let D(z,y) denote the distance
between I'(z) and I'(y) along I, that is,

D(z,y) = min(/zy IT'(2)| dz, /y I'(2)] dz).

Definition and Proposition. Given I' as above, the
Mdbius energy

B(r) = / / 1<|r(m> - TP Dzéay))

x [L'(2)] T (y)| dw dy

is finite and independent of the parametrization of
I'. Moreover, if u is a Mébius transformation of
R™ U oo, then E(u(T")) = E(T') provided p(I') C
R™.

Proof. The arguments, with only formal modifica-

tions to move from 3 to m dimensions, are essen-

tially those of [Freedman et al., §§1 and 2]. In

particular, concerning the Mobius invariance, the

first term in the integrand is pointwise invariant,

whereas the second term in the integral is “intrin-
77

sic”, in the sense that, for any € > 0, the asymp-
totic expansion

T"()| [T (y)] 4m

— = drxdy=——-4+0

J] Foien” =T 4400
lz—y|>e

is invariant under all C*! diffeomorphisms of R™,

not only Mobius transformations. O



Note that the 47 /e term here precisely cancels a
corresponding singular term from the first inte-
gral. This is the “regularization” of E introduced
in [O’Hara 1991].

Stereographic projection extends to a Mobius
transformation of R™*! U oo, so we deduce:

Corollary. If T C S™ C R™" is a C"' simple
closed curve and o : S™ — R™ U oo is stereo-
graphic projection, then E(o(T')) = E(T") provided
o(l') Cc R™.

3. TORUS KNOTS AND SYMMETRIC CRITICALITY

For each pair (p, q) of integers, there is an isometric
action «, , of S* on the unit sphere $* C R* = C?,
defined by

ipl
@) (3,) = (G )
This action is effective when p and g are relatively
prime, an assumption we make from now on.

The case (p,q) = (1,1) is the familiar Hopf ac-
tion, whose orbits are great circles in S3. In gen-
eral, the a, g-orbits of the points () or () are
p- or g-fold coverings of the z- or w-axis circles S}
or S, respectively, while the remaining «, ,-orbits
are embeddings S' — S3. These principal orbits
lie on tori

T, = {(z,w) 12

T 1

= i = )
for r > 0, where they have homology (p, q)—that
is, they are (p,¢)-torus knots. Each torus is foli-
ated by a circle’s worth of congruent orbits; we can
parametrize this family of orbits by associating to
et € S! the orbit that goes through the point

. T
ewnt
V1+r?
1 : (3.1)
eint

itr

where m and n are fixed integers such that

det(m ”):il.
P g
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We can think of (r,t) as polar coordinates for the
orbit space 8, , of the action, which is an orbifold
homeomorphic to S2.

We denote by I', ,(r) an orbit of «,, lying in
the torus T,. For definiteness, we take the orbit
corresponding to ¢ = 0, so that ', ;(r) is the knot

eipO r
" V14172
e’ — 1 (3.2)
eiq@

it

The Mobius energy of I', ,(r), which we denote
by E(r), is a smooth function of r (see Figure 1).
It turns out that we can compute E(r) explicitly
using residue calculus (see page 4); however, the
results in this section do not depend on that com-
putation.

Lemma. The knot I, ,(r) is critical for the Mébius
energy E if and only if

0

8TE(1") =0.
Proof. The “only if” direction is clear. The “if”
direction is a consequence of the principle of sym-
metric criticality, which states roughly that, for a
functional that is invariant under some group G of
symmetries, the criticality of a G-invariant func-
tion need only be checked as if the functional were
restricted to that part of its domain consisting of
all G-invariant functions. See [Palais 1979], for ex-
ample, for a general discussion.

More precisely, consider a C'! map V : S —
R*, thought of as a vector field along the knot
I' =T,,(r), and a variation I', = I" + €V of I
According to [Freedman et al., Lemma 6.1], there
is a unique linear functional dE such that

d
dE(V) - d_gE(FSNSZO’
for any V as above. (More formally, the Banach
space of C1! vector fields along T' is the tangent
space to the Banach manifold of C*! curves, and
dE is the gradient one-form of E at I'. Several
explicit formulas for dE are given in [Freedman et
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Computing the Mobius Energy of Torus Knots by Residue Calculus

Rob Kusner and Gil Stengle

To compute the Mobius energy E(r) of the orbital torus knot I'y, ,(r) of (3.2), we first rescale so the knot has
the parametrization (r e’?*, e?4%), and then use the definition of E:

