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Algebraic correspondences on the Riemann sphere generalise
both Kleinian groups and rational maps. We classify qua-
dratic correspondences satisfying certain “diagram conditions”
and derive canonical forms for them. We exhibit examples for
which the regular set and limit set are both nontrivial, and show
that such examples can simultaneously exhibit Kleinian-group-
like and rational-map-like behaviour. We also state some gen-
eral theorems and conjectures.

1. INTRODUCTION

A nondegenerate algebraic correspondence of bi-
degree (m,n) on a closed Riemann surface § is an
algebraic hypersurface f C & x 8 such that the pro-
jections of f onto the two copies of § are locally
injective almost everywhere and of degrees m and
n respectively [Semple and Roth 1949]. If f and f’
are correspondences on the same surface §, their
composite f" is the set of pairs (z,w) such that
there exists v € 8§ with (z,v) € f and (v,w) € f'.

When § is the Riemann sphere @, the hypersur-
face f is defined by a polynomial equation

p(z,w) =0,

and we think of f as the graph of the multivalued
function z +— w (which we also denote by f) de-
fined implicitly by this equation. Composition of
correspondences is now just the usual composition
of (multivalued) functions.

Here are some examples of correspondences on
the Riemann sphere:

Example 1.1. (a) Quadratic maps 2z — 2z? + ¢ are
(2,1) correspondences, since they can be written
in the form w — (22 +¢) = 0.
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(b) The (two-valued) inverse of a quadratic map is
a (1,2) correspondence, since it can be written
z— (w?+¢)=0.

(c) The generators z — z+ 1 and z — —1/z of the
modular group PSL(2,Z) define a (2,2) corre-
spondence (w — (z+ 1))(w + 1/2) = 0.

Note that in (c) the grand orbit of any point z un-
der the correspondence (allowing arbitrary forward
and backward iterations) is precisely the orbit of z
under the modular group. More generally, to any
set of n elements of PSL(2, C) (acting by fractional
linear transformations z — (az + b)/(cz + d)) we
can associate an (n,n) correspondence on the Rie-
mann sphere, and the grand orbits will be those of
the group generated by the transformations.

It is well known that in example (b) the forward
orbit of a generic point accumulates on a set that
is independent of the generic point chosen (the Ju-
lia set of the quadratic map of example (a)), and
that the same applies for any orbit of a discrete
subgroup of PSL(2,C) (in the case of the modular
group, this limit set is the real line union infinity).

Discrete subgroups of PSL(2, C) are of two types
[Maskit 1987]: Kleinian groups of the first kind,
which have limit set the whole sphere, and those
of the second kind, where the complement of the
limit set (the regular set) is made up of copies of a
fundamental domain.

For rational maps [Beardon 1991; Douady and
Hubbard 1982; 1984] there is an analogous dichot-
omy: the Julia set may be either the whole sphere
or a proper subset. The action of a rational map
on the complement of its Julia set (the Fatou set)
again has a kind of “regular” behaviour, and there
is even the analogue of a “fundamental domain” in
the hyperbolic case, that is, when the Fatou set is
made up of basins of attraction of periodic orbits
[Sullivan 1984].

Miinzner and Rasch [Rasch 1988; Miinzner and
Rasch 1991] have shown that the same dynami-
cal dichotomy exists on the space of orbits of an
algebraic correspondence under one-way iteration,
and that much of the classical Fatou—Julia theory

extends to this situation. Our interest here is quite
different. We are concerned with the dynamical di-
chotomy on the space on which the correspondence
acts (the Riemann sphere), and with grand orbits
of correspondences (mixed forward and backward
iteration), rather than one-way iteration.

For generic algebraic correspondences on the Rie-
mann sphere, one might expect generic grand or-
bits to be dense. This is indeed the case for (2,2)
correspondences, as is not too difficult to prove.
However, there are also large classes of (2,2) cor-
respondences that have a “global limit set” that is
a proper subset of the sphere, and where there is a
“fundamental domain” for the action on the com-
plement of this limit set, just as for Kleinian groups
of the second kind and hyperbolic rational maps.
Examples vary from behaviour very like that of a
Kleinian group to very like that of a rational map,
with some intriguing cases in between.

In this paper we summarise our general results
concerning iterated (2,2) correspondences on the
Riemann sphere, survey the examples we have con-
structed so far—in particular, “matings” between
Kleinian group and rational map actions—and in-
dicate some directions for further study.

Our motivation for undertaking this investiga-
tion was the striking series of results of Sullivan
obtained by applying quasiconformal deformation
theory to both rational maps and Kleinian groups
[Sullivan 1984; 1985a; 1985b]. Our hope was that
by studying iterated correspondences we could ob-
tain further insight into how these classes of dy-
namical systems are related. The results outlined
in this paper are a step in that direction: we be-
lieve the examples also have considerable interest
in their own right.

2. QUADRATIC CORRESPONDENCES AND THEIR
GRAPHS

We restrict attention to quadratic correspondences,
that is, nondegenerate (2,2) correspondences on
the Riemann sphere. Much of what follows can be
generalised to higher degrees and to other Riemann



surfaces, but there are often considerable compli-
cations.

A quadratic correspondence is an algebraic hy-
persurface f C C x (@, defined by an equation
p(z,w) = 0, where p is of degree two in each of
z and w separately. Nondegeneracy means that
every nonconstant factor of p(z,w) involves both z
and w. An algebraic hypersurface has a normali-
sation or desingularisation Q) : I' — f, where I' =
I'(f) is a closed Riemann surface and Q_ = 7_Q
and Q; = 7, (Q are holomorphic maps of degree
two from I' to C. Here 7_ and 7, denote the two
projections from C x C onto C. See [Semple and
Roth 1949; Shafarevich 1974] for details.

Formally, to regard p(z,w) = 0 as a subset of
C x C = CP! x CP' we should homogenise the
polynomial p(z,w) into a homogeneous poynomial
P([z,t1], [w,t5]) of degree four, where each term is
separately of total degree two in z and ¢;, and of
total degree two in w and t,. However we shall
follow the usual convention and suppress the ho-
mogenising variables, at the expense of allowing
oo as a possible value for z and w.

The correspondence defined by p(z,w) = 0 lifts
to a correspondence on the graph f itself, defined
by the subset F' C f x f consisting of pairs of
pairs ((z,w), (w,7)) € f x f, that is, satisfying
p(z,w) = 0 and p(w,7) = 0. Normalising f via
Q:T — f, we define f C T x T to consist of pairs
(s,t) such that Q. (s) = @Q_(t), where, as before,
Q_ = 7m_@Q and Q. = 7,.Q. Note that f is an
algebraic hypersurface in I' x I'. We call f the lift
of the correspondence f.

Observe that we may write Q,Q_"' for f and

Q:1Q+ for f

Remark. Given any Riemann surface I" and any pair
of degree-two holomorphic maps @_,Q, : ' — @,
the composition Q,Q~" defines a correspondence.
When I' has genus two or higher, the covering invo-
lutions of ), and @)_ are identical, since I' carries
a unique hyperelliptic involution, and thus @, =
MQ_ for some Mobius transformation M of C.
It follows that Q,Q~'(= M) is (1,1). When T
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has genus zero or 1, it is a pair of spheres (each
projecting one-to-one onto @), or a single sphere
(branch-covering C), or a torus (an elliptic curve
branch-covering C). In each of these three cases
one can apply standard theory of maps I' — @
to show that Q,.Q ' is algebraic and of bidegree
either (1,1) or (2,2).

