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The study of resonances in systems such as periodically forced
oscillators has traditionally focused on understanding the re-
gions in the parameter plane where these resonances occur.
Resonance regions can also be viewed as projections to the
parameter plane of resonance surfaces in the four-dimensional
Cartesian product of the state space with the parameter space.
This paper reports on a computer study of resonance surfaces
for a particular family and illustrates some advantages of view-
ing resonance regions in this light.

INTRODUCTION

The study of resonance regions comprises a sub-
stantial part of the recent literature on bifurcation
theory. A resonance region is usually studied in
the context of a two-parameter family of dynami-
cal systems and is defined to be that set of param-
eter values for which the corresponding dynamical
system has a certain type of periodic orbit.

Traditionally, the study of resonance has focused
on understanding the regions in parameter space
where certain resonances occur. These regions are
usually bounded by curves that represent critical
phenomena such as saddle-node bifurcations, and
the computational goal has been to find ways to
trace out these curves in parameter space.

On the other hand, proofs of general theorems
have often used either explicitly or implicitly the
fact that the resonance regions in the parameter
space are projections of surfaces in the Cartesian
product of the state space and the parameter space.
In fact, typical continuation methods used to com-
pute parameter space curves such as saddle-node
curves actually find the curves in this larger space,
then project them to the parameter plane. The
curves are typically smooth along a smooth two-
dimensional (resonance) surface in the bigger space,
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but when projected to the parameter plane are only
piecewise smooth.

This paper reports on a computer study of these
resonance surfaces for a particular family of maps
of the plane and attempts to illustrate the ad-
vantages of viewing resonance regions as projec-
tions from the bigger space. Although this point
of view has already inspired many mathematicians,
it has been difficult to actually visualize the sur-
faces. Modern technology has played a significant
role in our work by allowing us to visualize our
numerical experiments and the surfaces to which
the experiments led us. While we think the illus-
trations in this paper are more illuminating than
traditional parameter space bifurcation diagrams,
we note that it is vastly more enlightening to watch
the surfaces as they are interactively rotated in the
four-dimensional space and projected to the screen
of a computer graphics workstation.

Surface visualization has led us to a deeper un-
derstanding of certain bifurcation phenomena and
their interrelations. For example, the classification
of the classical local bifurcations presented in Sec-
tion 3 was inspired by the computer visualization.

The surface emphasis may also affect future com-
putational goals for numerical bifurcation studies.
The resonance surfaces in this paper were much
easier to compute than were the bifurcation curves
along the surfaces. Being able to project the sur-
faces to the parameter space makes it less impera-
tive to compute the bifurcation curves, which often
just project to the edges of the resonance regions.
We hope our work will provide deeper understand-
ing of bifurcation theory and inspiration for future
work.

1. PERIODICALLY FORCED OSCILLATORS
1.1. The Differential Equation Model

Differential equations that can be classified as peri-
odically forced planar oscillators abound in science
and engineering. A standard model is

z=V(z)+ aW(z,wt), (1.1)

where the dependent variable x is a point in the
Euclidean plane R? and where the dot represents
the derivative with respect to the independent vari-
able t. The real parameters o and w are the forcing
amplitude and the forcing frequency. The function
W is periodic in its second variable with period
one. Both V and W are assumed to be C*.

The solutions of (1.1) of interest in this paper are
the resonant or entrained solutions, namely those
that are periodic with period an integer multiple
of the forcing period. The forcing period for (1.1)
is w™', so we say that a solution of (1.1) is in res-
onance if it has period ¢/w, where ¢ is a positive
integer.

The basic problem addressed in this paper is
that of describing the resomance regions, that is,
the set of parameter values for which resonance
occurs. The literature containing pictures of reso-
nance regions is extensive. Representative pictures
appear, for example, in the following very incom-
plete list: [Kai and Tomita 1979; Kevrekidis et al.
1986; Schrieber et al. 1988; Vance and Ross 1989;
Frouzakis et al. 1991]. Figure 1 shows computer-
generated pictures of some of these resonance re-
gions for a system described below as a caricature

of a forced oscillator.
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FIGURE 1. Resonance regions in parameter space
for the family H, of Section 2.3. The leftmost
region has ¢ = 1. For the remaining regions, ¢ is
the denominator of the rational number at which
the region is rooted. The boundary of the region
q = 2 is composed of two qualitatively different
pieces; see table at bottom of page 232.
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When a = 0, (1.1) reduces to the planar vector
field

i =V(z). (1.2)

We assume this equation to have an equilibrium
point ¢y inside a periodic orbit C, that has fre-
quency w, > 0, and hence period w;'. We also
assume the equilibrium point to be repelling, and
the periodic orbit to have characteristic multiplier
strictly less than one: that is, Cy is a normally hy-
perbolic attracting periodic orbit. We call Cj the
unforced oscillator of the system, and wy the nat-
ural frequency. For simplicity we assume that the
unforced flow travels counterclockwise around Cj
and that C, is globally attracting, that is, every
solution except the unstable equilibrium point ¢
asymptotically approaches Cy as t — oo, as shown
in Figure 2.

T2

1

FIGURE 2. Qualitative behavior assumed of the
unforced oscillator.

1.2. The Stroboscopic Family

It is convenient to introduce the ratio of the natural
frequency and the forcing frequency,

B = wy/w,

and to use it as the first parameter instead of w.
This allows consideration of cases where the natu-
ral frequency wy is zero or negative and eliminates
only the case when w is zero, which corresponds to
time-independent forcing; from now on we exclude
this case, assuming w to be positive.

It is also convenient to assume that « is non-
negative and to combine the two parameters into
a single symbol

p=(8,a) € P:=R x[0,00).

The stroboscopic family is obtained from (1.1)
by following solutions for one period of the forcing
term. More precisely, let ¢g.4)(§,t) be the solution
of (1.1) with initial value x = ¢ at t = 0. The
stroboscopic maps of the plane are defined by

f.0) (&) = p.m(&w™).

For each p € P, the map f, is a diffeomorphism of
the plane and is as smooth as the original equation
(1.1), which, in this paper, is assumed to be C°.

Remark. The stroboscopic maps carry all the essen-
tial dynamical information about (1.1). In partic-
ular, ¢ is a fixed point of f, if and only if ¢, (£, 1)
is a periodic solution of (1.1) with period 1/w, and
¢ is a periodic point of f, with period ¢ if and only
if p,(&,t) is a periodic solution of (1.1) with pe-
riod ¢/w. The stability properties of invariant sets
of solutions of (1.1) are reflected by the stability
properties of the corresponding invariant sets for
the map f,.

