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We study hypersurfaces moving under flow that depends on the
mean curvature. The approach is based on a numerical tech-
nique that embeds the evolving hypersurface as the zero level
set of a family of evolving surfaces. In this setting, the resulting
partial differential equation for the motion of the level set func-
tion may be solved by using numerical techniques borrowed
from hyperbolic conservation laws.

This technique is applied to several problems: the evolution
of a dumbbell, and related many-armed surfaces, collapsing
under mean curvature; the construction of a minimal surface
attached to a given one-dimensional wire frame in R3, and,
more generally, the construction of surfaces whose mean cur-
vature is a prescribed function of position; the motion of curves
on two-manifolds under flow that depends on geodesic curva-
ture.

Some experiments involving flow controlled by Gaussian cur-
vature are also included.

1. INTRODUCTION

We study the motion of hypersurfaces under flow
that depends on the mean curvature. The main
tool is a numerical technique, introduced in [Osher
and Sethian 1988] and reviewed in Section 2, that
follows the evolving hypersurface by regarding it
as the zero level set of a time-dependent function.
The resulting partial differential equations for the
motion of the level set function may be solved by
using numerical techniques borrowed from hyper-
bolic conservation laws. The advantage of this
approach is that sharp corners and cusps are ac-
curately tracked, and topological changes in the
evolving hypersurface are handled naturally with
no special attention.
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Starting from this “level set approach” to prop-
agating interfaces, this paper extends the technol-
ogy in several directions. In Section 3.1 we study
the collapse of a surface under motion by mean
curvature. In [Sethian 1989] it was shown exper-
imentally that the handle of a dumbbell pinches
off, splitting the dumbbell into two surfaces, each
of which collapses to a point. Here we show that an
extension of this problem produces an interesting
result: a multi-armed dumbbell leaves a separate,
residual closed object at the center after the singu-
larity forms. We verify this by studying a series of
similar numerical problems, each showing this de-
tached surface. In Section 3.2 we briefly consider
flow under Gaussian curvature.

In Section 4 we use the level set approach to
generate minimal surfaces attached to a given one-
dimensional closed curve (wire frame) in R*. We
construct a surface passing through the given curve
and view it as the zero level set of a higher-dimen-
sional function. We then evolve the mean curva-
ture equation for this function, producing a min-
imal surface as the final limiting state. We use
this technique to study the minimal surface span-
ning two parallel rings close to one another, and
compare the result to the known exact solution,
the catenoid. We then pull the rings apart and re-
peat the experiment; in this case the surface must
pinch and break (change topology), the final con-
figuration being two disks. We consider other wire
frames as well.

In Section 5 we compute surfaces of constant
nonzero mean curvature by adding a hyperbolic
component to the partial differential equation de-
scribing the flow. As examples, we compute cat-
enoid-like surfaces of a variety of nonzero curva-
tures. We also extend the level set formulation
to the computation of surfaces of any prescribed
function of the curvature.

Finally, Section 6 generalizes the curvature flow
algorithm to curves on surfaces in R3, the speed
being made to depend on the geodesic curvature of
the curve. We test the flow for curves on a cube,
a sphere, and a torus. The techniques used for

computing minimal surfaces can be adapted to this
setting, creating an algorithm for computing the
geodesics of a manifold.

In summary, this paper extends and applies the
level set approach to complex surfaces, flows un-
der Gaussian curvature, computation of surfaces
of nonconstant curvature, and geodesics on man-
ifolds. We hope that some of the complex and
subtle phenomena exposed in this paper may lead
to further conjectures and better understanding of
curvature-driven flow.

This article first appeared as a technical report
of the Center for Pure and Applied Mathematics at
Berkeley. Examples from that work contributed to
an overview report that appeared in the Compu-
tational Crystal Growers Workshop [Sethian and
Chopp 1992].

2. THE LEVEL SET FORMULATION

2.1. Equations of Motion

To begin with, we consider a one-parameter fam-
ily of closed curves v in R?, where the parame-
ter t € [0,00) is thought of as time. We assume
the motion of each point of the curve to be nor-
mal to the curve. Its speed F' may depend on
local properties such as the curvature or normal
vector, depending on the problem being modeled;
typically the curve represents the interface between
two phases. The goal is to describe 7(t), given the
initial curve «y(0) of the family.

The level set formulation of this problem [Osher
and Sethian 1988] is illustrated in Figure 1, for (%)
a circle in the zy-plane propagating outwards with
constant speed. We express v(0) as the zero set of
a function of = and y, here ry — /22 + y2, where
ro is the radius of the initial circle. Then we let
this function evolve with ¢ in the appropriate way,
obtaining a function ¢(z,y,t) such that y(t), for
each t, is still the level set of p(z,y,t) (considered
as a function of = and y).

