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We discuss the Hausdorff convergence of hyperbolic compo-
nents in parameter space as a one-parameter family of tran-
scendental functions is dynamically approximated by polyno-
mials. This convergence is strongly suggested by computer ex-
periments and is proved in a weaker form, which is illustrated
with exponential, sine and cosine families. Furthermore, we
consider the convergence of subhyperbolic components. Our
result also applies to the antiholomorphic exponentials, which
allows us to investigate the limit shape of the unicorns.

1. INTRODUCTION

Consider a family of entire functions depending on
a complex parameter. By iteration it gives rise to
a family of dynamical systems. The question is
what can be said about the dynamical systems of
the family and of their dependence on the param-
eter. Of particular interest are how the Fatou or
stable set, where the dynamics is “well-behaved”,
and the Julia set, where the dynamics is “chaotic”,
depend on the parameter. Suppose now that an
entire transcendental family is approximated by a
sequence of families of polynomials (of increasing
degree) locally uniformly on compact sets. The
singular values, that is, values where one cannot
define a local inverse, are of paramount importance
for the dynamics. To make “dynamical sense” we
ask all families to have the same finite number of
(free) singular values, in which case we speak of dy-
namical approximation. Since it is generally easier
to study polynomials rather than transcendental
functions, the question is: What can be said about
the transcendental family as a dynamical system
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by looking at the polynomial families as the de-
gree tends to infinity?

This type of convergence question has first been
addressed in [Devaney et al. 1986], which studied
the approximation of the exponentials E(X,z) =
Ae* by

Py(\ 2) = A (1 + s)d.

This example gives a nice connection between the
connectedness locus of P, the well-known Man-
delbrot set, and the parameter plane of E. It is
shown there that certain external rays of the con-
nectedness loci of the polynomials P; converge to
“hairs” in the parameter plane of the exponen-
tials F, and that hyperbolic components converge
pointwise. Similar results are established in [Fa-
gella 1995] for the family G(A, z) = Az e* approxi-
mated by

i\, 2) =Nz (1 + s)d,

which shows up in the study of the complex stan-
dard family. The strongest result up to now in the
parameter plane is the convergence of hyperbolic
components as kernels in the sense of Carathéodory
in [Krauskopf and Kriete 1995b]. In the dynamical
plane the Hausdorff convergence of the Julia sets,
for suitable values of the parameter, is proved in
[Krauskopf 1993] for the example from [Devaney
et al. 1986]. This result has been extended to the
dynamical approximation of entire transcendental
functions in [Kisaka 1995; Krauskopf and Kriete
1996] and of meromorphic functions in [Krauskopf
and Kriete 1995a; Kriete 1995].

In this paper we are concerned with the conver-
gence of hyperbolic components in the parameter
plane in the strongest sense, that is, with respect to
the Hausdorff metric, which is strongly suggested
by computer experiments for several examples. For
families with one free singular value we consider
the m-layers, defined as the set of hyperbolic com-
ponents for which the free singular value converges
to a cycle of minimal period m. Under a certain

compactness condition we prove Hausdorff conver-
gence of m-layers. In fact we conjecture that the
compactness condition can be dropped. Further-
more we conjecture that for some of our examples
the hyperbolic components themselves converge in
the Hausdorff metric, which is false in general.

For illustration we use the example from [De-
vaney et al. 1986] and complex sine and cosine
families, dynamically approximated using Cheby-
shev polynomials. We adapt our results to sub-
hyperbolic components and discuss the example in
[Fagella 1995]. Finally we investigate the family
of antiholomorphic exponentials E (), z) = A\e* ap-
proximated by

_ zZ\4d

P\ z) = ,\(1 + E> .
The connectedness loci of the P, are called uni-
corns due to their shapes and their limit shape is
provided by the parameter plane of E.

This paper is organized as follows. In the next
section we recall some basic notions from iteration
theory. Hyperbolic components and m-layers are
introduced in Section 3. The Main Theorem is
stated in Section 4 and illustrated with a num-
ber of examples in Sections 5-7. The proof can
be found in Section 8. The compactness condition
that appears in the statement of the Main Theo-
rem is discussed in Section 9 for our examples. Sec-
tion 10 gives information on the algorithms used to
compute the figures.

