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We study the density of the set of real quadratic fields for which
the norm of the fundamental unit equals —1 inside the set of
real quadratic fields containing elements of norm —1. A con-
jectural density is derived from a single heuristic assumption,
and experimental data supporting this assumption are given.
We finally discuss how close one can get to proving such con-
jectural densities.

1. INTRODUCTION

The main problem in this paper, although formu-
lated and treated in terms of real quadratic num-
ber fields, is a very old problem that does not need
anything in its formulation beyond ordinary inte-
gers. More precisely, we will be concerned with the
solvability of the negative Pell equation

2> —dy’ = -1 with z,y € Z (1.1)

for squarefree numbers d € Z-;. The solvability of
this equation was studied by Euler, who mistak-
enly attached the name of the English mathemati-
cian John Pell (1611-1685) to the related equation
2% —dy? = 1. The problem of finding nontrivial so-
lutions to the Pell equation itself had already been
studied by many mathematicians long before Eu-
ler’s time, and Fermat, who posed it as a challenge
to the English mathematicians in 1657, knew that
it was solvable for all nonsquare d > 1. An excel-
lent account of the long history of the equation can
be found in [Weil 1984].

In contrast to the relatively straightforward an-
swer in the case of the Pell equation itself, the solv-
ability of the negative Pell equation we are dealing
with here turns out to be a much more complicated
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phenomenon. From the various density conjectures
on real quadratic fields that will be discussed in
this paper, it is easy to derive the following asymp-
totic result for the solvability of the negative Pell
equation.

Conjecture 1.2. The number of squarefree integers d
up to X for which the negative Pell equation is solv-
able is asymptotically equal to cX/+/log X, where
¢~ .2697 is the constant defined by

c:%(l— H (1—2*]')) I a-»>v

> p prime
j odd p=1mod4

Equation (1.1) is solvable if and only if the real
quadratic order Z[v/d] contains units of norm —1,
so deciding its solvability is equivalent to the deter-
mination of the norm Ne; of a fundamental unit
eq € Z[/d]. Since d is assumed to be squarefree,
Z[\/d] is of index f < 2 in the maximal order Op
of discriminant D = f2d in Q(+/d), and its unit
group Z[Vd]* = (—1) x (e4) has index 1 or 3 in
05 = (1) x (ep). It follows that the negative Pell
equation is solvable for d if and only if the funda-
mental unit e of Q(v/d) has norm —1. Thus, the
problem we are dealing with is essentially a prob-
lem on units in real quadratic fields.

The determination of Nep is easily accomplished
if D has a prime factor p that is congruent to 3
modulo 4, since in that case (1.1) is not solvable
modulo p and one has N(ep) = 1. If D has no
such prime factors, (1.1) is solvable in every com-
pletion of Q(v/d), and by the Hasse principle this
implies that it is solvable in Q, that is, Q(v/d)
contains elements of norm —1. In order to find
out whether there exists an integral solution, one
has to determine Nep, and this can be done by
looking at the parity of the length of the period
of the continued fraction expansion of v/d. As is
well known, Nep = —1 if and only if this period
length is odd [Stark 1970, Theorem 7.26]. This is
a beautiful criterion in the sense that it provides
an answer for any given discriminant, but it has
the disadvantage that it does not tell us whether

we should view the solvability of the negative Pell
equation as an exception or as a comimon occur-
rence. This is also the case for the algorithms in
[Lagarias 1980; Morton 1979; Rédei 1953b], which
start from reformulations of (1.1) in the spirit of
our Lemma 2.1 and determine Nep by computing
2-class groups or 2-Hilbert class fields.

In order to make the preceding statement more
precise, we let D be the set of discriminants of real
quadratic fields that are not divisible by any prime
congruent to 3 mod 4. It follows from [Rieger 1965,
Satz 3| that the number of such discriminants up
to X is asymptotically equal to ¢; X/+/log X, where
¢; has the value

9 —2\1/2

p prime

p=1mod4
When counting radicands d up to X, one can use
the same formula with %cl instead of ¢;.

Now let D~ C D be the set of discriminants D of
real quadratic fields for which the fundamental unit
€p has norm —1. Then our problem comes down to
finding the density of D~ in D. In other words, if
D x is the subset of D consisting of discriminants
no greater than X, and D_y is defined likewise,
we should ideally do the following:

Problem 1.3. Decide whether the limit

-
P = lim #D<x

exists and, if so, determine it.

As it stands, this is a basic but very hard problem,
and to my knowledge it is not even known whether
the liminf and the limsup of this expression are
in the open interval (0,1). Numerical experiments
show this to be very plausible, and Nagell [1932,
p. 5] seems to have been the first to conjecture that
P exists and is in (0,1). For small values of X the
values of the quotient in Problem 1.3 are shown in
Table 1.

It can be shown that certain infinite sets of dis-
criminants are contained in D~ orin D" = D\ D,
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#D x
X D p=""x
#D<x #D_x
10 1138 860
10° 10210 832
106 93422 816
107 866200 799

TABLE 1. Numerical values of the ratio in Problem 1.3.

but the density in D of such sets is always zero. A
classical example of an infinite set in D~ is the set
of prime discriminants p € D; it follows that

X
#D x> —— for X — oo.

log X
Dirichlet [1834] showed that all odd discriminants
D = pq € D that are products of two primes p and
q whose Legendre symbol (g) equals —1 are also
in D~. Moreover, he showed that if (g) equals 1
and the product of the biquadratic residue symbols
(3)4(3)4 equals —1, then D = pq is an element of

q P
D+. This implies an asymptotic lower bound
Xloglog X
D —_—
#Dex > logX '’

a result that was completely overlooked in [Nagell
1932].