When a = 0, each stroboscopic map reduces to the
time 1/w map of the autonomous equation (1.2).
The equilibrium point ¢y becomes a repelling fixed
point for the map, while the periodic orbit Cy be-
comes a normally hyperbolic attracting invariant
circle on which the map is conjugate to a rigid ro-
tation. This invariant circle is globally attracting
in the sense that it is asymptotically approached
by the iterates of every point except cy.

The rotation number of the unforced oscillator
plays a key role in the analysis. Recall that the ro-
tation number of an orientation-preserving home-
omorphism of the circle is defined (modulo 1) as
the asymptotic average angular increase, in units
of 27 radians; in particular, for a rigid rotation of a
circle through 2mp radians, the rotation number is
p. For the unforced oscillator, the rotation number
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of the map f(4,0) restricted to the invariant circle
C is B.

In this paper we use the term “generic” loosely;
roughly speaking, a property is “generic” if it oc-
curs for a topologically large set of maps or vector
fields for some appropriate topology on the space
of maps or vector fields. For a > 0, the family
f. is assumed to be generic in the space of C*
two-parameter families of diffeomorphisms of the
plane. It is important to note that the family f, is
far from generic if @ = 0 is included in the param-
eter space. In particular, when restricted to the
invariant circle Cy, the map f(4,0) is conjugate to
a rigid rotation through an angle of 273 radians.
For example, if § equals the rational number p/q,
every point on the circle C) is periodic with period
q. Thus the family of stroboscopic maps of a “ge-
neric” family of forced oscillators will necessarily
contain “nongeneric” maps corresponding to zero
forcing amplitude.

1.3. A Caricature

This paper is a computer study of a particular fam-
ily of maps. Instead of picking a differential equa-
tion of the form (1.1) and numerically integrating
the equation to arrive at the stroboscopic maps, we
chose instead to pick an easily computable family
of diffeomorphisms having the features of the fam-
ily of stroboscopic maps generated by a family of
forced oscillators. This choice avoided the numeri-
cal problems introduced by an integration method
and allowed us to achieve computations of great ac-
curacy and detail without relying on massive com-
puter resources.

The family of maps H s o) is defined as the com-
position

H(/@,a) ‘= 0q © hg,

where g, and hg are defined as follows.

For 8 € R, the map hg is taken to be the time-

one map of the following planar vector field, writ-
ten here in polar coordinates:

.2
7;:7“(1 r?)
1472

1—r2
1472

. 0=2m8+ (1.3)

It is easy to check that this vector field satisfies
the hypotheses stated above for (1.2). Indeed, the
origin is a repelling equilibrium point surrounded
by a hyperbolic attracting periodic orbit on the
unit circle. The flow restricted to the unit circle
is rigid rotation through the angle 27 3t. Thus, for
the time-one map hg, the unit circle is an attract-
ing invariant circle on which the map has rotation
number S.
For a € [0,1), the map g, is defined by

ga(2) = (1= a)(z=1) + 1,

where z is a complex number used as a coordinate
on R%. Thus g, is the identity map, while, for
0 < a < 1, the map g, is a linear contraction
centered at z = 1.

For a = 0, the map H g, is just the time-one
map of the vector field (1.3). Thus the unit circle
is an invariant circle on which the map is a rigid
rotation with rotation number (3. For small but
positive «, the circle distorts but remains invari-
ant. For « close to 1, the circle, and indeed all pe-
riodic orbits, have disappeared and there remains
only an attracting fixed point near z = 1. This
last property is typical of many forced oscillator
systems: for large forcing amplitude, the system
assumes a globally attracting periodic orbit with
the same frequency as the forcing term.

2. RESONANCE

It is clear from the remark in Section 1.2 that a
point in the state space of the system (1.1) is in
resonance if and only if it is a periodic point of
the stroboscopic map f,. It will be important to
distinguish periodic points according to their least
period, that is, the minimum number of iterations
of the map needed for the point to return.

The order of a resonance is the least period of
the periodic point. The g-th order resonance re-
gion, denoted R(q), is the set of all parameter val-
ues p for which f, has a periodic point of least
period ¢. In general, R(q) will have many different
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components, at least as many as there are distinct
rational rotation numbers with denominator q.

2.1. Resonance Surfaces

The main purpose of this paper is to present the
case that a good way to understand the resonance
regions is to think in terms of resonance surfaces,
two-dimensional submanifolds of the four-dimen-
sional Cartesian product of the state space R? with
the parameter space P. More precisely, define the
period-q variety ¥(q) as

S(q) = {(w, 1) € B x P: fi(x) = a},

and the least-period-q surface T'(q) by

Thus 3(q) is the set of all points (z,u) such that
x is a periodic point of f, with period ¢q. Some
of the points in ¥(¢) might be fixed points or pe-
riodic points of periods that divide q. However,
these points are removed from ¥(g) when we pass
to I'(q), as this latter set consists only of periodic
points of least period g. The resonance region R(q)
is the projection of I'(¢) onto the parameter space.
The implicit function theorem can be used to
show that, for each fixed ¢ > 1, and for an open
dense subset of the space of C* two-parameter
families of forced oscillators, I'(¢) is a C™ two-
dimensional orientable submanifold of R? x P. Sim-
ilar arguments have been given previously [Peck-
ham 1990]. This result justifies the statement that
I'(q) is “generically” a smooth surface, and, for the
remainder of this paper, it will be assumed that f,
satisfies this property. We do not know whether
the caricature family H,, has this generic property,
but, so far, all the resonance surfaces we have ex-
plored with the computer appear to be smooth.
Recall that for o« = 0 the invariant circle C, is
conjugate to a rigid rotation with rotation number
B. If B = p/q is rational and reduced, then C

consists entirely of periodic points of least period
q, which implies that

Co x {(p/q,0)} C T'(q).

Since the forcing amplitude is taken to be nonneg-
ative, Cy x {(p/q,0)} forms part of the boundary
of I'(q).

Note that, for any given period g, this gives sev-
eral boundary components, one for each rotation
number p/q. Indeed, I'(¢) decomposes into con-
nected components characterized by a generaliza-
tion of the notion of rotation number [Peckham
1988; 1990]. For the purposes of this paper, it will
suffice to consider only components that can be la-
beled by their boundary at @ = 0. More precisely,
we define I/, as the connected component of I'(q)
containing Cy X {(p/q,0)}, where, as elsewhere in
this paper, the rational number is assumed to be
written in lowest terms. It can be shown that, for
distinct rational numbers 3 and 3, the surfaces I'g
and I'g are disjoint [Peckham 1988; 1990].

2.2. Small Forcing Amplitude

For small forcing amplitude «, the part of the sur-
face T',;, extending from Cy x {(p/q,0)} and re-
stricted to a € [0, ap] is simply an annulus. This
can be seen as follows.