2. FACTS FROM ITERATION THEORY

In this section we briefly recall some notations and
basic facts from iteration theory as they can be
found for example in the surveys [Bergweiler 1993;
Baker 1988; Erémenko and Lyubich 1992; Milnor
1990] or the monographs [Beardon 1991; Carleson
and Gamelin 1993; Steinmetz 1993]. Consider an
entire function f : C — C, that is, a function
holomorphic on the whole of C. Then f is either
a polynomial or an entire transcendental function
with an essential singularity at co. In the sequel we
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counsider f as a map from the Riemann sphere C=
C U {00} to itself, which is perfectly justified for
polynomials and a convention for transcendental
functions. Let f°" denote the n-th iterate of f.
For a given point ¢ € C we call

O™ (¢) ={f"(¢) : n e N}

the (forward) orbit of (. The point ¢ is called m-
periodic if f°"(¢) = ¢, and m is called the mini-
mal period if it is minimal with this property. If
¢ is m-periodic its orbit C := O7(() is also called
a cycle. Of importance is the multiplier of C, de-
fined as M(C) = (f°™)'(¢). A cycle C is called
attracting (respectively repelling) if its multiplier
is smaller (respectively larger) than one in abso-
lute value. It is called indifferent if |M(C)| = 1.
Every attracting cycle C' comes with a basin A(C),
defined as the set of points z € C whose orbits
accumulate on C under iteration. In other words,
A(C) ={z € C:w(z) = C}, where w(z) is the set
of all accumulation points of the sequence of iter-
ates {f°"(2)}.

The key problem is to get a global picture of the
dynamics of f on ((/f, which is why one studies the
following sets. The Fatou set F'(f) is defined as the
set of points ¢ € (@, such that on some neighbor-
hood V C C of ¢ the iterates f°"|, are holomor-
phic and form a normal family. This means that
in any sequence of these iterates one can find a
subsequence that converges uniformly on compact
sets to a limit, so that the Fatou set is the set of
“well-behaved” points. Clearly any basin A(C) is
a subset of the Fatou set. The Julia set J(f) is
the complement of F(f) in C, and it contains the
“chaotic” points. It is a well-known theorem that
the repelling periodic points of f are dense in J(f),
which provides an alternative way of defining these
two sets. Note that we regard both F(f) and J(f)
as subsets of C even if f is transcendental.

Of great importance are the singular values of
f, where one cannot define a local inverse of f.
The set sing(f) of all finite singular values of f
consists of the finite critical values of f and, if f is

transcendental, also of the finite asymptotic values.
An important fact we use much in the sequel is that
each basin of an attracting periodic orbit contains
at least one singular value. We call f hyperbolic if
O*(sing(f)) € F(f), that is, if the complete for-
ward orbit of all singular values is relatively com-
pact in the Fatou set. Note that in particular the
singular values cannot accumulate on the Julia set
if f is hyperbolic.

3. HYPERBOLIC COMPONENTS AND m-LAYERS

From now on we study families of entire maps de-
pending holomorphically on a parameter A from
C*, or an arbitrary complex manifold of any finite
dimension for that matter. That is, we consider a
holomorphic function F : C* x C; (A, z) = F(\, 2),
viewed as a family of entire functions F(A,-). We
say that a family F has one free singular value if
there is a singular value ¢()) depending holomor-
phically on A\ and such that F(}A,-) is hyperbolic
if and only if O*(c(\)) € F(F(A,-)). This means
that all singular values other than ¢(\) are not im-
portant as far as hyperbolicity goes in the following
sense. Singular values other than c¢(\) are either
absorbed by attracting cycles or have the same dy-
namics as the free singular values, for example for
symmetry reasons.

In this paper we restrict our attention to families
of finite type with one free singular value. In other
words, each family has only finitely many singular
values, of which only one needs to be considered to
check for hyperbolicity; see also the examples be-
low. In fact a family with one free singular value is
essentially a one-parameter family of entire maps,
which is why we take the parameter space to be C
in the sequel. We now define the set

H(F):={r € C:F(\,-) is hyperbolic},

which is open because attracting cycles persist un-
der changes of A; compare [Krauskopf and Krie-
te 1995b]. A connected component of H(F) is
called a hyperbolic component. (We assume that
H(F) is nonempty for all families considered here.)
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Because there is only one free singular value ¢(A),
we can define the sets

Ho(F) 1= {)\ € C : ¢()) is in the basin of a } 7

minimal m-cycle of F(A,-)
which we call m-layers. We get a natural partition
of J into m-layers, that is, 3;(F) N H;(F) = @
for i # j and H(F) = UmeN H,o(F). The m-layers
themselves consist typically of infinitely many hy-
perbolic components.