Even though there is an extensive literature on
the equation (1.1) in general and on the density
problem 1.3 in particular, it seems that none of
the authors dealing with it [Cremona and Odoni
1989; Gerth 1984; Hurrelbrink 1990; Morton 1982;
Nagell 1932; R. V. Perlis 1990; Rédei 1936; Scholz
1935] proposes a conjectural value for the asymp-
totic ratio P. One of the things we will do in this
paper is supply both theoretical and experimental
evidence for the following conjecture.

Conjecture 1.4. The limit value P exists and equals

1— JJ (1—27) = .5805775582. ..
j=1
j odd
The numerical data given above do not seem to
strongly support the conjectured value, but this

is misleading, as we will see in Section 3. More
carefully assembled experimental data do support
our conjecture, and we will explain why values of
X for which P is close to .58 are beyond the reach
of any computer.

In the next section, it will be shown that our
conjectured value of P is an irrational number. As
it has no obvious reason to be algebraic I expect
it to be transcendental, but I do not know how to
prove this.

The parity of the discriminant plays no role in
our heuristics, so the conjecture should hold for
even and odd discriminants separately. Using the
result of Rieger discussed above, it is then straight-
forward to derive Conjecture 1.2 from this conjec-
ture.

A resolution of Conjecture 1.4 seems to be well
beyond reach at the moment. All methods devel-
oped so far prove density results that apply only
to sets of discriminants having a fixed number of
prime factors. In fact, the heuristics in Section 3
will furnish a conjectural value P; for the proba-
bility that Nep = —1 when D € D is a discrim-
inant having ¢ distinct prime factors. Since the
expected number of prime factors of D tends to
infinity with D, it seems reasonable to expect P to
equal lim;_, ., P;. The numerical observations we
present below agree quite nicely with our heuris-
tics, especially in the precise formulation to be
given in Conjecture 3.4. In the final Section 4, we
will see how close we can get to proving the con-
jectural values for P; to be correct. The results,
which are mostly due to Rédei [1935b; 1936; 1949;
1953a; 1935b] can be viewed as vast generaliza-
tions of Dirichlet’s biquadratic criterion mentioned
above.

2. PRELIMINARIES

As it is more natural to work with discriminants
than with radicands of quadratic fields, we will fur-
ther look at the discriminant D only and say that
the negative Pell equation is solvable for the dis-
criminant D if the equation z? — Dy?> = —4 has
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integral solutions. This is the same as saying that
Nep = —1 or that the negative Pell equation (1.1)
is solvable for the corresponding radicand d.

For a real quadratic discriminant D, we let C' =
Cp be the narrow class group of K = Q(v/D), that
is, the group of all fractional O p-ideals modulo the
subgroup of principal ideals (z) = zOp generated
by some element z € K* of positive norm. The
group C maps surjectively to the ordinary class
group Cl of K, and the kernel is generated by the
class F,, of the principal ideal (v/D). It is clear
that F,, is an element of the 2-torsion subgroup
C[2] of C. More precisely, the order of F,, in C
is 2 if and only if all units in Op have positive
norm, or, equivalently, if and only if Nep = 1.

Using class field theory, we can identify C' with
the Galois group of the narrow Hilbert class field
H of K over K. By definition, H is the maximal
abelian extension of K in which all finite primes
are unramified. The factor group Cl of C' corre-
sponds to the maximal real subfield H* of H, and
Gal(H/H™) is a cyclic group of order at most two,
generated by the Frobenius symbol at infinity F.

We obtain the following alternative ways to look
at the solvability of the negative Pell equation.

Lemma 2.1. The negative Pell equation is solvable
for a quadratic discriminant D if and only if the
following equivalent conditions hold:

(i) C =Cl
(ii) the Frobenius at infinity Fy, = [(v/D)] € C[2] is
the unit element;
(iii) the narrow Hilbert class field of Q(\/E) 18 real.
Il

The heuristic approach in the next section will be
based on criterion (ii), but it is criterion (iii) that
will be used in all proofs in Section 4.

Since condition (i) is satisfied for the p-primary
parts of C' and Cl for every odd prime p, we can
always restrict our attention to the 2-primary part
of C'. In the same way, it suffices to look at the ar-
chimedean character of the narrow 2-Hilbert class
field in (iii).

There is a part of the extension H/K, the genus
field extension G/K corresponding to the factor
group C/C?, that can be easily generated in terms
of D. One obtains G from K by adjoining a square
root of (—1)®~Y/2p for each odd prime divisor p
of D. The extension G/Q is the largest abelian
subextension of H/Q. Note that G is real if and
only if D is in D. Using criterion (iii), it follows
once more that the negative Pell equation can only
be solvable for D € D.

On the other hand, there is a part of the class
group C consisting of 2-torsion or ambiguous ideal
classes that can also be generated easily. One can
take the classes of the primes of K that are ramified
over Q as generators, and as we have

#C[2] = #(C/C?) =21

for a discriminant having ¢ distinct prime factors,
there is exactly one nontrivial relation between the
classes of the ramified primes of K. For discrimi-
nants D € D, this relation is F,,, = 1 if and only if
the negative Pell equation is solvable for D.

One can go a step further, following Rédei, and
combine the knowledge of C[2] and C/C? to give a
description of the 4-rank e4(D) of C, i.e., the num-
ber of cyclic summands of C' having order divisible
by 4. One observes that the 4-rank of C is the
dimension, over the field F, of 2 elements, of the
kernel of the natural map C[2] — C/C? and looks
at the explicit description of this map in terms of
the prime divisors of D. The result is the follow-
ing theorem of Rédei and Reichardt, valid for any
quadratic discriminant D. For a proof one can read
the original paper [Rédei and Reichardt 1934], do
the exercises following [Borevich and Shafarevich
1966, Chapter 3] or consult [Stevenhagen a.