The origins of this approach lie in [Sethian 1985;
Sethian 1987], where the role of curvature in the
speed function F' was shown to be analogous to the
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FIGURE 1. The evolution of the curve ~(t) (left) is described in terms of a function ¢ of which ~ is the zero
set (right). Here «(t) is a circle of radius ¢ + ro, and p(z,y,t) =t + 1o — /22 + y2.

role of viscosity in the corresponding hyperbolic
conservation law for the evolving slope of the curve.

In general terms, let v(0) be a closed, noninter-
secting, (N — 1)-dimensional hypersurface in R",
and construct a function p(Z,t) from RY to R such
that the level set {¢p = 0} is the front ~(¢):

y(t) = {Z € RY : p(z,t) = 0}.

To construct such a function ¢(Z,t), we must have
appropriate initial conditions ¢(Z,0) and an asso-
ciated partial differential equation for the time evo-
lution of ¢(Z,t). We can initialize ¢ by

©(z,0) = £d(z), (2.1)

where d(z) is the signed distance from z to the
initial front v(0). In order to derive the partial
differential equation for the time evolution of ¢,

consider the motion of a level set {¢(Z,t) = C}.
Let Z(t) be the trajectory of some particle located
on this level set, so that

p(z(t),t) = C

[Mulder et al. 1992]. The particle velocity 0% /0t
in the direction normal to the level set C' is
0T
. a=F
at T

where . = V/|| V|| is the normal vector. By the
chain rule,

oz
— Ve=0
Pt + at 2 ’
and substitution yields
o+ F||[Veg| =0. (2.2)
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Thus, (2.2) describes the motion of the interface
v(t) as the level set ¢ = 0. We call this the level
set formulation.

For certain speed functions, (2.2) reduces to fa-
miliar equations. For F' = 1, it becomes the eikonal
equation for a front moving with constant speed.
For F = 1 — ek, where & is the curvature of the
front, (2.2) becomes a Hamilton-Jacobi equation
with parabolic right-hand side, similar to those dis-
cussed in [Crandall and Lions 1983]. For F = k,
(2.2) reduces to the equation for mean curvature
flow.

When required, the curvature £ may be deter-
mined from the level set function ¢. For example,
in R® the mean curvature is

k=302 + 9+ ¢2) %2
X (Paa (9l + ©2) + 0yy (02 + ©02) + @22(05 + ¢5)

- 2(‘P£‘Py‘:0zy + Oyppy + <Pz<Pz<Pzz))-
(2.3)

Equation (2.2) is an Eulerian formulation for the
hypersurface propagation problem, because it is
written in terms of a fixed coordinate system in
the physical domain. This is in contrast to a more
geometry-based Lagrangian approach, in which the
motion of the hypersurface is written in terms of
a parametrization in (N — 1)-dimensional space.
There are several advantages to the Eulerian ap-
proach given in (2.2): the fixed coordinate system
avoids the numerical stability problems that plague
approximation techniques based on a parametrized
approach; topological changes are handled natu-
rally, since the level surface ¢ = 0 need not be
simply connected; finally, the formulation clearly
applies in any number of space dimensions.

This level set approach to front propagation has
been employed in a variety of investigations. In
numerical settings, it has been used to study flame
propagation [Zhu and Sethian 1992] and crystal
growth and dendrite simulation [Sethian and Strain
1992]. The theoretical underpinnings of this ap-
proach have been examined in detail in [Evans and
Spruck 1991; 1992]; for further theoretical work,

see also [Chen et al. 1991; Evans et al. 1992; Fal-
cone et al. 1990; Giga and Goto 1992].

2.2. Numerical Approximation

A successful numerical scheme to handle (2.2) will
hinge on the already mentioned link with hyper-
bolic conservation laws. As motivation, consider
the simple case of a moving front in two space di-
mensions that remains a graph as it evolves, the
initial front being the graph of a function f(z) pe-
riodic of period 1. Let y(z,t) be the height of the
propagating function at time ¢, so that y(z,0) =
f(z). The normal at (z,y) is (—y,1), and the
equation of motion becomes y, = F(k)\/1+ y2.
Using the speed function F(k) = 1 —ek, where the
curvature k equals y,, (1 + 32) /2, we get

yt_1/1+y%:€(y$

1+y2)

To construct an evolution equation for the slope
u = dy/dx, we differentiate both sides with respect
to & and substitute to obtain

b - ()

ot azViT oz

Thus, the derivative of the Hamilton—Jacobi equa-
tion with curvature-dependent right-hand side for
the changing height y(x,%) is a viscous hyperbolic
conservation law for the propagating slope u. With
this hyperbolic conservation law, an associated en-
tropy condition must be invoked to produce the
correct weak solution beyond the development of a
singularity in the evolving curvature. For details,
see [Sethian 1989].

