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When a quadrilateral undergoes a certain infinite fq!ding pro-
cess, an intricate curve is traced out by its transformed vertices.
The curve possesses attractive symmetry properties. We study
the folding as a dynamical system in C#, which is partially
described by a billiard-like dynamical system on the bounded
component of an elliptic curve associated with the squared
diagonal lengths.

INTRODUCTION

Consider a plane polygon. Fold it along one of
its diagonals to produce a new polygon: that is,
reflect the portion of the polygon on one side of
the diagonal over to the other side, and leave the
rest unchanged. In general, one can imagine fold-
ing forever, according to some (possibly random)
scheme for selecting the diagonals. The result is
an infinite sequence of polygons, or “walk” in the
space of polygons: we call the associated sequence
of polygon vertices a polypath. This paper studies
the dynamics of polypaths arising from quadrilat-
erals.

Formal definitions and elementary properties of
the folding transformation are given in Section 1.
If we start things off with an isosceles trapezoid
and proceed to fold by choosing the diagonals cycli-
cally (Section 2), the polypath frequently appears
to be dense or to recur with high period on a com-
plicated curve whose geometric details depend in
some unpredictable manner on the initial trape-
zoid. Thus the system manifests sensitive depen-
dence on initial conditions. Despite the complexity
of the curves, they possess certain symmetry prop-
erties that make them attractive objects of study.
Figure 1 hints at the wild diversity of polypaths we
have encountered for such initial quadrilaterals.
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Although all polypaths in Figure 1 are bounded,
it is easy to generate unbounded polypaths, and it
seems to be a difficult problem to predict the out-
come for a particular initial quadrilateral. Con-
sider, for example, the two-parameter family of
initial quadrilaterals that are isosceles trapezoids
having a specified perimeter. Figure 4 (left) shows
the pattern in parameter space produced by col-
oring points according to whether their associated
polypaths appear to be bounded or unbounded.

To help explain polypath behavior we study in
Section 3 an associated sequence of pairs (z,y) of
squared diagonal lengths. We show that generi-
cally the points (z,y) lie on an irreducible, non-
singular cubic curve—in other words, an elliptic
curve. In fact, they are contained in the bounded
component of the curve, which we call the shoe.
The polypath dynamics are related to a billiards-
like dynamical system on the shoe, characterized
algebraically as translation along the curve (with
respect to the standard operation of addition on
elliptic curves). When the translational constant
is irrational, the billiard trajectories on the shoe
are dense, which is consistent with a polypath pro-
ducing a closed curve. When the constant is ratio-
nal, the trajectories are periodic, likely with high
period. '

The connection between periodicity on the shoe
and polypath dynamics is examined in Section 4.
We show that an isosceles trapezoid is taken un-
der iteration to a (possibly displaced) copy of itself
if and only if the associated sequence of squared
diagonal pairs is periodic on the shoe, and, conse-
quently, if and only if the sequence contains one
of five special points on the shoe. These results,
together with some numerical exploration, lead to
some conjectures about the topological structure
of the subset of parameter space on which the cor-
responding shoe dynamics is variously periodic or
dense. The related subset associated with poly-
paths that appear dense on closed curves (as in
Figure 1) has also proved difficult to character-
ize completely, but we verify some simple exam-
ples.

‘We mention a few papers that have some connec-
tion, at least in spirit, to the present one. G. A.
Galperin [1987, p. 197] describes the process of
straightening a billiard trajectory on a triangular
table. This involves the successive reflections of
the triangle about its edges, as they are hit by the
ball; of course, all the triangles are congruent and
pairwise contiguous, but it takes 45 of them before
the original triangle reappears in the original ori-
entation. The periodic properties of a sequence of
pedal triangles was examined by J. Kingston and
J. Synge, and, in a later paper, Peter Lax proved
related ergodic properties (see [Lax 1990] for all ref-
erences). M. Mendés-France [1983] describes the
beautifully intricate curves associated with expo-
nential sums and related paper-folding dynamics.
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1. THE CYCLIC FOLDING OF QUADRILATERALS