Proposition 2.2. Let D = H::l d; be the decompo-
sition of a quadratic discriminant D into prime
power discriminants. Then the 4-rank of the nar-
row class group Cp equals

es(D) =t — 1 —rank Mp,
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where Mp = (&45); j—, s the matriz over Fy defined
by (—1)% = (Z—J) ifi#jandej; = Z#j €i;. Here

we set (i) = (%) = (-1)=V/* if d; is even. O

The matrix Mp is called the Rédei matrix of the
discriminant D. Since we can permute the discrim-
inantal divisors d;, it is only defined up to conju-
gation by a permutation matrix. We will assume
from now on that Mp is the matrix obtained by
arranging the discriminantal divisors d; of D in as-
cending order. Note that, for D € D, the d; are
either primes congruent to 1 modulo 4 or equal to
8. In this case, we usually write p; for d;.

Let ¢p : V = F4 — C]2] be the canonical sur-
jection that maps the i-th basis vector in V' to the
class in C of the prime over d;. Then the kernel
ker Mp C V of Mp is the preimage ' (C[2] N C?)
of the set of ambiguous ideal classes that lie in the
principal genus. Its Fy-dimension equals e, (D) +1.

For D € D, the quadratic reciprocity law implies
that the Rédei matrix Mp is a symmetric matrix
whose rows and columns add up to zero. Such a
matrix Mp is completely determined by its (1,1)-
minor M}, a symmetric (n — 1) X (n — 1) matrix
over F5. Moreover, rank Mp = rank M7,.

We will need to count symmetric matrices over
the field of two elements having a prescribed rank.
The cardinality of our base field does not play any
role, so we state the result for arbitrary finite fields.

Proposition 2.3. Let n > 1 be an integer and q a
prime power. Then there are exactly

Ag)=q") T @—q ")

nonsingular symmetric nxXn matrices over the field
F, of q elements. The number of matrices of ar-
bitrary rank r = 0,...,n is [ﬂqAT(q), where [:’]q
denotes the number of r-dimensional subspaces of
a vector space of dimension n over F,.

Proof. A completely elementary proof by induction
on n can be found in [MacWilliams 1969]. In order

to see that the statement given there is identical
to ours one needs the explicit value

m L@ -y

Tlq H::l(qi -1) H?:T(qi -1)

The first half of the proposition immediately im-
plies the second half, as symmetric matrices cor-
respond bijectively to symmetric bilinear forms,
and giving a symmetric bilinear form of rank r on
V = F7 is equivalent to giving a subspace W C V
of dimension n — r and a nondegenerate symmet-
ric bilinear form of the factor space V/W. This
remark also shows that the numbers A4, (¢) can be
computed inductively from the relation

n

n n+1
Z[ ] A(q) = ¢,
r
r=0 q

so it suffices to check that the given expression sat-

isfies this relation. An elegant way of doing this is
given in [Cremona and Odoni 1989). O

Corollary 2.4. Among all t X t matrices that can be
realized as the Rédei matriz Mp of some discrim-
inant D € D, the fraction of matrices having rank
t—1—e equals

t—1 ;i
Hj:e+1(1 -2 J)

ai(e) =2 H(t—efl)/2(1 B 27%).

j=1

Proof. Rather than considering the Rédei matrices
themselves, one looks at the corresponding (1,1)-
minors. They range over the full set of symmetric
(t — 1) x (t — 1) matrices over F,, since one can
always find primes congruent to 1 modulo 4 that
have prescribed Legendre symbols modulo a finite
number of primes. One deduces that

t—1
A 1_.(2).
t—l—e]2 =1 ()

ar(e) = 2 () [

The result follows upon substitution of the explicit
values given in the proposition. ]

In order to interpret the numbers a;(e) as den-
sities of the kind we need, we still have to know
that if D ranges over the subset D; of D consisting



126 Experimental Mathematics, Vol. 2 (1993), No. 2

of those discriminants that have exactly ¢ distinct
prime divisors, then the corresponding Rédei minor
M}, behaves like a random symmetric (¢—1) x (¢—1)
matrix over F, (with repect to the uniform distri-
bution). This is equivalent to saying that the vec-
tor consisting of the (;) Legendre symbols (%) of
an element D = pyp, ... p; is uniformly distributed
as a function on D;. The following result was ob-
tained by Rédei [1939], but his proof is incorrect
in its estimate of the error term. A complete proof
was given more than fifty years later [Cremona and
Odoni 1989]. An analogous result for the Rédei
matrices of arbitrary quadratic discriminants has
been proved and exploited by Gerth [1984].

Proposition 2.5. Let S be a t x t matriz over Fy for
which Dg = {D € D : Mp = S} is nonempty.
Then

fim 7Ps)<x _o-(4). 0

X—oo #(Dy)<x

(Here, of course, (Dg)<x is the set of D € Dg not
exceeding X, and similarly for (D;)<x.) Propo-
sition 2.5 says that all symmetric ¢ x ¢ matrices
with rows and columns adding up to zero occur
with the same frequency as the Rédei matrix of
discriminants D € D,. It follows that a;(e) is the
natural density in D, of the set of discriminants
D € D, that give rise to a narrow class group of
4-rank e4(D) = e. We set ay(e) =0 for e > ¢.

It is easy to see that each of the sets D, has
zero density in D. In fact, a slight modification of
[Hardy and Wright 1979, Theorem 437] shows that
for X — oo one has the asymptotic result

27t X(loglog X)t!

