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We describe a new algorithm, based on sieving procedures, for
determining the minimal index and all elements with minimal
index in a class of totally real quartic fields with Galois group
Dg. 1t is not universally applicable, but its applicability is
easily checked for any particular example, and it is very fast
when applicable. We include several tables demonstrating
the potential of the method. (A more general approach for
quartic fields, described in [Gaal et al.], requires much more
computation time for each field.)

Finally, we present a family of totally real quartic fields with
Galois group Dg and having minimal index 1 (that is, a power
integral basis).

1. INTRODUCTION

Let K be a totally real quartic number field with

Galois group Dg. Such fields can be obtained in

the form K = Q(,/p), with an algebraic integer

p = i(e+ fy/m), where e,m, f are integers, m

is square-free, and p is totally positive and not a

square in the quadratic subfield L = Q(y/m).
Fixing the notation above, set

g=0and h =2
so that for w = Z(g 4 hy/m) the pair {1, w} is an
integral basis of L. We assume that K/L has a

relative integral basis. Hence, a basis of K over Q
is of the form {1,w,,wt}, with

Y = (@ +bvm+ (c+dvm)/i)

for suitable a,b,c,d € Z (see [Pohst 1975], for ex-
ample). We know that K has such an integral basis

if m =1 mod 4,
if m =2 or 3 mod 4,
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if L has class number one. We recall [Gadl et al.
1991a, eq. (2)] that the discriminant of K is

Dg = ((w— w')2(¢1 — 3) (2 — ¢4))2a
where w' = (g — hy/m) and #1,...,1, are the

conjugates of ¢ € K over Q ordered in correspon—
dence with /u, i/, —\/;t, —V/', where p' =
3(e — fy/m). (In general we will use a prime ’
to denote the nontrivial Q-automorphism of L.)
For 1 < i < 4, let [;(X) = [;(X,, X3,X4) be
the conjugates of the linear form I(X) = wX, +

X3 + wpXy. Then we obtain forms [;;(X) :=
L(X)—1;(X), for 1 <4,j < 4,i#j. We list them
fori < j

lLa(X) = (w—w') Xa+ (Y1 —92) X3 + (w1 — w'ha) X4,
lo3(X) = (W' —w)Xo + (Y2 — 3) X3 + (w'thy — wip3) X4,
I34(X) = (w = ") X2 + (3 — 1a) X3+ (wih3 — w'1hg) X4,
ha(X) = (w—w' )Xo+ (Y1 — a) X5+ (w1 — w'hs) X4,
lhis(X) = (1 — 93) (X3 +wXy),

l24(X) = (2 — a) (X3 +w'Xy)

The discriminant form

Dijg(wXs + ¢ X5 + wp X,y) =

I &

1<4,j<4
7]

can be written as
Dijo(wXs + 9 X5 + wpXy) = 1(Xs, X5, X,)? D,

where I(X5, X3, X4) is a form of degree six with in-
teger coefficients called the index form correspond-
ing to the basis {1,w, ¥, w} of K.

In a series of papers [Gadl et al. 1991a; 1991b;
1995] we considered the problem of the resolution
of the index form equation

I(zo,x3,24) = J with @, 23,24 € Z (1.1)

for a given nonzero integer J. For J = =£1 the
solutions yield all power integral bases of K. In
the case of quartic fields containing a quadratic
subfield we gave in [Gaal et al. 1991a] a “fast” al-
gorithm for determining the “small” solutions of
(1.1), that is, solutions with max(|zz|, |z3], |z4]) <

10?°, say. The computation time was a few sec-
onds per example on an HP 9000/433 workstation.
Methods for the complete resolution of (1.1) have
so far been developed only for quartic fields with
Galois group C, [Gadl et al. 1991b] and V; [Gadl
et al. 1995]. These methods produce all solutions
of (1.1), but the computation time can be several
minutes (and more) per example.

This paper describes an algorithm for the fast
computation of all solutions of (1.1) in quartic fields
of Galois group Dg. The algorithm is based on
suitable sieving methods. It reduces the problem
of solving (1.1) to the solution of equations of type

G,=xz*+D forn,zcZ, (1.2)

where (G,, is a second-order linear recurrence se-
quence and D is a given integer. The method is
successful only for a subset of the fields of inter-
est, which we characterize later (Corollary 6.3); it
turns out that this subset includes about 70% of
the totally real quartic fields of Galois group Dg
having discriminant less than 10®. Table 1 in Sec-
tion 8 gives some statistics. When successful, the
method produces all solutions fast, say in a few
seconds. It allows the determination of the mini-
mal index of K and all integers of K with minimal
index.