Since the invariant circle Cy is normally hyper-
bolic for « = 0, it perturbs to a nearby invariant
circle C(g ) for sufficiently small a. Under a suit-
able choice of coordinates (r,f) on the state space
R?, this perturbed invariant circle can be written
as the graph of a function from 6 to r. Indeed,
the entire family of invariant circles can be written
as the graph of a function from (0, 3,«) to r. In
this way, the problem of finding periodic orbits for
the stroboscopic family can be reduced to the cor-
responding problem for a family of circle maps, a
problem that is well-studied.

When o = 0 the map on the invariant circle Cy is
conjugate to a rigid rotation with rotation number
B. Therefore the angular variable € can be chosen
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so that the stroboscopic map f(3..) restricted to
C(3,0) can be written

Iﬁ(g,a)(e) =0+ 27’(’5 + O[’)’(@’a)(e).

Now let 8 = p/q + ¢, where ¢ is a small parame-
ter. The g-th iterate of the map restricted to the
invariant circle can then be written

Uy 0y (0) = 0 + 2mp + 27qe + ay(0) + O° (e, ),

where O?*(e,a) denotes terms of at least second
order in € and «, and where

q—1

Y(0) = Vw/a0) (0 + 27kp/q).

k=0

Now the condition that the point # on the invariant
circle is periodic with rotation number p/q can be
written

,(/}gﬁ,a) (0) = 0 + 27!']),
and therefore as
2mqe + ay(0) + O*(g,a) = 0.

Using the implicit function theorem, one can solve
this last expresson for ¢ as a function of § and «.
Since r was already written as a function of 3, «,
and 6, the resonance surface I',/, has been written
as the graph of a function from the variables # and
« to the variables r and 3. Thus I',/, is an annulus
for small enough «. It turns out that, even though
the invariant circles typically lose smoothness as
the forcing amplitude « is increased, this annulus
of periodic points, being part a C* surface, is itself
C* [McGehee and Peckham 1995].

Figure 3 illustrates this fact, and also the generic
property that the projection of the resonance sur-
face I'; /4 to the parameter plane is a wedge-shaped
region with nonempty interior [Hall 1984]. This
part of the resonance region R(q) is often called
an “Arnold tongue” or “Arnold horn”. One such
tongue emerges from every rational point on the
[-axis.

FIGURE 3.

Portion of a resonance surface T/,
near o = 0, and its projection to the (8, «)-plane.
The r-coordinate is omitted, that is, the surface is
rendered as a physical object in the three-dimen-
sional space (6, 3, «).

2.3. Global Properties

As seen above, the surfaces I',,, are generically
two-dimensional C'*° orientable submanifolds of the
product R? x P. We also mentioned that, in many
forced oscillator systems, large forcing amplitude
produces a globally attracting periodic orbit with
the same period as the forcing term, that is, a
globally attracting fixed point for the stroboscopic
map. It is therefore reasonable to add as a hypoth-
esis that, for ¢ # 1, each '/, is a bounded subset
of R? x P.

Although I',/, is bounded, it is, in general, not
closed. Indeed, the boundary of I', /, contains some
of the standard bifurcation points. It is useful to
add these bifurcation points to the surface. We
therefore consider the topological closure of the res-
onance surface I',/,, and denote it by T,

A generalization of the rotation number was used
previously [Peckham 1990] to show that, since p
and q are relatively prime, the only possible closure
points are fixed points, that is,

Iizv/q \ I‘:D/q - 2(1)-
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For ¢ = 1, the surface I',, is closed, so this state-
ment is vacuous. For ¢ > 2, the closure points cor-
respond to a fixed point bifurcating to a period-q
orbit.

For ¢ = 2, this bifurcation is referred to as a
period-doubling bifurcation, and for ¢ > 3 as a
Hopf bifurcation. Generically, a Hopf bifurcation
with a specified rotation number is a codimension-
two phenomenon, which means that it occurs at
an isolated point in the two-dimensional parame-
ter space. For q > 3, therefore, T/, \ T}/, con-
sists of isolated points; it is exactly one point for
most examples we have seen. Adding this point
compactifies the surface, but the new surface is no
longer C*°. An analysis of the normal form at a
point of Hopf bifurcation shows that the surface
T',/, is generically only C9~2,

Generically, a period-doubling bifurcation is a
codimension-one phenomenon, which, in the case
of two-parameter families, means that the bifurca-
tion points occur along a curve in the parameter
space. In most known examples, this appears to
be a single circle. The open surface I',/; is joined
to itself along this circle to form a nonorientable
surface I', /5. Although orientatibility is lost after
the closure operation, smoothness is generically re-
tained.

This discussion is summarized by the following
previously proved theorem [McGehee and Peckham
1995; Peckham 1990]:

Theorem. The following properties are generic for
two-parameter families of forced oscillators.

1. If ¢ < 2, then T, is a C* submanifold of R? x
P.

2. If ¢ > 3, then T, is a C7* submanifold of
R? x P.

3. If g # 2, then T, is orientable.

We conjecture that assuming I, ), bounded implies
that T, /2 is generically nonorientable. It does seem
that f‘p /2 is nonorientable for the examples we have
investigated. These surfaces are described and il-
lustrated in Section 4 for the caricature family.

The numerics for that family provide strong evi-
dence that I',/, is a Mobius band for ¢ = 2, and a
disk for ¢ = 3,4,5.

2.4. An Example of Closure Causing Nonorientability

It is interesting to digress momentarily to an eas-
ily describable example that illustrates how closure
can turn an orientable surface into a nonorientable
one. The topology and geometry of this example
closely parallel that of the period-two variety ¥(2),
which we illustrate for the caricature family later
in the paper. The digression also serves to illus-
trate techniques used to visualize all the resonance
surfaces.

Identify R* with C?, and consider the real two-
dimensional variety

Y= {(z,w) € C*: 2 = zw}.

Write X = ¥, U X,, where X, is the real plane
(complex line) z = 0, and X, is the complement.
Both ¥, and X, are orientable real surfaces; ; is
topologically a plane, while 35 is homeomorphic to
an open annulus, parametrized by the punctured
z-plane. However, the closure of ¥, can be written

¥, = {(re”,e?") € C*: 0 € [0,27), r € [0,00)},

(2.1)
which can be recognized as a Mobius band and
hence is nonorientable. Note that £;NY, = 22\22
is the circle

S:={(z,w) € C?*:2=0, |w|=1},

which corresponds to = 0 in the parametrization
of 3, just given; S is also the subset of points 3,
covered twice by that parametrization.

In comparing the variety ¥ of this example with
the variety ¥(2) of the caricature family, or more
generally with the stroboscopic forced oscillator
maps, we see that 3; is analogous to the fixed-
point surface I'(1), while ¥, is analogous to one of
the period-two resonance surfaces fp /2-
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Now consider only the bounded portion of X, for
which |z| < 1:

Sy ={(re”,e?) e C*: 0 €[0,2m), r € [0,1]}.