Consequently, considerable care must be taken
in devising numerical schemes to approximate the
level set (2.2). Because a central difference ap-
proximation to the gradient produces the wrong
weak solution, we instead exploit the technology
of hyperbolic conservation laws in devising schemes
that maintain sharp corners in the evolving hyper-
surface and choose the correct, entropy-satisfying
weak solution.
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FIGURE 2.
where a(s) = 25 arctan y(s) and y(s) =

One of the easiest such schemes is a variation
of the Engquist—Osher scheme presented in [Osher
and Sethian 1988]. This scheme is upwind in or-
der to follow the characteristics at boundaries of
the computational domain. It goes as follows. De-
compose the speed function F into F = F,4 + Fp,
where F5 is treated as the hyperbolic component
that must be handled through upwind differenc-
ing, and Fp is a remainder that is to be approx-
imated through central differencing. Let ¢7}; be
the numerical approximation to the solution ¢ at
the point (iAz, jAy, kAz) and at time nAt, where
Az, Ay, Az is the grid spacing and At is the time
step. We can then advance from one time step to
the next as follows: to go from ¢}, to et add

ijk
FA At (min(D;wijk, 0)2 + maX(D:(pijka 0)2
+ min(D; gijx, 0)? + max(D; gy, 0)?
+ min(D; @, 0)2 + maX(D:‘Pijk’ 0)2) i
+ At Fp||Vol. @4

00008

FIGURE 3.

U -

Spiral collapsing under F(x) = —&. The initial curve is (e ¥() + .05 cos27s)(cosa(s),sina(s)),
.bsin27ws + 1. The grid is 200 x 200.

Here D_ refers to the backward difference in the
z-direction, and the other difference operators are
defined similarly.

2.3. Examples

Figure 2 shows the motion of a closed spiral in
two dimensions collapsing under its own curvature:
F(k) = —k. Grayson [1987] has shown that any
nonintersecting closed curve must collapse smooth-
ly to a circle; see also [Gage 1983; 1984; Gage and
Hamilton 1986].

Note that the calculation follows a family of spi-
rals lying on the higher-dimensional surface. The
particular front corresponding to the propagating
curve vanishes when the graph of ¢ moves entirely
above the zy-plane, that is, when ¢ > 0. This
illustrates the point about changes in the topology
of the front being handled naturally.

Now if we let the same spiral evolve with speed
F(k) = 1 — ek, with ¢ = 0.1, the evolution is
quite different, as shown in Figure 3. Here the
entropy condition is needed in order to account for
the change in topology as the front burns together.

Spiral “flame” spreading under F'(k) = 1 — .1x. The initial curve (not shown) and the grid are

the same as in Figure 2. As the spiral expands, it separates into two flames (boundary components) one
propagating outwards and one inwards. The inner front collapses and disappears, and all that remains is the

outer front, which asymptotically approaches a circle.
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3. SINGULARITY FORMATION IN CURVATURE FLOW

3.1. Collapsing Dumbbells under Mean Curvature Flow

This section studies singularity formation of sur-
faces in three-space propagating under mean cur-
vature. Such flows were treated theoretically in
[Brakke 1992; Grayson 1989; Huisken 1984|, while
[Brakke 1978] includes numerical calculations based
on a marker Lagrangian approach.

A well-known example is the collapse of a dumb-
bell [Sethian 1989]. Figure 4 shows the evolution
of the cross-section of a dumbbell collapsing under
its mean curvature (F (k) = —k).

FIGURE 4.

Cross-section of rotationally symmet-
ric dumbbell, collapsing under the action of mean
curvature. The handle pinches off, separating the
surface into two pieces, which continue to shrink
and eventually vanish. The grid is 214 x 72 x 72,

An extension of this problem can be seen in Fig-
ure 5, where a periodic link of dumbbells is consid-
ered. As can be seen from the figures, each handle
pinches off and breaks, leaving a collection of sepa-
rate periodic closed surfaces that each collapse into
a sphere.

A different picture emerges if we consider many-
armed dumbbells. The left column of Figure 6
shows a three-armed dumbbell. As this surface
collapses under its mean curvature, the three han-
dles pinch off, leaving a separate closed surface in
the center. This “pillow” occurs because the mean
curvature of each handle is larger than the saddle
joints in the webbing between the spikes. Once this
pillow separates off, it quickly collapses to a point.

