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We construct an algorithm for estimating the capacity of nice
compact subsets of the plane. Our method is based on a re-
lation between capacity and Green’s function together with a
uniform harmonic approximation theorem. We use the simple
least-square technique and, what is most important, we can
obtain a bound on the error made in the estimated capacity.

1. INTRODUCTION

Take a compact and connected conducting body in
R3, and give it a certain amount of electric charge.
The charge will distribute itself so as to minimize
the total electrostatic energy. The ratio between
the body’s charge and the value of the equilibrium
potential on the surface is called the capacity.

This notion can be extended to more general sets
and potentials. Here we are interested in compact
subsets of R? = C. In the plane it is natural to con-
sider a repulsion law that decays with the inverse
of the distance (rather than inverse squared), so
the relevant potential is logarithmic. The capacity
of a compact set K with respect to this potential is
called the logarithmic capacity. Precise definitions
will be given in the next section.

Our problem is to estimate the logarithmic ca-
pacity C(K) of a compact subset K of the plane.
It is well known that, in general, capacity is quite
difficult to compute. As a matter of fact, interest-
ing questions about logarithmic capacity are still
open. One of them can be found in [Ransford
1994]. There are many inequalities involving loga-
rithmic capacity (see [Pélya and Szegé 1951; Pom-
merenke and Gerd 1975], for example), but in most
of them, the compact set K needs to be connected.
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We shall conduct experiments using an algorithm
based on a relation between Green’s function and
logarithmic capacity. Even though we will have to
make some hypotheses on K, we want to keep the
disconnected case in mind.

Our method transforms the problem of comput-
ing C(K) into a problem of uniform harmonic ap-
proximation on K. One of our basic tools is an
approximation theorem of Keldys. However, since
the proof of this theorem is nonconstructive, it
seems hard to construct an actual approximating
harmonic function within a given positive €. This
is where it becomes experimental. We shall try to
get a good approximation by employing a least-
square technique.

One could think of using a standard finite ele-
ment method to estimate the capacity of a com-
pact set. In fact, when we know an approximation
h of the solution A to the Dirichlet problem on the
complement of K, we can compute an estimate for
C(K). The main problem with this method is the
difficulty in obtaining a bound on the error. What
we need is an estimate of h—h at a particular point
(pointwise estimate). This is fairly hard to obtain
when using a finite element method (see [Wahlbin
1991, Section 10], for example). Our method is
quite easy to implement and has the advantage of
giving a bound on the error.

We shall proceed as follows. In Section 2 we re-
call the definition of logarithmic capacity and of
the Green’s function, some of their most famil-
iar properties, and the interrelationship between
the two concepts. Section 3 recalls the Dirichlet
problem and states the approximation theorem of
Keldys needed later. In Section 4 we develop the
algorithm itself. Section 5 is devoted to the deriva-
tion of error bounds for our method. In Section 6
we particularize the algorithm to connected sets, a
case where many of the expressions simplify con-
siderably. Finally, in Section 7 we look at four
examples, showing how the method can be good
sometimes and bad at other times. We use it to
improve theoretically known bounds on C(K) for
some specific compact sets K.

2. DEFINITIONS AND BASIC RESULTS

If 14 is a finite Borel measure with compact support
in C, its logarithmic potential is the subharmonic
function

pul(z) = / log |z — w|dp(w), for z € C.
C

Since the notion of potential induces a notion of
energy we can define the energy of y. This is the
quantity

1) = [ pu(e)aute).

There are several ways one could think to mea-
sure how large a subset of the complex plane is.
For example, one could use diameter, area (or more
generally, its measure with respect to p), and so on.
The idea of capacity is just another way of doing
that. In fact, capacity gauges how good a set is for
supporting measures with high energy.

Let K be a compact subset of C. The logarith-
mic capacity, or simply the capacity, of K is the
nonnegative real number

C(K) :=supe!™,
where the supremum is taken over all probability
Borel measures with support in K. A set of ca-
pacity zero is called a polar set. If K is nonpo-
lar, the supremum is attained by a unique mea-
sure called the equilibrium measure on K [Ransford
1995, Theorems 3.3.2 and 3.7.6].

Proofs of the following properties of logarithmic
capacity can be found, for example, in [Ransford
1995, Theorems 5.1.2, 5.1.3, 5.1.4, 5.2.5, 5.3.4 and
5.3.5].

Theorem 2.1 (Properties of the logarithmic capacity).
Let K, K, K>, ... be compact subsets of C. Then:

@@ If K, C Ky, then C(K,) < C(Ks).

b) If a, B € C, then C(aK + ) = |a| C(K).