Consider a quadrilateral PQRS (Although our
figures will show the edges, we will formally think
of a quadrilateral simply as an ordered set of four
points in the plane, which may or may not be in
general position. We will also use the term directed
quadrilateral when we want to emphasize the order
of the vertices.)
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FIGURE 1. Typical bounaea polypaths arising from isosceles trapezoids. For each example, the values of x
and v for the initial trapezoid are given (see Section 2). Except for the one in the bottom left, all polypaths
are drawn to the same scale and represent 10000 iterations of the folding map. The remaining picture is drawn
twenty times smaller, and shows 40000 iterations.
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If @ # S, we can define a new quadrilateral by
folding P over the diagonal QS, that is, by replac-
ing P with its image under reflection in @S. In
general, we can fold any vertex over the diagonal
determined by the adjacent vertices, provided the
adjacent vertices do not coincide.

Given a (finite or infinite) sequence made up of
the letters { P, Q, R, S} we get a sequence of quadri-
laterals by iterating the folding process: fold the
vertex labeled by the first letter, then take the re-
sult and fold the vertex labeled by the second let-
ter, and so on. For instance, if the sequence is PP,
we fold the vertex P and then its image, so we end
up with the original quadrilateral.

The only barrier to endless folding is that even-
tually the images of P and R or of @ and S may
coincide. These degenerate situations are easily
characterized. Define a dart to be a quadrilateral
with two pairs of adjacent sides equal: in particu-
lar, any quadrilateral with P = Ror Q@ = Sis a
dart. Folding preserves edge lengths, so it trans-
forms darts into darts and nondarts into nondarts.
Therefore any nondart can be folded forever, fol-
lowing any sequence of letters.

From now on we will focus on cyclic folding,
that is, folding according to the cyclic sequence
PQRSPQRS. .. Alternatively, we can think of the
basic step in cyclic folding as being the correspon-
dence PQRS — QRSP’, where P’ is the image of
P under reflection in @QS. Although this operation
is not, strictly speaking, a folding (since it involves
a reordering of the vertices), this point of view
has the advantage of uniformity: every step is the
same. Graphically, the directedness of a quadri-
lateral can be elegantly encoded in the form of an
arrow, pointing from the last vertex to the first,
so the rule for cyclic folding is: fold the vertex at
the tip of the arrow, then advance the arrow one
vertex (Figure 2).

Cyeclic folding can thus be regarded as a map «
from the space of nondarts to itself, and its itera-
tion defines a dynamical system. We describe some
elementary properties of 7. If P,Q,S € R? with
Q # S, we denote by P|3 the reflection of P in the

~

FIGURE 2. An initial quadrilateral PQRS (top)
and its first three iterates under cyclic folding.



line @S. Under the usual identification of R? with
C, we have

pis - P~ 9s-a)
° 5-Q
This follows from the geometfica.lly clear fact that

(Pl3 — Q)/(S — Q) is the complex conjugate of
(P —Q)/(S— Q). The map 7 is defined by

=(PQRS) = QRSPIS,

where PQRS € C*is a nondart. We denote the set
of such quadruples PQRS by Q, and remark that
it is an open subset of C* = (R?)*. The following
properties are immediate:

+Q.

Proposition 1.1. 7 is a real analytic diffeomorphism
of Q, with inverse romor, where r is the involution
r(PQRS) = SRQP. Its Jacobian has determinant

1, so m preserves Lebesgue measure.

Remark. That 7 preserves Lebesgue measure in Q
suggests a possible application of the Poincaré re-
currence theorem: if there exists a subset of Q
with positive, finite Lebesgue measure that maps
into itself under =, then almost every point in that
subset is recurrent under 7. Unfortunately, while
we have ideas about how to construct the required
subset (for instance, a good candidate might be the
union of the closures of all orbits that stay bounded
within some ball of large radius about the origin),
we have not been able to prove that any such set
has positive measure. Section 4 contains a more
detailed description of some of these problems.

