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We study hypersurfaces moving under flow that depends on the

mean curvature. The approach is based on a numerical tech-

nique that embeds the evolving hypersurface as the zero level

set of a family of evolving surfaces. In this setting, the resulting

partial differential equation for the motion of the level set func-

tion may be solved by using numerical techniques borrowed

from hyperbolic conservation laws.

This technique is applied to several problems: the evolution

of a dumbbell, and related many-armed surfaces, collapsing

under mean curvature; the construction of a minimal surface

attached to a given one-dimensional wire frame in R 3 , and,

more generally, the construction of surfaces whose mean cur-

vature is a prescribed function of position; the motion of curves

on two-manifolds under flow that depends on geodesic curva-

ture.

Some experiments involving flow controlled by Gaussian cur-

vature are also included.

1. INTRODUCTIONWe study the motion of hypersurfaces under 
owthat depends on the mean curvature. The maintool is a numerical technique, introduced in [Osherand Sethian 1988] and reviewed in Section 2, thatfollows the evolving hypersurface by regarding itas the zero level set of a time-dependent function.The resulting partial di�erential equations for themotion of the level set function may be solved byusing numerical techniques borrowed from hyper-bolic conservation laws. The advantage of thisapproach is that sharp corners and cusps are ac-curately tracked, and topological changes in theevolving hypersurface are handled naturally withno special attention.
c
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Starting from this \level set approach" to prop-agating interfaces, this paper extends the technol-ogy in several directions. In Section 3.1 we studythe collapse of a surface under motion by meancurvature. In [Sethian 1989] it was shown exper-imentally that the handle of a dumbbell pincheso�, splitting the dumbbell into two surfaces, eachof which collapses to a point. Here we show that anextension of this problem produces an interestingresult: a multi-armed dumbbell leaves a separate,residual closed object at the center after the singu-larity forms. We verify this by studying a series ofsimilar numerical problems, each showing this de-tached surface. In Section 3.2 we brie
y consider
ow under Gaussian curvature.In Section 4 we use the level set approach togenerate minimal surfaces attached to a given one-dimensional closed curve (wire frame) in R 3 . Weconstruct a surface passing through the given curveand view it as the zero level set of a higher-dimen-sional function. We then evolve the mean curva-ture equation for this function, producing a min-imal surface as the �nal limiting state. We usethis technique to study the minimal surface span-ning two parallel rings close to one another, andcompare the result to the known exact solution,the catenoid. We then pull the rings apart and re-peat the experiment; in this case the surface mustpinch and break (change topology), the �nal con-�guration being two disks. We consider other wireframes as well.In Section 5 we compute surfaces of constantnonzero mean curvature by adding a hyperboliccomponent to the partial di�erential equation de-scribing the 
ow. As examples, we compute cat-enoid-like surfaces of a variety of nonzero curva-tures. We also extend the level set formulationto the computation of surfaces of any prescribedfunction of the curvature.Finally, Section 6 generalizes the curvature 
owalgorithm to curves on surfaces in R 3 , the speedbeing made to depend on the geodesic curvature ofthe curve. We test the 
ow for curves on a cube,a sphere, and a torus. The techniques used for

computing minimal surfaces can be adapted to thissetting, creating an algorithm for computing thegeodesics of a manifold.In summary, this paper extends and applies thelevel set approach to complex surfaces, 
ows un-der Gaussian curvature, computation of surfacesof nonconstant curvature, and geodesics on man-ifolds. We hope that some of the complex andsubtle phenomena exposed in this paper may leadto further conjectures and better understanding ofcurvature-driven 
ow.This article �rst appeared as a technical reportof the Center for Pure and Applied Mathematics atBerkeley. Examples from that work contributed toan overview report that appeared in the Compu-tational Crystal Growers Workshop [Sethian andChopp 1992].
2. THE LEVEL SET FORMULATION