Figure 4 shows the projection of 3/, to the z-plane.
This projection is, of course, just the disk {z € C:
|z| < 1}. Note, however, that the disk has vari-
ations in shading, so it appears to be something
other than simply a flat disk in the plane. This
appearance results from the way we are visualizing
the surface ¥, as a subset of R*. The surface is
first projected into R? along the imaginary w-axis,
yielding a two-dimensional surface in R?. This sur-
face is then rendered using the three-dimensional
viewing software Geomview [Phillips et al. 1993].

More precisely, use (Rez, Imz, Rew, Imw) as
coordinates on R*, and use (z, s, 3) as coordi-
nates on R>. The surface ¥, is projected from R*
to R® using the projection whose matrix in these
coordinates is given by

10 0 O
01 00
0 010

Once projected into R?, the surface is then visu-
alized as though the viewer were infinitely far out
along the positive z3-axis (looking through an in-
finitely powerful telescope) with the positive x;-
axis pointing to the viewer’s right and the positive
Zo-axis pointing up. In other words, the projection
to the printed page is given by the matrix

1 00
[0 1 0] '

We stress that the two projections, first from R*
to R? and then from R® to R?, are treated in fun-
damentally different ways. The surface as it sits in
R* is treated as an abstract mathematical object,
endowed with no color or other attribute. In the
projection from R* to R® one dimension’s worth
of information is completely lost. By contrast, the
projection from R* to R? should be thought of as
a description of the way that a photograph of the
surface in R? is taken; color, reflectivity, lights and

FIGURE4. Portion of the surface £5 with |z < £,
projected to and rendered in the three-dimensional
space (Re z, Im z, Rew), from the point at infinity
in the positive (Re w)-direction.

shadows are all used in an attempt to display three
dimension’s worth of information as intelligibly as
possible in two dimensions.

As an illustration of this, consider Figure 5. The
same projection from R* to R? is used there as in
Figure 4. In Figure 5, however, the object has been
rotated in R?® in such a way so the projection from
R3 to R? is no longer along a coordinate axis; it
happens to be given by

0.609
—0.750

—0.622 0.493
—0.250 0.612 | "

Now the black dot in the center of the disc in Fig-
ure 4 can be seen to be a line. This line is the pro-
jection of the circle S described above along which

FIGURE5. Another view of the object of Figure 4,
with the same projection onto three dimensions.
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the annulus ¥, is glued to form the Mdébius band
¥,. This circle is given by the conditions z = 0
and |w| = 1, and thus projects to the line segment
in R? given by Rez =Imz =0, |[Rew| < 1.

S can be seen clearly as a circle in Figure 6,
where it is again shown in black. There we have
chosen a different projection from R* to R*, given
by the matrix

0.707 0 0 —0.707
0 0.707 —=0.707 0O
0.5 0.5 0.5 0.5

One can also think in terms of rotating ¥/, in R*
before projecting.

FIGURE 6. Another view of the surface ¥} of Fig-
ure 4, with a different projection onto three dimen-
sions. Here it is clear that ¥} is a Mobius band;
this fact was obscured in Figures 4 and 5, mainly
because the projection R* — R3 used there takes
¥/, to a nonembedded surface in R3.

3. CLASSICAL LOCAL BIFURCATIONS

The description and characterization of local bifur-
cations typically includes dynamical information,
but it turns out that the local bifurcations of codi-
mension one and two that occur in generic two-
parameter families of maps of R? can all be char-
acterized using only singularities of the period-q
varieties X(q) defined above and the projection of
these varieties to the parameter plane. This geo-
metric viewpoint leads to the following three nat-
ural categories of bifurcations:

1. those that can be locally characterized solely
by singularities of one or more of the period-q
varieties;

2. those that have no nontrivial topology (no near-
by variety singularities) but can be character-
ized by the preferred projection of a variety to
parameter space; and

3. those that can be locally characterized only by
considering both variety singularities and the
projection of the varieties to parameter space.

We proceed to describe the classical local bifurca-
tions of codimension one and two that occur in two
parameter families of maps of R?, classifying them
into these categories.

3.1. Variety Singularities

A singular point on the variety 3(q) is by defini-
tion a point in R? x P where the 2 x 4 Jacobian
matrix of the defining implicit equation fi(z) ==
has rank less than two. As discussed in Section 2.3,
the closed resonance surface T, /q has singularities
generically only at the closure points T, /e \ Tp/qs
which can occur only on the fixed-point surface
Y(1). It follows also that these fixed points are
singular points on the variety $(q). Since e/
must be an eigenvalue of Df,(x) at these fixed
points [Peckham 1990], such a bifurcation will ge-
nerically be a Hopf bifurcation if ¢ > 3, and a
period-doubling bifurcation if ¢ = 2.

Hopf Bifurcations. A Hopf bifurcation point is a point
(z,pn) on I'(1) at which Df,(z) has eigenvalues
e*™? where 0 < p < 3, and for which certain non-
degeneracy conditions hold. An important special
case is a p/q-resonant Hopf bifurcation, at which
p = p/q, this rational number being expressed in
lowest terms. In this case, (z,u) is a point on
¥(q) for which Dfi(z) is the identity. This sin-
gular point on the variety ¥(q) lies both on the
C> surface I'(1) and on the C7=3 surface ', /,.
All Hopf bifurcation points occur along a curve
in the surface I'(1), characterized by the eigenvalue
condition given above. For a generic family, the
points along the curve where the eigenvalues are
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roots of unity form a dense set in the Hopf bifur-
cation curve; clearly, the same can be said of the
points of intersection of I',;, and T'(1). So the en-
tire curve of Hopf bifurcations can be distinguished
topologically, without regard to the projection to
the parameter space of any of the resonance sur-
faces or varieties. Look ahead to Figure 17.

When viewed as a point on the surface I'(1), a
Hopf bifurcation point is ordinary (nonsingular).
When viewed as a point on the period-q surface
T, /q» however, a resonant Hopf bifurcation point is
a point where the C* smoothness of the surface
breaks down; it is generically only C?~2. This can
be seen from the normal form of a p/g-resonant
Hopf bifurcation point. A standard approach is to
approximate the g-th iterate of the family of maps
with the flow of a family of differential equations
that is equivariant with respect to rotations by p/q
[Arnol’d 1982; Takens 1974]. The normal form of
the flow is

i =¢ez+ A2’z + Bz4 1,

where z is a complex state space variable, ¢ is
a complex parameter, and A and B are complex
constants. Fixed points of the original maps all
correspond to z = 0, so period-q surface points
are the nonzero solutions to 2 = 0. The closure
of the period-q surface adds back the Hopf point:
(2,€) = (0,0). In polar coordinates z = re'’, the
closure of the period-g surface becomes

e=—Ar* — Bri e 7. (3.1)

With some recollection from multivariable calcu-
lus, the second term on the right can be shown to
cause the surface to be C~2 but not C7"? at the
origin. Look ahead to Figure 14, where an example
of a period-3 surface is shown near a %—resonant
Hopf point. The surface does indeed appear to
have a singularity where it is C° but not C* (last
two views on bottom row).