More pronounced versions, involving dumbbells
with four and six arms, are shown in the other two
columns of Figure 6. Once again, a residual pillow
separates off in the center and collapses smoothly
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FIGURE 5. Collapse of a dumbbell string under
mean curvature. The snapshots are taken at t = 0,
0.35, 0.355 and 0.655.

through a spherical shape to a point. The sepa-
rated pillow is larger because the webbing between
the arms collapses slower as the number of arms
increases. For the six-armed dumbbell, the pillow
is almost the same size as the collapsing end balls.

To verify that the appearance of the central pil-
low is not a numerical artifact, we compared its
behavior as the grid was refined. The following ta-
ble lists the diagonal span and the volume of the
pillow as soon as it detaches itself. It is apparent
that the shape and dimensions are essentially inde-
pendent of the grid size, and so should be preserved
under passage to the limit.

grid size diagonal | volume
30 x 30 x 10 | .35012 | .00863
46 x 46 x 16 | .34105 | .00964
61 x 61 x 60 | .35181 | .01058
61 x 61 x 61 | .35214 | .01063

As a final demonstration of this process, Fig-
ures 7 and 8 show the collapse of lattices of tubes.
The experiment was run with periodic boundary
conditions, so each figure represents one section
of an infinite lattice. When the tubes have small
diameter (Figure 7), they collapse, while pillows
emerge at their intersections. The pillows then
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FIGURE 6. Collapse of many-armed dumbbells under mean curvature.
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FIGURE?7. Evolution of a lattice of thin tubes, showing the emergence of pillows at the intersections, while the
tubes pinch off. The snapshots are taken at ¢ = 0, 0.385, 0.405 and 0.455.

FIGURE 8. Evolution of a lattice of thick tubes, showing the emergence of pillows complementary to those of
Figure 7.
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FIGURE 9. Collapse of a twisted test tube. On the left, the initial surface is shown opaque; on the right, the
evolution is shown using transparency (darker shades indicate more sheets across the line of sight). The inner
wall of the tube shrinks faster than the outer one, and withdraws to the rightmost edge, leading to the shape
on the lower right. This shape will continue to collapse while becoming more spherical.

quickly evolve towards spherical shapes and finally
collapse too. In contrast, when the tubes are thick
(Figure 8), pillows appear in the holes of the lat-
tice, as the evolving surface collapses around them.

Finally, Figure 9 shows a three-dimensional ver-
sion of the spiral of Figure 2, collapsing under mean
curvature. The initial surface is homeomorphic to
a sphere: the region it bounds looks like a twisted
test tube, the opening on the right extending al-
most all the way through the object. The inner
and outer walls of the tube are separated by only
a short distance.

3.2. Collapsing Surfaces under Gaussian Curvature Flow

As a variation on the above study, we can use the
Gaussian curvature instead of the mean curvature
to control the flow. The expression of the Gaussian
curvature in terms of the level set function ¢ is

2(pz90y((pzzsoyz - (sz(PZZ) + (PmZ(QOZ + <P§) +e
(¥ + ¢ + ©2)?

b

the ellipses representing four terms obtained from
the two preceding ones by cyclic permutation of
the indices.

For a closed, convex surface flowing under this
type of flow, the sign of the Gaussian curvature will
not change, and the surface should collapse. This
is illustrated in Figure 10; see also [Oliker 1991].
The sharply curved regions move in quickly, since
they are regions of high Gaussian curvature, and
the surface moves towards a spheroidal shape.

For nonconvex closed surfaces, the situation is
more complicated, because the Gaussian curvature
is the product of the two principle curvatures. In
general, the problem acts like the backwards heat
equation, and goes unstable in most cases. We il-
lustrate with two examples. In Figure 11, a very
slightly depressed dumbbell is shown. The balls
have radius .5, while the inner handle has radius
.45. The distance between the centers of the two
end balls is 2. Because the variation away from
a cylindrical shape is small, the strong positive
Gaussian curvature on the ends pulls the surface
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FIGURE 10. Evolution of a convex surface under Gaussian curvature.

FIGURE 11. Evolution of a slightly nonconvex surface under Gaussian curvature.
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FIGURE 12. Evolution of a more nonconvex surface under Gaussian curvature.

inwards, and it seems that the calculation remains
stable and the surface collapses. In contrast, Fig-
ure 12 shows the evolution of two spheres glued to-
gether by means of a narrow connecting ring. The
Gaussian curvature along the edges of the ring is
initially large and negative. This carries the inden-
tation area outwards, and instability develops.

4. CONSTRUCTION OF MINIMAL SURFACES

In this section we use the level set formulation
to construct minimal surfaces. Consider a closed
curve I' : [0,1] — R3®. The goal is to construct a
membrane with boundary I' and mean curvature
Z€ero.