2.1. Equations of MotionTo begin with, we consider a one-parameter fam-ily of closed curves 
 in R 2 , where the parame-ter t 2 [0;1) is thought of as time. We assumethe motion of each point of the curve to be nor-mal to the curve. Its speed F may depend onlocal properties such as the curvature or normalvector, depending on the problem being modeled;typically the curve represents the interface betweentwo phases. The goal is to describe 
(t), given theinitial curve 
(0) of the family.The level set formulation of this problem [Osherand Sethian 1988] is illustrated in Figure 1, for 
(t)a circle in the xy-plane propagating outwards withconstant speed. We express 
(0) as the zero set ofa function of x and y, here r0 � px2 + y2, wherer0 is the radius of the initial circle. Then we letthis function evolve with t in the appropriate way,obtaining a function '(x; y; t) such that 
(t), foreach t, is still the level set of '(x; y; t) (consideredas a function of x and y).The origins of this approach lie in [Sethian 1985;Sethian 1987], where the role of curvature in thespeed function F was shown to be analogous to the
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FIGURE 1. The evolution of the curve 
(t) (left) is described in terms of a function ' of which 
 is the zeroset (right). Here 
(t) is a circle of radius t+ r0, and '(x; y; t) = t+ r0 �px2 + y2.role of viscosity in the corresponding hyperbolicconservation law for the evolving slope of the curve.In general terms, let 
(0) be a closed, noninter-secting, (N � 1)-dimensional hypersurface in R n ,and construct a function '(�x; t) from RN to R suchthat the level set f' = 0g is the front 
(t):
(t) = f�x 2 RN : '(�x; t) = 0g:To construct such a function '(�x; t), we must haveappropriate initial conditions '(�x; 0) and an asso-ciated partial di�erential equation for the time evo-lution of '(�x; t). We can initialize ' by'(�x; 0) = �d(�x); (2.1)where d(�x) is the signed distance from �x to theinitial front 
(0). In order to derive the partialdi�erential equation for the time evolution of ',

consider the motion of a level set f'(�x; t) = Cg.Let �x(t) be the trajectory of some particle locatedon this level set, so that'(�x(t); t) = C[Mulder et al. 1992]. The particle velocity @�x=@tin the direction normal to the level set C is@�x@t � �n = F;where �n = r'=kr'k is the normal vector. By thechain rule, 't + @�x@t � r' = 0;and substitution yields't + F kr'k = 0: (2.2)
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Thus, (2.2) describes the motion of the interface
(t) as the level set ' = 0. We call this the levelset formulation.For certain speed functions, (2.2) reduces to fa-miliar equations. For F = 1, it becomes the eikonalequation for a front moving with constant speed.For F = 1 � "�, where � is the curvature of thefront, (2.2) becomes a Hamilton{Jacobi equationwith parabolic right-hand side, similar to those dis-cussed in [Crandall and Lions 1983]. For F = �,(2.2) reduces to the equation for mean curvature
ow.When required, the curvature � may be deter-mined from the level set function '. For example,in R 3 the mean curvature is
� = 12 ('2x + '2y + '2z)�3=2� �'xx('2y + '2z) + 'yy('2x + '2z) + 'zz('2x + '2y)� 2('x'y'xy + 'y'z'yz + 'x'z'xz)�:

(2.3)Equation (2.2) is an Eulerian formulation for thehypersurface propagation problem, because it iswritten in terms of a �xed coordinate system inthe physical domain. This is in contrast to a moregeometry-based Lagrangian approach, in which themotion of the hypersurface is written in terms ofa parametrization in (N � 1)-dimensional space.There are several advantages to the Eulerian ap-proach given in (2.2): the �xed coordinate systemavoids the numerical stability problems that plagueapproximation techniques based on a parametrizedapproach; topological changes are handled natu-rally, since the level surface ' = 0 need not besimply connected; �nally, the formulation clearlyapplies in any number of space dimensions.This level set approach to front propagation hasbeen employed in a variety of investigations. Innumerical settings, it has been used to study 
amepropagation [Zhu and Sethian 1992] and crystalgrowth and dendrite simulation [Sethian and Strain1992]. The theoretical underpinnings of this ap-proach have been examined in detail in [Evans andSpruck 1991; 1992]; for further theoretical work,