27 Y+ 2,2 2 1
E(r):/dy/ dav(2 . 1."p2+q. s — 2)
o Jy-m  \rPerT — et et —etv2 (2 —y)

™ 7‘2]92 +q2 1
=27 ds - - - =,
— 7‘2‘6”’871‘24-‘6“1571‘2 52

where we have made the substitution s = z — y. In each of the cases (p,q) = (1,0), (0,1) or (1,1), the orbit
[, ¢(r) is a round circle, and we have, as already observed in [Freedman et al.],

@ 1 1 g 1 1 2
E(SYH) =2 ds| ——— — =) =2 d - — =21 =4
(59 7r/77r S<|e”—12 52> 71-/0 U(sinza 02> [ ’

with o = %s. Subtracting the first of these equalities from the second equality above for E(r), we get

ds r2p? + ¢* - 1
T2|eips_1‘2+‘eiqs_1‘2 ‘eis_1|2 '

Using the identity |e'® — 1|2 = —e ®(e!® — 1)2, valid for z real, we see that the integrand can be extended to
a meromorphic differential on C depending only on e'*; the substitution z = e**, ds = —iz~! dz then expresses
E(r) as a contour integral along the unit circle, to which we can apply Cauchy’s residue formula:

—(r’p? + ¢*) -1
E(r)=4+2 d : : : : ==
(T) + 71-/77r S<T2e—1ps(ezps _ 1)2 4 e—zqs(ezqs _ 1)2 e—zs(ezs _ 1)2

02,2 | 2 :
:4+27r/dz _ i(r’p® + ¢*) B )
r2zl=P(2P —1)2 4+ 2179(29 - 1)2 (2 —1)2

™

E(r) - E(S') = 27r/

—T

™

jzi=1
2,2 | 2
B ) —(r*p* + ¢%)
=4+4r %1 Res r221-P(2P — 1)2 + 21-9(29 — 1)2°

The last equality depends on the fact that the order-two singularity at z = 1 of the first term in the integral is
precisely cancelled by the second term. One can also check that the set of poles is invariant under conjugation
and inversion in S!. Moreover, the residues occur in conjugate pairs and have positive real part, so that each
pole inside the unit disk contributes to F.

A similar calculation shows that the energy cross-term corresponding to two (p,q)-torus knots, with “polar
coordinates” (r,t) and (r,t) in the notation of Section 3, is

—(T‘Zp2 + q2) (*)
2,1=Pe=2mit (zp — 2mil)2 | Zl—qg=2mit! (54 _ g2mit )2’

472 Res
=

Thus, the total energy of the torus link Iy xq(r), for p and g relatively prime (see Section 4 for notation), is

k-1

Br)=k(4+42Y TR —(r*p* + ¢')
r)= T - O 2 I —pe—2mijm(,p — g2mijm)2 | yl—qe—2mijn(zq — e—2mijn)2 )’
J=0 |z|<1

where m and n are fixed integers such that det(t: Z) = +1.



al., §6], but its linearity is the only property we
need here.)

Suppose that I' is not critical, so there exists a
field V such that dE(V') # 0. Since I' is an orbit of
the S'-action @ = a4, we can average the push-
forward (e(e)).V over S' to obtain an a-invariant
vector field V for which dE(V) # 0 as well.

Now V induces a variation through a-orbits, so
we can view V as tangent to the orbit space § =
Spq at I'. But

OFE OE OE

Els = —dr + —
dE|s = - dr + o dt = - dr,

because knots with same ¢ have the same energy.
Thus dE|s(V) = dE(V) # 0 implies dE/dr # 0,
as required. O

We come next to our main result.

Theorem 1. For each relatively prime pair of inte-
gers p and q greater than 1, there is a (p,q)-torus
knot T',, C S* that is critical for the Mobius en-
ergy E. The knot ', , is a principal orbit of the
St-action a,, defined above.

Proof. As already mentioned, E(r) is a smooth
function of r. Because I', ,(r) converges to either
a p- or g-fold covering of a round circle as r ap-
proaches oo or 0, and because p,q > 2, we have

lim E(r) = lim E(r) = +oo.
im E(r) = lim E(r) = +o0

Thus there is a finite value r,, > 0 minimizing
E(r). By the previous lemma, the principal orbit
Iy =T,,(rp,) is critical for E. O

In fact, in all the examples we examined, there
appears to be exactly one minimum (see Figure 1).