4. MAIN RESULT

The setting of the Main Theorem is the following.
We cousider a limit family F,, of entire transcen-
dental functions of finite type and a family of poly-
nomials ¥, converging to JF,, uniformly on com-
pact sets. Clearly the F; must be of increasing
degree in d. To get control over the dynamics we
ask that ¥, and F,; have the same (finite) number
of singular values, independently of d and A, which
is what we call dynamical approximation. Further-
more, we suppose that F,, and F; have one free
singular value ¢, = ¢ (M) and ¢; = ¢4(A), respec-
tively.

We are interested in convergence with respect to
the Hausdorft metric. Recall that for two closed
sets A, B € C the Hausdorff distance is defined as

h(A,B) :=inf{e >0: AC V.(B) and B C V.(A)},

where V_(X) denotes the e-neighborhood of a closed
set X € C with respect to the chordal metric on
C. When we talk of the Hausdorff convergence
of hyperbolic components or m-layers, which are
open sets, we always mean the convergence of the
respective boundaries with respect to C. For the
statement of our result we need the following tech-
nical Compactness property.

Definition 4.1. We say that the approximating fam-
ilies F4 have Property C if the following holds.
Consider a A from a given compact set K C C,
such that cy()) is attracted by some m-cycle Cy(\)
of F4(A, ) for almost all d € N. Then the limit
Coo(A) of the Cy(A) exists and lies in a disk around

the origin with radius R, where R depends only on
K and m.

Theorem 4.2 (Main Theorem). Let F, be a family of
entire transcendental functions that is dynamically
approzimated by families of polynomials Fy. Sup-
pose that all families have one free singular value
and that the approximating families have Property
C. Then for every m-layer H,,(Fo) of Foo there
exists a sequence {H,,(F4)} of m-layers of F4 con-
verging to H,,(Fo) with respect to the Hausdorff
metric as d tends to infinity.

The purpose of Property C is to avoid the follow-
ing problem. Clearly each attracting cycle C (\)
of F(A, ) is approximated by attracting cycles
Cy(N\) of Fy(A,-). However, it is not at all clear
that the limit C (\) of attracting cycles Cy(\) of
Fa(A, ) is finite. It may happen that oo € C(N).
This would cause great difficulties since &, is tran-
scendental and has oo as an essential singularity.
However, we do not know of an example of this. In
Section 9 we discuss a method of checking Prop-
erty C. We conjecture that dynamical convergence
is such a strong notion that Property C can be
dropped from the assumptions of the Main Theo-
rem.

We have stated the Main Theorem for entire
functions of finite type for two reasons. First, in
the proof we use the result in [Krauskopf and Krie-
te 1995b] on the kernel convergence of hyperbolic
components, which is stated and proved for func-
tions of finite type. Second, all the examples we
present are of finite type. However, we remark that
the proof in [Krauskopf and Kriete 1995b] can be
generalized to the case of a limit family with in-
finitely many singular values that is dynamically
approximated. Here this means that the limit fam-
ily and the approximating families have a constant
finite number of free singular values. As a con-
sequence, the Main Theorem applies in this more
general setting. The full proof of this is beyond the
scope of this paper.

The next section illustrates the Main Theorem
with a number of examples.
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5. THREE EXAMPLES converging locally uniformly to

Example 5.1 (Exponential Family). As mentioned in E(\ z) = Xeém.
the introduction, the classic example of dynamical
approximation is from [Devaney et al. 1986], the
polynomials

The families £ and P, have the unique singular
value 0 and the P; have Property C; see Section 9.
As a consequence of the Main Theorem, the m-
layers H,,(P;) converge in the Hausdorff metric to
the m-layer 3H,,(F), as is illustrated in Figure 1.

FIGURE 1. The hyperbolic components of Py, Py, Pig, Pasg, Pess36 and E from Example 1. All figures in this
paper depict a chart in the neighborhood of the point co, which can be found in the middle of the pictures. For
more information on how the figures were computed, see Section 10.
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Cousider the Mandelbrot sets
My :={ce C:{P;"(0)} stays bounded},

which are in fact the connectedness loci of the Py,
that is, the sets for which J(P,(),-)) is connected.
The Mandelbrot sets M, are compact and, conse-
quently, they contain the closure of all hyperbolic
components inside them. Our result implies that
this closure converges to the closure of H(E). This
is a statement about the limit of the Mandelbrot
sets My as the degree d goes to infinity.