Let S(0) be some initial surface whose boundary
is I". Let S(t) be the family of surfaces obtained by
allowing S(0) to evolve under mean curvature, sub-
ject to the constraint that the boundary remains I'
for all time ¢. Assuming this family has a limit S

as t — oo, we can expect S to be a minimal surface
for the boundary I'.

Thus, given an initial surface S(0) going through
I', we construct a family of neighboring surfaces by
viewing S(0) as the zero level set of some function
@ over all of R®. Using the level set equation (2.2),
we evolve @ according to the speed law F'(k) = —k.
Then the minimal surface S will be given by

S = tlim {Z : p(z,t) =0}

The challenge with this approach is to ensure that
the evolving zero level set always remains attached
to the boundary I'. This is accomplished by cre-
ating a set of boundary conditions on those grid
points closest to the wire frame, and linking to-
gether the neighboring values of ¢ to force the level
set ¢ = 0 to go through I'. The underlying idea
is most easily explained through a one-dimensional
example. We follow the discussion in [Chopp 1993].
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Consider the simple problem of finding a curve
of minimal length between two points A and B
in the plane, using the level set approach. We
must ensure that the function ¢ : R? — R sat-
isfies ¢(A,t) = ¢(B,t) = 0 for all t. However, we
only have control over ¢ at the points of the chosen
mesh. To ensure, for example, that ¢(A,t) =0, we
express ¢(A,t) as a linear combination of values of
¢ at adjacent mesh points, and enforce the condi-
tion that this combination must vanish. Thus, if A
lies exactly halfway between two neighboring mesh
points g and ¢', we require that ¢(g,t) = —p(g’,t)
for all . One of g, ¢’ is chosen to be an indepen-
dent point; the other is a dependent point, that is,
the value of ¢ there is determined by the value of
¢ at the other mesh point.

In general, the boundary conditions will be rep-
resented as an equation of the form

©(9ga,1) ©(9i1)
<P(9‘d,2) 4 @(!%m) ’
90(9;1,m) @(éi,n)

where the g4 are the mesh points declared depen-
dent, the g; , are the mesh points declared indepen-
dent, and A is an appropriate m X n matrix. A is
determined from the chosen mesh and wire frame,
and hence its determination, and the choice of de-
pendent and independent mesh points, need only
be made once, at the beginning of the calculation.
This links the set of all dependent points in terms
of the set of all independent points, in such a way
that the level set ¢ = 0 is forced to pass through
the wire frame. Details of the automatic technique
for generating this list of boundary conditions may
be found in [Chopp 1993].

There is one final issue that comes into play in
the evolution of the level set function ¢ towards a
minimal surface. The above set of boundary con-
ditions only constrains the zero set of ¢. Thus
the other level sets are free to move at will, which
means that they may crowd together on one side
of the zero set, while on the other side they may

pull away. This causes numerical difficulties in the
evaluation of derivatives over such a steep gradi-
ent. A reinitialization procedure is used to remedy
this; after a given number of time steps, the zero
set is computed, and the function ¢ is reinitialized
using the signed distance function (2.1).

As a test example, we compute the minimal sur-
face spanning two equal rings parallel to the yz-
plane and centered at two points of the x-axis sym-
metric about the origin. The exact solution to this
problem, if it exists, is a piece of the catenoid

r(z) = acosh(z/a),

where r(z) is the radius of the section parallel to
the yz-plane and at distance x from the origin,
and a is the radius of the section by the yz-plane.
Suppose the rings have radius R and are located at
+b on the z-axis. Then a satisfies R = a cosh(b/a).
Now, for R fixed, b = aarccosh(R/a) is a concave
function of a that vanishes at a = 0 and a = 1; let
its maximum be b,,,«. If the distance between the
rings is less than 2b,,,,, there are two solutions for
a and thus two catenoid solutions, one stable and
one unstable. For rings exactly 2b,.. apart, there
is only one solution. For rings more than 2b,,
apart, there is no catenoid solution.

Figure 13 shows various views of the solution
with R = 0.5 and b = .277259, obtained from a
cylindrical initial surface. Figure 14 shows the evo-
lution of the same initial surface when the rings are
far apart: the middle pinches off and the surface
splits into two, each of which quickly collapses to a
disk. (A disk spanning each ring is indeed a mini-
mal surface for this problem.)

Figure 15 shows the breakup of a surface that
spans six squares, each pair being separated by a
different distance. More complex examples of min-
imal surfaces are given in [Chopp 1993].