Since 7 is a diffeomorphism, we can iterate it back-
ward as well as forward. We define a polypath as
a (forward and backward) orbit.of an element of Q
under w. We also call a polypath the image of such
an orbit under the projection PQRS — P, that is,
the sequence of first vertices of the iterates of an
element of Q. (Note that a polypath is not a path
in the usual sense of a map from the interval into
a space.)

If we look at every fourth element of a poly-
path, we get the forward and backward images of
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a single vertex of the starting polygon. There are
four such subpolypaths: sometimes they are easy
to tell apart, and sometimes not. Both cases occur
in Figure 1.

2. POLYPATHS OF ISOSCELES TRAPEZOIDS.

Any isometric image of a polypath is a polypath,
and likewise any homothetic (scaled) image. Thus
it is reasonable to consider similar quadrilaterals
as equivalent. This reduces the dlmensmn of the
space of possible starting quadnla.tera.ls from eight
to four. This space is still somewhat too big, so
we now restrict our- -study to:the orbits of initial
quadrilaterals that are 1sosceles trapezoids. As we
see from Figure 1, this still leaves lots of interesting
polypaths.

Q
P A

|
uL ,
R

FIGURE 3. Every isosceles trapezoid is similar to
a standard one, that is, one that is arranged as
shown here and that satisfies g+ v + A = 2. (The
central dot is the origin and is equidistant from the
-two parallel sides.)

As representatives of each similarity class of isos-
celes trapezoids, we take those of the form shown
in Figure 3, where 1 + v + A = 2. Such initial
trapezoids are called standard. Standard initial
trapezoids are uniquely specified by the parame-
ters (u,v) € [0,1] x [0,1]. However, we have to
omit the point (1, v) = (3, 2) which gives a dart.
The case u = 0 or ¥ = 0 gives an isosceles trian-
gle; the case p = 1 or v = 1 gives four collinear
points. These special cases are discussed further
in the next subsection and in Example 4.5.

For a standard initial trapezoid, complex con-
jugation is the same as reversing the order of the
vertices. By Proposition 1.1, this implies that the
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FIGURE 4. The butterfly lives in the space of standard initial trapezoids, (u,v) € [0,1] x [0,1]. Left: a pixel is
colored white if and only if the polypath for the corresponding initial trapezoid goes out of a ball or radius 50
about the origin sometime in the first 100 iterations. Right: Colors inside the butterfly are chosen by looking
at the number n of iterations needed to get out of the ball of radius 50, then dividing by 10 and taking the
integer part of the quotient. Black means the result is even, white means odd. The resolution is 640 x 480.

backward orbit under w is the same as the con-
jugate under the forward orbit; in particular, the
two-sided orbit is symmetric with respect to the
real axis.

Remark 2.1. The space of isosceles trapezoids is not
invariant under #. In this sense it would be more
natural to consider instead the space of all isos-
celes quadrilaterals, that is, those that have two
opposite sides of the same length. This space is
three-dimensional (after modding out by similari-
ties) and invariant under w. However, we will see
in Section 3 that we don’t gain significantly in gen-
erality by considering this bigger space.