It is generally believed that each Mandelbrot set
M, is the closure of the hyperbolic components it
contains; this is known as the Generic Hyperbol-
icity Conjecture. For the limit, the conjecture is
that H{(F) is dense in

My, :={ce C:{E(0)} stays bounded},

which in turn is conjecturally dense in C. If this
is indeed true, then the closure of the limit of the
Mandelbrot sets My, as d goes to infinity, is C.

Example 5.2 (Approximation by Chebyshev polynomi-
als). It is well-known that the Chebyshev poly-
nomials provide an excellent approximation of the
cosine and sine functions; see for example [Rivlin
1974]. Recall that these polynomials can be de-
fined recursively by

To(Z) = ].7

Ti(z) = z,

Ty(z) =22T;_1(2) — Ty_s(2).
For our purposes it is important that Ty,(z/(4d))
and Ty411(2/(4d 4+ 1)) converge locally uniformly

and dynamically to cos(z) and sin(z), respectively.
Cousider now the families

Z
Sd(Auz) = Nlyaq1 <m>

that dynamically approximate the family
Soo(A, 2) = Asin(z).

These families have the singular values £\. Since
the functions are odd the orbit of — A is the negative

of the orbit of A\, so that both singular values be-
have in the same way. Consequently, to check for
hyperbolicity it is sufficient to consider the orbit
of, say, the singular value A, which we call the free
singular value. The convergence of the H,,(8,) to
H,.(8s) appears to be very rapid and is illustrated
in Figure 2.

In the same way A cos(z) can be approximated,
but here we consider a slightly different example,
namely the family

Coo(A, 2) = A(cos(z) — 1),

which is dynamically approximated by

Gd()\,z) =A (T4d (i) - 1) .
For these families the critical value 0 is an attract-
ing fixed point for any A, so that the second criti-
cal value —2) is the free singular value. Again, the
convergence of H(C,) to H(C, ) seems to be very
rapid, as shown in Figure 3.

We have not been able to show that our examples
involving the Chebyshev polynomials have Prop-
erty C; compare Section 9. Nonetheless, Figures 2
and 3 suggest that even the hyperbolic components
themselves converge.

Figures 1-3 give the impression that the hyper-
bolic components themselves converge in the Haus-
dorff metric. We conjecture that this is true for the
above families and for many other examples, but
in general this is false, as we show now.

Counterexample 5.3. The polynomial counterexam-
ple in [Krauskopf and Kriete 1995b, Example 2]
can be adapted to this setting. Here we present an
(even worse) example, where a single hyperbolic
component is pinched into infinitely many hyper-
bolic components in the limit, with oc as their com-
mon boundary point.
Consider the families

o= (154 30+3)) (43"

and
FoolN2) = (1+2e) (e —1).
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FIGURE 2. The hyperbolic components of 8;, 816 and 8, from Example 5.2.
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FIGURE 3. The hyperbolic components of €1, €16 and Cy, from Example 5.2.
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It follows from the convergence of (1 + z/d)? to
e” that the F; converge locally uniformly and dy-
namically to F.. In fact, the function F (A, -) has
no critical value and the single asymptotic value
— (14 %¢*). The function F4(),-) has the single
critical value

-—(1—%—%%(1+Aﬂod>.

The origin is a fixed point for the F, and it is
attracting if its multiplier is smaller than one in

absolute value, in which case the unique singular
value is attracted to the origin. The curve given by

ol =|(1- 3+ 3(1+3)") =1

is the boundary of a component of H,(F,). This
component gets pinched near the critical point —d
as the degree d is increased; see Figure 4. In a
similar fashion the curve defined by

|Mo(0)] = |[(1+ 3eM)| =1

FIGURE 4. The hyperbolic components of Fy, F14, Fo56 and Fo, from Example 5.3.



126  Experimental Mathematics, Vol. 6 (1997), No. 2

is the boundary of components of H;(F.). But
this curve bounds infinitely many hyperbolic com-
ponents that have co as a common point on their
boundary; see Figure 4 (lower right).

Consequently the above hyperbolic component
of H,(F,) will never lie in an e-neighborhood of
any of the infinitely many components of H;(F ),
no matter how big d is. This shows that hyperbolic
components do not converge in the Hausdorff met-
ric in general. However, the approximating family
has Property C (see Section 9), and by the Main
Theorem the 1-layers H;(F,;) converge to the 1-
layer H,(F). Furthermore, the hyperbolic com-
ponents do converge as kernels, according to The-
orem 8.1 in Section 8.