see also [Chen et al. 1991; Evans et al. 1992; Fal-cone et al. 1990; Giga and Goto 1992].
2.2. Numerical ApproximationA successful numerical scheme to handle (2.2) willhinge on the already mentioned link with hyper-bolic conservation laws. As motivation, considerthe simple case of a moving front in two space di-mensions that remains a graph as it evolves, theinitial front being the graph of a function f(x) pe-riodic of period 1. Let y(x; t) be the height of thepropagating function at time t, so that y(x; 0) =f(x). The normal at (x; y) is (�yx; 1), and theequation of motion becomes yt = F (�)p1 + y2x.Using the speed function F (�) = 1�"�, where thecurvature � equals yxx(1 + y2x)�3=2, we getyt �p1 + y2x = " yxx(1 + y2x) :To construct an evolution equation for the slopeu = dy=dx, we di�erentiate both sides with respectto x and substitute to obtain@u@t � @@xp1 + u2 = " @@x�@u=@x1 + u2 �:Thus, the derivative of the Hamilton{Jacobi equa-tion with curvature-dependent right-hand side forthe changing height y(x; t) is a viscous hyperbolicconservation law for the propagating slope u. Withthis hyperbolic conservation law, an associated en-tropy condition must be invoked to produce thecorrect weak solution beyond the development of asingularity in the evolving curvature. For details,see [Sethian 1989].Consequently, considerable care must be takenin devising numerical schemes to approximate thelevel set (2.2). Because a central di�erence ap-proximation to the gradient produces the wrongweak solution, we instead exploit the technologyof hyperbolic conservation laws in devising schemesthat maintain sharp corners in the evolving hyper-surface and choose the correct, entropy-satisfyingweak solution.
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FIGURE 2. Spiral collapsing under F (�) = ��. The initial curve is (e�y(s) + :05 cos 2�s)(cos a(s); sin a(s)),where a(s) = 25 arctan y(s) and y(s) = :5 sin 2�s+ 1. The grid is 200� 200.One of the easiest such schemes is a variationof the Engquist{Osher scheme presented in [Osherand Sethian 1988]. This scheme is upwind in or-der to follow the characteristics at boundaries ofthe computational domain. It goes as follows. De-compose the speed function F into F = FA + FB,where FA is treated as the hyperbolic componentthat must be handled through upwind di�erenc-ing, and FB is a remainder that is to be approx-imated through central di�erencing. Let 'nijk bethe numerical approximation to the solution ' atthe point (i�x; j�y; k�z) and at time n�t, where�x, �y, �z is the grid spacing and �t is the timestep. We can then advance from one time step tothe next as follows: to go from 'nijk to 'n+1ijk , add
FA�t �min(D�x 'ijk; 0)2 +max(D+x 'ijk; 0)2+min(D�y 'ijk; 0)2 +max(D+y 'ijk; 0)2+min(D�z 'ijk; 0)2 +max(D+z 'ijk; 0)2�1=2+�t FBkr'k: (2.4)

Here D�x refers to the backward di�erence in thex-direction, and the other di�erence operators arede�ned similarly.
2.3. ExamplesFigure 2 shows the motion of a closed spiral intwo dimensions collapsing under its own curvature:F (�) = ��. Grayson [1987] has shown that anynonintersecting closed curve must collapse smooth-ly to a circle; see also [Gage 1983; 1984; Gage andHamilton 1986].Note that the calculation follows a family of spi-rals lying on the higher-dimensional surface. Theparticular front corresponding to the propagatingcurve vanishes when the graph of ' moves entirelyabove the xy-plane, that is, when 'nij > 0. Thisillustrates the point about changes in the topologyof the front being handled naturally.Now if we let the same spiral evolve with speedF (�) = 1 � "�, with " = 0:1, the evolution isquite di�erent, as shown in Figure 3. Here theentropy condition is needed in order to account forthe change in topology as the front burns together.

FIGURE 3. Spiral \
ame" spreading under F (�) = 1 � :1�. The initial curve (not shown) and the grid arethe same as in Figure 2. As the spiral expands, it separates into two 
ames (boundary components), onepropagating outwards and one inwards. The inner front collapses and disappears, and all that remains is theouter front, which asymptotically approaches a circle.
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3. SINGULARITY FORMATION IN CURVATURE FLOW

3.1. Collapsing Dumbbells under Mean Curvature FlowThis section studies singularity formation of sur-faces in three-space propagating under mean cur-vature. Such 
ows were treated theoretically in[Brakke 1992; Grayson 1989; Huisken 1984], while[Brakke 1978] includes numerical calculations basedon a marker Lagrangian approach.A well-known example is the collapse of a dumb-bell [Sethian 1989]. Figure 4 shows the evolutionof the cross-section of a dumbbell collapsing underits mean curvature (F (�) = ��).

FIGURE 4. Cross-section of rotationally symmet-ric dumbbell, collapsing under the action of meancurvature. The handle pinches o�, separating thesurface into two pieces, which continue to shrinkand eventually vanish. The grid is 214� 72� 72.An extension of this problem can be seen in Fig-ure 5, where a periodic link of dumbbells is consid-ered. As can be seen from the �gures, each handlepinches o� and breaks, leaving a collection of sepa-rate periodic closed surfaces that each collapse intoa sphere.A di�erent picture emerges if we consider many-armed dumbbells. The left column of Figure 6shows a three-armed dumbbell. As this surfacecollapses under its mean curvature, the three han-dles pinch o�, leaving a separate closed surface inthe center. This \pillow" occurs because the meancurvature of each handle is larger than the saddlejoints in the webbing between the spikes. Once thispillow separates o�, it quickly collapses to a point.More pronounced versions, involving dumbbellswith four and six arms, are shown in the other twocolumns of Figure 6. Once again, a residual pillowseparates o� in the center and collapses smoothly