These examples illustrate one of the virtues of
the level set approach. No special cutting or ad hoc
decisions are employed to decide when to break the
surface. Instead, the characterization of the zero
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FIGURE 13. Catenoid spanning rings of radius .5 and separated by the distance 2 x .277259. The initial
approximation was a cylinder. The mesh used had step 0.025 along each coordinate, and its size was 27 x 47 x 47.

0 00 00

FIGURE 14. When the rings are further apart, a catenoid solution does not exist; instead the initial cylinder
pinches in the middle and splits. Times shown are ¢t = 0, 0.2, 0.41, 0.42 and 0.50.

FIGURE 15. Evolution of surface spanning six squares; the initial stage (not shown) is the union of three
cylinders with square cross-sections. Each square has side length .5. On the z-axis, the squares are located
at +0.375, on the y-axis at +0.775, and on the z-axis at £1.275. The different distances cause the surface to
break at three different times. The snapshots are taken at times ¢ = 0.01, 0.03, 0.04, 0.06, 0.10 and 0.13.
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level set as but one member of a family of flowing
surfaces allows this smooth transition.

5. EXTENSIONS TO SURFACES OF PRESCRIBED CUR-
VATURE

5.1. Surfaces of Constant Mean Curvature

The above technique can be extended to produce
surfaces of constant but nonzero mean curvature.
To do so requires further inspection of the sug-
gestive example of a front propagating with speed
F(k) =1 — ek. Suppose that ¢ = 1, and consider
the evolution of the partial differential equation

pr = (1—r)|[Vell,

where again the mean curvature & is given by (2.3).
Furthermore, consider initial data given by

o(x,y,2,0) = (2 +y° +2°)1? —1

The zero set is the sphere of radius one, which re-
mains fixed under the motion F(k) = 1 — k. All
level surfaces inside the unit sphere have mean
curvature greater than one, and hence propagate
inwards, while all level surfaces outside the unit
sphere have mean curvature less than one, and
hence propagate outwards. Thus, the level sets on
either side of the zero set pull apart.

If one were to apply the level set algorithm in free
space, the gradient ||V|| would smooth out to zero
along the unit sphere surface, and this eventually

causes numerical difficulties. However, the reini-
tialization process described earlier can be used to
periodically relabel level sets, thus renormalizing
IVl

Thus, in order to construct a surface of constant
curvature kg, we start with any initial surface pass-
ing through the initial wire frame and allow it to
propagate with speed

F(k) = ko — K.

Here, as before, the “constant advection term” &
is taken as the hyperbolic component Fy in 2.4,
and treated using the entropy-satisfying upwind
difference solver, while the parabolic term & is as-
signed to Fg, and is approximated using central
differences.

Figure 16 shows the results of applying this tech-
nique to the “catenoid” problem. For two fixed
boundary rings, various values of the mean curva-
ture ko are prescribed; there is a stable connected
surface of that curvature spanning both rings if kg
is not too negative or too positive. Note that the
signs of the principal curvatures (of which the mean
curvature is the average) take into account the ori-
entation of the surface; thus a pair of spherical caps
spanning the rings, bulging in if Ky > 0 and out if
ko < 0, form a solution. When kg is very nega-
tive and there is no connected solution, the system
tends toward this configuration, as shown by the
last two images in Figure 16.

/ﬁ}0=25 [{0:1 /4/0:0

FIGURE 16.

Ko = —0.33 Rg = —0.35 Rg = -1

Surfaces of constant mean curvature kg with fixed boundary, obtained by evolution of a cylindrical

initial surface under the action of F(k) = kg — k. The rings have diameter 1 and the distance between them is
.61. The exact solution for ko = 1 is the initial cylinder itself; the slight bowing is due to the relatively coarse
40 x 40 x 40 mesh. Note the abrupt change in regime somewhere around ko = —0.34.
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FIGURE 17.

5.2. Surfaces of Non-Constant Mean Curvature

We now extend the technique to allow the calcu-
lation of surfaces with curvature a function of po-
sition. Suppose we wish to find a surface passing
through a given wire frame and having mean curva-
ture ko(Z), where kg is now a prescribed function
R* — R. Using the above approach, we simply
evolve the initial zero surface with speed

F(k) = ko(Z) — k.

As an example, we construct the surface spanning
two rings and having curvature depending on the
z-coordinate: kg = 10 cos 10z. Figure 17 shows the
wavy surface obtained.

6. GEODESIC CURVATURE FLOW

The curvature flow algorithm can be generalized
to more complicated two-dimensional spaces. For
example, we may let the level set function ¢ be de-
fined on a differentiable two-manifold in R® with
speed depending on geodesic curvature. By re-
stricting ¢ to coordinate patches, one can study
single curves on non-simply connected manifolds
such as a torus. The fixed boundary condition
techniques for minimal surfaces can also be applied
here. In this case, a curve with fixed endpoints
should flow towards a curve of zero geodesic cur-
vature, that is, a geodesic of the manifold.

