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After a brief review of partial results regarding Case | of Fer-
mat’s Last Theorem, we discuss the relationship between the
number of points on Fermat’s curve modulo a prime and the
resultant R,, of the polynomials X™ — 1 and (=1 — X)" —1,
called Wendt's determinant. The investigation of a conjecture
about essential prime factors of R,, (Conjecture 1.3) leads to a
proof that Case | of Fermat’s Last Theorem holds for any prime
exponent p > 2 such that np + 1 is prime for some integer
n < 500 not divisible by 3.

EDITOR’S NOTE: In addition to providing insight into Wendt's
determinant, an object of interest in its own right, this paper
belongs to a continuing line of investigations that may prove
fruitful in spite of the recent announcement by Wiles of his
proof of Fermat’s Last Theorem. It is not unreasonable to hope
for a more elementary proof than Wiles’.

1. INTRODUCTION

Case I of Fermat’s Last Theorem for an odd prime
p is the statement that =P + y? + 2» = 0 has no
integer solutions with p { zyz. Throughout this
paper, we will refer to it simply as “Case I”. See
[Ribenboim 1979; 1987] for references and a de-
tailed history.

In 1823 Sophie Germain showed that Case I is
true for any odd prime p such that 2p+ 1 is prime.
In general, if n is an integer not divisible by 3,
Case [ is true for all primes p > 2 such that np+1is
prime, with possibly a finite number of exceptions.
Thus Germain’s result was that the exceptional set
is empty for n = 2. Legendre extended this to n =
4,8,10,14,16 (only even values of n are interesting
because of the condition that np + 1 be a prime).

© A K Peters, Ltd.
1058-6458/96 $0.50 per page



114 Experimental Mathematics, Vol. 2 (1993), No. 2

Denote by FE,, the exceptional set for the integer
n, that is, let

5 {p :p > 2is prime, np+ 1 is prime,}
" and Case I fails for p.

An important result of Furtwéngler [1912] implies
that:

Theorem 1.1. If n is any integer and p € E,, either
p divides n or np+ 1 divides Wendt’s determinant
R,.

Wendt’s determinant [Wendt 1894] can be defined
as the resultant of the polynomials X™ — 1 and
(=1 — X)™ — 1. The finiteness of E, when 3 { n
follows from Theorem 1.1 and from the fact that
R, # 0 in this case. (When n divides 3 we have
R,, = 0, so no information on E, is gained.)

For any particular value of n, we can attempt to
show that E, = @ by using various criteria (dis-
cussed in more detail in Section 2) to eliminate the
possible candidates allowed by Theorem 1.1. As we
shall see, this strategy is particulary useful when
we work successively with increasing values of n,
for then we can use previously obtained informa-
tion to account for most prime factors of R,. In-
deed, suppose we have proved that E,, = @ for all
m < n with 31 m. Then, if p € FE,, is exceptional,
it follows that mp + 1 is composite for all m < n
with 3 { m (otherwise we would have p € E,,). It
also follows, by Theorem 1.1, that either

(@ p<n,or
(b) p > n and np + 1 divides R,,.

Possibility (b) leads to the following definition:

Definition 1.2. A prime divisor ¢ of R, is essential
if g = np+1 for some prime p > n such that mp+1
is composite for all m < n with 3 t m.

The essential prime factors of R,, seem to be quite
scarce. For n < 500, with 3 t n, there are only two
such primes. This suggests the following conjec-
ture:

Conjecture 1.3. The set of essential factors of R,
for all n not dividing 3, had natural density zero:

#{p:p <z, p essential factor of some R,} 0

B #{p:p < z,p prime}

One can show that this conjecture implies that
Case I holds for a set of prime exponents of natural
density one. We apply these ideas, as explained be-
low, to obtain the following extension of Germain’s
theorem:

Theorem 1.4. E,, is empty for all n < 500 such that
3tn.

This improves on the previous result in this direc-
tion [Fee and Granville 1991], where the bound is
n < 200. As we shall see in Section 2, our approach
differs from that of previous authors in that we do
not use any criteria (like that of Wieferich) based
upon Kummer—Mirimonoff congruences.