Period Doubling. A period-doubling point is a point
(z,p) on T'(1) for which —1 is an eigenvalue of

Df,(z) and for which certain nondeneracy condi-
tions hold. Thus (z, u) is a point on 3(2) for which
1 is an eigenvalue of Df?(x) and hence is, as be-
fore, a singular point of the variety ¥(2). However,
in this case, the singular points occur along a curve
of intersection between the two C'* surfaces I'(1)
and I',/» that make up ¥(g). This curve of sin-
gular points topologically characterizes a period-
doubling point.

Note that the loss of smoothness that occurs on
f‘p/q for ¢ > 3 is replaced instead by a loss of ori-
entability of the surface T, /2, as discussed in Sec-
tion 2.4.

Double Negative-One Points. For a generic family, a
Hopf bifurcation curve can terminate only when
the eigenvalues of the linearization are both 1 or are
both —1. An alternate characterization of the dou-
ble negative-one point is that, on the fixed-point
surface, a Hopf bifurcation curve terminates on a
period-doubling curve [Arnol’d 1982; Takens 1974].
Since both period-doubling curves and Hopf curves
are characterized topologically, so is this intersec-
tion point of the two curves.

Takens-Bogdanov Points (see [Takens 1974; Bogdanov
1976]). The other possible termination point of a
Hopf bifurcation curve is characterized by a double
eigenvalue of 1. An alternate interpretation is that,
on the fixed-point surface I'(1), the Hopf bifurca-
tion curve terminates on a curve of saddle-nodes.
The Hopf curve can be located topologically. Al-
though the saddle-node curve can be “seen” only
through the geometric projection to the parameter
space, a Takens—Bogdanov point can be described
as a Hopf curve that terminates and has no other
nearby variety singularities. The absence of other
variety singuarities is what distinguishes this bifur-
cation from the double negative-one bifurcation.

3.2. Projection Singularities

All points near a nonsingular point on ¥(g) have
the same period, so it suffices to restrict attention
to the resonance surfaces I',/,. Projection singu-
larities occur at points where the projection of I',
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to the parameter space is singular but for which,
unlike the variety singularities above, the surface
is otherwise topologically uninteresting. As is true
for variety singularities, projection singularities oc-
cur at points (z,u) on the surface I',/, where the
surface fails to be locally the graph of a function
from the parameter space to the state space, which
implies that the linear map D f!(z) —id is singular.
This last condition is equivalent to the condition
that 1 occurs as an eigenvalue of D f(z).

Folds (Saddle-nodes). The most common projection
singularity is the fold, or saddle-node, which oc-
curs on I',/, at points (z,n) where 1 is a simple
eigenvalue of Df!(x) and where certain higher-
order nondegeneracies hold. Geometrically, I',/,
folds back on itself in R?*, so that its projection
to the parameter space changes from locally hav-
ing two inverse images to, at the singular point,
locally having one inverse image, and finally none.
The edges of the surface with respect to this distin-
guished projection form curves of period-q saddle-
nodes. Note that the curves of saddle-node bifurca-
tions are generically smooth curves on the smooth
surface I',/,, and hence have no intrinsic charac-
terization in terms of the varieties ¥(g). From the
dynamical viewpoint, the two inverse images corre-
spond to two period-q points, one a saddle and one
either a sink or a source, which come together at
a single degenerate period-q point (a saddle-node),
and then disappear.

Cusps. The only other purely projection singularity
that can occur generically for two-parameter fam-
ilies of diffeomorphisms on R? is the cusp, which
occurs on I',/, at points (z, 1) where 1 is a simple
eigenvalue of Dfi(z) and where a certain higher-
order degeneracy occurs but where certain other
nondegeneracies hold. Geometrically, two folds on
I',/q come together and disappear. The two folds
project to two curves in the parameter space that
come together at a cusp point, providing the name
for the singularity. Locally, within the cusped re-
gion determined by the curves, the projection map
has three inverse images, while outside this region

it has one. This change between one and three in-
verse images characterizes the cusp bifurcation for
generic families.

3.3. Combinations

Transcritical Hopf Bifurcation. Along the Hopf bifurca-
tion curve, one sometimes finds a point separating
the so-called “subcritical” and “supercritical” bi-
furcations [Chenciner 1985]. Topologically this is
a point on a Hopf curve; it is distinguished geo-
metrically from other Hopf points because the side
of the Hopf curve to which the resonance regions
project as they emanate from the resonant Hopf
points changes at the transcritical Hopf point. Al-
though such points occur for the caricature family
described above, they will not be discussed further
in this paper.

Transcritical Period Doubling. As one goes along the
period-doubling curve, one may find, in addition to
the double negative-one points mentioned above,
also points where a degeneracy occurs in the higher
order terms of the map [Peckham and Kevrekidis
1991]. Such a higher-order degeneracy point is
characterized topologically by living on a period-
doubling curve and is distinguished geometrically
from other period-doubling points in that the local
projection of the period-two surface I'(2) changes
at these points from projecting to only one side
of the period-doubling curve to projecting to both
sides of the curve.

Dynamically, these points separate two types of
stability characteristics of the period-two orbit bi-
furcating from the fixed point: on one side the bi-
furcating period-two orbit is a saddle, and on the
other it is either a sink or a source.

4. RESONANCE SURFACES FOR THE CARICATURE

Recall that the the caricature family of Section 1.3
is written Hgq)(%1,%2), where (z1,2) is a point
in the state space R? and (8, ) is a point in the
parameter space P = R x [0,1). The parameter
a € [0,1) is the forcing amplitude, and the param-
eter B € R is the rotation number for zero forcing
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REMARKS ON THE FIGURES

Figure 1, and all of the figures in Section 4, represent objects that naturally live in the four-dimensional product
R? x P of the phase space and the parameter space P. The latter extends for o € [0,1] and 3 € (—o0,00). Fixed
points exist for all of these parameter values, but we have restricted our fixed-point surface figures to a € [0, .75]
and 8 € [—.15,1.3]. For a > .75 the only periodic point is a globally attracting fixed point, while 3 only appears
modulo 1 in the definition of our family (1.3). Our figures thus contain all the interesting topology of periodic
points in slightly more than a fundamental S-interval (see Figures 8, 9, and 17, top).