4. TORUS LINKS

In [Freedman et al.] the Mobius energy of a k-
component link (I'y,...,I';) is defined as a natural
extension of the Md6bius energy of a knot:

E(Ty,...,Tw)= > E(.,Ty),

1<i,j<k
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FIGURE1. Graph of E(r) versus r, for (3, 4)-torus

knots, from the formula on page 4. Other values
of p and ¢ yield a very similar shape.

where E(T;,T;) = E(T;) is as before, and the cross-
terms (i # j) are

iz I"
o //| I y>|2dxdy_
[T(x) — T5()

S1x St

If we consider links composed of orbits of the S*-
action ¢, ,, the principle of symmetric criticality
applies: a k-component orbital link is critical for
E among all links if and only if it corresponds to an
E-critical configuration of k distinct regular points
in the orbit space § = §,,, that is, to a critical
point of E restricted to 8* \ D, where D is the big
diagonal of 8* union the singular orbits. But E is
a positive proper function on 8* \ D, so it has a
minimum.

In fact, it is easy to find some critical links ex-
plicitly. If £ > 1, denote by I'y, x,(r) the link con-
sisting of k copies of the knot T, ,(r), arranged
symmetrically around the torus 7;.. In other words,
L'p kq(r) is the union of the a, ,-orbits with param-
eters (r,t), with ¢t = 0,27 /k,...,2n(k—1)/k. (See
the beginning of Section 3, and especially (3.1),
for the (r,t) parametrization of the orbit space.)
We call Ty, xq(7) a (kp, kq)-torus link. Applying
the principle of symmetric criticality with respect
to the obvious action of S' x C}, where C, is the
cyclic group of order k, we conclude:
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Theorem 2. For each relatively prime pair of inte-
gers p,q > 1 and each k > 1, there is a (kp,kq)-
torus link I'y, ., which minimizes E among k-com-
ponent links invariant under S* x Cy, and which is
therefore critical for E. In particular, there are in-
finitely many E-critical links with any number of
components.

A (k,k)-torus link is a particular case of a Hopf
link, that is, a link whose component curves are
orbits of the Hopf action «;;. A Hopf link can
be regarded as a collection of points in the orbit
space 811 = S?; the case of I'yx(r) corresponds
to k equidistant points along a parallel of latitude
(circle of constant 7). All k-component Hopf links
are isotopic.

A direct calculation, or an application of () on
page 4 (with r = 1 and o = ¢t — t'), shows that
the energy cross-term arising from an ordered pair
of components of a Hopf link equals 272 csc(3a),
where « is the angular distance between the cor-
responding points in S?. In particular, the total
energy of a k-component Hopf link is, up to a con-
stant, simply the “Coulomb energy” for k point

charges in R? constrained to lie on S?. (This ob-
servation was made jointly with John Sullivan.)

Since the points of S? corresponding to L'y x(r)
are furthest apart when they are on the equator,
that is, when » = 1, Theorem 2 has the following
consequence:

Corollary. For any k, the Hopf link T'y (1) is E-
critical.

In fact, I'25(1), with energy 8 + 47%, is a min-
imizer among all nontrivial two-component links
at least one component of which is a round cir-
cle; see [Freedman et al., §7]. One can also show
that T's (1), with energy 12 + 8v/3 72, is energy-
minimizing among Hopf links with three compo-
nents. In contrast, I'y 4(1), with energy

16 + 8(1 4 2v/2)7? ~ 318.2805,

is not minimizing among Hopf links with four com-
ponents; the minimizing four-component Hopf link
corresponds to a tetrahedral, rather than an equa-
torial, configuration of points on S?, and its energy
is 16 + 12672 ~ 306.1059 (see Figure 2). This

FIGURE 2.

Two Hopf links critical for the energy functional E: on the left, the torus link I'y 4(1), whose

components correspond (in the quotient space S? of the Hopf fibration) to four points equally spaced along a
great circle; on the right, a link of less energy, whose components correspond to the vertices of a tetrahedron.

See the corollary above and the subsequent paragraph.



phenomenon illustrates the conjectured behavior,
discussed in Section 1, of an E-minimizing (p, q)-
torus knot for p and ¢ large. Further results on
Hopf links are given in [Kusner and Sullivan].