The rest of this paper has the following outline.
Section 2 gives more details on the work that we
build on. In Section 3 we study the set of points
on Fermat’s curve modulo ¢, establish a bijection
between (Z/pZ)*-equivalence classes of nontrivial
points and the set of algebraic factors of R,, that
are divisible by ¢, and describe explicitly some
nonessential factors of R,. In Section 4 we de-
scribe in some detail the computational procedure
used in proving Theorem 1.4, and particularly in
factorizing the R,, the most computationally in-
tensive step.

2. BACKGROUND

Of the classical attempts to prove that Case I holds
for every odd prime p, we consider three categories.
The first is based on the Kummer—Mirimonoff con-
gruences and their consequences, and include Wie-
ferich’s criterion [Wieferich 1909]:

Theorem 2.1. Case I holds for every p such that
2P 2 2 (mod p?).

Other examples are Mirimonoff’s criterion [Riben-
boim 1979], and Eichler’s and Briickner’s theorems
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[Jha 1993]. These theorems reduce the task of ver-
ifying Case I to the verification of certain congru-
ences modulo p, and have been used to establish
Case I for a large number of primes [Coppersmith
1990].

The second approach originated with Germain,
whose ideas Legendre used to prove the following:

Theorem 2.2. Let p and q be distinct odd primes
such that

(@ zyz = 0 (mod q) whenever z? + y? 4+ 2P = 0
(mod gq), and
(b) p is not congruent to a p-th power modulo q.

Then Case I holds for the exponent p.

Taking the special case ¢ = 1 (mod p) we have a
theorem of an entirely different nature from the
ones in the first category; here congruences are
modulo primes of the form np + 1. To establish
that E, = @ for a given n (see the Introduction
for the notation), it suffices to check conditions (a)
and (b) of Theorem 2.2 for prime p and ¢ with
q = np+ 1. One can show that, if ¢ = np + 1,
condition (a) holds if and only if ¢ { R,,.

The third category of criteria is represented by
the result of Furtwangler alluded to in the Intro-
duction, which says that if Case I fails with integers
x,y, z and exponent p, and if ¢ is a prime dividing
zyz, then ¢ = q (mod p?). A simple reasoning
shows that this result, together with the remark in
the preceding paragraph, implies Theorem 1.1.

Theorem 1.1 is very convenient because it de-
pends only on p and not on the hypothetical solu-
tion (z,y,z). Dénes [1951] used it, together with
his observation that R,, is the product of norms of
elements of Q((,), where (, is a primitive n-th root
of unity, to prove that F,, = @ for all n < 110 with
3 1t n. Recently Fee and Granville [1991] extended
this to all n < 200 with 3 { n, working according
to the following plan:

(a) Express R, as the product of norms of certain
elements of Q(¢,), and factorize these norms
completely.

(b) Establish Case I for all p such that np + 1 is
prime and divides R,,. (In this range it is known
that the other possibility for elements of F,—
namely, p dividing n and such that np 4+ 1 is
prime—cannot occur.)

These authors, like Dénes, used Wieferich’s crite-
rion (Theorem 2.1) to carry out step (b) of this
scheme. But the use of such criteria obscures the
power of the criteria implicit in the knowledge that
E, = @. It is true that, for each n, this knowl-
edge seems to yield less information than do cri-
teria based on Kummer—Mirimonoff congruences.
For example, Lehmer showed that the Wieferich
criterion fails for only two primes under 6 x 10°
[Ribenboim 1987]; whereas, for p = 197, we have
np + 1 composite for all n < 38 with 3 { n, so the
fact that E,, = for these values of n is of no benefit
in proving that Case I holds for p. However, as first
observed in [Adleman and Heath-Brown 1985], the
condition E, = & is very effective when applied
collectively for a sequence of values of n.

We have, therefore, taken a different approach,
avoiding the use of criteria based on Kummer—
Mirimonoff congruences, and working by induction
on n. Assuming that E,, = & for each m < n with
3 1 m, we must do two things in order to prove that
E, =:

(a) Verify that Case I is satisfied for odd primes
p < n with np+ 1 prime.

(b) Find the essential prime divisors ¢ of R,, (Def-
inition 1.2), and verify that Case I is satisfied
for the values of p such that ¢ = np + 1.

In practice, the primes in (a) are small and easily
accounted for. Indeed, for each odd prime p < 500,
it is easy to find an integer m < p with mp+1 prime
and 3 1 m. We have m < n, so by the induction
assumption F,, = @ and p is not excpetional.