The last section of this paper presents an infinite
family of totally real quartic fields of Galois group
Dg with minimal index 1.

2. FROM INDEX FORM EQUATIONS TO LINEAR
RECURRENCE SEQUENCES

In this section we show how the resolution of the
index form equation (1.1) can be reduced to that of
an equation of type (1.2). We keep all the notation
of the previous section. We excerpt the following
two statements from [Gadl et al. 1991a].

Proposition 2.1. Let J be a nonzero integer. Then
x = (@a,w3,74) € Z? is a solution of (1.1) if and
only if there exist ji,ja € Z satisfying j1j2 = J,

T3 + (w + w)x3Tys + Ww'Tl = ji, (2.1)
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and

Lio(2)las ()34 ()41 () = jo(w — )% (2.2)

Theorem 2.2. If the system of equations (2.1) and
(2.2) has a solution x € 73, there exists a rational
integer v such that

v = 2 (A(E — dPm))’ + 4jh’m. (23)
We use these results to prove:

Theorem 2.3. Let € > 1 be the fundamental unit of
L, and let B be a maximal set of nonassociate el-
ements of Z + Zw with norm ji. If the system of
equations (2.1) and (2.2) has a solution © € 73,
there exist B € B and y,n,v € Z such that v satis-
fies (2.3) and

p(ctdy/m)? B2 +p' (c—dy/m)? B2e™" = my®+8v.

(2.4)
Moreover, possibly after replacing x with —x, we
have

(Be" + B'e™),
(Be™ — B'e™)/v/m,
Ty = g(=2(bzs + azy) +y)

I3 =

Ty —

= NI= N

if m =2 or 3 mod 4, and

T3 = (—w'Be™ +wP'e™)//m,

4 = (Be" — B'e™)/v/m,

2y = 1(=2bzs — (a + b)z4 + )
if m = 1 mod 4.

Proof. We assume that & € Z* is a solution of (1.1).
Then, by Proposition 2.1 and Theorem 2.2, there
exist integers ji, j2, v € Z satisfying (2.1)—(2.3).

For m = 2 or 3 mod 4, equation (2.1) has the
form

T: — mzi = j.
Hence there exist 8 € B and n € Z with
T3 +vVmxzy = PGe™.

This implies that 3 and x4 are of the form given
in the theorem, and the same holds for z, because

of (2.2). As in the derivation of [Gadl et al. 1991a,
eq. (20)], we obtain
((mA;s + Ag + Assy/m) %"
+ (mAs + Ay — Azg/m) 372" /(4m)
=92 + Ay — j1(mAs — Ay)/(2m) (2.5

with y; € Z and

As = 4m(c*e + d*me + 2cdfm),

Ay = 4m?(c’e + d*me + 2cdfm) = mAs,
Agy = 8m2 (A f + d*mf + 2cde),

Ay = 32mw.

From these expressions we get

mA3 + A4 + A34\/ﬁ == 8m2(e + f\/ﬁ)((}i d\/ﬁ)2

Recalling that 4 = 1(e+ f/m), we can write (2.5)
as

4m(u(c+dﬁ)2ﬁ2€2n +ul(c_d\/ﬁ)2ﬂl2612n)
= y? + 32mw.

Since e and f are even and m is square-free, 2m
divides y;. Putting y = y1/(2m) we get (2.4).
For m = 1 mod 4 the proof is analogous. O

We note that the left-hand side of (2.4) is a se-
quence in n that obeys a second-order linear re-
currence. Hence, the resolution of (1.1) is reduced
to solving an equation of type (2.4). For this we
develop sieving procedures for general second-order
linear recurrence sequences in Sections 3 to 7.

3. USEFUL PROPERTIES OF RECURRENCE SEQUENCES

Take P,Q € Z such that P?+4Q # 0, and let o, 8
be the (distinct) zeros of #2 — Pz — Q. For n € Z=°
(or for n € Z if |Q| = 1), set

an_/Bn

Vn:an+/8n7 _/87

U, =

V, if P is odd,
Wn = { Ly otherwise.