FIGURE 5. Collapse of a dumbbell string undermean curvature. The snapshots are taken at t = 0,0:35, 0:355 and 0:655.through a spherical shape to a point. The sepa-rated pillow is larger because the webbing betweenthe arms collapses slower as the number of armsincreases. For the six-armed dumbbell, the pillowis almost the same size as the collapsing end balls.To verify that the appearance of the central pil-low is not a numerical artifact, we compared itsbehavior as the grid was re�ned. The following ta-ble lists the diagonal span and the volume of thepillow as soon as it detaches itself. It is apparentthat the shape and dimensions are essentially inde-pendent of the grid size, and so should be preservedunder passage to the limit.grid size diagonal volume30� 30� 10 :35012 :0086346� 46� 16 :34105 :0096461� 61� 60 :35181 :0105861� 61� 61 :35214 :01063
As a �nal demonstration of this process, Fig-ures 7 and 8 show the collapse of lattices of tubes.The experiment was run with periodic boundaryconditions, so each �gure represents one sectionof an in�nite lattice. When the tubes have smalldiameter (Figure 7), they collapse, while pillowsemerge at their intersections. The pillows then
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FIGURE 6. Collapse of many-armed dumbbells under mean curvature.
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FIGURE 7. Evolution of a lattice of thin tubes, showing the emergence of pillows at the intersections, while thetubes pinch o�. The snapshots are taken at t = 0, 0:385, 0:405 and 0:455.

FIGURE 8. Evolution of a lattice of thick tubes, showing the emergence of pillows complementary to those ofFigure 7.
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FIGURE 9. Collapse of a twisted test tube. On the left, the initial surface is shown opaque; on the right, theevolution is shown using transparency (darker shades indicate more sheets across the line of sight). The innerwall of the tube shrinks faster than the outer one, and withdraws to the rightmost edge, leading to the shapeon the lower right. This shape will continue to collapse while becoming more spherical.quickly evolve towards spherical shapes and �nallycollapse too. In contrast, when the tubes are thick(Figure 8), pillows appear in the holes of the lat-tice, as the evolving surface collapses around them.Finally, Figure 9 shows a three-dimensional ver-sion of the spiral of Figure 2, collapsing under meancurvature. The initial surface is homeomorphic toa sphere: the region it bounds looks like a twistedtest tube, the opening on the right extending al-most all the way through the object. The innerand outer walls of the tube are separated by onlya short distance.
3.2. Collapsing Surfaces under Gaussian Curvature FlowAs a variation on the above study, we can use theGaussian curvature instead of the mean curvatureto control the 
ow. The expression of the Gaussiancurvature in terms of the level set function ' is2'x'y('xz'yz � 'xy'zz) + 'xx('2y + '2z) + � � �('2x + '2y + '2z)2 ;

the ellipses representing four terms obtained fromthe two preceding ones by cyclic permutation ofthe indices.For a closed, convex surface 
owing under thistype of 
ow, the sign of the Gaussian curvature willnot change, and the surface should collapse. Thisis illustrated in Figure 10; see also [Oliker 1991].The sharply curved regions move in quickly, sincethey are regions of high Gaussian curvature, andthe surface moves towards a spheroidal shape.For nonconvex closed surfaces, the situation ismore complicated, because the Gaussian curvatureis the product of the two principle curvatures. Ingeneral, the problem acts like the backwards heatequation, and goes unstable in most cases. We il-lustrate with two examples. In Figure 11, a veryslightly depressed dumbbell is shown. The ballshave radius :5, while the inner handle has radius:45. The distance between the centers of the twoend balls is 2. Because the variation away froma cylindrical shape is small, the strong positiveGaussian curvature on the ends pulls the surface
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FIGURE 10. Evolution of a convex surface under Gaussian curvature.

FIGURE 11. Evolution of a slightly nonconvex surface under Gaussian curvature.
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FIGURE 12. Evolution of a more nonconvex surface under Gaussian curvature.inwards, and it seems that the calculation remainsstable and the surface collapses. In contrast, Fig-ure 12 shows the evolution of two spheres glued to-gether by means of a narrow connecting ring. TheGaussian curvature along the edges of the ring isinitially large and negative. This carries the inden-tation area outwards, and instability develops.
4. CONSTRUCTION OF MINIMAL SURFACESIn this section we use the level set formulationto construct minimal surfaces. Consider a closedcurve � : [0; 1] ! R 3 . The goal is to construct amembrane with boundary � and mean curvaturezero.Let S(0) be some initial surface whose boundaryis �. Let S(t) be the family of surfaces obtained byallowing S(0) to evolve under mean curvature, sub-ject to the constraint that the boundary remains �for all time t. Assuming this family has a limit S