As to the primes in (b), they usually form an
empty set, as we remarked in the Introduction. For
more details, see Section 4.

We conclude this section with some remarks on
the density of primes for which Case I holds. Note
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that, by Theorem 1.1, we have #E, < w(n) +
w(R,), where w(u) denotes the number of distinct
prime divisors of the integer u. Since log R,, < c¢n?
for some constant ¢ > 0, we get a bound for #E,,.
Adleman and Heath-Brown [1985] used this bound
to show that, for % <71 < 1, the sum

B q:q<z,q=1 (mod p),
ET_Z#{ qEZ(mod3)}’

taken over odd primes p € (27, z] for which Case I
fails, satisfies

3, < Z #E, < Z en? = O(z3 =),

n<zl™ n<lzgl-T

3n
They also applied sieve methods to estimate this
sum in a different way. Fouvry [1985] then showed
that there exists 7 > 2 such that X, > F(7) Li(z),
where F(7) > 0. In this way they proved that the
number of primes < x for which Case I is true is
at least of the order of z%/3.

As remarked before, the criteria E, = & are
fruitful when considered collectively and indepen-
dent of any other type of criteria. One motivation
to use only these criteria (rather than Wieferich
and the like) is to measure their power from the
point of view of strengthening Adleman, Heath-
Brown, and Fouvry’s theorems.

3. FERMAT’S CURVE MODULO g AND WENDT'’S
DETERMINANT

In this section, unless we say otherwise, p is a pos-
itive integer and ¢ = 1 (mod p) is a prime power
such that 31 (¢ — 1)/p.

Let € be the projective Fermat’s curve of ex-
ponent p in the finite field F; of g elements. We
call two points (z,y) and (2',y') on € equivalent if
there exist p-th roots of unity a and b in F, such
that ' = az and y' = by. A point (z,y) is trivial
if £ =0 or y = 0. There are two classes of trivial
points, each with p elements; all other classes con-
tain p? elements each. Thus the number of points
on € is kp? + 2p, where k is the number of equiva-
lence classes of nontrivial points.

Let (, be a primitive n-th root of unity, and let
N be the norm map from Q(¢,) to Q. Wendt’s
determinant R,, is the product of the elements 1 +
¢t + (i, for i,j € Z/nZ [Dénes 1951; Ribenboim
1989]. We call two pairs (4,7) and (i, j') in Z/nZ x
Z/nZ equivalent if there is a unit t € Z/nZ such
that i’ = ti and j' = tj in Z/nZ. Let T, be the set
of these equivalence classes. It is clear that R, is
the product of norms N(1 + (¢ + ¢7), where (3, 7)
runs over a set of representatives of distinct classes
from T,.

Let @ be a prime ideal of the field Q((,) lying
above ¢, and fix an isomorphism between Z[(,]/Q
and F,. Let w be the image of ¢, in F,. Then w is
a primitive n-th root of unity in Fy, so it has a p-th
root o € F,. One easily shows that ¢ divides M(1+
¢t + ¢2) if and only if the pair (o', @) lies on the
Fermat’s curve € in F,. Thus the correspondence

(e, o) = (i, 9)

defines an injective map € — T,,, whose image con-
sists of all those classes of (i, j) such that ¢ divides
N+ ¢, + ).

Now consider the maps

(4,9) = (4,1) and (4,5) — (4, 7 — 1)

of Z/nZ x Z/nZ onto itself. These maps factor
with respect to the equivalence relation defined
above, to yield bijections of T, that we call f and
g. We have f? = g = 1. We further quotient T},
by the action of the group

{1, f, 9, fg. 9%, f9*} (3.1)

generated by f and g, obtaining a set T,. Then
N(1 + ¢ + ¢J) only depends on the class of (z,7)
in T,,. Let k;; be the number of elements of T,, in
the class of (i, ) in T,,. Then R, is the product of
MN(1 + ¢ + ¢k, where (i,7) varies over a set of
representatives of distinct classes of T,,. A priori,
k;; can take the values 1, 2, 3 and 6, but it is easy to
see that k;; = 1 does not occur, and the condition
31 (¢ — 1)/p excludes the case k;; = 2. Hence the
possible values for k;; are 3 and 6. One can verify
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that k;; = 3 for some (¢, j) if and only if ¢ divides
2™ — 1. We have proved the following;:

Proposition 3.1. Let T, , be the subset of T,, con-
sisting of those classes of (i,j) such that q divides
N(1+ ¢ + ¢2). Then there is a bijection between
T,,q and the set of equivalence classes of nontrivial
points on Fermat’s curve €. Further,

N(p,q) — 2p = kp®,

where N (p, q) is the number of points on € and k =
#T,., 1s the number of distinct norms appearing
in R, that are divisible by q. Moreover, k = 0
(mod 3), and if k is odd then q divides 2™ — 1.