5. DISCRETIZATION AND COMPUTER EXPERIMENTS

Given a C"! knot ' : S = R/27Z — R™, and
a sufficiently large integer n, the polygon ~ with
vertices y(h) = I'(2rh/n), for 1 < h < n, is a knot
isotopic to I', which we call a polygonal approxima-
tion to I'. One possible way to approximate E(T")
discretely would be simply to use E(vy), but this en-
ergy unfortunately is infinite! It can be regularized,
by deleting the contributions of adjacent edges, to
an energy E*(v) that has the advantage of an infi-
nite barrier to changing isotopy type, but the dis-
advantage of being difficult to compute. Another
discrete energy e(+y), defined below, is much easier
to compute. It can be shown that both E*(y) and
e(y) converge to E(I') as 7y approaches I for n very
large.

Definition. The discrete energy of a polygon with
vertices v : Z/nZ — R™ is

1 1
e(7) = ZZ<|7@) —1E d2(i,j))

1<i#£j<n

X ' (@ 1 ()1,

where

Y (h)| = 3(ly(h = 1) = y(B)| + |7 (h) = y(h + 1)])

and d(7,j) is the distance between v(z) and (j)
along the polygon, that is, the lesser of

2. [v(h) =~(h+ D[ and 37 |y(h) —y(h+1)].

i<h<j j<h<i

If v = ~,,4 is a polygonal approximation to the
orbit ', C S3, we can reduce the double sum
above (by setting h =i — j) to

/ 2 1 1
e =nlyMF 3 <Iv(l) —y(m)P d2(1vh)>'

1<h<n
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Using this formula we wrote a simple Fortran
search routine, torusknotenergy.f, to produce
approximate values for the Mobius energies of crit-
ical (p, g)-torus knots. The results are very close to
those obtained from the analytic formula on page 4,
which was implemented in a Mathematica program
tke.m [Wolfram 1991]: see Table 1.

(p,q) n 0 Tpq energy
(1,1) 360 1.0 — 3.9608
720 .5 — 3.9804
1440 .25 — 3.9902
2880 12 — 3.9951
5760 .06 — 3.9975
11520 .03 — 3.9987
extrapolation — 3.9999
analytic value — 4.00000
(2,3) 1440 .68 1.85 74.353
2880 34 1.85 74.383
5760 A7 1.857 74.397
11520 .09  1.857 74.405
extrapolation  1.857 74.412
analytic values  1.857275 74.41204
(2,8) 1440 17 5.69 215.518
2880 38 5.69 215.646
5760 19 0 5.692 215.710
11520 10 5.693 215.742
extrapolation  5.694 215.774
analytic values  5.694942  215.77463
(3,4) 1440 85 1.48 204.094
2880 42 1.48 204.156
5760 21 1.486 204.186
11520 A1 1.486 204.201
extrapolation  1.486 204.217
analytic values  1.486906  204.21670

TABLE1. Critical radii and energies obtained from
the discrete programs torusknotenergy.f and
toruslinkenergy.f. Here n is the number of seg-
ments in the discretization, and 6 is the maxi-
mum angle (in degrees) between segments. The
last two lines in each block show how extrapola-
tion of the program output as n — oo gives results
very close to those predicted by the analytic for-
mula on page 4, which were computed with the
Mathematica programs tke.m and tle.m.
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These two programs are publicly available, to-
gether with their link counterparts, called tle.m
and toruslinkenergy.f. For details, see “Soft-
ware Availability” at the end of the article.

As a further check, we compared the computed
values of E and r,, under an interchange of p and
q. As expected, E remains the same, while 7, , is
replaced by its reciprocal, to within the chosen ac-
curacy. (In the case of tke.m, the default accuracy
of the minimum search is six significant digits for r,
but any desired accuracy can be specified, subject
only to memory constraints.)

6. FURTHER EXPERIMENTS

Very recently, the second author and John Sullivan
computed the gradient de of the discretized energy
e(y), and Ken Brakke was kind enough to incor-
porate it into Version 1.89 of his Surface Evolver
program [Brakke 1992]. Because e and de are each
quadratic in n, convergence of the negative gradi-
ent flow to a critical knot or link is considerably
slower than in the program torusknotenergy.f,
which searches only among orbits; the practical
size of n in the Evolver is limited accordingly. Nev-
ertheless, we were able to test the stability of I';,
for ¢ small. Moreover, use of the Evolver allows
us to search among all knots, not only those that
are invariant under the S* action. We thus found
a non-orbital (3,4)-torus knot with energy approx-
imately 201, less than the energy of I'; 4, which is
204.2167; see also the end of Section 1.

We hope to report further on this in future joint
work with Brakke, Sullivan, and a group of stu-
dents at the Five Colleges Geometry Institute.
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