as t!1, we can expect S to be a minimal surfacefor the boundary �.Thus, given an initial surface S(0) going through�, we construct a family of neighboring surfaces byviewing S(0) as the zero level set of some function' over all of R 3 . Using the level set equation (2.2),we evolve ' according to the speed law F (�) = ��.Then the minimal surface S will be given byS = limt!1f�x : '(�x; t) = 0gThe challenge with this approach is to ensure thatthe evolving zero level set always remains attachedto the boundary �. This is accomplished by cre-ating a set of boundary conditions on those gridpoints closest to the wire frame, and linking to-gether the neighboring values of ' to force the levelset ' = 0 to go through �. The underlying ideais most easily explained through a one-dimensionalexample. We follow the discussion in [Chopp 1993].
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Consider the simple problem of �nding a curveof minimal length between two points A and Bin the plane, using the level set approach. Wemust ensure that the function ' : R 2 ! R sat-is�es '(A; t) = '(B; t) = 0 for all t. However, weonly have control over ' at the points of the chosenmesh. To ensure, for example, that '(A; t) = 0, weexpress '(A; t) as a linear combination of values of' at adjacent mesh points, and enforce the condi-tion that this combination must vanish. Thus, if Alies exactly halfway between two neighboring meshpoints g and g0, we require that '(g; t) = �'(g0; t)for all t. One of g, g0 is chosen to be an indepen-dent point; the other is a dependent point, that is,the value of ' there is determined by the value of' at the other mesh point.In general, the boundary conditions will be rep-resented as an equation of the form0BBB@
'(gd;1)'(gd;2)...'(gd;m)

1CCCA = A
0BBB@

'(gi;1)'(gi;2)...'(gi;n)
1CCCA ;

where the gd;k are the mesh points declared depen-dent, the gi;k are the mesh points declared indepen-dent, and A is an appropriate m� n matrix. A isdetermined from the chosen mesh and wire frame,and hence its determination, and the choice of de-pendent and independent mesh points, need onlybe made once, at the beginning of the calculation.This links the set of all dependent points in termsof the set of all independent points, in such a waythat the level set ' = 0 is forced to pass throughthe wire frame. Details of the automatic techniquefor generating this list of boundary conditions maybe found in [Chopp 1993].There is one �nal issue that comes into play inthe evolution of the level set function ' towards aminimal surface. The above set of boundary con-ditions only constrains the zero set of '. Thusthe other level sets are free to move at will, whichmeans that they may crowd together on one sideof the zero set, while on the other side they may

pull away. This causes numerical di�culties in theevaluation of derivatives over such a steep gradi-ent. A reinitialization procedure is used to remedythis; after a given number of time steps, the zeroset is computed, and the function ' is reinitializedusing the signed distance function (2.1).As a test example, we compute the minimal sur-face spanning two equal rings parallel to the yz-plane and centered at two points of the x-axis sym-metric about the origin. The exact solution to thisproblem, if it exists, is a piece of the catenoid
r(x) = a cosh(x=a);

where r(x) is the radius of the section parallel tothe yz-plane and at distance x from the origin,and a is the radius of the section by the yz-plane.Suppose the rings have radius R and are located at�b on the x-axis. Then a satis�es R = a cosh(b=a).Now, for R �xed, b = a arccosh(R=a) is a concavefunction of a that vanishes at a = 0 and a = 1; letits maximum be bmax. If the distance between therings is less than 2bmax, there are two solutions fora and thus two catenoid solutions, one stable andone unstable. For rings exactly 2bmax apart, thereis only one solution. For rings more than 2bmaxapart, there is no catenoid solution.Figure 13 shows various views of the solutionwith R = 0:5 and b = :277259, obtained from acylindrical initial surface. Figure 14 shows the evo-lution of the same initial surface when the rings arefar apart: the middle pinches o� and the surfacesplits into two, each of which quickly collapses to adisk. (A disk spanning each ring is indeed a mini-mal surface for this problem.)Figure 15 shows the breakup of a surface thatspans six squares, each pair being separated by adi�erent distance. More complex examples of min-imal surfaces are given in [Chopp 1993].These examples illustrate one of the virtues ofthe level set approach. No special cutting or ad hocdecisions are employed to decide when to break thesurface. Instead, the characterization of the zero
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FIGURE 13. Catenoid spanning rings of radius :5 and separated by the distance 2 � :277259. The initialapproximation was a cylinder. The mesh used had step 0:025 along each coordinate, and its size was 27�47�47.