Bounded and Unbounded Polypaths

All polypaths selected for Figure 1 are bounded,
but there are also unbounded ones. Figure 4 is an
attempt to map the region of uv-space that cor-
responds to bounded polypaths; roughly speaking,
the white region (for the figure on the left) corre-
sponds to unbound polypaths. From this figure it

appears that the topology of the two regions may
be quite complicated. However, one must be care-
ful in drawing conclusions, for at least two reasons:

e The butterfly is not quite symmetric with re-
spect to interchange of p = v, but it is easy
to see that the locus of (u,v) giving rise to
bounded polypaths is symmetric. The asymme-
try in the figure is an artifact of the discretiza-
tion (the resolution being different in the x and
v directions) and of our cutoff criteria.

o The edges of the square, givenby p =0,10rv =
0,1, give polypaths easily seen to be bounded,
and so are correctly colored black on the left.
However, closer investigation suggests that the
region near the edges u =1 and v = 1 contains
unbounded polypaths, and so should be colored
white (although the rate of divergence slows as
we approach the edges).' Similarly, there are un-
bounded polypaths arbitrarily close to the edges
p# =0 and v = 0 (see the discussion at the end
of Section 4). :



Roughly, then, what we can say is that polypaths
generally appear to be bounded for starting trape-
zoids with u+v > 1, and unbounded for those with
4+ v < 1. The most conspicuous exception is the
butterfly’s antennae, along the lines 3u+v = 2 and
i+ 3v = 2 (see also Remark 4.2). We will return
to this point at the end of Section 4.

3. THE SHOE

To keep track of the orbit of a single quadrilateral
PQRS under , it is enough to record the lengths
of the diagonals PR and @S, because 7 preserves
side lengths, and knowledge of the sides and diag-
onals is sufficient to determine -a quadrilateral up
to congruence. Moreover, these six lengths satisfy

zy? +yr? —(a+b+c+d)zy+(a -—vd)(b—ic)a:
+(a—-b)(d—c)y+ (bd—ac)(b+d—a—c)=0,

where £ = PR?, y = QS?, a = PQ? b = QR?,
¢ = RS? and d = SP?. (We are very grateful to
a referee, who brought this relation and its proof
to our attention.) One way to show this is to
write down the formula for the volume of the par-
allelepiped spanned by the vectors @ — P, R — P
and S — P, for P,Q,R,S € R?, and then apply
some standard 'linear algebra; if the vertices are
coplanar, the volume is zero. Details can be found
in [Berger 1987, p. 237-238), for example.

Thus the pairs (z,y) of squared diagonals lie
on a cubic curve in R2. 'For our standard ini-
tial trapezoids (Figure 3), the coefficients become
a=c=(2-pu—v)? b=4u® and d = 402, where
(u,v) € [0,1)2. The cubic is therefore given by

oy’ +yz’ —Qzy— Lz +y)+C=0, (3.1)
where
Q=4(p* + V%) +2(u+v -2
L=(4®—(p+v-2)4" - (p+v-2)%,
C = (16p** — (u+v - 2)*)
x (4(p* + %) = 2(p+v - 2)%).
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We denote this curve—or rather its projective com-
pletion—by X,,. We will show that, except for
(1, v) on certain lines, X, is nonsingular and irre-
ducible, hence smooth. It is symmetric with re-
spect to the line + = y, and always has three
points at infinity, with homogeneous coordinates
(1,0,0], [0,1,0] and [1,—1,0]; the latter is an in-
flection point. Each coordinate axis intersects X,
twice at infinity (a tangency) and once at [0,C, L]
(for the z-axis) or [C,0, L] (for the y-axis); when
L = 0 this third intersection is at infinity as well,
and therefore a point of inflection. The asymptotes
z=0,y=0and z+y = @ form a triangle that
cages the bounded component X,,, which we call
the shoe. Since @ > 0, the shoe lies in the first
quadrant. Figure 5 summarizes the situation.

Y

= (0,C/L)

FIGURE5. The cubic X, for 4 = 0.3 and v = 0.625.