In this counterexample the dependence on the
parameter is the key. We conjecture that, if the
families depend on the parameter “in a natural
way”, like it is the case for all our other exam-
ples, the hyperbolic components themselves con-
verge with respect to the Hausdorff metric.

6. EXAMPLE: SUBHYPERBOLIC COMPONENTS

In this section we consider the example from [Fa-
gella 1995], which shows up in the study of the
complex standard family. The family

G (A, 2) = Aze®

is approximated dynamically by the polynomial
families

Qi(N, 2) = Az (1 + g)d .

The limit family G, has two singular values: the
asymptotic value 0 and the critical value —\/e.
For all A € C the singular value 0 is a fixed point
with multiplier \. As a consequence, Q,(], z) can
only have hyperbolic components for |A\| < 1. By
definition, S, (A, -) is subhyperbolic if each singular
value is preperiodic or absorbed by an attracting
cycle. We define the set

H*(G) =
Int ({\ € C: G0 (A, ) is subhyperbolic}),

and see that A € H*(G) ifand only if ¢(\) = —\/e
is attracted to an attracting cycle, so that we can
consider ¢(A) as the free singular value. We call a
component of H*(S.,) a subhyperbolic component.
Like for hyperbolic components we can define the
m-layers

s AEC:¢(N) is in the basin of a
}Cm(g"")::{ i (A -)}’

minimal m-cycle of G

which gives the partition

90(So) = [J 95,50

meN

The functions Q,(A, -) also have two singular val-
ues, namely the critical value 0, which is again a
fixed point, and the (free) critical value

ci(A) :i=— (1 — ﬁ)(dﬂ).

In complete analogy we define subhyperbolic com-
ponents and the m-layers H? (Q,) that partition
the set J°(Q,).

With these slight modifications in the definitions
we can use the same arguments as given in Sec-
tion 8 to obtain the following general result for
m-layers of subhyperbolic components.

Theorem 6.1. If the approximating families have
Property C, then every m-layer H: (F,) is the
limit of a sequence of m-layers {3 (F4)} as d
tends to infinity.

The estimate used in [Fagella 1995] to prove point-
wise convergence of the hyperbolic components can
be used to show Property C; compare Section 9.
As a consequence each m-layer 3{*(Q,) converges
in the Hausdorff metric to H*(G,), which is illus-
trated in Figures 5 and 6.

7. EXAMPLE: THE LIMIT SHAPE OF THE UNICORNS
In this section we apply our results to the families
of anti-holomorphic maps

s\ d

Pa(r,2) =2 (1+ 2)
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This family converges to
E()\, z) = \é’.

We begin with some background information. Con-
sider the anti-holomorphic families A4(z) := z¢+c,
where c is a complex parameter, and define the sets

Mj; :={ce C:{A7"(0)} stays bounded} .

These sets are the connectedness loci of the maps
A,, and are called multicorns due to their shapes.
Best known is the tricorn M., the anti-holomorphic
counterpart of the Mandelbrot set M,. The name
tricorn was introduced by Milnor, who found it in
the parameter space of cubic holomorphic maps;
see [Milnor 1992]. It is known to be locally dis-
connected and has been studied in [Crowe et al.
1989; Winters 1990]. In [Nakane 1993] it is shown
that the tricorn is in fact connected, so that exter-
nal angles can be introduced in the same way as
for the Mandelbrot set. In fact all multicorns are
connected (but not locally connected) as is shown
in [Nakane and Schleicher > 1997]. The multicorn
M} is symmetric with respect to the group Dy,

.

®

FIGURE 5. The hyperbolic components of Q; and Q4 of Section 6. Continued in Figure 6.

generated by the rotation over 27/(d + 1) around
0, and by the reflection in the real axes. By means
of defining A := d¢(4=Y one can divide out the ro-
tational symmetry, that is, the group Zgs,,. As a
result one gets the unicorn, the connectedness lo-
cus of the map P, which can be defined as

Ug:={c€C:{P;"(0)} stays bounded} ;

compare [Lau and Schleicher 1996].

We want to make some sense of the question:
what is the limit shape of the unicorns? The an-
swer is provided by the convergence of the P, to
E, so that we need to consider the set

Us := {c € C: {E°*(0)} stays bounded} .