To generate the data for these surfaces, we used variations of Newton’s method and standard continuation
techniques. Typically, we computed enough cross sections on each surface so that we could be relatively certain
of its topology and hence be able to decide on a reasonable parametrization. We were then able to model the
surface in R?, project it from R* to R, and use the program Geomview [Phillips et al. 1993] to view the resulting
surface in three dimensions. The positioning in R? is represented by a “viewing projection” from R? to R2. As
explained in Section 2, because most of the figures are intended to be seen as three-dimensional, the two separate
projections are of interest rather than just their composition as a projection from R* to R2.

To describe the projections from four to three dimensions, let the coordinates in R* be ordered (3, a, z1, Z2).
In each case we start by scaling @ and § by 10. Next we sometimes rotate or shear the (3, z2)-plane, leaving
the other two coordinates fixed; finally, we drop the last coordinate. In one exceptional case we instead rotate
the (o, z1)-plane and drop the third coordinate. Explicitly, each projection is one of:

10cosmy 0 0 sinmy 10 0 0 0.2 10 O 0 0
A(y) = 0 10 O 0 , B=]10 10 0 0 , C=1] 0 707 —-0.707 O
0 0 1 0 0 0 1 0 0 O 0 1

The projections from three to two dimensions can be described in terms of modified Euler angles. We rotate
by an angle 6 around the first coordinate axis, then by an angle ) around the second coordinate axis, and then
drop the third coordinate. The result is of the form P(6,v) = cosi sinfsiny cose.smw

0 cos 6 —sinf
Here are the projections used. An asterisk * indicates the projection R?® — R? is further followed by a —90°

rotation in the plane of the paper.

Figure(s) R* — R? R — R? Figure(s) R* — R3 R? — R?
1,7, 10, 13, A0) | P( 0°, 0°) || 12 (right) C P(—45°,30°)
14 (top right), 15, (i.e., projection to 14 (top left) B P(—40°,30°)
16 (top right) the parameter plane) 14 (middle right) A(0) P(—70°,40°)
8,9 B P(—20°,-20°) || 14 (bottom left) A(5) | P(=40°,30°)
11 (top left) B P(—40°, 30°) 14 (bottom middle) A(.5) P( 50°, 0°)
11 (top/bottom right), A(.5) P(=90°, 0°) 16 (top left) B P(—30°,30°)
14 (bottom right), (i.e., projection to 16 (middle right) A(0) P(—60°,10°)x
16 (bottom right) the phase plane) 16 (bottom left) A(.05) P(—60°,40°)x
11 (bottom left) A(0) P(-30°, 53°) 16 (bottom middle) A(.2) P(—60°,40°)x
11 (bottom middle) A(0) P(—30°,—45°) 17 (top) B P(—20°, 5°)
12 (left) A(0) P( 0°,—-40°) 17 (bottom) B P(—20°,20°)

The curves are drawn according to the following conventions:

Curve of Appearance Characterizing property

I, /, projects nontransversely to the parameter space;

Prddleodle bifeiom Wil equivalently, DH/(z) has 1 as an eigenvalue

Hopf bifurcations Thin black DH, () has complex conjugate eigenvalues on the unit circle

Period-doubling bifurcations | Thick black | DH,(z) has —1 as an eigenvalue
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amplitude of the invariant circle C,, which, in this
case, is the unit circle in the (z;, z2)-plane.

The remainder of this paper is devoted to a de-
scription of computer-generated pictures of vari-
ous resonance surfaces for this family. We empha-
size that we have not attempted to prove that the
caricature family is a generic example. However,
the computations and resulting pictures are con-
sistent with the properties expected of a generic
two-parameter family as described in the sections
above.

For reference, the explicit projections used for
the figures are given on the facing page. It is help-
ful, when viewing each figure, to keep in mind what
projection is being used: for this reason we have
sometimes repeated this information in the figure
captions.

4.1. The Fixed-Point Surface

Figure 7 shows the local fixed-point bifurcations for
the caricature family, projected to the parameter
plane. The curves can be identified by reference to
the bottom table on the facing page; these conven-
tions for their appearance will be used consistently.
We now discuss each type of curve.

The white curves represent fixed-point saddle-
node bifurcations, that is, points (3, «) where the
Jacobian matrix for a fixed point of Hs ) has an
eigenvalue of 1. Each encloses a triangular-shaped

/

(0%

FIGURE 7. Local fixed-point bifurcations for the
caricature family H,, projected to the parameter
plane. The curves of fixed-point saddle-node bifur-
cations are white, the curves of Hopf bifurcations
are black and thin, and the period-doubling curve
is black and thick.

region with one vertex on the (-axis. For parame-
ter points in the interior of these regions the map
has three fixed points, and for parameter points
outside there is only one fixed point. This means
the fixed-point resonance region is the entire pa-
rameter space; the triangular regions denote pa-
rameter values whose corresponding maps having
additional fixed points. The two top vertices of
each triangular curve are cusp points, as described
in Section 3.2, but the vertex on the 3 axis is the
tip of the small forcing amplitude resonance horn.
This horn was described above in Section 2.2 and
Figure 3; further description appears below.

The thin black curve represents the Hopf bifur-
cation curve, that is, the set of points (3, «) where
the Jacobian matrix for a fixed point of Hs ) has a
complex pair of eigenvalues on the unit circle. The
thick black curve represents the period-doubling
curve, that is, the set of points (/3,«) where the
Jacobian matrix for a fixed point of Hg ) has an
eigenvalue of —1.

Each Hopf bifurcation curve abuts at one end on
a saddle-node curve and at the other end on the
period-doubling curve. The point at the end abut-
ting on a saddle-node curve is a Takens—Bogdanov
point, while the point at the other end is a double
negative-one point (Section 3.1).

The fixed-point surface 3(1) for the caricature
family H,, is a smooth connected surface embedded
in R? x P. A portion of it is shown in Figure 8.

All of the p/1-resonance surfaces I, 1, for p € Z,
are the same, and all are equal to (1), which
is diffeomorphic to the parameter space P with
a countable number of open discs removed. One
component of the boundary of ¥(1) consists of the
repelling fixed point ¢y = (0,0) at zero forcing am-
plitude (recall the unforced oscillator of Figure 2),
that is,

{((m1,22), (B,0)) ER* X P: 2y = 2y = a = 0}.
This boundary is the bottom edge in Figure 8.

(The left, right and top edges in Figure 8 come
from our having restricted the parameter space for
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FIGURE8. Portion of the fixed-point surface X(1) for the family H,,, plus the curves of local bifurcation that lie
on it, all projected from R? x P to R? to the plane. The projections R* — R? and R* — R? differ only slightly
from those of Figure 7: we have mixed a bit of x5 with 3 in projecting down to three dimensions, and the line

of sight for viewing the result is not far removed from the direction of the zi-axis. The slight discontinuities in
shading are due to the piecewise way in which the surface is parametrized.

FIGUREY9. Same view as Figure 8, with the surface made transparent.
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the figure. In actuality, (1) extends to & = 1 in
the positive o direction and infinitely both ways in
the [ direction.)