Singular Points and the Topological Type of the Graph

Singular points for an algebraic correspondence f
on any closed Riemann surface are of three types.
Let @ : ' — f be the normalisation of f and let
w_,m, be the two projections of f. As before write
Q_ for 7_Q and @, for Q. The types of special
point on f are best described after lifting to T.
They are

e the critical points of Q_;
e the critical points of @, ; and
e the singular points of Q).

As we shall see, the possibilities for singular points
of @), and for points which are simultaneously of
different types, are quite limited for (2,2) corre-
spondences.

The special points of various types project onto
singular points of the correspondence on the dy-
namical plane, the Riemann sphere. By a forward
singular point of the correspondence f = Q,Q '
we mean a point z that has fewer images w under f
than its immediate neighbours, and by a backward
singular point we mean a point w that has fewer
preimages than its immediate neighbours. Thus
forward singular points are critical values of Q_ or
else ()_-images of singular points of ), and back-
ward singular points are critical values of @, or
else @ -images of singular points of Q.

A quadratic correspondence on the sphere has
four forward singular points and four backward
ones, when counted with multiplicity [Semple and
Roth 1949, Ch. IV]. If we write the correspondence
in the form

w?A(z) + wB(z) + C(z) = 0, (2.1



88 Experimental Mathematics, Vol. 3 (1994), No. 2

where A, B and C are quadratic polynomials, the

forward singular points are given by the solutions
of

B(2)? = 4A(2)C(z) (2.2)

Let z = zy be a solution of (2.2) of multiplicity
r and let w = wy be the (unique) corresponding
value of w. If we choose a coordinate system in
which wy # o0, the solution of (2.1) has the local
form

w—wy = (2 — 20)p1(z) £ (2 — zO)T/2<p2(z), (2.3)

where ¢; and @, are analytic and ¢4(2q) # 0.

If r is even, (zp, wp) is a double point of the corre-
spondence, a point where the two sheets cut trans-
versely (if 7 = 2) or touch (if r = 4). If r is odd,
when we desingularise f there is a coordinate Z on
I having Z? = z — z,. Thus when lifted to I" the
point (zp, wp) becomes a critical point of @_. For
r = 1, Equation (2.3) gives

w — wo = AZ + higher terms in Z,

with A # 0, so (29, wo) is an ordinary point of @,

while for r = 3 the equation makes w — wy equal

to a sum of terms of degree two or higher in Z, so

(20, wp) is a critical point of @, as well as of @ _.
To sum up:

e for r =1, z is a critical point of @ _;

e for r =2, z is a double point of Q;

e for r =3, z is a critical point of _ and of @,
and a nonsmooth point of Q;

e for r = 4, two double points of ) coincide at z.

We obtain different topological types for the nor-
malisation I" of the graph of a quadratic correspon-
dence f, depending on the various possibilities for
the multiplicities of the roots of (2.2). These types
are computed by calculating the Euler characteris-
tic of I', using the branched double covering map
Q_: I —C.

(@) If there are four distinct roots, I' is a torus (f
is an elliptic curve).

(b) If there are three roots, one of which is double,
or two roots, one of which is triple, I' is a sphere,
self-intersecting or with a nonsmooth point.

(c) If there are two double roots or one quadruple
root, f is reducible, a pair of spheres intersect-
ing at two points or touching at one. Its nor-
malisation I is a disjoint pair of spheres.

A quadratic correspondence is equivalent to a sub-
group of PSL(2,C) (with two generators) if and
only if its graph f is of type (c) above.

As an example of an explicit computation of
singular points consider the arithmetic-geometric
mean correspondence

4zw® = (2 + 1), (2.4)

so-called because it sends z to the ratio w between
the arithmetic and geometric means of 1 and z.
In the notation of (2.1), we have

A(z) =42,B(2) =0,C(2) = —(2 + 1)
Thus (2.2) becomes
162z(z +1)* =0,

with solutions z = —1 of multiplicity two and z =
0,00 of multiplicity one. Therefore Q_ has two
critical values z = 0 and z = o0, and Q : I' — f
has one double point (z,w) = (—1,0). It follows
that I' is a single sphere.

Maps of Pairs and Maps of Triples

A quadratic correspondence f comes equipped with
two involutions I _, I, the covering involutions for
the two projections m_, 7, of the graph f onto C.
We shall use the same notation I , I, for the lifts
of these involutions to the normalisation I' of f,
namely the covering involutions for QQ_ = 7_(Q and

Qs =7:Q.

Remark. For correspondences of higher degree, the
analogues of I_ and I, are themselves correspon-
dences rather than group elements.

Commutation conditions on I_ and I, translate
into diagram conditions on the two-valued map



z — w defined by the equation p(z,w) = 0 of f.
The diagram conditions that will concern us are
those defining maps of pairs and maps of triples.

We say that a quadratic correspondence is a map
of pairs if z; — wy, 2; — wy and 2, — w; imply
2y — wy. Diagramatically,

zZ1 — W1
(2.5)

zZ9 — W2

Since I is the involution on f that interchanges
(z1,w;) and (z1,ws), and I, interchanges (z1,w;)
and (zp,w;), it is an elementary observation that
f is (the graph of) a map of pairs if and only if
I 1. =1,1.

We say that a quadratic correspondence is a map
of triples if, for every z;, there are points zy, z3, wy,
wy and ws, not necessarily distinct, such that the
images of the z; and the preimages of the w; form
a diagram

z21 w1
22 Wa (2.6)
z3 w3

We say that a map of triples f is reversible if the
map z; — w; that exists as a consequence of (2.6) is
an involution of C. It is an elementary observation
that f is (the graph of) a map of triples if and only
ifI I,I = 1,1 I,, and that the map of triples
is reversible if and only if I I I (z,w) = (Jw, Jz)
for an involution J.

Of course one can consider other commutation
conditions—indeed we do so in [Bullett and Pen-
rose a]—but the conditions just given are particu-
larly appealing, in that correspondences f satisfy-
ing them have straightforward canonical forms for
their equations p(z,w) = 0, as we now show.

We say that a correspondence f is separable if it
has an equation of the form h;(z) = ha(w), where
h; and hs are rational functions.

Lemma 2.1. A quadratic correspondence f is a map
of pairs if and only if it is separable.
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Proof. Let f have equation hi(z) = ho(w). Given
any z; € C, let ¢ = hy(21). Then z, together with
the other root zs of hi(z) = ¢ and the two roots
wy and wy of ho(w) = (¢, obey diagram (2.5), so
f is a map of pairs. Conversely, if f is a map of
pairs, then it is immediate from (2.5) that f has
an equation of the form j;(z) = Mj2(w), where j;
identifies z; with 2, jo identifies w; with w,, and
M is a Mobius transformation. 0

Remark. If f is a map of pairs, it has the form z —
hy'hi(z), and hence it is the lift of the “pushed
down” correspondence z — hihy '(2) to its graph.
See the discussion of lifts of correspondences earlier
in this section.