Remark 3.1. We have X, = X,, = X1_,1-,, be-
cause the coefficients @, L and C are the same in
each case. Thus the same curve is associated with
up to four standard initial trapezoids (congruent in
pairs). Corresponding diagonal lengths start and
remain the same for these quadrilaterals. See also
Figure 9.
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The usefulness of the shoe is explained by Fig-
ure 6. First, it is easy to see that ¥,, contains
exactly those pairs (z,y) that can be achieved as
squared diagonal lengths of quadrilaterals with the
given sides; other points of X,,, are not physically
realizable. Now suppose we start with a quadrilat-
eral corresponding to a point p € ¥£,,. Any fold
corresponds to a movement along either a vertical
or a horizontal line, since it fixes one of the diag-
onals. Successive folds alternate between vertical
and horizontal movements. We can think of this
evolution as a game of billiards, somewhat uncon-
ventional in that it violates the law of conserva-
tion of momentum, but quite interesting in its own
right. (At exactly four points on the shoe, these
rebounds are degenerate, and the billiard “spins”
before moving on; compare Proposition 4.3.)

FIGURE 6. Folding along a diagonal amounts to
moving directly across or vertically in the shoe.

An Algebraic Dynamical System

As already mentioned, bounded polypaths tend to
appear distributed densely (uniformly, in fact) on a
curve. The intricate curves of Figure 1 are closures
of polypath orbits, just as the circle is the closure of
the orbit of an irrational translation. This behav-
ior-is partially explained by the existence of dense
billiard orbits on the shoe—partially, because the
position of a vertex does not depend only on the

values of (z,y); one can imagine dense or periodic
behavior in terms of the diagonal lengths, together
with an unbounded polypath. For the periodic
case, see Proposition 4.1 and the ensuing discus-
sion. ,

We start by showing that alternate hits of the
billiard are governed by a simple rule, amounting
to translation on an elliptic curve. Recall (from
[Koblitz 1984], for example) that, given an elliptic
curve X over R (say) and a point 0 on X, possibly
at infinity, there is a natural abelian group law
on X with 0 as its identity element. To add two
points a,b € X, draw the line through a and &
(or the tangent line if a = b), and call ¢ the third
intersection of this line with X. Then draw the
line through 0 and ¢; the third intersection of this
line with X is a + b. A particularly nice case of
this geometric construction is when 0 is a point
of inflection: then three points on the curve are
collinear if and only if their sum is 0.

Let U be the open square (0, 1)? minus the diag-
onals uy=vand u+v =1 Wehave C—LQ #0
in'U (the locus of C' = LQ is the union of the lines
p=v,u+v=0p+v=2).

Theorem 3.2. Suppose (u,v) € U. Then the cubic
Xuv 1s an elliptic curve. If p is a point on the shoe
¥ = X,.,, its image after two iterations of the bil-
liard map (one horizontal and one vertical) is p+h,
where h is the point on the curve with homogeneous
coordinates [0,C, L], and the group law is defined
by setting 0 = [1,—1,0]. In particular, alternate
hits in the full billiard orbit of p form a coset of
{h}, the cyclic subgroup generated by h.

Proof. We reduce (3.1) to Weierstrass normal form,
by performing the following changes of variable in
succession (each row indicates that we replace z
and y simultaneously by the given expressions):

S i+Qz4y 1+ Qz-y
2z 2z
r—z+ B, Yy — v,
T — (C - LQ)—I/ams Y-y,



where
4L - Q?

P=ne-1o

The result is y2 = 423 — g,z — g3, where

_2(6B*(C—LQ)+ B(Q*—4L)+ Q)
} (€ “IQM" |

—gs = 4B3(C — LQ) + B*(Q® — 4L) + 2BQ + L.

—92

Therefore the discriminant A = g3 — 27¢2 equals

4096 uzué(u -1} (v - 1) (u+v —1)?
(—vPE+v)(p+v-22

which is positive for (u,v) € U. This proves that
X, is irreducible and has no singularities; and so
is an elliptic curve.

0=1[1,-1,0]

N

FIGURE 7. - Two applications of the billiard map,
one across and one up or down, amount to trans-
lation by A in the shoe.