Each of the remaining components of the bound-
ary consists of the unforced invariant circle C, at
forcing frequency equal to an integer multiple of
the unforced frequency. In other words, the com-
ponents are labeled by the integer p, and compo-
nent p is given by

{((1’1,1‘2), (ﬂva)) € R*xP : I%—i—l’g =1, a=0, ﬂ :p}'

Figure 8 shows two of these components, for p = 0
and p = 1. They are the elliptical curves along the
bottom edge of the surface. The figure also illus-
trates the fact that, near each “elliptical” bound-
ary component, the fixed-point surface is a topo-
logical cylinder that projects to a horn-shaped re-
gion of parameter space, as described in Section 2.2.
(The elliptical boundary components of Figures 8
and 9 correspond to the bottom edge of the sur-
face in Figure 3.) Note that the elliptical boundary
components intersect the linear boundary compo-
nent in this projection from R* to R?, even though
they are disjoint as subsets of R*.

The saddle-node, Hopf bifurcation, and period-
doubling curves all appear in Figure 8 as they lie
on the fixed-point surface. They can be seen more
clearly in Figure 9, where the surface has been re-
moved to show the parts of these curves that are
hidden in Figure 8.

4.2. The Period-Two Surface

Figure 10 shows the resonance region correspond-
ing to 1_“1/2, that is, periodic points with period
two and rotation number 1. As before, the thin
black curves are Hopf bifurcation curves, while the
thick black curve is the curve of period-doubling.
The white curves again denote saddle-nodes, in this
case of period two. In other words, a point (3, )
on a white curve has the property that H ) has
a point (z,,z,) having least period two and such
that DH(, (21, 72) has 1 as an eigenvalue.

The union of the oval and funnel regions in Fig-
ure 10 is the projection onto the parameter space

of the the period-two resonance surface T'y /2- This
surface, which turns out to be a Mobius band, is
illustrated in Figures 11 and 12. Although it is an
embedded submanifold of R? x P, all but one of the
projections from four to three dimensions shown in
these figures introduce self-intersections.

The boundary of I /2 consists of the unforced
invariant circle Cy at forcing frequency equal to
half the unforced frequency, that is,

{((z1,22), (B,a)) e ®®x P a4zl =1,a=0,5=1}.

This boundary, the base of the shape in Figure 11
(top left), projects to the parameter plane as a sin-
gle point at the @ = 0 tip of the % resonance region
of Figure 10. The top right panel shows the projec-
tion to the phase plane; compare Figure 4, where
we pictured the model M6bius band.

(0%

A

1

2
FIGURE 10. Resonance region corresponding to

f1/2 (projection of the resonance surface to the pa-
rameter plane). Inside the period-doubling curve
(thick black oval) there is a single period-two or-
bit, and inside the funnel made by the saddle-node
curves (white) there are two period-two orbits, each
with two points. Elsewhere there are no period-two
points. The Hopf bifurcation curves (thin black)
abut on the oval at the double negative-one points
(Section 3.3), and the saddle-node curves abut on
the oval at the points of transcritical period dou-
bling.
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FIGURE 11. Several views of the resonance surface f‘l/g. Top: the whole surface, in a generic projection (left)
and projected onto the phase space (right). Bottom: portion of the surface with o > .38. Again the right
panel shows the projection onto the phase space, and therefore is a zoom-in of the one immediately above it;
compare also the view of the Mobius strip example in Figure 5. On the bottom left and middle we have the
same projection R* — R3 as for the top left figure, but the projections R?® — R? differ. Here one sees clearly
the self-intersections introduced by the projection from R?* to R?. Note in particular that the boundary curve,
where the surface was arbitrarily cut for the purposes of illustration, looks like a figure eight in this projection.
It is actually a topological circle in R*, as is clear in the right panel.
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FIGURE 12. A smaller piece of I'; /5, around the period-doubling circle. The projection for the view on the left
is somewhat similar to those of Figure 11, left. The projection on the right was chosen so that the intermediate
surface in R? is an embedded Mobius band (compare with the model Mébius band in Figure 6).

As described in Section 2.2, the portion of 'y
restricted to a € [0, ap] is a topological cylinder
for o small enough. To get a better view of the
interesting part of the topology of f‘1/2, which oc-
curs near the thick black period-doubling curve, we
have sliced it off at @ = .38. The discarded part
below o = .38 is contractible to the boundary cir-
cle, so the topology of the resulting surface is the
same as for the full surface. The resulting surface
is pictured in the bottom row of Figure 11.

It is interesting to note that the saddle-node
curves (white) intersect the period-doubling curve
(thick black) transversely on the surface I'y)s, in
constrast to the parameter-plane projection of Fig-
ure 10, where the saddle-node curve appears to end
on the period-doubling curve. These intersection
points are transcritical period-doubling points, as
discussed in Section 3.3.

Figure 12 shows the surface I'; /2 very near the
period-doubling curve. Here the surface is clearly
seen to be a Mobius band. The part of f1/2 not
shown in Figure 12 is still a topological annulus

(cylinder) whose outside boundary is the boundary
of Ty /2 (see Figure 11, top row) and whose inside
boundary is identified with the boundary of the
surface in Figure 12. Therefore the full surface
1_“1/2 is also a Mobius band.

The Mobius band in Figure 12 was defined so
that, as its boundary curve is traversed once, its
projection to the parameter plane goes around a
circle twice. This can be interpreted dynamically
as follows. If one starts at a point on the Mobius
band boundary and follows the boundary until its
projection wraps around the parameter space circle
once, the starting and ending points together form
a period-two orbit.

4.3. The Period-Three Surface

Figure 13 shows the resonance region correspond-

ing to f’l/g, that is, periodic points with period

three and with rotation number % As usual, the

thin black curve is a Hopf bifurcation curve, while
the white curve denotes period-three saddle-nodes.
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B

FIGURE 13. Resonance region corresponding to f‘l/g. Outside the loop bounded by the white curve there are

no period-three points with rotation number % Inside the loop there are six period-three points, divided into

two orbits; one of these orbits collapses to a fixed point at the parameter value corresponding to the * resonant

3

Hopf point. The panel on the right is a blowup, showing how the Hopf bifurcation curve (black) passes through
the interior of the resonance region. The % resonant Hopf parameter point (not shown) lies on the Hopf curve

inside the % resonance region.

The blowup on the right illustrates clearly how,
as predicted by the normal form [Arnol’d 1982;
Takens 1974], the Hopf bifurcation point of third
order projects to the interior of the resonance re-
gion. We discuss this further in Section 4.4. For
higher-order resonances, namely ¢ > 5 and some-
times ¢ = 4, the Hopf bifurcation point projects to
the boundary.