Lemma 2.2. A quadratic correspondence f is a map
of triples if and only if there exists a rational map
C of degree three and a Mobius transformation M
such that f has equation (C(w) — C(Mz))/(w —
Mz) = 0. In addition, f is a reversible map of
triples if and only if M is an involution.

Proof. If f has equation of this form, it is easily
seen to satisfy the diagram condition (2.6): just set
w; = Mz; for 1 = 1,2,3. Conversely, if f satisfies
the diagram condition, we may define M to be the
map that associates each w; to the corresponding
z;, and C to be any rational function of degree
three that maps each triple {z1, 22,23} to a single
point. O

In Section 3 one of our concerns will be maps of
triples where M is the identity (cyclically sym-
metric correspondences), and in Section 6 we shall
see how certain classes of reversible maps of triples
can be viewed as “matings” between the modular
group and quadratic maps.

3. RESOLVABLE CORRESPONDENCES

In this section we describe classes of correspon-
dences which can be “resolved” to group actions
by lifting to suitable covering spaces. The problem
of describing their dynamics is thereby reduced to
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group theory. We first introduce one more piece of
terminology.

A forward critical point of the correspondence
f = Q.Q"" is the image Q (c) € C of a critical
point ¢ € T' of Q. The corresponding forward
critical value of f is Q,(c) € C, in other words
a critical value of @, (and hence, as we observed
in the previous section, a backward singular point
of f). This agrees with the standard terminology
when f = Q,.Q ' is a rational map, that is, when
Q)_ is a Mobius transformation.

Similarly, a backward critical point of f is the
image Q. (c) € C of a critical point ¢’ of Q_, and
Q_(c') is the corresponding backward critical value
of f (a forward singular point).

Critically Finite Correspondences

As for iterated rational maps, it is the behaviour
of critical points that determines the overall be-
haviour of a correspondence under iteration. The
simplest situation to analyse is when the grand or-
bits of all critical points are finite [Bullett 1992].
These critically finite correspondences are analo-
gous in some ways to postcritically finite rational
maps, which play an important role in that theory.
However, critical finiteness in this sense is a much
stronger condition than postcritical finiteness for
rational maps: for example, the only critically fi-
nite rational maps of degree two are z — 22 and
z v+ 1/2%

Any critically finite correspondence can be re-
solved by removing the critical orbits and then
lifting to the universal cover of the resulting punc-
tured sphere. On this universal cover, which is the
complex upper half-plane if the critical orbits con-
tain at least three points, the lifted correspondence
has no critical points, forwards or backwards, and
therefore factorises into biholomorphic transforma-
tions of the upper half-plane—that is to say, el-
ements of PSL(2,R). For example, consider the
arithmetic-geometric mean correspondence (2.4).
This has forward critical values 1 and —1, and
backward critical values 0 and oco. All these points
fit together in the (finite) grand orbit

Cl--1—-0—009.

The universal cover of the sphere punctured at
these four points is the complex upper half-plane
H, with covering transformation group

G =T,(4) = (égg (1)%) C PSL(2,Z).

The arithmetic-geometric mean correspondence
lifts to the map 7 — 27 on H, and of course also to
lifts to the same map pre- or post-composed with
any covering transformation. From analysis of how
T — 27 interacts with the covering group it follows
that all grand orbits other than the critical one
are dense on the sphere. There is much interest-
ing geometry underlying the arithmetic-geometric
mean correspondence [Bullett 1991], in particular
that investigated by Gauss in his remarkable work
on elliptic integrals and theta functions.

Other critically finite correspondences can be re-
solved in a similar way. In [Bullett 1992] there is
a classification of all strongly critically finite qua-
dratic correspondences, together with the covering
groups of the associated punctured spheres, and
lifts of the correspondences to the upper half-plane.
A correspondence is called strongly critically fi-
nite if not only are the critical orbits finite, but
all points on them are critical values, either for-
wards or backwards. This is a technical condition
that makes the classification problem easier: there
are just eleven strongly critically finite quadratic
correspondences, and their covering groups are all
subgroups of PSL(2, Z) associated to regular solids.
In each of these examples, every grand orbit of the
correspondence, other than critical orbits, is dense
on the Riemann sphere.

Critically Resolvable Correspondences

We say that a quadratic correspondence is criti-
cally resolvable if every critical value of @_ is also
a critical value of (), and vice versa. On the dy-
namical plane C this is the condition that every
forward critical value of f = Q. Q™" is also a back-
ward one, and vice versa.



Example 3.1. Consider the correspondence

z—1\2 aw
< ) =—4——. (3.1)
z+1 (w—a)?
This has critical points 1 and —a, and double points
—1 and a, with orbits

\—1—>a/ and \1/00\—a/.
ST NG, TN

Thus 0 and oo are both forward and backward crit-
ical values. Note that the casesa =1 and a = —1
give critically finite correspondences. Indeed in
these cases all orbits are finite.

Lemma3.2. A quadratic correspondence is critically
resolvable if and only if it can be written

f=Q-TQ”
for some automorphism T of T.

Proof. Critical values determine a degree-two map
I' — C up to premultiplication by an automor-
phism T of T. O

Remark. Since, given any (_ and )., there ex-
ist automorphisms S of C and T of I such that
Q. = SQ_T, every quadratic correspondence is
the composition of a critically resolvable correspon-
dence followed by a Mobius transformation.

It follows from Lemma 3.2 that the lift f of a crit-
ically resolvable correspondence f to the normal-
isation I' of its graph is the pair of (1,1) maps
{T,I_T}. Thus f is a reducible correspondence.
We remark that when I is a pair of spheres we can
distinguish between T and I_T by the fact that
one (say T') maps each sphere to itself, and the
other (I_T) exchanges the spheres. When I is a
generic torus (generic means the only rotational
symmetries of I' are of order two) we can similarly
distinguish the translational lift (which we denote
T) from the elliptic one (I_T'), but when I' is a
single sphere we have no such distinction of types
of automorphism.
The following theorem is now self-evident.
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Theorem 3.3. Any critically resolvable (2,2) corre-
spondence lifts to an action on I' of the free product
Co xCy of an infinite cyclic group (generated by T)
with a cyclic group of order two (generated by I ).
Conversely, any action of Co * Cy on a Riemann
surface I' that is topologically a pairs of spheres,
a single sphere or a torus is the lift of a critically
resolvable quadratic correspondence on (@, provided
that the generators T and I_ of Cy * Cy satisfy
these conditions:

(i) T and I_ do not commute;

(i) if T s a pair of spheres, I_ exchanges spheres
and T preserves them; and

(iii) of ' is a torus, I_ is elliptic.

Condition (i) is necessary to ensure that the cor-
respondence is not (1,1). Note also that in the
case that I is a pair of spheres or a generic torus
Theorem 3.3 can be sharpened to state that there
is a bijection between conformal conjugacy classes
of critically resolvable correspondences and confor-
mal conjugacy classes of (nonabelian) actions of
Co % Cs.

As an example of how to resolve a critically re-
solvable correspondence in practice, consider (3.1),
which is in fact the family of all critically resolv-
able maps of pairs with graph a single sphere. The
critical values are 0 and oo, so we can resolve by
substituting Z? for z and W? for w in the equation.
We deduce that the lift of the correspondence is the
group generated by the Mobius transformations

T:Zw—iva and I.T =TI,,

Z+1
7 _
where Z = (z,w) is a coordinate on f, and I :
Z +— —Z is the covering involution for the projec-
tion Z — z = Z%. (In this parametrization I, is
the involution Z — 1/Z.)