A first study of the parameter space of E can be
found in [Baker and Rippon 1989]. In complete
analogy to the holomorphic case of the functions Py
and E from Example 5.1 we can define the m-levels
H,(Py) of Py and investigate how they converge




128  Experimental Mathematics, Vol. 6 (1997), No. 2

FIGURE 6. The hyperbolic components of Qi6, Qa56, Q65536 and G, (see Section 6 and Figure 5).
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to the m-levels 3, (E) of E. Again, the Generic
Hyperbolicity Conjecture asserts that

:}C(Pd) = U :}Cm(Pd)

meN

is dense in Uy, and that H(E) = |,y Ha(E) is

dense in U,,. Furthermore, it is a conjecture that
U, is dense in C. Hence, it makes sense to investi-
gate the limit shape of the unicorns by looking at
the convergence of m-layers; see Figures 7 and 8.

Theorem 7.1. For each m € N the m-levels of P,
converge to the m-levels of E in the Hausdorff met-
ric as the degree d goes to infinity.

Proof. The key lies in the well-known fact that the
second iterate of an anti-holomorphic map is holo-
morphic. We study the holomorphic families

3(1(()\7#)72) = (Pd(Av ) © Pd(uv )) (Z)

=A<1+ﬁ(1+5)d>d,
a\' T

converging uniformly on compact sets to the holo-
morphic family

Foo((As 1), 2) = (E(A,-) 0 E(p, ) (2)
= Aexp (pexp(z)),

where (A, 1) € C2 We find the second iterate of
the original functions after choosing u = X. Note
that we get the second iterates of the families P,
and E from Example 5.1 by choosing p1 = A. In
other words, these two choices define one dimen-
sional cross-sections through the two-dimensional
(A, p)-spaces of the above families. The two sec-
tions intersect in the line of real A-values, so that
the unicorn U, and the Mandelbrot set M, coincide
there. We restrict to the section

M={(\p) €C®:p=2A},

which clearly is a complex manifold biholomorphi-
cally equivalent to C. Note that, under iteration of
Foo((X\,A), -), the singular value ¢* converges to an
attracting cycle exactly when A does, even though
the two orbits are disjoint. Consequently, we may

FIGURE 7. The hyperbolic components of P, and P, (see Section 7). Continued in Figure 8.
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FIGURE 8. The hyperbolic components of Pig, Pase, Psssse and E, illustrating the convergence of the unicorns
(see Section 7 and Figure 7.)
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consider A as the free singular value of F.((\, M), -).
Because the P, have Property C also the ¥, do as
is shown in Section 9. Consequently, m-layers of
F 4 converge to m-layers of ¥, with respect to the
Hausdorff metric according to the Main Theorem,
which gives the result on the considered cross sec-
tion. In the same fashion one can get the conver-
gence of m-layers for the anti-holomorphic coun-
terparts of other examples. O

8. PROOF OF THE MAIN THEOREM

The proof of the Main Theorem makes use of the
kernel convergence of hyperbolic components. Re-
call that a connected open set H,, is the kernel
(in the sense of Carathéodory) of the sequence of
connected open sets {H,}, if every compact set
K € H_, lies in almost every Hy, and H, is maxi-
mal with this property.

Theorem 8.1. Let F, be a family of entire transcen-
dental functions that is dynamically approximated
by families of polynomials F,4. Then for each hy-
perbolic component H,, C H(F ) there exists a se-
quence {H;} of hyperbolic components Hy C H(F )
with H., as kernel.

This theorem is the main result in [Krauskopf and
Kriete 1995b]. As remarked earlier, Theorem 8.1
can be extended to the case that F, has infinitely
many singular values, but is still dynamically ap-
proximated by the Fy, in the sense that all fami-
lies have the same constant number of free singu-
lar values. This is so because in the proof we use
the parametrizations for a finite number of singular
values that determine hyperbolicity. This allows to
extend the Main Theorem to this more general set-
ting. Here we state and prove it for functions of
finite type to keep the argument simple. Note that
all present examples are from this class of func-
tions.

Proof of the Main Theorem. This proof uses the kernel
convergence combined with the crucial fact that
the families F; have Property C. We fix m € N and
choose a component G, of H,,(F). According

to Theorem 8.1 the component G, is kernel of a
sequence {G,} of components G, of H(F,). The
persistence of attracting cycles shows that G; C
H,,(F4) for almost every d € N.