2
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It is easy to see that V,, is odd if and only if P is odd
and 3 does not divide n. The following properties
are easily proved for n,l € Z:

20, = UV, + UV, (3.1)
2V = VuVi+ (e — B)°U, U, (3.2)
Vo = V2 —2(=Q)" (3.3)
Us, =U,V, (3.4)
Vo | Vam for m odd. (3.5)

Lemma 3.1. Let |Q| = 1 and n = 2*m € Z with
k > 1. Additionally, if P is odd let m # 0 mod 3
and if Q =1 let m be even. Then

Upyi = —U;, mod Wak-1,,,

Varr = —Vi mod Wak-1,,
foralll € Z.

Proof. We only prove the first congruence because
the proof of the second is similar. By (3.1), (3.4)
and (3.3) we obtain

2Un+l = Un‘/l + Uan = Uan mod Vn/z
= —2Ul(—Q)"/2 mod V.,
= 20U, mod Vy, 5.

If P is even, so is V,/;. Otherwise V,,,; is odd
because 3 does not divide m. Dividing the last
congruence by 2 we get the desired result. a

This lemma can be generalized to all second-order
linear recurrence sequences. If the terms of a se-
quence {G,}>° , satisfy

Gn+2 - PGn+1 + QGna

we call 22 — Px — Q the characteristic polynomial
of that sequence.

Theorem 3.2. Let {G,} be a second-order linear re-
currence sequence of integers with characteristic
polynomial x> — Px — Q. Let n, k and m be as
in Lemma 3.1. Then G, = —G; mod Wak-1,, for
every l € Z.

Proof. 1t is well known that
aa™ — bB"™
a— 0
fora = G; —BGy, b = Gy —aGy and n € Z. Hence,

a short calculation yields

G, =

Gn = GlUn + QGOUnfl- (36)

Using the first congruence in Lemma 3.1 we imme-
diately get the desired result. O

4. THE FIRST SIEVING PROCEDURE

In the sequel, (%) denotes the Jacobi symbol for
z,m € Z>°. We maintain the notation for recur-
rence sequences introduced in the previous section.

For an integer m we fix a complete residue sys-
tem modulo m, and we denote by 7(m) the length
of the minimal period of the sequence {U,, mod m}.
It follows from (3.6) that the minimal period of
{G,, mod m} divides r(m) for any recurrence se-
quence {G, } with the same characteristic polyno-
mial as {U, }. In this case Q is an arbitrary integer.

The following lemma can be used very efficiently
for proving that (1.2) is not solvable or for local-
izing the solutions of (1.2) in a few residue classes
with respect to an appropriate module.

Lemma4.1. Let D be an integer, S = {p1,...,p:} a
set of prime numbers, R the least common multiple
ofr(p1), ..., r(ps), and M = {mq,...,m,} with0 <
my < mg < --- < my, < R. If there exists for all
m € M an index i € [1,t] such that

(Gmp%D> =1, 4.1)

then all solutions n,x € Z of (1.2) satisfy n # m
mod R for all m € M.

Proof. Assume that n,z € Z is a solution of (1.2)
with n = m; mod R for some m; € M. Then

G,—D
=5

>:10r0

for all primes p € S because of (1.2).
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On the other hand, by assumption there exists
p; € S satisfying (4.1). Because n = m mod R
and r(p;) divides R, we have n = m mod r(p;).
Thus G,, = G,, mod p; which together with (4.1)
contradicts the previous paragraph. O

The idea of using modular methods for the reso-
lution of (1.2) goes back to [Wunderlich 1963]. Its
combination with an effective upper bound for the
solutions was applied in [Pethd 1993; 1991] for de-
termining all cubes and fifth powers, respectively,
in the Fibonacci sequence. An “intelligent” im-
plementation of those ideas is described in [Nemes
1991].

5. THE SECOND SIEVING PROCEDURE

The disadvantage of the first sieving procedure is
that a solution n,x € Z of (1.2) cannot be located
in its residue class modulo R. Therefore we develop
another method that allows us to prove that, for
another appropriate module R;, expected to be not
much larger than R, and for all but one element of
the residue classes modulo R; containing n, equa-
tion (1.2) is not solvable.

Such an idea was invented by Cohn [1964] and
applied also by Ribenboim [1989]. In the next
lemma we formulate the background of the algo-
rithm. In the sequel we assume that the recurrence
sequences under consideration satisfy |Q| = 1.

Lemma 5.1. Let m and D be integers, and S =
{p1,.-.,p:} a set of prime numbers greater than
3. Assume that there exist a,by,...,b, € Z”° such
that for every o > a there exist nonnegative inte-
gers By < by, ..., By < by satisfying

<_G’”7_D) = 1. (5.1)

2apfl31 ...pft

Then (1.2) has at most one solution n,x € Z with
n =m mod 2°T1p% .. . pk | namely n = m.