The class of critically resolvable quadratic cor-
respondences contains two subclasses of particu-
lar interest: symmetric correspondences, for which
z — w if and only if w — z; and cyclically symmet-
ric correspondences [Semple and Roth 1949, Chap-
ter IV], for which generic grand orbits have three
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points, and the correspondence maps each z to the
other two points on its grand orbit (equivalently,
there exists a rational function C : C — C of de-
gree three such that the correspondence is defined
by (C(w) — C(2))/(w — 2) = 0).

It is evident that cyclically symmetric, symmet-
ric and critically resolvable are successively weaker
properties.

Lemma 3.4. A critically resolvable quadratic corre-
spondence f is symmetric if and only if one of its
lifts T and I_T to T is an involution; it is cyclically
symmetric if and only if one lift is an involution
and the other has order three.

Proof. If either T or I_T is an involution, it is im-
mediate that f is symmetric. For the converse, ob-
serve that if f is symmetric the involution (z,w) —
(w, z), restricted to (z,w) € f, is a lift of f to its
graph, and hence either T" or I T is this involution.
The proof of the statement for cyclically symmet-
ric correspondences is analogous. El

We have the following immediate corollary of The-
orem 3.3 and Lemma 3.4.

Corollary 3.5. Any symmetric (2,2) correspondence
lifts to an action of Cy % Cy on I'. Conversely, any
action of Cy x Cy on a Riemann surface I' that is
topologically a pair of spheres, a single sphere or a
torus is the lift of a symmetric quadratic correspon-
dence on @, provided that the generators T and I_
of CoxCy satisfy conditions (1)—(iii) of Theorem 3.3.

Every cyclically symmetric (2,2) correspondence
lifts to an action of the dihedral group Dg of or-
der siz on I'. Conwversely, any action of Dg on a
Riemann surface I' that is topologically a pair of
spheres, a single sphere or a torus is the lift of a
cyclically symmetric quadratic correspondence on
@, provided that the generators T and I_ of Dg
satisfy conditions (i)—(iii) of Theorem 3.3.

Note that when I is a generic torus, 1" is necessarily
a translation and I_7T is necessarily an involution.
Thus critically resolvable implies symmetric in this
case.

Remark. The prototype symmetric correspondence
with graph an elliptic curve (torus) is that which
appears in Poncelet’s Porism [Berger 1987]. Given
any pair of (nonintersecting) real conics C; and
(s, consider the iteration defined by sending a ray
from a point of C; along a direction tangent to
(s, then repeating the process at the point where
the ray (again) hits C;. Poncelet’s Porism states
that whether the ray eventually returns to the ini-
tial point depends only on C; and C5, and not on
the initial point chosen. If one considers the set
of pairs of points on C; that lie at opposite ends
of tangents to C,, one finds that these pairs de-
fine (after complexification) an elliptic curve, the
graph of the symmetric correspondence defined by
sending each point on C; to the opposite ends of
the two tangents to Cy through the point. Since
on the graph the lift 7" of the correspondence is
a translation, we deduce Poncelet’s Porism. If T
has order three (that is, if C5 is triangularly cir-
cumscribed in C), the correspondence described
above is cyclically symmetric.

The description in terms of group actions provides
a method of writing down explicit forms for the
graph correspondences f that are lifts of critically
resolvable correspondences f. It is also useful to
have canonical forms for f itself. In particular we
shall need these later for cyclically symmetric cor-
respondences.

Lemma 3.6. Every cyclically symmetric quadratic

correspondence s conformally conjugate to one of

the following:

@ (w — j2)(w — j22) = 0, where j = e2™*/3;

(b) w? + zw + 22 = 3; or

© w?(z+1)+w(z*+(a+1)z+a)+ (2°+az) =0
for some complex value of a #0,1,9.

Proof. This follows from normalising the rational
cubic C to the three standard forms below, for the
three types of graph, by placing the branch points
(critical values of the correspondence) at particular
locations:

(a) graph two spheres: C(z) = 2%



(b) graph one sphere: C(z) = 23 — 3z;
(c) graph a torus: C(z) = 2%(z + a)/(z + 1) for
a+#0,1,9. 0

Remark. By Lemma 2.2, any map of triples can
be decomposed into a cyclically symmetric corre-
spondence followed by a Mobius transformation.
Thus Lemma 3.6 yields canonical forms for maps of
triples and for reversible maps of triples. We shall
make use of these canonical forms in Section 6.

4. LIMIT SETS, REGULAR SETS, DIRECTIONALITIES
AND FUNDAMENTAL DOMAINS

The resolvable correspondences dealt with in Sec-
tion 3 have all grand orbits either finite or dense on
C. In the present section we consider more general
correspondences, and the question of the existence
of regular sets and limit sets.

The notions of Julia set for rational maps and of
limit set for Kleinian groups do not have a single
all-embracing generalisation for correspondences.
Rather, we have a chain of limit sets

Lo(f) € Jo(f) € Ao(f) S A(S)

defined in different ways, but where certain of the
inclusions in the chain become equalities in favour-
able circumstances. Full details will be presented
in [Bullett and Penrose a], but we summarise our
present state of knowledge here.

We need two notions to define the various sets in
the chain. The omega limit set of z € X, where X
is the space on which the correspondence f acts, is

w(z) = f*(2) = f*(2),

where f*(z) denotes the grand orbit of z under f
on X. The accumulator set of z € X is

wlz)={weX:zecww)}
The minimal limit set of f is
Lo(f) ={z: @ #w ' (2) = X - E()},

where E(f) is the ezceptional set of points z € X
having finite grand orbit. We conjecture that Lo(f)
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is the intersection of all infinite closed completely
invariant subsets of X, and that Jo(f) # @ if and
only if Lo(f) # @.

The generic limit set is

Jo(f) ={z:071(z) # 2}

For a hyperbolic rational map this is the conven-
tional Julia set together with the grand orbits of
attracting or superattracting cycles. We conjecture
that Jo(f) is always closed.

The global accumulation set is

No(f) = {z w7 () # &},

This set need not be closed. For example, the
grand orbit of the centre of a Siegel disc does not
lie in Ag(f), whereas the grand orbit of every other
point on the disc does.

The domain of proper discontinuity or regqular
set Q(f) is the set of points z € X having a neigh-
bourhood U with only a finite number of distinct
returns under (mixed) iterates of f and f~!. Quo-
tienting Q(f) by grand orbit equivalence gives a
Hausdorff space.

The global limit set A(f) is the complement of
Q(f). We conjecture that A(f) is always the clo-
sure of Ag(f).