The resonance surface corresponding to this res-
onance region is shown in Figure 14. As before,
the ellipse forming the boundary is the invariant
circle Cy, this time at the parameter point § = 3,
a = 0. As seen in Section 2.2, the part of I'; /5 cor-
responding to small forcing amplitudes is a topo-
logical cylinder that projects to the horn-shaped
region emanating from § = %, a = 0; the whole
boundary circle projects to the point 8 = %, a=0.

The projection into three dimensions shown at
the top left in Figure 14 has self-intersections that
might suggest some interesting topological feature,
but this turns out not to be the case. This is clearly
seen in the other views, where we have thrown
out a cylinder contractible to the boundary circle,
keeping only a portion of Ty 3 near the Hopf bi-
furcation curve (the same for all five views). Thus
I /3 has the same topology as this portion, which
is a topological disk.

Note that the shading in the last two views sug-
gests a singular point near the center of the disk.
This is the point of Hopf bifurcation; here the disk
is C° but fails to be C* (recall the discussion of
smoothness near Hopf points in Section 3.1). Note
also that the white saddle-node lines do not inter-
sect this point. Because the saddle-nodes project
to the boundary of the % resonance region, as in
the top right of Figure 14, this is an illustration
of the fact that the Hopf bifurcation point generi-
cally occurs in the interior of the resonance region,
as mentioned above.

4.4. The Period-Four Surface

Figure 15 shows the resonance region correspond-
ing to f1/4, that is, periodic points with period
four and with rotation number %. As usual, the
thin black curve is a Hopf bifurcation curve, while
the white curve denotes period-four saddle-nodes.

Recall that the Hopf bifurcation point of third
order generically occurs in the interior of the res-
onance region of period three; the Hopf point is
isolated from the saddle-node curves. By contrast,
all generic Hopf bifurcation points of order five and
above project to the boundary of the corresponding
resonance region; the Hopf point is at the common
intersection of the 2q saddle-node curves. The two
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FIGURE 14. Several views of the resonance surface I';/3. Top left: the whole surface, in a self-intersecting
projection to three dimensions. Right and bottom: a subset of the surface near the tip, shown in various
projections (top right, projection to the parameter plane; bottom right, projection to the phase plane). The
complementary portion is an annulus contractible to the boundary, so the topology of I'y /3 is preserved, and is
clearly seen to be that of a disk.
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B

FIGURE 15. Resonance region corresponding to
I'y/4. Outside the white loop there are no pe-

riod-three points with rotation number i; inside

the loop there are eight such points, divided into
two orbits. For this family the Hopf point is at
the common intersection of the eight saddle-node
curves: the black curve does not go inside the loop.

different cases can be seen directly from the nor-
mal form in (3.1). If ¢ = 3, the —Br? 2e 9 term
dominates the — Ar? term (for r near zero), while if
g > 5, the —Ar? term dominates the —Bri—2e~9
term. By fixing r and varying 6 from 0 to 27, we
see that in the ¢ = 3 case, a circle, covered three
times, is swept out around the origin in the € pa-
rameter plane; this puts the third-order Hopf point
in the interior of the resonance region. For ¢ < 5,
the Hopf point is outside the circles; this puts the
fifth- and higher-order Hopf points on the bound-
ary of the corresponding resonance regions. More
specifically, the Hopf points project to the tip of a
resonance horn.

When ¢ = 4, both terms on the right-hand side
of (3.1) are of the same order r*. If |A| < |B|,
the fourth-order resonance appears analogous to
the third-order resonance; if |A| > | B], the fourth-
order resonance appears analogous to higher-order
ones.

For the caricature family, the i resonant Hopf
bifurcation point appears to project to the bound-
ary of the resonance region shown in Figure 15,

analogous to the higher-order resonances. For this
reason, we do not show any surfaces with periods
higher than four in this paper.

The resonance surface T'; /4 is shown in Figure 16
(top left). Once again, the ellipse forming the
boundary is the invariant circle Cj, this time at
the parameter point =1, o = 0. The surface
I'i/s in R* is a disk bounded by this circle.

The remaining panels in Figure 16 show a por-
tion of T, /4 near the Hopf bifurcation curve, again
with the same topology as the full surface. That
is, f‘l/4 is a disk. The view at the top right is
the projection of this portion of the surface to the
parameter plane; note that the white saddle-node
curves form the boundary of the region in the pa-
rameter plane. The view in the middle right shows
the same projection from R* to R® but a differ-
ent projection from R* to R?; we see that the in-
termediate surface in R® is self-intersecting. Note
also that there are eight distinct white saddle-node
curves, corresponding to the existence of eight dis-
tinct period-four points for each parameter point
in the interior of the resonance region.

The bottom row in Figure 16 shows other pro-
jections R* — R? of the same piece of I'; /4; the last
one shows most clearly that the surface is a disk.
Note that the eight saddle-node curves all come to-
gether at the same point on the disk. This point is
the Hopf bifurcation with eigenvalues e*™/2. Ge-
nerically, the surface should be C! but not C? at
this point. It does appear to be C*, but it is hard
to see whether it fails to be C?.

One should contrast the bottom right views in
Figures 14 and 16. For I /4, the saddle-node curves
all intersect at the Hopf bifurcation point, illus-
trating the property that the Hopf bifurcation oc-
curs on the boundary of the resonance region in
the parameter space. For the period-three surface,
the saddle-node curves miss the Hopf bifurcation
point, corresponding to the property that the Hopf
bifurcation occurs in the interior of the resonance
region. The two figures are also consistent with the
generic expectation that the I surface is C* but the
1

5 surface is only C°.
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ANS

FIGURE 16. Several views of the resonance surface I'; /4. Top left: the whole surface. Right and bottom: a
subset of the surface near the tip, shown in several projections (top right, projection to the parameter plane;
bottom right, projection to the phase plane).
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FIGURE 17. Ensemble of resonance surfaces. At the top we show X(1) and f‘p/q for p/q = %, %, %, %, % At the

bottom we have omitted the fixed-point surface X(1). We have included the curves of saddle-node bifurcation,
Hopf bifurcation, and period-doubling for reference (with the conventions of the table on page 232). When
projected to the parameter plane, these curves revert to the more traditional (and more mundane) parameter
space bifurcation diagram of Figure 1.
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4.5. An Ensemble

There is a resonance region and a corresponding
resonance surface associated with every rational ro-
tation number. The p/q resonance region emanates
from the point (4,a) = (p/q,0) in the parameter
plane and connects the (-axis to the curve of Hopf
bifurcation. The corresponding resonance surface
f‘p/q has a boundary component consisting of the
circle Cy at the point (3,a) = (p/q,0) and inter-
sects the fixed point surface 3(1). For ¢ > 3, this
intersection occurs at a point of Hopf bifurcation.
Figure 17 gives an idea of the whole.
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