#(Di)ex ~ t—1)! logX

(2.6)

It implies that the expected number of prime fac-
tors of a discriminant D € D tends to infinity
with D. More precisely, it can be shown [Hardy
and Wright 1979, Theorem 430] that this expected
number is asymptotically equal to loglog D for D
tending to infinity. It is therefore of interest to
study the behavior of a;(e) when e is fixed and ¢

tends to infinity. Here we will encounter the infi-
nite product

a= J] (1-27) = 41942244117951... (.7

j odd
occurring in Conjecture 1.4.

Proposition 2.8. Let e be a nonnegative integer and
let « be as in (2.7). Then the limit value o (e) =
lim; o, a4(e) equals

(67

s (e) = m

Moreover, we have Y oo a(e) = 1.

Proof. The value of a,(e) follows immediately from
Corollary 2.4. For the second statement, we have
to show that we can interchange sum and limit in
the left-hand side of the trivial identity

Yo D onle) = fim 1 =1.
e=0

This follows from Lebesgue’s theorem on domi-
nated convergence if we interpret the sum as the
integral over Z>, with respect to the counting mea-
sure and observe that the sequence of nonnegative
functions {a;}:°, is uniformly bounded by an in-
tegrable function F': Z>, — R. We can take

Fle) =2~ (3D [ —27%). 0

i1

Remark. The identity Y -, as(€e) = 1 in the pre-
ceding proposition can be proved directly, without
the use of the values a;(e). In our special case it
comes down to showing the identity

1 1 1 1

1+1+-=

+ +3+3-7+3-7-15+3-7-15-31+
2 8 32 128
1 7 31 127 ’

and in the case of a base field of arbitrary cardi-
nality ¢ it would be
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L ! + -
g—1 (¢-1)(¢*-1)
Z'H (1—qg )7 (2.9)

This is a formal identity, and both sides converge
in the complex plane whenever |¢g| > 1. It is an
example of a partition identity, since the right hand
side is equal to

[[a+¢9) =1+> r(n)g™,

ji>1 n>1

where 7(n) is the number of ways in which n can be
written as a sum of distinct positive integers. In
order to prove such an identity, one expands the
factors (¢° — 1) 7! in the left hand side in geometric
series and rewrites this side as

1+ Z Z q—(i1+2i2+"'+kik)‘

E>1 i1,62,...,i6>0

It now suffices to recall the standard identity

k
T'(TL) = Z#{(ilai% s 7ik) € ZI;O : Zjl] = n},

E>1

which is immediately seen to hold if one writes the
partitions of n in the form

n=(i1+iz+- - +ig) + (I iz +ig) + -+

Tijdeman observed that the value of (2.9) is irra-
tional for any integral value ¢ > 1. The proof of
this fact is completely analogous to the standard
irrationality proof of the number e = > _ (n!)™*,
which is also the limit value of a series with ratio-
nal terms in which the n-th term is a large integral
multiple of the (n 4 1)-th term.

3. A HEURISTIC APPROACH TO THE NEGATIVE PELL
EQUATION

We will first apply criterion (ii) of Lemma 2.1 to
find a heuristic value for the probability that the
negative Pell equation is solvable for an arbitrary

discriminant in D,, that is, a conjectural value for
the limit

P = lim #P0)ex

X —o0 #(‘Dt)gx

when t € Z-¢ is fixed. Here D; stands for the
set of D € D, for which the negative Pell equation
is solvable, and (D; )<x for the subset of D, with
D < X. Note that the mere existence of these
limits is already a highly nontrivial statement.

Since all prime discriminants in D are in D, it
is a theorem that P; exists and is equal to 1. No
other value of P, has so far been shown to exist.

In order to illustrate what happens for general
t, we start with the special family of discriminants
D = 8p € D, studied in [Stevenhagen 1993]. For
p = 5 mod 8, we have (%) = —1 and Rédei’s result
(Proposition 2.2) implies that es(8p) = 0. This
means that the narrow 2-Hilbert class field coin-
cides with the genus field G = Q(v/2, v/P). In this
case we have Neg, = —1 by Lemma (2.1)(iii). In
the other case, p = 1 mod 8, the situation is more
complicated, since Proposition 2.2 gives e4(8p) =
1. We now look at the 2-torsion subgroup of C,
which is generated by the primes t and p lying over
2 and p. Exactly one of the three ideal classes [t],
[p] and [tp] is the trivial element in C[2]. Numeri-
cal investigation of all p = 1 mod 8 under 10° indi-
cates that these three possibilities occur with the
same frequency, even though the best thing one can
prove [Stevenhagen 1993] is that each of the three
cases occurs with frequency > i when p ranges over
the primes p = 1 mod 8. The negative Pell equa-
tion for 8p is solvable if and only if F,, = [tp] € C
is the trivial element, so a combination of the theo-
rem for p = 5 mod 8 and the numerical observation
for p = 1 mod 8 would imply that Neg, = —1 for
two out of three primes p = 1 mod 4.

Apart from a few obvious changes, the argument
just given remains correct when the discriminantal
divisor 8 is replaced by an odd prime ¢ = 1 mod 4.
One is therefore led to the conjectural value P, = %
for the fraction of discriminants in D, for which the
negative Pell equation is solvable.
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The heuristic reasoning we gave can be adapted
to discriminants with exactly ¢ prime divisors in
the following way. Let

Yp: V =F - C[2],

for D € Dy, be the surjection described in the
previous section. Then the kernel of ¥p is a one-
dimensional subspace F; - rp, where rp € V can
be thought of as the nontrivial relation between
the canonical generators of C[2]. It is clear that
rp is contained in the kernel

ker Mp = ¢, (C[2]NC*) CcV

of the Rédei map. Let u = (1)i_; € V be the ele-
ment whose ¥p-image is the Frobenius at infinity
F, € C[2|. Then u is also contained in ker Mp.
This follows from the fact that the genus field G
is real, but it can also be seen directly from the
form of the Rédei matrix Mp, which has columns
adding up to zero for D € D. We have D € D~ if
and only if rp = u, and the basis of the argument
we gave for D = 8p is that we suppose rp to be
a random nonzero element in ker Mp. This is an
F,-vector space of dimension e4(D) + 1, so for D
ranging over D;(e) we expect to have Nep = —1
in 1 out of 2¢™ — 1 cases. We can formulate this
heuristic assumption more precisely in the follow-
ing way.