Now define G as the set of all Ao, € C such that
there exists a sequence {\;} with A\, € 93,,(F,),
having A, as an accumulation point. We fix A\, €
G and have to show that A, € 0H,,(F). Clearly
Ao & Hin(Foo)-

First, we assume that A, ¢ H,,(F) and that
Aso 18 an isolated point of G. Then there exists a
sequence of components G, of H,,(F;) converging
to Ao in the Hausdorff metric. Let a be the multi-
plier of the limit cycle w(co(Aoo)) (With respect to
Foo(Aeos 7). Clearly, a € S* and we choose a root
of unity b € S* such that b # a. For each d € N
the mapping

0a: Gy — S

that takes A to M(w(cy(A)) is a covering. There-
fore, for every d € N there is some A, such that
M (w(ca(Ag)) = b. Property C allows passing to
the limit and we obtain b = a, a contradiction.

We now assume that A\, is not an isolated point
of G and want to show that A, € 0H,,(F). By
construction we find a sequence {\;} converging to
Ao such that for each A; the function Fy(Ay, <) has
an attracting periodic point z,; of minimal period
m. By Property C we have z; € Dg(0). After
selecting a subsequence if necessary, passing to the
limit proves that F(Aw, ) has zo, = limy o 24
as an indifferent periodic point. In addition, we
have z,, € Dg(0). It is possible to parametrize
this periodic point on some neighborhood U of A,
and thus, we find a hyperbolic component B of F,
with A € 0B. Recall that z,, is an indifferent
cycle and, hence, a bifurcation may occur. This
means that for A € B the cycle w(co(A)) is an
attracting cycle of period m and that its minimal
period m divides m.

If m = m then clearly B C H,,(F), therefore
Ao € OH(Foo). To complete the proof we show
that the period does not drop, that is, we show
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that always m = m. We assume now that m < m
and use the following lemma to get a contradiction.

Lemma 8.2. Let Cy, = w(ce(As)) be a cycle of
minimal period m and limit of attracting cycles
Cy = w(cg(pq)) of Falpa, ) of minimal period m,
where limy_, o ftg = Aoo and m|m. If m < m then
M(w(cwo(Aso))) = 1.

Proof of Lemma 8.2. By Property C there is some
periodic point z; € C4NDg(0) for every d. Passing
to the limit we find a point z,, € Cy N Dg(0).
Since m < m the point z., is a multiple root of
(Fm (z) — z). Differentiation shows that z,, is a

00, Ao

root of ((F\_)'(2) —1). O

Since A, is not an isolated point of G we find,

under the assumption that A\, & H,,(F), a non-
discrete set S C G\ H,,(F) with the following
property. For all A\ € S the function F (), -) has
an indifferent cycle C\ := w(cs(A)) with Cy N
Dg(0) # @. Furthermore, the minimal period
of C) is strictly smaller than m for all A € S.
By Lemma 8.2 we conclude that (3"(‘)’0”})\)' (zn) =1
for all A € S. The Identity Theorem shows that
Fo(A,-) has an indifferent cycle of period m and
with multiplier 1 for every A € C, which in turn
implies H(F,) = @. This is a contradiction and

the proof is complete. O

9. PROPERTY C

Let the functions Fy converge uniformly on com-
pact sets to the non-constant function F,, and sup-
pose that F has a cycle Cy, of minimal period m.
By a Rouché type argument one gets persistence
of periodic cycles, meaning that almost all Fy have
a cycle Cy of period m. A difficult open question
concerns the reverse statement.

Question 9.1. If the F; have a cycle Cy of minimal
period m, can one conclude that F,, has a finite
cycle Coy of period m? Under which conditions on
the functions is this true?

Property C ensures that for the families under con-
sideration limits of cycles are finite. In fact it is a

big problem to prove this for a given family. One
idea of showing Property C is the following. For
any A € 3,,(F,) the function F4(A,-) has an at-
tracting cycle C,; of minimal period m. This means
that the multiplier is bounded by one in absolute
value, that is,

IM(Cy)| = | ] Fur2)| < L.

2€Cyq

If one knows a nice relation between the derivative
JF! and the function F,; one gets an estimate on
the product of the points in Cy. This may allow
one to show the finiteness of one point in the limit,
which suffices to get Property C.

This approach was used in [Devaney et al. 1986]
to show the finiteness of the limits of attracting
cycles for the families P, ) from Example 5.1, which
is necessary even for the pointwise convergence of
hyperbolic components; see also [Krauskopf 1993].
Clearly one has P; ,(z) = Py (2)/(1+ z/d), which
gives

<

dz
H z+d <

z€Cyq

H Py(2)

z€Cyq

It is now straightforward to show that for at least
one z € Cy one has |z| < 2 for d > 2. Conse-
quently, one gets a finite cycle in the limit. In
much the same way one can show Property C for
the families from Example 5.3, using the relation
Fi(\z) = (Fa(A,2) + 1)/(1 + z/d). In [Fagella
1995] the finiteness of the limits of attracting cy-
cles is shown for the families G, from Section 6 with
a similar argument, using the relation G,(\, z) =
(d+2z+dz)Sa(\ 2)/(dz + 2%).