FIGURE 14. When the rings are further apart, a catenoid solution does not exist; instead the initial cylinderpinches in the middle and splits. Times shown are t = 0, 0:2, 0:41, 0:42 and 0:50.

FIGURE 15. Evolution of surface spanning six squares; the initial stage (not shown) is the union of threecylinders with square cross-sections. Each square has side length :5. On the x-axis, the squares are locatedat �0:375, on the y-axis at �0:775, and on the z-axis at �1:275. The di�erent distances cause the surface tobreak at three di�erent times. The snapshots are taken at times t = 0:01, 0:03, 0:04, 0:06, 0:10 and 0:13.
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level set as but one member of a family of 
owingsurfaces allows this smooth transition.
5. EXTENSIONS TO SURFACES OF PRESCRIBED CUR-

VATURE

5.1. Surfaces of Constant Mean CurvatureThe above technique can be extended to producesurfaces of constant but nonzero mean curvature.To do so requires further inspection of the sug-gestive example of a front propagating with speedF (�) = 1 � "�. Suppose that " = 1, and considerthe evolution of the partial di�erential equation't = (1� �)kr'k;where again the mean curvature � is given by (2.3).Furthermore, consider initial data given by'(x; y; z; 0) = (x2 + y2 + z2)1=2 � 1The zero set is the sphere of radius one, which re-mains �xed under the motion F (�) = 1 � �. Alllevel surfaces inside the unit sphere have meancurvature greater than one, and hence propagateinwards, while all level surfaces outside the unitsphere have mean curvature less than one, andhence propagate outwards. Thus, the level sets oneither side of the zero set pull apart.If one were to apply the level set algorithm in freespace, the gradient kr'k would smooth out to zeroalong the unit sphere surface, and this eventually

causes numerical di�culties. However, the reini-tialization process described earlier can be used toperiodically relabel level sets, thus renormalizingkr'k.Thus, in order to construct a surface of constantcurvature �0, we start with any initial surface pass-ing through the initial wire frame and allow it topropagate with speedF (�) = �0 � �:Here, as before, the \constant advection term" �0is taken as the hyperbolic component FA in 2.4,and treated using the entropy-satisfying upwinddi�erence solver, while the parabolic term � is as-signed to FB, and is approximated using centraldi�erences.Figure 16 shows the results of applying this tech-nique to the \catenoid" problem. For two �xedboundary rings, various values of the mean curva-ture �0 are prescribed; there is a stable connectedsurface of that curvature spanning both rings if �0is not too negative or too positive. Note that thesigns of the principal curvatures (of which the meancurvature is the average) take into account the ori-entation of the surface; thus a pair of spherical capsspanning the rings, bulging in if �0 > 0 and out if�0 < 0, form a solution. When �0 is very nega-tive and there is no connected solution, the systemtends toward this con�guration, as shown by thelast two images in Figure 16.

�0 = 2:5 �0 = 1 �0 = 0 �0 = �0:33 �0 = �0:35 �0 = �1
FIGURE 16. Surfaces of constant mean curvature �0 with �xed boundary, obtained by evolution of a cylindricalinitial surface under the action of F (�) = �0 � �. The rings have diameter 1 and the distance between them is:61. The exact solution for �0 = 1 is the initial cylinder itself; the slight bowing is due to the relatively coarse40� 40� 40 mesh. Note the abrupt change in regime somewhere around �0 = �0:34.
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FIGURE 17. Surface of nonconstant prescribed curvature, �0 = 10 cos 10x. The grid size is 40� 75� 75, withstep 0:02. The rings are located at �0:305, with radius :5. After 100 time steps, the change in ' is less than10�5 per time step of size 10�4, indicating convergence.
5.2. Surfaces of Non-Constant Mean CurvatureWe now extend the technique to allow the calcu-lation of surfaces with curvature a function of po-sition. Suppose we wish to �nd a surface passingthrough a given wire frame and having mean curva-ture �0(�x), where �0 is now a prescribed functionR 3 ! R . Using the above approach, we simplyevolve the initial zero surface with speedF (�) = �0(�x)� �:As an example, we construct the surface spanningtwo rings and having curvature depending on thex-coordinate: �0 = 10 cos 10x. Figure 17 shows thewavy surface obtained.
6. GEODESIC CURVATURE FLOWThe curvature 
ow algorithm can be generalizedto more complicated two-dimensional spaces. Forexample, we may let the level set function ' be de-�ned on a di�erentiable two-manifold in R 3 withspeed depending on geodesic curvature. By re-stricting ' to coordinate patches, one can studysingle curves on non-simply connected manifoldssuch as a torus. The �xed boundary conditiontechniques for minimal surfaces can also be appliedhere. In this case, a curve with �xed endpointsshould 
ow towards a curve of zero geodesic cur-vature, that is, a geodesic of the manifold.