Remark 3.2. This shows that most of the norms di-
viding R, (namely, those not dividing 2™ — 1) di-
vide it to the sixth power. Thus we can reduce the
number of norms to be computed in the calculation
of R, by almost six times. We also conclude that
there exist integers a,,, b, such that R, = a2bg.

Now we describe some nonessential factors of the
resultant R,,.

Proposition 3.3. Let n € Z™", let q be an odd prime
coprime to n, and let f be the order of q in the
group of units of Z/nZ. Then

(i) Let m = (¢ —1)/n. If gcd(q — 1,m) = 1 then
g/ divides R,,.

(i) Let ¢ = 1 (mod n) and q¢ < n*®. Then ¢* di-
vides R,,, where k is given by Proposition 3.1.

(iti) Let ¢ — 1 divide n. Then ¢/~ divides R,,.

Proof. (i) Since gcd(q —1,m) = 1, the map z — z™
is a bijection of F,. Hence the equation z™ +y™ +
1 = 0 has a solution in F, with zy # 0 (mod q).
Then z™ is a common root of the polynomials
X™ —1and (-1 — X)™ — 1 in F;. This shows
that the resultant is zero, that is ¢ divides R,,.

If @ is a prime ideal in Q((,) lying above ¢, we
have M(Q) = ¢’. Using the decomposition of R,
as a product of algebraic integers 1 + ¢} + (I, we
see that there exist i, j € Z/nZ such that @ divides
1+ +¢J. Hence N(Q) divides ¢f = MN(1+¢ +¢),
and ¢/ divides R,.

(ii) Let p = (¢—1)/n. It follows from [Lang 1990,
§ 6], the number of finite points on the projective
Fermat’s curve in F is

N(p,q) —2p=q+1-3p+7(p,q),

where 7(p, ¢) is an error term not exceeding

(p—1)(p—2)g""

Thus, for ¢ > p?* this curve always has finite points.
Exactly as in the proof of Proposition 3.1, we con-
clude that ¢ divides k distinct norms appearing in
R,.

(iii) For p = 1, the projective Fermat equation
with exponent p has ¢—2 finite points in F;,. Hence
it has at least ¢ — 2 solutions in the finite field F,.,
where » = ¢f. As in Proposition 3.1, ¢ divides at
least g—2 distinct norms appearing in R,,. However
then, as shown in the proof of part (i), ¢/ divides
all these norms dividing R,,. U

Remark 3.4. The sum of the nonessential factors of
R,, described by (iii), for n < z, is at least of the
order of z%, even without counting the orders f.

4. COMPUTATIONS

This section elaborates on the implementation of
the inductive procedure outlined in Section 2 to
prove Theorem 1.4.

The first step of the procedure, for each n of
interest (n < 500 even with 3 { n), is the factor-
ization of R,. As observed in [Fee and Granville
1991], this is the step most likely to constitute an
obstacle in terms of computational power. The ob-
vious idea is to compute the norms (14} +¢7) for
all i,j € Z/nZ, and factorize these integers. How-
ever, as already observed in the preceding section,
N(1+ ¢ + ¢J) does not change when we multiply
both ¢ and j by the same unit in Z/nZ, or when we
replace (%, 7) by its image under one of the trans-
formations of the group (3.1). In other words, we
need only take one representative (i, 7) from each
element of T,,.

Another shortcut comes from the fact that R,,
divides R, whenever m divides n, so ¢ is a prime
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divisor of R,, if and only if it is a prime divisor of
MN(1 + ¢ + ¢4) for some d | n with ged(i, j,d) = 1.
Thus we economize by computing M(1 + ¢4 + ¢%)
only when gecd(i,j,n) = 1 (but note that then we
are forced to make the computations also for odd
n < 250 with 3 f n). The property ged(i,j,n) =1
depends only on the class of (i,5) in 7,, so this
simplification does not interfere with the one men-
tioned in the previous paragraph.