Proof. Let n,x € Z be a solution of (1.2) satisfy-
ing n = m mod 2¢T'p% .. . p% and n # m. Then
there exists h € Z such that n = m + 2°"lsh,
where s = p% ...pP. Let h = +2°h; with h; odd.

Then Viater1y divides Vaaterigy, because of (3.5)
and therefore Waatet1, divides Waa+etigp,,. Hence,
Lemma 3.1 yields

G,— D =—-G,, — D mod Wyares.

We put a@ = a + ¢ > a. By assumption there exist

nonnegative integers B; < by, ..., B < by satis-

fying satisfying (5.1). Because of (3.5), V,u o s
1Pt

divides ‘/;apbl Lbes SO the last congruence implies

1Pt
Gn - D= —Gm — D mod Wz"‘pfl...pf‘ .
This and (5.1) contradict the assumption that n, z
give a solution of (1.2). O

How do we apply this lemma? We can apply Ja-
cobi’s reciprocity law almost automatically because
for any n € Z not divisible by 3 we have

—1mod 4 if Pis odd,
1mod4 if P is even.

Win(P, Q) = {

The proof of this property is a simple application
of (3.5). Choosing o > 2 and combining the last
congruence with (5.1), we get

< —Gm — D ) _ i<W2°‘pfl...p?t)
W2°‘p’fl...p’ft Gm + D 7

where the sign on the right depends only on the
sign of G,, + D and on the parity of P. To be
able to apply Lemma 5.1 we have to analyze the
sequence V,, more carefully. This is done in the
next section.

6. ANALYSIS OF THE SECOND SIEVING PROCEDURE
For fixed t, M € Z>°, define

v(t, M,n) = Vi2» mod M

for every n € Z, where we take the smallest non-
negative residues mod M. It is obvious that the se-
quence {v(t, M,n)}e> , is eventually periodic. Let
e(t, M) be its minimal preperiod (or 1 if the pre-
period is 0), and r(¢, M) its minimal period.
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Lemma 6.1. Assume thatt is odd and M > 1. Then
r(t, M) divides r = r(1,M) and e(t,M) < e =
e(1,M).

Proof. We use induction on ¢. The case t = 1 is
trivial. We assume that the result is true for any
odd w with 1 < u < ¢t. Then the congruence

v(u, M,e) =v(u, M,r + e) mod M 6.1)

immediately follows for all such u. To complete
the induction step it is sufficient to prove (6.1) for
u = t. For u = 1 equation (6.1) means

" + ﬂ2e+r =ao? + 626 mod M

because of the definition of V,,. Taking the t-th
power of this congruence, using the binomial the-
orem and the identity (;) = ( ¢ .), we get

t—j

(t-1)/2

3 (4 e
J

=0

V2
= > () (7 B9 4 a7 77°) mod M.
J

=0

We have j <t—j,af=—-Q ==x1land e > 1, so
that

aj2e/3(t7j)2e _ 6(#2;‘)26, a(tfj)fﬁﬂ" — (t729)2°
Analogous identities hold if we replace e by e + r.

Thus the above congruence of sums implies

(t—-1)/2 "
Z <]) (Vie=2j)2e — Vit—2jy2e++) = 0 mod M.

=0

Becauset—2j < t for j > 0 and t—2j is always odd,
the induction hypothesis means that all summands
on the left with j > 0 vanish. The remaining con-
gruence is exactly (6.1) for u = ¢. This proves the
induction step. O

We can now characterize those pairs n, D for which
the result of Lemma 6.1 can be successfully ap-
plied. We remark that if m and D are fixed then
—G,, — D is a fixed integer, which we call M.

Theorem 6.2. Let M be an odd integer with | M| > 1,
and let e = e(1, M) and r = r(1, M). If there exist
integers my, msy such that e < my,ms < e+171 and

() (%) =

then for all k such that e < k < e+ r and all
e € {1,—1} there exists a prime p > 3 satisfying

(53) ==
Proof. Let R = R(M) be the minimal period of
the sequence {V,, mod M }>° . (This sequence is
purely periodic for all M because |Q| = 1.) Let
R = 2°u with u odd. Starting with a longer prepe-
riod than the minimal one, if necessary, we can
assume without loss of generality that

(W) e

e =m; > sand m; < k. By Dirichlet’s theorem on
primes in an arithmetic progression there exists a
prime p such that p2* = 2™ mod R. This implies
Varp = Vom: mod M, and since M is odd we get
Wik, = Womi mod M, hence the theorem. O