We use Figure 7 as a guide in proving the rest of
the theorem. Let p’ be the unique point an the shoe
horizontally across from p and let p” be the unique
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point on the shoe vertically up or down from p'.
By the group law, we can write

0:p+pl+[1a0)0]7
0 =p,+p”+ [0’110]’
0=0+[1,0,0]+[0,1,0],

since [1,—1,0] is an inflection point and each triple
of points on the right is collinear. Eliminating p’
and (1,0,0], we get

p” =p+ [03 1)0] + [07 1’0]

But {0,1,0] + [0, 1, 0] is the intersection of the ver-
tical tangent (the y-axis) with X,,, and this, as al-
ready mentioned, is the point h := [0, C, L]. There-
fore we can write p” = p+ h, as we wished to show.

0O

Remarks. (1) When u = v the initial trapezoid is a
rectangle. Then C = LQ and X,,, is reducible. It
becomes (zy— L)(z+y— Q) = 0, and the shoe con-
tains a source-sink pair at the points of intersection
of the linear and quadratic components (this was
noted by a referee).

(2) All along the line y + v — 1 = 0 the discrim-
inant is zero, and one may easily verify that X,,,
has a double point on the line y = z, i.e., is a nodal
cubic.

(3) The point h is at infinity if and only if L = 0,
and this happens only when 3u +v —2 = 0 or
3v+p—2 = 0 (along the antennae of the butterfly).

The group structure on a real elliptic curve makes
it isomorphic to the direct sum R/Z x Z/2Z; in
fact, the isomorphism is analytic. For (u,v) € U,
the shoe corresponds to R/Z x {1} (the connected
component not containing the identity), and h cor-
responds to a point in R/Z x {0}. Thus Theo-
rem 3.2 implies that the billiard dynamics on the
shoe is analytically equivalent to translation on
the circle. In particular, either all points on the
shoe have the same period, or there are no peri-
odic points, depending on whether the order of h
is finite or infinite. For instance, when L = 0 (see
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Remark (3) above), we have h+h+h = 0, so every
orbit has period three.

If we are satisfied with billiard dynamics as a
kind of coarse-grained representation of a poly-
path, the study of polypaths involving isosceles
quadrilaterals (see Remark 2.1) gives us nothing
new beyond what we get by looking at polypaths
that start from a standard isosceles trapezoid. In-
deed, an isosceles quadrilateral with sides 2, A, 2v
and ) can first be normalized so u+v+A = 2, then
placed on the shoe of X,,, according to the length
of its diagonals. Its dynamics will, in essence, be
the same as that of the standard isosceles trape-
zoid corresponding to one of the intersections of
the same shoe with the line z = y.

4. A CLOSER LOOK AT PERIODICITY

Proposition 4.1. For (u,v) € U, the following state-
ments are equivalent:

(i) h=1[0,C,L) € ¥ = X,, has finite order.

(ii) Some iterate of m acts on all isosceles quadri-
laterals of sides 2, A, 2v, \, where A = 2—pu—v,
as a rigid motion (that is, an orientation-pre-
serving isometry of the plane).

(iti) Some iterate of m acts on some such quadri-
lateral as a rigid motion.

Proof. Let PQRS be a quadrilateral as in (ii). It
follows from the discussion in the previous section
that the map D that assigns to a quadrilateral its
squared diagonal lengths makes the diagram

00

Dl lD (4.1)

PSRN

commute, where O is the m-orbit of the quadrilat-
eral and 7 : ¥ — X is translation by h.

(There is a slight subtlety here: 7 is not just
a folding but a folding plus relabeling of vertices,
s0 the action of m really amounts to a horizontal
move in the shoe followed by interchange of  and
y. Two of these, however, give the same as the

horizontal-plus-vertical move used in establishing
Theorem 3.2.)

If h has period m, the directed quadrilateral
72 (PQRS) is congruent to PQRS, since it has
same diagonals and same sides. By doubling again
we ensure that the isometry between the two is
orientation-preserving. Thus (i) implies (ii).