Surface of nonconstant prescribed curvature, k9 = 10 cos 10z. The grid size is 40 x 75 x 75, with
step 0.02. The rings are located at £0.305, with radius .5. After 100 time steps, the change in ¢ is less than
10~° per time step of size 10~%, indicating convergence.

6.1. Equations of Motion

Consider a two-dimensional manifold M C R3. Let
v(t) € M, for t € [0,00), be a family of closed
curves moving with speed F(k,) in the direction
normal to itself on M. Here, x, is the geodesic cur-
vature of y(t) on M. Let g;(s) be the parametriza-
tion of y(t) by arc length.

First assume that M is orientable. In this case,
the unit normal map N is continuous on M. At
every point g,(s), a natural coordinate system for
T is given by the pair of vectors (g;(s), N xg;(s)).
Thus, for any point z(t) € (), the velocity under
this flow is

- (N x g;) = F(ry).
The expression for the geodesic curvature is
kg = (N X g;)-g,.

Note that a change in sign of the unit normal N
results in a corresponding change in sign of x,. If
F'is an odd function, & is independent of the choice
of N. Otherwise, the choice of the normal changes
the flow. Therefore, if M is not orientable, only
odd speed functions F' are allowed. The algorithm
presented here also requires that F' be an odd func-
tion when M is not simply connected.

Assume that M = f*(0), where f : R* — R
We break the manifold into a collection of coor-
dinate maps {(U;,7;)} such that M = |JU;, each
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set U; is simply connected, and 7; : U; — V; C R?
is a homeomorphism. The computing is done on
the collection of sets V; = m;(U;). We define the
function ®; : V; — R by ®;(z,t) = o(m; *(z),t), so
that ¢(z,t)|y, = ®;(mi(x),t).

In order to write the equations of motion in the
level set representation, we must compute a ve-
locity field on the entire manifold M. We compute
the velocity field on each coordinate patch and then
check that it is consistent in regions of overlap. For
this section, assume ¢ = p|y,. At any point € U;,
the velocity vector will be normal to the level set
of ¢ containing z, will point towards the center
of curvature in the tangent space T(z), and will
have length F(k,).

The geodesic curvature of the curve ¢ (C) in
terms of ¢ is

o= 2 (o))

where n = Vo/||Vy|, N = Vf/|IVf|, and
_ VfxVp
"V X Vel
The direction of the velocity vector is the same as
the orthogonal projection of Vi onto Ty, so
n—(n-N)N
In — (n- N)N||

v=TXN =

and the velocity at £ on M is described by
&-v=F(ky).

The computing is done on the sets 7;(U;), so we
want the equation of motion in terms of ®;. For a
point = € m;(U;), we have

& -1 = F(kg) Dmi(v) - n,

where n = V®,/||V®,|| is the unit normal to the
level set containing ®;(z). Setting

F(kg) = F(rg) Dmi(v) - Vi /[[ V],
the equation of motion in terms of ®; is given by

0= (®;)¢ + F(r,) || V. 6.1)

6.2. Geodesic Curvature Algorithm

Putting everything together, the general algorithm
for curvature flow on a manifold can be stated as
follows:

1. Choose coordinate patches and maps to repre-
sent the manifold M.

2. Initialize the functions ®; on each coordinate
patch.

3. Compute the boundary values in each coordi-
nate patch based on overlap values with neigh-
boring patches.

4. Advance each ®; in time according to (6.1).

5. Go to step 3.

For any t, the curve y(¢) can be reconstructed from

A1) = w7 (@77(0,0) 62)

We now discuss the details of each of these steps.

Given a manifold M, it is important to choose
simply connected coordinate patches {U;,m;}, so
that any simple curve can be represented by a level
set of a function ¢ on U;. The equations given
above are for the case when 7; maps onto a rectan-
gular coordinate system in R?. In the overlap sets,
where U; N U; # @, there must be at least three
grid points in the overlap between V; = m;(U;) and
V;—m;(U;). The computation of the boundary con-
ditions for each V; is made easier if the grid points
and projection maps m; are chosen so that grid
points are compatible, that is, if z € V; is a grid
point in V; and 7} ' (z) € U; N Uj, then m;(7; *(x))
is also a grid point in Vj.