Hypothesis 3.1. Let t > 0 be given, and define rp €
V =F% for D € D, as above. Suppose S € EndV
is a symmetric t X t matriz for which

DS:{DE‘DMD:S}

is nonempty, and let d be the dimension of ker S.
Then

lim #DecDs:D<X andrp =v} 1
X—o00 #{DecDs:D <X} 241

for every nonzero element v € ker S.

For fixed ¢, we write D; as a disjoint union

t—1
D, = [ Dile),
e=0

where D;(e) is the subset of D € D, that have
es(D) = e. We have already seen that D,(e) has
natural density o;(e) inside D;. The preceding hy-
pothesis, when applied to the element v = u =
(1), € V, implies that the density inside D;(e) of
the set of discriminants D € D,(e) for which the
negative Pell equation is solvable is (267 — 1)~1.
Taking the union of these sets fore = 0,1,...,t—1,
we arrive at the following heuristic value for P;:

Theorem 3.2. Suppose that Hypothesis 3.1 is satis-
fied. Then the set D; of D € D, for which the neg-
ative Pell equation is solvable has a natural density
inside D, equal to

t—1

_ a(e)
P = Z Qe+l _ 1’

e=0

where the numbers ay(e) are defined as in Corol-
lary 2.4.

If D tends to infinity, the expected value of ¢ tends
to infinity as loglog D. It is therefore to be ex-
pected that if the natural density P of D~ in D
exists, it is equal to lim;_,,, P;. This is how we ob-
tain Conjecture 1.4. The computation of the limit
is dealt with in the following lemma.

Lemma 3.3. Fort tending to infinity, the density P;
of the preceding theorem tends to a limit value

Po=1- J] (1—27)=5805775582...

j odd

Proof. Using the limit values a..(€e) from Proposi-
tion 2.8, one obtains

t—1
P, = lim =
R < 2et1 — 1

e=

a(e) i N 0)

2e+1 1

e=0

=L @ oy~ 2=
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The justification for interchanging sum and limit
follows as in the proof of Proposition 2.8, since the
functions

a(e)

R

on Z>, are also bounded by the integrable function
F given there. O

Since the predicted density of the set D, (e) con-
sisting of discriminants in D;(e) for which the neg-
ative Pell equation is solvable inside D;(e) does not
depend on t, we can formulate our conjectured be-
havior more directly as follows.

Conjecture 3.4. For e > 0, let D(e) denote the sub-
set of D consisting of discriminants having 4-rank
e, and D~ (e) the set of D € D(e) for which the
negative Pell equation is solvable. Define ay(e) €

R as in Proposition 2.8. Then, for every integer
e >0,

(i) the natural density of D~ (e) inside D(e) equals
(2¢t1 — 1)1 and

(ii) the natural density of D(e) inside D equals
Qoo (€).

In particular, the natural density of D~ inside D
exists and is equal to

o Qoo(€)
P=) oo =1-o
e=0

Note that the final statement of the conjecture does
indeed follow from (i) and (ii), even though we do
not have a countably additive measure on D. It is
essential for this that the densities of the sets D(e)
add up to Y o0 as(e) = 1.

As a result of the computation in Lemma 3.3,
we have found that the conjectural density of D
in D is equal to the probability for a symmetric
matrix over Fy to be nonsingular when the size of
the matrix tends to infinity. This raises the natural
question whether there is a more direct heuristic
reasoning leading to the result. No such reasoning
is known to me.

A weaker form of the basic Hypothesis 3.1 of
this section, which would have sufficed for our pur-
poses, can be rephrased somewhat informally as
the hypothesis that, for D ranging over D, the re-
lation between the classes of the ramified primes
behaves randomly when considered inside the 2-
torsion subgroup of the principal genus C?. There
is a certain theoretical motivation for looking at
C? rather than C itself. Namely, according to the
Cohen-Lenstra heuristics for class groups of real
quadratic fields [Cohen and Lenstra 1984], there is
an expected behavior of the p-part of C that works
well in practice for odd p, but is provably wrong for
p = 2 because of the genus theory for these class
groups. However, the heuristics do seem to work
for all p when one considers the principal genus
C? instead of C'. More precisely, Gerth [1984] has
shown—and this is one of the rare cases where any-
thing of this kind can be proved—that the distri-
bution of the 2-rank of C? for fixed ¢ tends to a
limit distribution that is predicted by Cohen and
Lenstra when one lets ¢ tend to infinity.

For an idea of of the numerical behavior of the
various constants discussed so far, see Table 2.