Clearly (ii) implies (iii). To show that (iii) im-
plies (i), we take a power of 7 that acts as a rigid
motion, and double-it if odd. Using (4.1), we see
that the image of the initial quadrilateral under D
is a point in ¥ that is taken to itself by a power of
7; this implies that h has finite order. a

Proposition 4.1 allows us to characterize polypaths
that are unbounded in the case that h has finite or-
der. If the rigid motion of statement (ii) bas a non-
trivial rotational component, or is the identity, the
corresponding polypath is bounded (either finite or
dense in a curve); otherwise the rigid motion is a
translation, and the polypath “walks away” as the
translation is iterated.

Example 4.2 (butterfly’s antennae). A standard isosce-
les trapezoid with 241 = A is on the line 3u+v =2,
and, as mentiored near the end of Section 3, h has
period three in this case. Thus the twelfth iterate
of 7 is an isometry (this is also easy to see directly).
It is a translation by a distance 4v(1+sin(a—n/2)),
where « is the angle PQR (Figure 8).

R Q

FIGURES8. The image of a trapezoid PQRS with
three equal sides under three iterations of & (black
outline), six iterations (upside-down. gray), nine
and twelve iterations. The last of these is a trans-
late of the original trapezoid.

Proposition 4.3. Let (u,v) € U, and let {p,p’'} be the
intersection of ¥ = L,, with the diagonal z = y.



Let B be the set of contacts with ¥ of the for-
wards and backwards billiards trajectory starting at
p (Figure 5). Then (i)-(iii) in Proposition 4.1 hold
if and only if either (a) p’ € B, or (b) B contains
one of the four points where the slope of T is hor-
izontal or vertical. ‘

Proof. 1t is enough to show that B is finite if and
only if (a) or (b) hold. If B is finite, the billiards
trajectory is a closed polygonal path, symmetric
with respect to the diagonal (because of the sym-
metry of ). If the path never hits ¥ at a point
where X is parallel to either axis, it never goes back
on itself; in other words, each point of B is hit only
once per period. Since horizontal and vertical legs
alternate, B has an even number of points; by sym-
metry, p’ is one such point.

The converse is obvious, again by symmetry. O

Note that in case (a) of the proposition only every
other point of B is in the 7-orbit of p. In particular,
P’ need not be in that orbit.

(1, v) = (0.72982,0.2)

(1, v) = (0.27018,0.8)

‘>
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Example 4.4. The translation constant h has order
two if and only if C = 0, which happens on the
curves

p=-2+22/1-v+v (4.2)
and
p=2-2%/v v (4.3)

Each of these curves is symmetric with respect to
the diagonal 4 = v of U, and one is mapped to
the other by reflection in the diagonal p+ v = 1.
For points on these curves, the set B has exactly
four points (see Figure 9, left). Thus the stan-
dard (u,v)-isosceles trapezoid.is congruent to its
image under 7¢. On (4.2) this congruence is a
180° degree rotation, so that n® acts as the iden-
tity and the polypath has only a finite number
of distinct points. By contrast, on (4.3), n* is a
glide-reflection, so 78 is a translation and the cor-
responding polypath walks away (Figure 9, right).
Compare Example 4.2, where the polypath always
walks away.

........................

FIGUREY. Dynamics when h has order two (C = 0). Both pairs (s, ) correspond to the same shoe (compare
Remark 3.1). The polypath is finite or unbounded, depending on whether (u,v) satisfies (4.2) or (4.3). Each
row shows the original standard trapezoid and its image under 72 and «®.



220 Experimental Mathematics, Vol. 2 (1993), No. 3

Example 4.5. An even simpler case is when v = 0
or 4 = 0. Then the standard quadrilateral is an
isosceles triangle, and 74 acts as a rotation by twice
the apex angle . If a is an irrational multiple of =,
the polypath is dense in a circle; if it is a rational
multiple, the polypath is finite.