For example, let M be a torus of revolution with
large radius R and small radius 7 symmetric about
the z-axis. Omne choice of coordinate patches is
shown in Figure 18: in symbols,

U= {(z,9,2) : Va2 +y> > R —¢e,2 > —¢},
Uy = {(2,9,2) : V22 + 2 < R+ e,z > —¢},
Us = {(z,y,2) : V22 + > < R — ¢,z < €},
Up={(z,y,2) : V22 + 9> > R— ¢,z < ¢},
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PROE

FIGURE 18. Example of coordinate patches on a torus.

where each 7; maps U; to

i T m T
Vi=(-3-egte)x (-3 -egte)
in the natural way. Then a uniform rectangular
grid is placed on the closure of V;.

The objective when initializing the functions ®;
is to satisfy (6.2). We use the signed distance func-
tion, where the distance is computed on the mani-
fold. The sign of ®; is assigned on each coordinate
patch independently; thus

|@i(mi(2))] = [@(m; (z))]

at each grid point x € U;NU;. This is important for
ensuring consistent motion in the overlap regions.
If F is not an odd function, we must additionally
require that ®,(m;(x)) = ®,(m;(z)).

The evolution on each patch V; is computed on
the interior grid points of V;. The values at the
boundary are taken from neighboring patches. Let
x be a grid point on the boundary of V;. By con-
struction, m; !(z) is in the interior of some other
patch U;. Therefore ®;(z) = £®;(m;(r; '())),
where the sign is positive if ®; om; and ®; om; have
same sign in the interior of U; N U;, and negative
otherwise.

The overlap of two coordinate patches may be
disconnected. The sign convention must be deter-
mined individually for each connected component.
For example, the two outer patches in Figure 18
overlap in two components. It is possible for both
patches to share the same sign convention in one
overlap while having the opposite convention in the
other overlap. This property makes it possible to

model a single curve on a torus as a level set of a
function within each coordinate patch.

Following the argument in Section 5.1, we break
F into constant and nonconstant parts, F(k) =
F), — Fy(k). Equation (6.1) then becomes

D, + Fi||V®;| = Falsy)||VE|.

As in section 2, upwind techniques from hyper-
bolic conservation laws are used to compute the
left-hand side and central differences are used on
the right-hand side.

6.3. Examples

We begin with flow on a sphere. The sphere is
constructed with a single coordinate patch param-
etrized by spherical coordinates. The gap in Fig-
ure 19 shows the boundary of the coordinate patch.
The picture on the left shows an initial circle just
smaller than a great circle shrinking to a point at
the top. The one on the right shows a periodic
curve, symmetric with respect to the equator, col-
lapsing to the equator.

Next, we show flow on a torus. If the torus is
constructed with a single coordinate patch, then it
is not possible to model a single noncontractible
curve using a level set approach. For curves which
are not too complicated, it is possible to construct
a second curve to allow for the level set formula-
tion. In figure 20, a single coordinate patch is used
and the flow of two nonintersecting curves is com-
puted.

However, if multiple coordinate patches are used,
a required sign change can be handled by the com-
munications between patches. We can then model
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FIGURE 19. Curves evolving on a sphere under the action of geodesic curvature. Left: a circle (other than a
great circle) shrinks to a point. Right: a periodic curve symmetric with respect to the equator converges to the

equator.

FIGURE 20. Two curves, forming the zero set of a
function on a torus parametrized by a single rect-
angular patch, flow under geodesic curvature.

a single curve on a torus. Figure 21 shows such
a curve. The coordinate patches are those of Fig-
ure 18.

Subsets of manifolds can also be used. Figure 22
shows two curves flowing on a helicoid. Another
example is when the submanifold is the graph of a
function f : R* — R. In Figure 23 we use f(z,y) =
2cos(2v2? + y?).

Finally, we show several flows on a cube. The
cube has one coordinate patch for each face. The

FIGURE 21. A single curve flows under geodesic
curve on a torus parametrized by four rectangular
patches.

first experiment involves comparing the flow on a
cube with sharp edges to the flow on one with in-
creasingly smoother edges: see Figure 24. The ini-
tial curve is flatter on the front faces than on the
top. We see that the flow is similar in all cases,
with the curve collapsing to a point near the cor-
ner. Two other flows on a cube are shown in Fig-
ure 25.
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FIGURE 22. Curves evolving under geodesic curvature on a helicoid. Left: an oval shrinks to a point. Right: a
periodic curve flowing towards the central axis of the helicoid. Boundary conditions are periodic right and left:
one-sided derivatives on the sides of a single rectangular coordinate patch.

FIGURE 23. On the graph of 2cos(24/z2 + y2), a
straight line slightly off-center flows away from the
center over a ridge. One-sided derivatives are used
for all boundaries.
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NOTE

A video (VHS format) of the evolving surfaces is avail-
able from the second author.
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