In analogy with the classical theory for ratio-
nal maps, it also seems reasonable to define the
shadowing-equicontinuity or normality set N(f) as
the set of z € X for which given € > 0 there exists
6 > 0 such that when z moves a distance less than
6 any point on the grand orbit f*z moves less than
¢ (see [Bullett and Penrose a] for more details).
The complement of N(f) has some right to the ti-
tle of Julia set, and we denote it J(f). In [Bullett
and Penrose a] it is shown that J(f) C A(f). If no
grand orbit of f is dense in an open set of X, then
Jo(f) € J(f) (possibly with equality in all cases),
but the existence of grand orbits dense on open
sets completely changes the picture, and there may
then be a large part of Jy(f) contained in N(f); see
Example 4.3 below. In [Bullett and Penrose a] we
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present more details, but all terminology remains
provisional until the situation is further clarified.

Example 4.1. If the orbits of f are those of a Klein-
ian group G, then Lo(f) = A(f) = A(G), the limit
set of G in the Kleinian group sense. Also the
shadowing-equicontinuity set N(f) is just the reg-
ular set (G) in the Kleinian group sense.

Example 4.2. If f is a rational map, Lo(f) is the
Julia set of f in the usual rational map sense, Jo(f)
adds to Lo(f) the grand orbits of attracting and
superattracting periodic cycles, Ag(f) further adds
the basins of superattracting cycles and the grand
orbits of cycles of Siegel discs, except for the grand
orbits of centres of Siegel discs, and A(f) finally
adds these grand orbits of centres. The shadowing-
equicontinuity set N(f) is the usual Fatou set for
a rational map, minus grand orbits of attracting
or superattracting cycles. In other words, J(f) =

Jo(f)-

Example 4.3. If f is the arithmetic-geometric mean
correspondence (2.4), then Ly(f) is the whole of
the Riemann sphere C and thus so are Jy(f), Ao(f)
and A(f). At the same time, the shadowing-equi-
continuity set N(f) is all of C except for the criti-
cal orbit {1, —1,0,00}, as can easily be verified by
lifting f to 7 — 27 on the universal cover of the
four-punctured sphere.

Remark. The shadowing-equicontinuity set appears
to be the best set on which to generalise Ahlfors’
finiteness theorem and Sullivan’s analogues for ra-
tional maps [Sullivan 1984; 1985a].

We now move on to the more practical problem
of identifying regions on which a correspondence
acts discontinuously. The dynamics of relations f
on general Hausdorff spaces X have been consid-
ered by McGehee [1992]. We adapt his approach to
our specific situation of algebraic correspondences,
and find that as well as enabling us to identify
“fundamental domains” for correspondence actions
on certain regions, it also enables us to show that
certain correspondences have “polynomial-like” ac-
tions on other regions, and to deduce, using the

theory of [Douady and Hubbard 1985|, that the
limit sets of these correspondences are made up of
copies of Julia sets of polynomial maps.

We make some changes from McGehee’s nota-
tion: in particular we write f~'(S) rather than
f*(S) for the set of points with at least one image
under f in S, and we reserve the notation f*(.5)
for the union of grand orbits of points in S.

We say that a subset S C X defines a direc-
tionality for f if f(S) C S. An equivalent way to
express this condition is to require that

(SxS)nf=0g,

so the condition is also equivalent to f~*(S¢) C
(S°¢)°. The existence of a directionality ensures the
existence of an attractor AL (f,S) = (,., f"(S5)
and a repeller A_(f,S) =(),.,f "(S¢). The at-
tractor and repeller will in general depend on our
choice of S, but we conjecture them to be unique
when f is (2,2), X is the Riemann sphere and S a
Jordan disc [Bullett and Penrose aj.

Forward orbits started in S — f(.5) never return
to it, but accumulate on some subset of A, (f,S).
Similarly backward orbits started in S¢ — f~(S5°)
accumulate on some subset of A_(f,S). In this
sense S — f(S) and S¢— f~1(S°) behave rather like
fundamental domains for the respective actions of
f and f~! on appropriate regions of X. However
what we are really concerned with is arbitrarily
mixed iteration under f and f~1.

Behaviour under mixed iteration depends on the
diagram conditions (if any) satisfied by f, and we
confine ourselves here to a discussion of two cases
that particularly interest us—maps of pairs and
reversible maps of triples. In each case we ask
that the directionality S satisfy extra hypotheses
related to the diagram condition, we define a global
attractor A(f,S) associated to S, and we seek a
fundamental domain A for the action of f on the
complement Q(f,S) of A(f,S) in the usual sense:
the union of all images of A under the full action
of the correspondence should fill Q(f,S), with no
two images meeting except at common boundaries.



The existence of such a A will ensure that Q(f, )
is contained in the regular set {2(f) and thus that
the global limit set A(f) is contained in A(f,S). In
general in these circumstances A(f,S) is a filled-in
version of A(f), and in the particular situations of
Theorems 5.1 and 6.2 below (and also conjecturally
in that of Theorem 6.1), its boundary OA(f,S) is
the minimal limit set Lo(f).

When f is a map of pairs, we define the global
attractor A(f,S) as follows. We construct a new
correspondence F on the disjoint union X+ U X~
of two copies of the dynamical space X of f, with
the property that the directed orbits of F through
(copies zT or z~ of) a point z € X account pre-
cisely for all (copies of) points on the grand or-
bit of z under f (the two copies of X are needed
to keep track of switches between “forward mode”
and “backward mode”). A bi-injective directional-
ity for f (defined below) gives rise to a direction-
ality ¥ for F such that

r(A+(F,5)) = w(A_(F,5)),

where 7 is the projection from XTUX ™ to X, and
we define A(f,S) to be this set. See [Bullett and
Penrose a] for details on all of this.

When f is a reversible map of triples, the defini-
tion of A(f,S) is more straightforward. We ask
that S be an equivariant directionality (see the
definition below) and it then follows [Bullett and
Penrose a] that A, (f,S) UA_(f,S) is completely
invariant under f. We define A(f,S) as this union.

Remark. The construction of F for a map of pairs f
(and similar constructions for other diagram con-
ditions) amounts to organising an ordered explo-
ration of a generic grand orbit of f, visiting each
point on the orbit exactly once. Finding a funda-
mental domain for directed iteration of ¥ amounts
to doing this in a way that is continuous almost
everywhere. In the case of a group of Mobius
transformations, the possibility of performing such
a continuous (almost everywhere) ordered explo-
ration is equivalent to discreteness of the group
[Sullivan 1982].
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Bi-injective directionalities for maps of pairs

By Lemma 2.1, any map of pairs on the Riemann
sphere is a composition ¢ = Q~'Q,, where Q_
and @, are rational functions of degree two, and
hence g = f, the lift of the (2,2) correspondence
f=Q,.Q""' to the normalisation I of its graph.

A bi-injective directionality for the map of pairs
f is a pair of subsets Dy, D, C I such that:

(i) Q4+ (Dy) and Q (D) partition the (downstairs)
sphere;

(ii) the interiors of D; and D, together cover I'; and

(iii) @4 is injective on D; and @)_ is injective on
D,.

Note that (i) and (ii) imply that D; defines a di-
rectionality for f in the previous sense. Condition
(iii) ensures, among other things, that D; and D,
are contained in fundamental domains for I, and
I, the covering involutions for @, and @) _, and
(ii) now tells us, by Klein’s Combination Theorem
[Maskit 1987], that I, and I  generate a faithful
action of the free product Cy x Cs, with the com-
position I I, a loxodromic element.