Combining Theorem 2.3 and Lemma 6.1 we imme-
diately get the following corollary:

Corollary 6.3. Let {G,} be a recurrence sequence
with |Q| =1, let D € Z, and set M = G,,,+D. Let
{V.} be the recurrence sequence defined by the zeros
of the characteristic polynomial of {G,}. If there
exist integers my, my such that e(1, M) < my,my <
e(l, M)+ r(1,M) and

G G =

there exist an integer a < e(1, M)+r(1,M)+1 and
primes pi,...,ps > 3 such that (1.2) has at most
one solution n,x € Z with n = m mod 2%p; - - - ¢,
namely n = m.

7. THE ALGORITHM

We are ready to summarize our results and spell
out a practical algorithm for the resolution of (1.1).
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In a first step we reduce that problem to that of
calculating all solutions of (1.2), as described in
Section 2. In the sequel we fix D and the sequence
{G.}. To solve (1.2) we then apply two sieving
procedures, called Sieve 1 and Sieve 2 in the sequel.

Sieve 1. This amounts to an application of Lemma
4.1. Choose enough prime numbers p;,...,p; SO
that the least common multiple R of 7(p;), . . ., r(p:)
is not much larger than max;<;<;r(p;). Using the
lemma, determine a subset My of {0,1,..., R—1}
that is as large as possible. Note that My neces-
sarily contains all solutions of (1.2).

Sieve 2. Let m € {0,1,..., R—1}\ M, be an index
of the output of Sieve 1. Let M be the square-free
part of G,, + D. Compute the sequences

v(p, M, n)\ Y r(@M)+e(1,M)
{50))

n=1

until finding a prime number p such that

(1)

for all n € {1,2,..., e(1, M) + r(1,M)}, where ¢
is 1 or —1 depending only on M (see the end of
Section 5).

For given P, (Q and small M we will of course pre-
compute the appropriate sieving modules, that is,
a product of convenient primes.

Algorithm. Step 1. Choose a module R as described
above and calculate all solutions of (1.2) in n mod-
ulo R. For this use Sieve 1 so that the absolute
smallest representatives of the remaining residue
classes correspond to the actual solutions. Denote
these representatives by n;, for 1 < <t Ift =0
there are no solutions to (1.2) and the algorithm
terminates.

Step 2. Let 1 < ¢ < t. Using Sieve 2, try to deter-
mine a number M; = 2 p;, ... p;, with the prop-
erty that a solution n of (1.2) with n = n; mod M;
satisfies n = n;. According to Corollary 6.3 this is
not always possible.

Step 3. Foreachi =1,...,t, try to prove—possibly
by enlarging the initial set of prime numbers—that
for a solution n of (1.2) subject to n = n; mod R
there exists an index j € [1,t] with n = n; mod M;.
For this use Sieve 1 again. This procedure is not
deterministic.

The next section illustrates the algorithm with a
detailed example. We also present the results of
a computation where we applied the algorithm to
all totally real quartic fields with Galois group Dy
and discriminant < 106,

8. APPLICATION OF THE SIEVE METHOD

To exemplify the algorithm, we use the following
input data, in the notation of Sections 1-5: Dg =
725, m=5, a=2, b=0, ¢c=2, d=0, g=h=J =1,
e=14, f=4. Equation (2.3) has four solutions:
(J1,72,v) = (1,—1,43) and (1,1,47). Thus we
have to solve four equations of type (2.4), namely

G = 5(7~2v9) (%5 5)n+5(7+2ﬁ)(3_2ﬁ)n

=93+ 10v 8.1)

for v = £3,+7, where we multiplied (2.4) by 2 and
set yo = gy We want integer solutions n, yq.

The binary recursive sequence {G,} is defined
by the initial values Gy = 70, G; = 55 and by
the difference equation G,.» = 3G,y1 — G, for
n>0ormn <0, that is, P = 3 and Q = —1.
Considering (8.1) modulo the primes in the set
S = {3,7,11,13,29,31, 41,61,71, 83, 167, 211, 241,
281,421,911, 1427}, we see by Lemma 4.1 that the
solutions of (8.1) modulo 840 are the following,
where 7 denotes the least positive remainder of n
modulo 840:

v i v y=2w

3 1 5 2
-3 4 25 10
-3 0 10 4

7 2 5 2

7 0 0 0
-7 -1 15 6
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Now we apply Sieve 2 six times. We have