6.1. Equations of MotionConsider a two-dimensional manifoldM � R 3 . Let
(t) � M , for t 2 [0;1), be a family of closedcurves moving with speed F (�g) in the directionnormal to itself onM . Here, �g is the geodesic cur-vature of 
(t) on M . Let gt(s) be the parametriza-tion of 
(t) by arc length.First assume that M is orientable. In this case,the unit normal map N is continuous on M . Atevery point gt(s), a natural coordinate system forTM is given by the pair of vectors (g0t(s); N�g0t(s)).Thus, for any point x(t) 2 
(t), the velocity underthis 
ow is _x � (N � g0t) = F (�g):The expression for the geodesic curvature is�g = (N � g0t) � g00t :Note that a change in sign of the unit normal Nresults in a corresponding change in sign of �g. IfF is an odd function, _x is independent of the choiceof N . Otherwise, the choice of the normal changesthe 
ow. Therefore, if M is not orientable, onlyodd speed functions F are allowed. The algorithmpresented here also requires that F be an odd func-tion when M is not simply connected.Assume that M = f�1(0), where f : R 3 ! R .We break the manifold into a collection of coor-dinate maps f(Ui; �i)g such that M = SUi, each
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set Ui is simply connected, and �i : Ui ! Vi � R 2is a homeomorphism. The computing is done onthe collection of sets Vi = �i(Ui). We de�ne thefunction �i : Vi ! R by �i(x; t) = '(��1i (x); t), sothat '(x; t)jUi = �i(�i(x); t).In order to write the equations of motion in thelevel set representation, we must compute a ve-locity �eld on the entire manifold M . We computethe velocity �eld on each coordinate patch and thencheck that it is consistent in regions of overlap. Forthis section, assume ' = 'jUi . At any point x 2 Ui,the velocity vector will be normal to the level setof ' containing x, will point towards the centerof curvature in the tangent space TM(x), and willhave length F (�g).The geodesic curvature of the curve '�1(C) interms of ' is�g = (N � �) � n1� (n �N)2�� ��� n �Nkrfkr2f� 1kr'kr2'����;where n = r'=kr'k, N = rf=krfk, and� = rf �r'krf �r'k :The direction of the velocity vector is the same asthe orthogonal projection of r' onto TM , sov = � �N = n� (n �N)Nkn� (n �N)Nkand the velocity at x on M is described by_x � v = F (�g):The computing is done on the sets �i(Ui), so wewant the equation of motion in terms of �i. For apoint x 2 �i(Ui), we have_x � � = F (�g)D�i(v) � �;where � = r�i=kr�ik is the unit normal to thelevel set containing �i(x). Setting~F (�g) = F (�g)D�i(v) � r�i=kr�ik;the equation of motion in terms of �i is given by0 = (�i)t + ~F (�g)kr�ik: (6.1)

6.2. Geodesic Curvature AlgorithmPutting everything together, the general algorithmfor curvature 
ow on a manifold can be stated asfollows:
1. Choose coordinate patches and maps to repre-sent the manifold M .
2. Initialize the functions �i on each coordinatepatch.
3. Compute the boundary values in each coordi-nate patch based on overlap values with neigh-boring patches.
4. Advance each �i in time according to (6.1).
5. Go to step 3.For any t, the curve 
(t) can be reconstructed from
(t) =[��1i (��1i (0; t)) (6.2)We now discuss the details of each of these steps.Given a manifold M , it is important to choosesimply connected coordinate patches fUi; �ig, sothat any simple curve can be represented by a levelset of a function ' on Ui. The equations givenabove are for the case when �i maps onto a rectan-gular coordinate system in R 2 . In the overlap sets,where Ui \ Uj 6= ?, there must be at least threegrid points in the overlap between Vi = �i(Ui) andVj��j(Uj). The computation of the boundary con-ditions for each Vi is made easier if the grid pointsand projection maps �i are chosen so that gridpoints are compatible, that is, if x 2 Vi is a gridpoint in Vi and ��1i (x) 2 Ui \ Uj, then �j(��1i (x))is also a grid point in Vj.For example, letM be a torus of revolution withlarge radius R and small radius r symmetric aboutthe z-axis. One choice of coordinate patches isshown in Figure 18: in symbols,U1 = �(x; y; z) :px2 + y2 > R� "; x > �"	;U2 = �(x; y; z) :px2 + y2 < R+ "; x > �"	;U3 = �(x; y; z) :px2 + y2 < R� "; x < "	;U4 = �(x; y; z) :px2 + y2 > R� "; x < "	;
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U1 U2 U3 U4