Figure 1 illustrates the graph of a real piecewise-
linear (2,2) correspondence f = Q,Q~", and a bi-
injective directionality for the lift

f: QR'Q+

of f to the normalisation I of this graph (the figure
of eight with its crossing point resolved). Note that
in the figure the maps @, and @_ are projections
of the graph of f onto the vertical and horizontal
axes respectively.

Theorem 4.4 [Bullett and Penrose a]. If the map of
pairs f has a bi-injective directionality defined by
D, and D-, the intersection f)1 ﬁlo)2 s a fundamen-
tal domain for the full action (forwards, backwards
and mized) of f on Q(f, D), the complement of

the global attractor A(f, D).

In particular, Q( f, D,) is contained in the regular

set Q(f).
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Q+(Dn)

Q-(D2)

FIGURE 1. A bi-injective directionality for a real
piecewise linear map of pairs f = Q" 'Q,. Note
how the ends of D; (thick dashed line) and D,
(thin solid line) overlap.

Equivariant Directionalities for Reversible Maps of
Triples

A reversible map of triples f can be written as
a cyclically symmetric correspondence followed by
an involution J on @, by Lemma 2.2 and the def-
inition of cyclically symmetric in Section 3. For
such a correspondence, the involutions I and I,
generate a dihedral group Dg of order 6, by the
remark following diagram (2.6). (Note that I, and
I_ act on the graph f; in the case of maps of pairs
we were considering this as the dynamical space of
f .) We say that a subset D of the Riemann sphere
defines an equivariant directionality [Bullett and
Penrose 1994] for f if:

(i) D is the projection Q_(Ay) of the closure of a
fundamental domain A, for the action of the Dg
generated by I_, I, on I'; and

(i) f(D) C D (thus D defines a directionality in
the ordinary sense, i.e., (D x D¢)N f is empty).

We say that f defines an equivariant contact direc-
tionality if the second condition is modified to

(i) (D x D°) N f = {(20,20)} for a single point 2.

JD

D

FIGURE 2. Equivariant directionality for a reversible
real piecewise linear map of triples f = Q+Q:1.

This new condition allows f(D) to have boundary
meeting that of D, but only at a single point, and
moreover requires that this single point be a fixed
point of f. The “attractor” and “repeller” will also
meet at this special contact point.

Figure 2 provides an illustration of the graph f
of a real piecewise linear (2,2) correspondence with
an equivariant directionality.

Theorem 4.5 [Bullett and Penrose a]. Suppose D de-
fines an equivariant directionality or contact direc-
tionality for the reversible map of triples f. Then
A _(f, D) is the image of A (f, D) under the time-
reversal symmetry J, and the union A(f,D) of these
two sets is fully invariant under f. Moreover f
acts discontinuously on the complement Q(f, D) of
A(f,D), and any fundamental domain A for the
action of J on D N JD is a fundamental domain
for the full action of f on Q(f, D).

We now have all the tools we need to investigate
regular and limit sets for some specific classes of
examples of correspondences. This we do in the
remaining sections.



5. COMBINING QUADRATIC-LIKE JULIA SETS

A bi-injective Jordan directionality for a map of
pairs f on the Riemann sphere is a bi-injective di-
rectionality with the property that Q. (D;) is a
Jordan disc (and hence so is Q_(D>)).

Theorem 5.1 [Bullett and Penrose a]. If (Dy, D) is
a bi-injective Jordan directionality for the map of
pairs f, then:

() Ay(f,D1) and A_(f, Dy) are hybrid equivalent
to filled-in Julia sets K., and K., of the family
. : z +— 2% + ¢ (possibly Cantor sets).

(i) On A_(f, Dy) the correspondence f has a branch
conjugate to q.,, and on A (f, D) its inverse
(f)*1 has a branch conjugate to q.,.

Recall that a hybrid equivalence [Douady and Hub-
bard 1985] between ¢, and a holomorphic map g is
a quasiconformal equivalence ¢ such that dp = 0
almost everywhere on K..

The proof of this theorem is an application of the
theory of polynomial-like mappings [Douady and
Hubbard 1985]. It is also shown in [Bullett and
Penrose a] that the boundaries of A, (f,D;) and
A_(f,D;) (which by the theorem are copies of qua-
dratic Julia sets J., and J.,) can be characterised
by the properties that 8A+(f, D,) is the set of all
points z having arbitrarily small neighbourhoods
U such that {J,., f~™(U) covers the whole sphere

FIGURE 3.
Right: a grand orbit for the same correspondence.
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except for at most two points, and that OA_( f, D,)
satisfies the analogous condition with f ~1 in place
of f.

Any pair of quadratic Julia sets J., and J., can
be realised as A, (f, D;) and dA_(f, D;) for some
map of pairs f with a bi-injective Jordan direction-
ality [Bullett and Penrose a]. Figure 3 (left) dis-
plays the set of images of a single point under for-
ward iteration and under backward iteration (but
not mixed iteration) for an example in the family

2(z4+a)  w?
cz(z+a)+1 w+b/a

+ abd. (5.1

Here OA,(f,D;) and OA_(f, D,) are the omega
limit sets of the forward and backward orbits re-
spectively. In Figure 3 (right) we display a sin-
gle grand orbit, the omega limit set of which is
OA( f, D,), for the same correspondence.

Observe that in this case the global attractor
A(f, D) is the closure of a disjoint union of copies
of A.(f,D;) and A_(f,D;). We show in [Bul-
lett and Penrose a] that this is true in general in
the situation of Theorem 5.1, provided that A,
and A_ are connected, and true in certain cases
(such as that illustrated in Figure 3) when one or
both of these sets is not connected. Moreover in
all these cases AA(f, D;) is the minimal limit set

Lo(f)-

Left: forward and backward orbits for (5.1) with parameters a = 0.8, b = —0.15, ¢ = 0, d = 0.5.
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FIGURE4. Left: a grand orbit for (5.1) with parameters a = 0.8, b = —0.15, ¢ = 0, d = 0. Right: a grand orbit
for a = 0.8, b = —0.15, ¢ = —0.35 — 0.55¢, d = —0.35 + 0.55¢. Both examples are reversible, and in particular
the forward and backward limit sets are isomorphic. For the picture on the right each is a copy of Douady’s

rabbit.

Figure 4 illustrates A(f, D;) = Lo(f) for two
other examples, in each of which A, and A_ are
connected and isomorphic.

6. MATING QUADRATIC MAPS WITH THE MODULAR
GROUP

By Lemma 3.6 and the subsequent remark, a re-
versible map of triples with graph a pair of spheres
is equivalent to one that can be written

(J2)? + (J2)w +w® =0,

where J is an involution. Thus it factorises into a
pair of Mdébius transformations

w = e/ ]z,

It follows that there is a bijection between equiv-
alence classes of such correspondences and con-
jugacy classes of representations of the modular
group PSL(2,Z) in PSL(2,C), since PSL(2,Z) is
the free product of a cyclic group of order two and
one of order three, being generated by the matrices
(23) and (2-1).

Again by the same lemma and remark, a re-
versible map of triples with graph a single sphere
is equivalent to one that can be written

(J2)? + (J2)w + w? = 3,

with J an involution. One parametrisation for
these equivalence classes is to represent them as

fa : 2 — w, where [Bullett and Penrose 1994]

(az + 1)2+(az—|— 1) (aw — 1>+<aw — 1)2 _ 3k,
z+1 z+1 w—1 w—1

(6.1)
with parameters a,k € C. This exhibits the time-

reversal symmetry in the form z — —z.