Although tables related to the negative Pell equa-
tion have been produced since the time of Euler,
there does not seem to exist anything in the lit-
erature that can be used in numerically checking
our conjectures. Existing tables [Thielmann 1926;
Nagell 1932; Beach and Williams 1972] mostly tab-
ulate the values of d up to a given bound for which
the negative Pell equation (1.1) is solvable. Usu-
ally, they include values of d that are not square-
free and that we chose to disregard. Moreover, all
even discriminants are listed as D /4 and are there-
fore overrepresented in the tables. Even making
allowances for all this, the fact that all tables up
to the most recent I know of [Beach and Williams
1972] only include values of D < 10°® makes them
almost worthless in numerically checking a con-
jecture like 1.4. The problem is that they only
contain discriminants with very few prime factors.
For instance, of the 93424 real quadratic discrim-
inants D < 10° in D there are 75912 for which
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t (e 73 (0) Oét(].) (e 73 (2) (e 73 (3) 6 7 (4) Oét(5) Pt
1 1
2 .5 .5 66666667
3 .5 375 125 .64285714
4 4375 .4375 .109375 .015625 .60000000
5 4375 141015625 .13671875 .01464844 .00097656 .59475806
6 142382812 42382812 .13244629 .01892090 .00094604 .00003052 .58531746
7 142382812  .41720581 .13906860 .01862526 .00124168 .00003004 .58404589
8 142051697  .42051697 .13798213 .01971173 .00123198 .00003974 .58175551
9 42051697  .41887432 .13962477 .01963473 .00130898 .00003959 .58143998
10 141969565  .41969565 .13935207 .01990744 .00130643 .00004214 .58087161
00 141942244 .41942244  .13980748 .01997250 .00133150 .00004295 .58057756
TABLE 2. Numerical values of a;(e) and Py, for ¢ < 10 and for ¢ = 0o, to eight decimal places.

the negative Pell equation is solvable, which gives
a fraction .813 that is well above the conjectured
value P from 1.5. However, of these discriminants
there are 39176 (41.9%) in D; and 40271 (43.1%)
in Dy, with only 12701 (13.6%) in D3 and 1275
(1.4%) in D, for t > 3. It is therefore not surpris-
ing that we do not find an approximation to P, =
lim;_, o, P, but something close to the weighted av-
erage .419P; + .431P, + .136 P; 4+ .014P, = .802. In
order to find values close to P,,, one would have
to count the frequency of Nep = —1 among dis-
criminants D € D in an interval I for which the
expected number of primes in D is large. This
means that loglog D has to be large, and such val-
ues of D are obviously intractable for a computer.
(If D has a million decimal digits, loglog D is still
smaller than 15.)

It is nevertheless possible to use small discrimi-
nants only to get a fair impression of the numerical
behavior of the Pell equation. We give the behav-
ior for the initial interval I = [1,2-107] in Table 3
and for I = [10%°,10'° +2-107] in Table 4.

Our heuristics predict that the ratio m(e) =
#(Dy(e)NI)/#(Dy (e)NI) (in the lower right cor-
ner of each inner box) should be close to 2°T* — 1,
and we have a theorem asserting that the ratio
ai(e) = #(Di(e)NI)/#(D:NI) (upper right corner)
tends to ay(e) if the endpoint of the interval tends

to infinity. It is clear from these tables that as
soon as there are not too few discriminants in the
corresponding entry, the numbers 7;(e) and 7(e) =
#(D(e)NI)/#(D~(e) NI) are reasonably close to
their conjectured values. This indicates that the
basic assumption of our heuristics works well in
practice. On the other hand, the values of a,(e)
are sometimes quite far from their known limit
values a;(e), and as a consequence II; = #(D, N
I)/#(D, N I) differs considerably from its conjec-
tured limit P;. This slow convergence is mostly
due to the fact that for intervals containing only
discriminants of moderate size, the discriminants
divisible by certain small primes occur much more
frequently than those without these small factors.
As an example, look at ¢ = 3, where many dis-
criminants D = p;psp3 occur with p;p, equal to
the 4 smallest possible values 40, 65, 85 or 104. It
happens that we have (g—;) = —1 in each of these
cases, so these discriminants never give e = 2 and
e = 1 only for ps that satisfy (5—;) = (5—2) =1
This explains the inequalities a3(0) > «3(0) and
a3(2) < a3(2) in our tables and accounts for the
fact that II; is larger than Ps;. Analogous phenom-
ena occur for all values ¢ > 3. Note however that
the effect is already less pronounced in the second
of the two tables. The strong influence of these
“numerical coincidences” only disappears for large
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t e=0 e=1 e=2 e=3 sum IL;

1 635171 1 635171
635171 1 635171  1.000

9 367180 .5023 363827  .4977 731007
367180 1 120554 3.018 487734 .6672

3 160468 .5625 98281  .3445 26550 .0931 285299
160468 1 32607 3.014 3588  7.400 196663  .6893

4 21848  .5050 18563  .4291 2756  .0637 96 .0022 43263
21848 1 6061  3.063 360 7.656 5 19.20 28274 .6535

5 1090 .5375 790  .3895 143 .0705 5 .0025 2028
1090 1 266  2.970 22 6.500 0 * 1378  .6795

6 6 .6667 2 .2222 1 .1111 0 9
6 1 1 2.000 0 * 0 T .TTT8

m 1185763 481463 29450 101 1696777
st 1185763 1 159489  3.019 3970 7.418 5 20.20 1349227  .7952
TABLE 3. Numerical data for D < 2-107. The upper and lower left numbers in each entry (¢,e) count how

many values of D in the interval I = [1,2-107] are in D;(e) and D; (e). Each entry further lists their quotient
mi(e) = #(Di(e) NI)/#(D; (e) N I) in the lower right corner and the fraction a;(e) = #(D¢(e) NI)/# (DN 1I)
in the upper right corner. The edges of the table give the row and column totals showing the solvability of the
Pell equation in I for fixed ¢ and for fixed e. For fixed ¢ we list IT; = #(D; NI)/#(D:NI) = ZZ;}) at(e)/m(e),

and for fixed e we list w(e) = #(D(e) N I)/#(D(e) N I). The value of II; is heuristically close to P;, and that
of 7(e) to 26T — 1.