For each of the necessary pairs (4,7), the norm
MN(1+ ¢ + ¢7) is easy to compute as the resultant
of the n-th cyclotomic polynomial ®,,(X) with the
polynomial 1+ X*+ X7. This part of the computa-
tion was performed in ALGEB [Ford 1978, and re-
quired 5.21 CPU hours. (Computations were per-
formed on a VAX 6510 system and a VAXstation
4000 at Concordia University.)

We completed the factorization of the R,, in sev-
eral steps. Two cases must be distinguished: that
of the factors M(1+ (% +¢7) with 4,5 # 0, and that
of the factors M(2 + ¢,).

There were 12859 distinct nontrivial norms of
the first type. The Maple ifactor procedure [Char
et al. 1991], with the easy option, reduced this
to a set of 2323 composite values in 1.22 CPU
hours. An ALGEB implementation of the Pollard
rho method reduced this to 64 composite values in
48.50 CPU hours. An ALGEB implementation of
the Lenstra elliptic curve method completely fac-
torized the remaining values in 9.10 CPU hours.

The factorizations of the (249 distinct nontrivial)
norms of the form M(2+ ¢, ) are considerably more
difficult; fortunately they can be derived from the
factorizations of (—2)™ + 1, which for n < 500 are
given in [Brillhart et al. 1988].

Next we eliminated the factors of R,, that were
not of the form ¢ = np + 1 with p prime. The
sizes of the remaining sets are shown in Table 1.
Then, for each n, we constructed the set of essential
factors of R,, by discarding the factors ¢ = np + 1
such that mp + 1 is prime for some m < n with
3 1 m. The resulting sets were empty, except for

n o W, no Wy n o W, no Wy
2 0 128 3 254 10 380 14
4 0 130 8 256 11 382 13
8 0 134 5 260 15 386 6

10 1 136 8 262 8 388 7
14 1 140 7 266 8 392 16
16 0 142 9 268 4 394 18
20 1 146 8 272 10 398 11
22 2 148 4 274 5 400 22
26 2 152 6 278 8 404 19
28 1 154 9 280 16 406 16
32 2 158 5 284 9 410 11
34 2 160 7 286 9 412 15
38 3 164 7 290 15 416 14

40 1 166 4 292 10 418 14

44 2 170 10 296 5 422 17

46 2 172 3 298 7 424 9

50 3 176 4 302 9 428 15
52 3 178 5 304 12 430 17
56 5 182 10 308 13 434 21
58 1 184 5 310 12 436 11
62 3 188 7 314 12 440 18
64 5 190 6 316 9 442 13
68 1 194 8 320 15 446 13
70 6 196 5 322 11 448 15
74 4 200 6 326 15 452 12
76 2 202 6 328 13 454 10
80 4 206 9 332 11 458 14
82 3 208 4 334 7 460 25
86 5 212 13 338 14 464 11
88 4 214 7 340 13 466 15
92 5 218 6 344 13 470 15
94 7 220 9 346 11 472 14
98 5 224 10 350 18 476 24

100 4 226 11 352 10 478 14

104 5 230 10 356 15 482 14

106 3 232 8 358 6 484 23

110 8 236 7 362 19 488 17

112 4 238 15 364 12 490 24

116 6 242 12 368 9 494 22

118 7 244 8 370 16 496 13

122 5 248 8 374 18 500 13

124 6 250 8 376 10

TABLE 1.

Number w, of prime factors of R, of
the form pn + 1, for p an odd prime.
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two, which had one element each, given by np + 1
with

n =292, p=>5907553471801 and
n =388, p = 681159143632486238147191.

To prove that these values of p are not exceptional,
it is enough by Theorem 1.1 to find n’ with n'p+1
prime, ptn' and n'p+ 14 R,,. We can take n' =
316 and n' = 430, respectively. This takes care
of (b) in the procedure outlined in Section 2, near
the bottom of page 115. We saw there how to take
care of (a).

The elimination of nonessential factors of R,, was
programmed in ALGEB. The proof that they are
not exceptional was done with simple Maple pro-
grams (the computation of R,, mod g being very
quick). These steps took only a few minutes of
CPU time.
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