We now specialise to the one (complex) param-
eter family f, defined by (6.1) when k = 1. This
is the so-called contact condition [Bullett and Pen-
rose 1994], namely that the fixed point 0 of the
time-reversal symmetry be also a fixed point for
the correspondence. In [Bullett and Penrose 1994]
we show that for real a with 4 < a < 7, and conjec-
turally for all a in a set M of parameter values re-
sembling the Mandelbrot set, this correspondence
is a mating of a quadratic map with the modular
group, in the following sense.

Theorem 6.1 [Bullett and Penrose 1994]. For a real,
4<a<7andk=1, the Riemann sphere is parti-
tioned into two subsets  and A, both fully invari-
ant under f,, such that:

(i) Q is conformally equivalent to the (open) com-
plex upper half-plane, and the action of f, on it
is conjugate to that of the generators z — z+1



and z — z/(z + 1) of PSL(2,Z) on the half-
plane;

(i) A is the union of closed simply connected sub-
sets Ay and A_, which meet at a single point.
These sets are forward and backward invariant,
respectively. Moreover, f, has a branch map-
ping A_ onto itself with degree two, and f, "
has a branch mapping A, onto itself with de-
gree two. The remaining forward branch of f,
on Ay UA_ sends A_ homeomorphically onto
Al

The sets A, and A_ appear to be homeomorphic to
K, (for some c in the Mandelbrot set), and appro-
priate branches of f, and f, ' appear to be topo-
logically conjugate to ¢. on appropriate regions.
There are technical difficulties in establishing a for-
mal proof (see [Bullett and Penrose 1994]) and so
far we have succeeded in proving this only for small
perturbations of k away from k = 1 (but the cor-
respondence then no longer acts on Q as a group):

Theorem 6.2 [Bullett and Penrose 1994]. For 4 <
a < 7 and sufficiently small perturbations k =1 —
e of k = 1 (with € > 0), the Riemann sphere is
partitioned into two subsets € and A, both fully
invariant under f,, such that:

(i) Q s conformally equivalent to an annulus, and
the action of f on it is discontinuous;

(i) A is the disjoint union of Ay and A_, which
are forward and backward invariant respectively.
On a neighbourhood of A _ there is a branch of
f that is hybrid equivalent to a quadratic map
qe : 2 — 22 + ¢, with a connected filled-in Julia
set K.; this hybrid equivalence sends A_ to K,
by a quasiconformal bijection. On a neighbour-
hood of A, there is a branch of f! with the
same property (for the same c). The remaining
forward branch of f on A sends A_ onto A, by
a conformal bijection.

The proof of this result, like that of Theorem 5.1,
is based on the theory of polynomial-like mappings
[Douady and Hubbard 1985]. We conjecture that
A, and A_ in Theorem 6.1 are also homeomorphic
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to filled-in quadratic Julia sets K., and that ap-
propriate branches of f, and f; ! are topologically
conjugate to ¢, on them. It therefore seems reason-
able to describe the correspondences f, as topolog-
ical matings of the modular group with ¢., mat-
ings in which the the generators of z — z + 1,
z +— z/(z+ 1) of PSL(2,C) acting on the bound-
ary of the complex upper half-plane are matched
with those of ¢;' : 2 — /2 —c on the Julia set
J. bounding K,.. It appears that every connected
Julia set K. in the quadratic family can be realised
in this way. Figures 5, 6 and 7 illustrate examples.

Remark. For ¢ = 4 and k& = 1 the correspondence
is critically resolvable (Section 3) and therefore its
lift to its graph f has orbits those of a group. This
group is PGL(2,Z), with the standard action [Bul-
lett and Penrose 1994]. For other values of a € M
(and k = 1), the lifted correspondence continues to
act as PGL(2,7Z) on the lift  of Q, which remains
conformally a pair of open discs. Thus we may
regard M as parametrising a family of perturba-
tions of PGL(2,Z) as a correspondence, the action
remaining unchanged on a pair of regular domains.

FIGURE 5. Limit set and tiling of {2 by copies of
a fundamental domain, for (6.1) with & = 1 and
a = b; this corresponds to ¢ = 0 in the quadratic
family z — 22 +c.



100 Experimental Mathematics, Vol. 3 (1994), No. 2

FIGURE6. Limit set and tiling of Q for (6.1) with
k =1 and a = 7; this corresponds to ¢ = 1/4 in
the quadratic family. The limit set appears to be
a quasicircle (unlike the Julia set of the quadratic
map: see [Bullett and Penrose 1994] for an expla-
nation). the plot is incomplete near the origin for
computational reasons.

FIGURE?7. Limit set and tiling of  for (6.1) with
k = 1 and a = 4.54+0.444; a mating of the modular
group with Douady’s rabbit.

7. PERTURBING CIRCLE PACKING KLEINIAN GROUPS
AS CORRESPONDENCES

Consider the two-generator subgroups of PSL(2, C)
generated by Mobius transformations z — Az and
z +— Bz such that BA™! is an involution (this is
the condition that the correspondence be a map of
pairs), and that there exists an involution N such
that B = NAN (this is a time-preserving involu-
tion of the correspondence). It is shown in [Bullett
and Penrose b| that there is a one (complex) pa-
rameter moduli space of such groups, in particular
that each conjugacy class contains a group gener-
ated by a pair of maps A, B : z — w satisfying a

relation
C-96-H-n e

and that, for each conjugacy class, 7 € C — {0}
is unique up to 7 < 1/7. These groups come
equipped with certain extra structure. For exam-
ple, for every two-generator subgroup of PSL(2, C)
as described (and almost all others) there is an in-
volution J such that JAJ = A~ and JBJ = B!
[Bullett and Penrose b]. We can define a new time-
reversing involution K by K = JN, and it is then
a short exercise in algebra to show that (K A)* is
the identity, and that the one-parameter family of
groups defined above is simply the moduli space
of all representations of the free product Cy x Cs
(generated by KA and K respectively). Note that
(A, B) has index two in (A,B,K) = (KA, K),
since B = K(K A)™'. Explicitly, in the parametri-
sation above, we have A = (I*;), B = (_;;),

N=(3),7=007),K=(7),and KA =

01 10 1
—-1-1
().

We can generalise these groups to correspon-
dences retaining the properties of separability and
reversibility, and having a time-preserving involu-
tion that exchanges the two critical points for the
forwards map and simultaneously exchanges the
two critical points for the backwards map. Thus
we retain J, N and K as in the group case, and
obtain a two (complex) parameter family



FIGURE8. The set T of 7 where the representation
(7.1) of Cy * Cy is faithful and discrete.

G-96-D-r o

These are the correspondences among which we
shall perturb our representations of Cy * Cs.

The moduli space of representations of Cy x Cy
is already a complicated object. It has a struc-
ture analogous to that of the Riley slice [Keen and
Series 1991] of representations of C,, * C,, with
parabolic generators. Let T denote the subset of
parameter space such that for 7 € T the group acts
discontinuously on an open set §2 and has a totally
disconnected limit set A. It appears (Figure 8)
that T is a once-punctured topological disc, and
that on its boundary there is a dense set of values
of 7 where the action of C) * Cy remains faithful,
but where the limit set becomes a circle packing,
due to the appropriate group elements becoming
parabolic (for related results see [Keen and Series
1992; Keen et al. 1993; McMullen 1991]).