FIGURE 18. Example of coordinate patches on a torus.where each �i maps Ui toVi = ���2 � "; �2 + "�� ���2 � "; �2 + "�in the natural way. Then a uniform rectangulargrid is placed on the closure of Vi.The objective when initializing the functions �iis to satisfy (6.2). We use the signed distance func-tion, where the distance is computed on the mani-fold. The sign of �i is assigned on each coordinatepatch independently; thusj�i(�i(x))j = j�j(�j(x))jat each grid point x 2 Ui\Uj. This is important forensuring consistent motion in the overlap regions.If F is not an odd function, we must additionallyrequire that �i(�i(x)) = �j(�j(x)).The evolution on each patch Vi is computed onthe interior grid points of Vi. The values at theboundary are taken from neighboring patches. Letx be a grid point on the boundary of Vi. By con-struction, ��1i (x) is in the interior of some otherpatch Uj. Therefore �i(x) = ��j(�j(��1i (x))),where the sign is positive if �i ��i and �j ��j havesame sign in the interior of Ui \ Uj, and negativeotherwise.The overlap of two coordinate patches may bedisconnected. The sign convention must be deter-mined individually for each connected component.For example, the two outer patches in Figure 18overlap in two components. It is possible for bothpatches to share the same sign convention in oneoverlap while having the opposite convention in theother overlap. This property makes it possible to

model a single curve on a torus as a level set of afunction within each coordinate patch.Following the argument in Section 5.1, we breakF into constant and nonconstant parts, F (�) =F1 � F2(�). Equation (6.1) then becomes�it + ~F1kr�ik = ~F2(�g)kr�ik:As in section 2, upwind techniques from hyper-bolic conservation laws are used to compute theleft-hand side and central di�erences are used onthe right-hand side.
6.3. ExamplesWe begin with 
ow on a sphere. The sphere isconstructed with a single coordinate patch param-etrized by spherical coordinates. The gap in Fig-ure 19 shows the boundary of the coordinate patch.The picture on the left shows an initial circle justsmaller than a great circle shrinking to a point atthe top. The one on the right shows a periodiccurve, symmetric with respect to the equator, col-lapsing to the equator.Next, we show 
ow on a torus. If the torus isconstructed with a single coordinate patch, then itis not possible to model a single noncontractiblecurve using a level set approach. For curves whichare not too complicated, it is possible to constructa second curve to allow for the level set formula-tion. In �gure 20, a single coordinate patch is usedand the 
ow of two nonintersecting curves is com-puted.However, if multiple coordinate patches are used,a required sign change can be handled by the com-munications between patches. We can then model
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FIGURE 19. Curves evolving on a sphere under the action of geodesic curvature. Left: a circle (other than agreat circle) shrinks to a point. Right: a periodic curve symmetric with respect to the equator converges to theequator.

FIGURE 20. Two curves, forming the zero set of afunction on a torus parametrized by a single rect-angular patch, 
ow under geodesic curvature.a single curve on a torus. Figure 21 shows sucha curve. The coordinate patches are those of Fig-ure 18.Subsets of manifolds can also be used. Figure 22shows two curves 
owing on a helicoid. Anotherexample is when the submanifold is the graph of afunction f : R 2 ! R . In Figure 23 we use f(x; y) =2 cos(2px2 + y2).Finally, we show several 
ows on a cube. Thecube has one coordinate patch for each face. The

FIGURE 21. A single curve 
ows under geodesiccurve on a torus parametrized by four rectangularpatches.�rst experiment involves comparing the 
ow on acube with sharp edges to the 
ow on one with in-creasingly smoother edges: see Figure 24. The ini-tial curve is 
atter on the front faces than on thetop. We see that the 
ow is similar in all cases,with the curve collapsing to a point near the cor-ner. Two other 
ows on a cube are shown in Fig-ure 25.
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FIGURE 22. Curves evolving under geodesic curvature on a helicoid. Left: an oval shrinks to a point. Right: aperiodic curve 
owing towards the central axis of the helicoid. Boundary conditions are periodic right and left:one-sided derivatives on the sides of a single rectangular coordinate patch.

FIGURE 23. On the graph of 2 cos(2px2 + y2), astraight line slightly o�-center 
ows away from thecenter over a ridge. One-sided derivatives are usedfor all boundaries.
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