By perturbing an isosceles triangle T, with apex
angle a = 2w /n, where n is an integer, we can ob-
tain trapezoids with arbitrary r-period n. Specif-
ically, we fix v = 0.05 (say), and consider a stan-
dard (u,v)-isosceles trapézoid, with p close to its
value for the triangle T,,. We apply 7" to this
trapezoid, and record the lengths of its diagonals.
Then we solve numerically for the value of y that
makes the two diagonals have the same length.
This amounts to solving for the value of u that

n=3
u = 0.902063
v =0.056

w12 = — 3128191

n=>5
u=0.721556
v=0.05

720 = —.00540706 ¢

A n=7
p = 0.590282
v =0.05
— 7?8 = —.000159741 i
f n=9
p = 0.497532
v = 0.05

VARVARVAR=

738 = —6.51285107%;

L/

makes the 7-orbit of p in Proposition 4.3 have pe-
riod m = lem(n,2)/2: see Figure 10. Then wi™
acts on the trapezoid as a rigid motion, which turns
out always to be a translation, possibly trivial.

In Example 4.5, one can equally well start from an
isosceles triangle with apex angle

n
a=2r— <.

For small v, experimentation shows that one can
find a value of p such that the rotation of S! to
which 7 is conjugate has rotation number 2p/n
(expressed as a fraction of a full turn—that is, the
rotation numbers of Figure 10 are 2, 2, .., ).
This leads to the following conjecture. For every
real number r with 0 < 7 < 7 there should be a
curve K, in the lower quadrant of U (defined by

n=4

© = 0.80681

v = 0.05
78 =0

n==6

p=10.65

v=0.05

w12 = (0.292308 %

q’—“ n=8

l> 4 = 0.540106

v=10.05

_==D 7% =0

n=10

p = 0.461043
v =10.05
w

20 = _ 009724113

FIGURE 10. Somewhere near the isosceles triangle T;, with apex angle 27/n is a standard trapezoid that, like
Ty, is mapped to a translate of itself under w21m(:2), Whereas for T}, this translate coincides with the original,
this is not always so for the perturbed trapezoid. (The translation vector is indicated as a complex number.)
Note that 7 = 4 is the situation of Figure 9 (bottom), and n = 6 that of Figure 8.
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v=0.5-
/,
Ve
7/
7
7
v
e
rd
/7
7
/7
7
7
/7
/7
V4
d
v
/7
7/
7
7/
V=
0 1 111 1 1 1 1 1 1 1 1 1 1 1
p=0 24 201816 14 12 10 9 8 7 6 5 1 3 2
v=0.5-
Y/
7,
v
7
Vd
7
/7
7/
e
/7
7/
7
7/
Ve
d
7
d
e
7/
Vd
V4
/7
/7
d
0 7
d L 2 1 4 5 2 1 8310
rp=0 21 21 7 21 21 7 3 21721

FIGURE11. Curves K/, for various values of p and n.
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v < p and v+ u < 1), starting at the isosceles
triangle with apex angle 27 /r and tending toward
(,1), such that the translation map 7 has rotation
number 2r along this curve. Some of these curves
are illustrated in Figure 11. (Thecasep=1,n=3
gives one of the butterfly’s antennas.)

Obviously, the picture is the same in the other
quadrants as far as 7 is concerned, by reflection in
the lines 4 = v and p + v = 1. However, regard-
ing the asymptotic behavior of polypaths, we have
seen (see Example 4.4) that v + 4 = 1 is not a
symmetry axis, although p = v is. We conjecture
that, above the diagonal v + & = 1, all polypaths
are unbounded, while below the diagonal, the poly-
path for a pair (i, ) not on a rational curve K/,
is dense on a bounded curve, while a polypath for
(i, v) € K,/ either is finite or walks away, depend-
ing on p/n.
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