In order to prove Property C for the families
Fa,(np from Section 7 we use the fact that these
families are defined by composition. The estimate
on the derivative of each constituent, which we
know from Example 5.1, is sufficient to show Prop-
erty C. Let Cy be an attracting m-cycle of F g (x
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for d sufficiently large and A € K. The multiplier
can then be calculated as

M(Cd) = H ?&((A,p),z

IE[E M) o B(u. )] (2)
- 1 (Fosm) (T)

- Q <1 +EE(€;Z z))/d) <1 +zz/d)

As above, if [M(C,;)| < 1 we have either 2 < 2
or E(u,2) < 2 for some 2z and d > 2, which gives
Property C. It is clear from this calculation that
one can extend the idea of using a relationship be-
tween the derivative and the function to arbitrary
compositions. However, the following problem re-
mains.

Question 9.2. If two sequences of families ?d and
Fa have Property C, is it true that the composed
sequence Fy:= F 0 F4 has Property C?

Finally we return to the Chebyshev polynomials
from Example 5.2. The problem is that there is
no nice relation between 77, and T, so that the
above method does not work. We believe that the
families 8; and €; have Property C, but to our
disappointment we were unable to find a different
method of proof.

10. ALGORITHMS

All pictures in this paper show hyperbolic com-
ponents in parameter space of some family F(\, -)
with one free singular value ¢(\). The basic idea
is rather simple. Choose a grid, each point repre-
senting a parameter value )\ in the complex plane.
Choose a maximal number of iterations itermax
and a maximal period permax. For each grid point
iterate the singular value ¢(\) under the map F(A,-)
and check if it is attracted to some cycle of period

m < itermax. If this is the case before the maxi-
mal number of iterations itermax is reached, color
the point black, if not, color it white. In this fash-
ion one gets an approximation of (Ji~™" 3(;, which
can be thought of as a collection of level sets of
the respective multiplier maps. We typically used
itermax = 5000 and permax = 60, which gives a
good approximation of H(F). This procedure is
time-consuming, but ideally suited for paralleliza-
tion.

We note here that we underestimate H(JF) since
a point is only colored black if the orbit of the
singular value is in a basin of some cycle. This
is why our figures may appear emptier than fig-
ures in other publications, where a grid point is
usually colored black if the orbit of the singular
value does not escape off to infinity. Another dif-
ference is that Figures 1-8 show a chart near infin-
ity, which is most interesting for the convergence
addressed here. An additional advantage is that
possible artifacts, typically occurring near infinity,
are dramatically reduced in size. Such a chart can
conveniently be computed by applying the trans-
formation A — A~! to each grid point before iter-
ating the respective map.

In the course of the iteration one will encounter
orbits that escape off to infinity. If the family
F(A,-) is polynomial this can be checked by test-
ing whether the iterates enter the basin of infin-
ity, that is, become bigger than an a priori known
bound. Clearly one can run into numerical prob-
lems for polynomials of very high degree, the eval-
uation of which is also more expensive. Note that
the polynomials from Examples 5.1 and 5.3, as well
as those of Sections 6 and 7, can be evaluated by
essentially log,(d) multiplications. If the family
F (A, ) is transcendental the situation is fundamen-
tally more difficult since infinity is an essential sin-
gularity and not an attractor. As a consequence
an orbit does not necessarily go off to infinity if
an iterate is larger than a prescribed bound. To
make things worse, transcendental functions grow
extremely fast. In our examples one needs to eval-
uate exp(z) for a real variable z, which gives an
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overflow error in double precision if |z| is bigger
than about 710. We use the convention that in this
case the associated point is colored black if z > 0
and white otherwise, which works well in practice;
compare [Krauskopf 1993]. Note that, as a conse-
quence of this convention, in the pictures for tran-
scendental functions some points are colored black
even though they were not shown to converge to an
attracting cycle. However, since any algorithm has
to cope with this problem this does not contradict
the fact that our figures appear ’emptier’. These
artifacts are kept to a minimum since we consider
a chart near infinity.
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