Y (A

By the remark at the end of Section 5 we also have
Vi = —1 mod 4 if k is not divisible by 3. For j =1,
v =3, D = 30 we obtain —-G; —D = —85 = —5-17.
Let k be an integer not divisible by 3. Then

() =) =) @)= ()
o

for all k. We also have:
k = 0 1 2 3 4

() -1

|2

(57) =

The period length of both sequences is three and

by Lemma 5.1 we obtain n = 1 for » = 1 mod 20,

hence there exists only one solution that is divis-

ible by 840. In four more of the six cases similar

computations lead to the same result, with new

period lengths equal to 1540, 56, 16 and 20 for

(v,7) = (-3,4), (7,2), (7,0) and (—7,—1), respec-
tively.

Wi =Vi = (

1 -1 -1

1 -1 -1 1-1

Unfortunately our method does not work in the
case j = 0, v = =3, D = —30. There we have
—G; — D = —40 = —2% . 5, but Lemma 5.1 is not
applicable since

-22.5\ 2\ 1
() =)=
for all k£ > 0 not divisible by 3.

This method was implemented in Maple [Char et
al. 1991] by J. Sajtos of the Mathematical Institute,
Kossuth Lajos University, Debrecen. We tested the
method for all totally real number fields of Galois
group Dg with discriminants up to 10° containing
a quadratic subfield of class number one. In each
case we computed the minimal index and, if the
method worked, all elements with minimal index.
Table 1 gives some statistics about these computa-
tions.

Hence, the algorithm succeeds for about 85% of
the equations (1.2). The rate of success seems to
grow rapidly with the size of the discriminant of K.

9. AN INFINITE FAMILY OF FIELDS WITH A POWER
INTEGRAL BASIS

We now describe an infinite family of totally real
quartic fields with Galois group Dg and minimal
index one.

(0,1] (1,2] (2,3] (3,4] (4,5] (5,6] (6,7] (7,8] (8,9] (9,10] | Total

449 442 451 449 431 450 447 453 4379
1400 1404 1340 1490 1268 1436 1366 1304 | 13267
691 709 705 806 650 767 701 670 6595
856 825 742 799 722 778 770 727 7850
640 610 569 617 545 615 611 570 5919
216 215 173 182 177 163 159 157 1931

Range of Dk (in units of 10°)

# of fields (or of index form equations) 379 428
# of recurrence equations (1.2) 1036 1223
# without solutions after Step 1 406 590
# of equivalence classes left after Step 1 | 839 792
# of solutions isolated by Step 2 574 568
# of algorithm failures 265 224

TABLE1. Frequency data resulting from the application of the algorithm of Section 7 to all totally real number
fields K of Galois group Dg with D < 105. For each range of values of D (first row) we give: the number
of equations (1.1) for fields in that range (second row); the number of resulting recurrence equations of the
form (1.2), possibly several to a field, according to Theorem 2.3 (third row); the number of such equations that
have no solution, as given by Step 1 of the algorithm (fourth row); the number of equivalence classes remaining
after Step 1, possibly several to each recurrence equation (fifth row); number of successes, that is, solutions
of recurrence equations isolated by Step 2 (sixth row); and number of failures, that is, equivalence classes for
which Step 2 does not isolate the solution (last row). Note that the rate of success seems to grow with the size

of the discriminant of K.
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Theorem 9.1. There are infinitely many positive in-
tegers k such that K = Q(\/2k+ V2) is a non-
cyclic quartic field with minimal index one.

Proof. Let k > 1 be an integer, and consider u =
2k + /2 with norm N(u) = 2(2k* — 1). Obviously,
this norm is not divisible by 22. It follows from
[Nagell 1922] that there are infinitely many positive
integers k such that 2k? — 1 is not divisible by the
square of a prime number. For all such k the field
Q(y/p) is of degree four over Q and has minimal
index one. Indeed, an integral basis of K is

{1, V2, Vi V2yii}

[Pohst 1975]. Because v2 = (\/i)? — 2k, the ele-
ments 1, \/i, p, p/p form a power integral basis
of K. O

We note that the discriminant of K is 21°9(4k* — 2),
and by Proposition 2.1 the index form equation
I(x3, 23, 4) = %1 for the integral basis {1,v/2, NI
\/5\/;7,} is tantamount to the system of equations

x; — 25 = =+1,
83 — 8kadwl — 1623asws — 16kadal +
+8kaiwy + dala] + 16k a3a] + 16keyz] + dag = +1,

with the obvious solution (xs, z3,z4) = (0, 1,0).
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