For 7 outside T the action of Cy *x C5 is no longer
discrete, except at some isolated values of 7 where
the elements just described become elliptic of finite
order. In particular, the representation is no longer
faithful. When we regard the action of C4 x C,
as that of a correspondence z — w, it has a bi-
injective directionality when 7 is in the interior of
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T, but this degenerates into a contact directionality
at the boundary points of T which correspond to
circle packings. Here the contact condition is anal-
ogous to that of Section 4 when the packing is a sin-
gle circle (at 7 = 3—2+/2), where it is the condition
that one fixed point of J be fixed by the correspon-
dence, but it is a more complicated cycle condition
for other circle packings. See [Bullett and Penrose
b] for details. Figure 9 illustrates two of the circle
packings that occur on the boundary of 7.

FIGURE 9. Circle packing for correspondences in
the family (7.1). Top: 7 = (2 — v/3)i. Bottom:
7 is a solution of ' = %(r + 7! + 2), where
T? —4T% + 5T +2 = 0.
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We can perturb Cy * C; as a correspondence in
such a way as to obtain topologically unchanged
limit set behaviour for any 7 € T, but it is the val-
ues of 7 on the boundary of T that will be of par-
ticular interest to us. The reason is that although
circle packing actions of Kleinian groups are geo-
metrically rigid [Keen et al. 1993], we are able to
deform the limit sets topologically by perturbing
the groups as correspondences.

In order to maintain the topological conjugacy
type of the limit set we perturb the pair (k,7) in
such a way as to maintain the contact condition as-
sociated to the circle packing in question [Bullett
and Penrose b]. In Figure 10 we deform the circle
packing group of Figure 9 (top) as a correspon-
dence, maintaining the contact condition that the
fixed point /7 of J map under the correspondence
to the fixed point 74/7 of K. Algebraically, this
condition is k = (77! — 7)i. On the left, the cir-
cles of original packing have been partly “pinched”
by pulling an opposite pair of points towards each
other, and on the right this pinching process is
complete—the circles have now each been divided
in two. In principle, any circle packing action of
C4+C5 can be deformed in this way, though contact
conditions become increasingly difficult to compute
explicitly for more complicated packings. Similar
deformations should be possible for actions of other
free products C,, * C,, of two cyclic groups.

FIGURE 10.

7= (k—+Vk)i/2 in (7.2).

Remark. In all the examples above we have L, =
A = J in the notation of Section 4. In other words,
the different definitions of limit set for these cor-
respondences are all equivalent. Note also that
when deform away from groups, the correspon-
dences above cease to act as groups on the regular
set 2 (since critical points are introduced there),
but continue to act as groups on the limit set A.
This should be contrasted with the behaviour we
observed for matings of quadratic maps with the
modular group, where a group action was retained
on the regular set but lost on the limit set.

8. MORE EXOTIC EXAMPLES: TWEAKED JULIA SETS
AND BULL’S-EYES

The examples in this section have the property that
the forward or backward limit set is a “quotient”
of a quadratic-like Julia set. We refer to these quo-
tients as tweaked Julia sets. We confine ourselves
to a few remarks and otherwise let the pictures
speak for themselves.

Suppose our quadratic correspondence f has the
property that there is a point z, that is an attrac-
tive fixed point for one branch, but for which all
other values of f"(zp), for n > 0, are bounded away
from zy. Let D be the immediate basin of attrac-
tion of zg. The space S of orbits

Z1 > 2o > 23 o

Deformations of Figure 9 (top). Left: k = 10/3 and 7 = i/3 in (7.2). Right: k = (1++/17)/2 and
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FIGURE 11.

Forward images of backward critical point and backward images of the forward critical point, for

correspondences in the family (8.1). Left: a = —4/15 and b = 2/5. Middle: a = 25i/78 and b = 5/13 — 10:/39.

Right: a = —1/2 and b=1/2.

that converge to zo and have all z; in D is homeo-
morphic to a disc, but the projection of S onto D
(sending each orbit onto its first point z;) may be
many-to-one near the boundary of D, as for z; well
away from 2z, there may be several forward routes
converging to zo. The Julia set that we plot in the
dynamical plane by back iteration from a starting
point near z, is the projection of the boundary of
S, so what we see may be a set that appears to
cross over itself again and again. This effect can
be observed in Figure 11 (middle). The Julia set
is a topological circle in orbit space, but is tweaked
by projection to the dynamical plane (as is also the
case in [Bullett 1988, Fig. 3]).

Similar tweaking can be performed with basins
of attraction of periodic points, with increasingly
complicated pictures as the period increases. The
construction can also produce combinations anal-
ogous to those of Section 5, but now in the case
that there is only a noninjective directionality. Fi-
nally the bull’s-eye examples (Figure 11) display
the phenomenon of tweaking particularly clearly.
These are correspondences in the family

2 2

oth with a:b—l’

(8.1)

z(z+a) =

and have the property that the superattractive fixed
point oo has an orbit mapping (in four iterations)

to the superrepulsive fixed point 0. What Figure 11
shows is a complete set of all forward images, up to
a certain depth, of the backward critical point —2b,
plus all backward images, up to the same depth, of
the forward critical point —a/2. The starting point
—2b has a forward orbit taking it close to oo, but
at each step when it approaches co it has a path
of length four leading close to the superrepeller 0;
points on the path have subsequent images spread-
ing out from near the superrepeller and accumulat-
ing on the forward limit set. It is these subsequent
images that fall into the bands we see the com-
puter plots. The backward orbits started at —a/2
behave in a similar (time-reversal symmetric) way.

9. CONCLUDING REMARKS

What conclusions can be drawn from our gallery
of exhibits? First, it should be possible to prove
that the examples of Sections 5, 6 and 7 are gener-
ically structurally stable, by which we mean that
using the techniques developed in [Sullivan 1984;
1985a; 1985b] it should be possible to prove that
an open dense set of each type of example has
a family of perturbations with dynamics that is
topologically unchanged, and that these families
of perturbations form open sets in the spaces of
correspondences satisfying the same constraints as
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the unperturbed examples (i.e., the same diagram
conditions).

This phenomenon should provide a bridge be-
tween the situation for rational maps, where such
stability is now reasonably understood, and that
for Kleinian groups, where it is a major unsolved
question as to whether structural stability is an
open dense property among discrete representa-
tions [Sullivan 1985b] (for Kleinian groups, rela-
tions play the role of our diagram conditions).

Our matings of the modular group with qua-
dratic maps also offer the possibility of exploiting
the bijection between the dynamics of the modular
group and that of the shift. This has always been
possible at the combinatorial level [Gutzwiller and
Mandelbrot 1988], but our examples provide a ge-
ometrisation in the realm of complex analysis.

Finally we remark that in this article we have
been concerned mainly with discrete actions of cor-
respondences. Another class of correspondences
of great potential interest are those exhibiting be-
haviour of Hamiltonian type. A start on the study
of such correspondences was made in [Bullett 1988].
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