t e=0 e=1 e=2 e=3 sum IL;

1 434574 1 434574
434574 1 434574  1.000

9 296434 .5001 296363  .4999 395135
296434 1 98701  3.003 992797  .6666

3 163853  .5328 110388  .3590 33276  .1082 307517
163853 1 36817  2.998 4584  7.259 205254  .6675

4 35500 .4695 33107  .4379 6394 .0846 610 .0081 75611
35500 1 10993  3.012 861  7.426 35 17.42 47389  .6267

5 4390  .4796 3723  .4068 983 .1074 56 .0061 9153
4390 1 1216  3.062 131 7.504 2 28.00 5739  .6270

6 230  .4915 192 4103 43 .0919 3 .0064 468
230 1 64 3.000 10  4.300 0 * 304 .6496

7 4 5714 2 .2857 1 .1429 7
4 1 1 3.000 0 * 5 .7143

sum 934985 443775 40697 669 1420127
934985 1 147792 3.003 5586  7.288 37 18.08 1088400 .7664
TABLE4. Numerical data for 101° < D < 10'°+2.107. The data are organized in the same fashion as in Table 3,

with I = [10'°, 10'° + 2. 107]. This table represents a much larger computational effort than Table 3, and was
compiled in cooperation with Wieb Bosma from the Cayley group in Sydney. There is a single discriminant in
Ds5(4) that is not included here.
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loglog D, and this does not occur in situations that
can be handled by a computer. However, we need
not worry about the behavior of the fractions a;(e),
since we have a theorem telling us what their limit
behavior is. The only quantity that is important
for our heuristics is m;(e), and the tables show that
their predicted behavior is well matched by our
numerical data.

We observe that, even in the second interval,
there are no discriminants with e > 3 besides the
single value

D =5-29-241-349 - 821 = 10012755905 € D5(4)

(not shown in Table 4). This is not too surprising,
since these discriminants form a very thin set that
is contained in |J,., D;. It is possible to treat such
discriminants, but not with the straightforward al-
gorithms used in compiling the preceding tables.
For a more sophisticated computational approach
in the line of [Lagarias 1980] the reader is referred
to a forthcoming paper [Bosma and Stevenhagen).
This paper also examines the more general case of
(1.1) in which d is no longer supposed to be square-
free. The (heuristic) analysis of this case requires
distribution hypotheses for units in arbitrary quad-
ratic orders that are very different from our basic
Hypothesis 3.1 [Stevenhagen b].

We conclude this section with the observation
that even if we were able to prove the heuristics
concerning P, for all ¢, this still would not imply
Conjecture 3.4. Proving the implication involves a
change of limits,

which may be hard to justify. As an example show-
ing the difficulties that arise, one can look at the
subset of even discriminants in D. This set has
positive density in D, but it follows from (2.6) that
its intersection with D; has zero density in D, for
each t.

4. PROVEN DENSITIES FOR THE NEGATIVE PELL
EQUATION

In this section we will see how close we can get
to an unconditional proof of Theorem 3.2. More
precisely, we will give lower bounds for

#(Dy )<x

P, = liminf T2t /sX

X—oo #(Dy)<x

and upper bounds for

-~ . #(Dy )<x
P, =limsup ——————.
CT R H(D) x

The first result in this direction goes back to Rédei
[1936; 1939]. It is the observation that, for D € Dy,
the negative Pell equation is solvable when e4(D) =
0. This follows immediately from Lemma 2.1(iii),
because the narrow 2-Hilbert class field coincides
under this assumption with the (real) genus field
G. Using Proposition 2.2, we can phrase the result
as follows:

Proposition 4.1. Let D € D, be a discriminant for
which the Rédei matriz Mp has mazimal rank t—1.
Then D is in Dy . O

This result has been rediscovered in various guises
by several authors [Cremona and Odoni 1989; Hur-
relbrink 1990; Pumpliin 1968; Trotter 1969].

Corollary 4.2. Let o be defined as in (2.7). Then,
for everyt > 1,

P, > a:(0) > ax(0) = a.

This result suggests that o can be taken as a lower
bound for the lower density of D~ in D, but for
reasons explained at the end of the previous section
this is still unproved.

There is a numerical observation in [Cremona
and Odoni 1989] that the equivalent of Proposi-
tion (4.1) in that paper accounts for about 87% of
all D in D~ when squarefree radicands are consid-
ered up to 10%, and the question is raised why the
criterion should be so effective. This is explained
by our heuristics, which imply that, for fixed ¢, the
proposition accounts for a fraction f; = «;(0)/P; of
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all D in D, . To four decimals, we have f; = 1, fo =
715, f3 = 7778, fu = .7292, and f,, = .7218. Using
the distribution over the various D; for D < 10°
mentioned in the previous section, one should ex-
pect the weighted average .419 f; +.431f>+.136 f3+
.014 f, of these values as the effective percentage for
the criterion, and this is about 86%. The numer-
ical values of f; found for the set of discriminants
up to 10° are 1, .759, .831 and .790, giving rise to
a percentage of 89%. The slightly higher numeri-
cal values for f; and f, are well explained by the
“numerical coincidences” discussed in the previous
section. In the limit case D < oo, the proposition
should account for a/(1 — o) = 72.18% of all D in
D-.

Now suppose that D = pypy...p; € D is a dis-
criminant for which e = e4(D) is positive. Then
the genus field G of K = Q(v/D) is strictly con-
tained in the narrow 2-Hilbert class field of K, and
the solvability of the negative Pell equation is no
longer determined by the values of the Legendre
symbols (%) only. However, it is possible to deter-
mine in terms of the p; the archimedean character
of the subfield F' of the narrow Hilbert class field
of K that corresponds to the fourth powers in the
class group Cp. The field F', which is known as the
narrow 4-Hilbert class field of K, is an extension
of the genus field G of degree 2¢ and therefore not
abelian over Q.

The two theorems we will use can be seen as gen-
eralizations of Dirichlet’s biquadratic result men-
tioned in the introduction and go back to [Rédei
1939] and [Scholz 1935].

Given D = pipy...p;, every nonzero element
v = (v;)i_; of V. = F} corresponds to a discrim-
inantal divisor Dy = [[, _; p; of D. Setting Dy =
D/D,, the decomposition D = D; - D, is said to
be of the second kind if it comes from an element
v in the kernel of the Redei matrix Mp. In more
elementary terms, this means that D; is a square
modulo all primes in D, and D, a square modulo
all primes in D;. Note that the trivial elements
0 and v = (1)f_; in this kernel give rise to the

trivial decompositions D =1-D = D - 1. For ev-
ery nontrivial decomposition D = D - D, one can
construct a subextension K C M of K C F that is
cyclic of degree 4 and contains K C Q(v/Dy,v/D;)
as a quadratic subextension. The decompositions
of the second kind correspond bijectively to the
elements of ker Mp, so they have a natural vector
space structure over F». By passing to the quotient
space (ker Mp)/(F; - u), we can identify decompo-
sitions D = D; - Dy and D = D, - D;. The space
thus obtained has dimension e4(D) and is known
as the space of decompositions of the second kind.

We can now formulate the first result of Rédei
and Scholz. In the special case that the discrimi-
nant D is of the form D = pg € D, with (g) =1,
we obtain Dirichlet’s result mentioned in the In-
troduction.

Theorem 4.3. Let F' be the narrow 4-Hilbert class
field of the real quadratic field of discriminant D €
D. Then F is real if and only if for every decom-
position of the second kind D = D; - D,, we have

(5.).(3:), -

In particular, the negative Pell equation for D can
only be solvable if this condition is satisfied. O

In the preceding theorem, one can read “e4(D) in-
dependent decompositions of the second kind” in-
stead of “every decomposition of the second kind”,
since the map

D, D,
D,-D D) (22
v (D2>4 (D1)4

is a linear functional on the space of decomposi-
tions of the second kind. Note that this functional
can only be defined for decompositions of the sec-
ond kind. It can be shown [Rédei 1939] that for
the set of discriminants D giving rise to some fixed
Rédei matrix, the e independent conditions from
Theorem (4.3) are satisfied for a subset of density
27¢. This implies that the upper density of D; (e)
in D;(e) is bounded by 27°, and it yields the fol-
lowing upper bound for P,:
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Corollary 4.4. For any integert > 1, the upper den-
sity Py satisfies

P, < Z 2 %ay(e).

e>0
In the limit t — oo, this gives limsup, . Py < %

Proof. The first statement is clear from the ar-
gument preceding the corollary. For the identity
> es02 “an(e) = 2, it suffices to show that if we
let A= [ (1—¢7), then

j odd

S: —-e € N fr—
;q M. @-1) g+1

i=1

for every complex number ¢ with |¢| > 1. To do
this one writes
1 1 1

(-1 ¢—-1 ¢

in all terms of S having e > 1. This yields

i A > A
S=A Y ey X

e=1 11j=1 e=1 j=1 (¢ —1)
S
—1-2
q
by (2.9), whence the result. O

The argument we gave implies that the negative
Pell equation is solvable with a very low probabil-
ity for discriminants that give rise to high 4-ranks.
All density results for special families derived by
Morton [1982] apply to discriminants having this
property, so it is not surprising that his upper den-
sities are very different from those we find for the

For the lower density P, we can use the following
sufficient condition for solvability of the negative
Pell equation, also due to Rédei and Scholz.

Theorem 4.5. Let D € D be a real quadratic dis-
criminant, and suppose that

5:),--(5)

D,), D),

for every decomposition D = Dy - Dy of the second
kind. Then we have e,(D) <2 and Nep = —1. O

In this case it is not sufficient to have the identities
only for a basis of the decompositions of the second
kind. For a given decomposition D = D; - D, they
imply that there is no cyclic unramified extension
K C M of degree 8 with K C Q(v/D1,+/Dy) as its
quadratic subextension. It is not hard to see that
the identities cannot hold for all 7 nontrivial de-
compositions generated by 3 independent decom-
positions of the second kind. This explains why we
must have e4(D) < 2. For e,(D) = 1 we have two
independent conditions, and for e,(D) = 2 we have
five independent conditions as the 6 biquadratic
symbols coming from the 3 nontrivial decomposi-
tions of the second kind have product 1. As before,
we deduce that the lower density of D; (e) in Dy(e)
is at least 272 when e = 1 and at least 27° when
e=2.

Corollary 4.6. For any integert > 1, the lower den-
sity P, satisfies

P, > 0y(0) + (1) + 55(2).

In particular, liminf, ., P, > 2o = 528647 ...

full set D,. O
bounds t=2 3 4 5 6 7 0
P, < 75000 .71875  .68555  .67865  .67128  .66960 .66667
P, .66667  .64286  .60000 .59476  .58532  .58405 .b8058
P, > .62500  .59766  .55029  .54431  .53392  .53248 .52865
TABLE5. Proven upper and lower bounds related to P;.
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In conclusion, we list in Table 5 the values of the
proven lower and upper bounds for P, and P,, to-
gether with the heuristic value of P, for 2 <¢ <7
and for t = co. (Obviously, P, = P, = P, = 1.)
In order to improve these bounds, one would need
density results like Proposition 2.5 for the higher
Rédei matrices defined in [Stevenhagen a].
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