) C(K) = C(0.K), where 0.K s the exterior
boundary of K, that is, the boundary of the un-
bounded component of C\ K.
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(d) If (K,)n>1 s a decreasing sequence, then

C(ﬂ Kn> = lim C(K,).
n=1

(e If (K,)n>1 s an increasing sequence such that
K =", K, is compact, then

n=1

C(K) = lim C(K,,).

n—o0

(f) If K s the union of the sets K,,, and if the di-
ameter of K is less than or equal to d, then
1 1
< .
log(d/C(K)) — Xn: log(d/C(Ky))

@) If K has area A, then C(K) > \/A/m.

(h) If K has diameter d, then C(K) < d/2.

(i) If q is a polynomial of the form q(z)=Y",_, arz",
then

C(K))l/”.

|ay|

Cla ) = (

Property (b) shows that capacity behaves well un-
der translation and dilatation. Property (c) says
we can fill up the holes of a set without changing
its capacity. However, logarithmic capacity does
not have the nice union and complement proper-
ties of a measure. This lack is certainly one of the
reasons why capacity is difficult to compute.

We recall the definition of Green’s function and
some of its elementary properties, which we will
use in Section 4.

Let D be a domain of C_,, that is, a connected
open subset of the Riemann sphere. A Green’s
function on D is a function gp : DX D — (—o0, 00]
such that for all w € D,

@) z + gp(z,w) is harmonic on D \ {w};
(b) gp(w,w) = 0o, and as z — w

log |z| + O (1)

(z,w) = if w = o0,
Ipi% W) = —log|z —w|+ O (1)

if w # oo;

©) gp(z,w) — 0 as z — ¢ for all { € d,,D. Here,
Oso D means the boundary of D taken with re-
spect to the sphere topology.

When a Green’s function exists, D is said to be a
reqular domain.

Proofs of the following well known facts can be
found in [Ransford 1995, Section 4.4], for example.

Theorem 2.2 (Properties of the Green’s function). Let D
be a regular domain of C,,. Then:

(@) There exists one and only one Green’s function
gp on D.

(b) gp(z,w) >0 for all z,w € D.

© If (Dy)p>1 is an increasing sequence of regular
domains such that UD,, = D, then gp,(z,w) T
gp(z,w) for all z,w € D.

d) gp(z,w) = gp(w,z) for all z,w € D.

There is a fundamental relation between Green’s
function and capacity. We shall use it in the con-
struction of the numerical method.

Theorem 2.3. If K is a compact set such that D,
the unbounded component of C,, \ K, is a regular
domain, then

gp(z,00) =log|z| —log C(K)+o0(1) asz— oc.

A simple proof using Frostman’s theorem can be
found in [Ransford 1995, Theorem 5.2.1].

3. DIRICHLET PROBLEM AND KELDYS’S THEOREM

The Dirichlet problem has been widely studied. In
this section we shall state an existence theorem
which is not the most general, but which will be
sufficient for our need.

Theorem 3.1. Let D be a reqular domain of C,, and
let ¢ : O D — R be a continuous function. Then,
there exists one and only one harmonic function
h on D such that lim, .. h(z) = @(¢) for all ( €
0. D.

Proof. The uniqueness of the solution follows di-
rectly from the maximum principle for harmonic
functions. The existence of the solution can be
proved by Perron’s method. We set h := sup,cq
where U is the collection of all subharmonic func-
tions u on D such that limsup, . u(z) < ¢(¢) for
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each ¢ € 0,,D. Then h has the desired properties
[Ransford 1995, Section 4.1]. O

In the following, we will use domains of a particular
type and we would like to know if they are regular.

Theorem 3.2. Let K be a compact subset of C such
that each of its components contains at least two
points. Then each component D of the complement
of K is a reqular domain.

The proof uses the concept of a barrier and we will
not go into it. The interested reader can find all
details in [Ransford 1995, Section 4.2].

Theorem 3.3 (Keldys). Let K be a compact subset
of C such that C\ K has a finite number of com-
ponents. Let A be a subset of C\ K which has at
least one point in each bounded component of C\ K.
Then each continuous function ¢ : 0K — R can be
uniformly approzimated on 0K by functions of the
form Req(z)+alog|r(z)|, where a € R and ¢ and r
are rational functions such that q, v and 1/r have
their poles in A U {oo}.

The proof is based on several results including the
Hahn-Banach theorem and the Riesz representa-
tion theorem. In [Ransford 1995, Theorem 6.3.3]
you will find the proof of a more general state-
ment but you can easily recover the particular case
we need with the help of [Ransford 1995, Theorem
3.8.3]. Note that the Stone-Weierstrass theorem
does not apply here since the collection of approx-
imating functions does not form an algebra.

Keldys’s theorem says that it is possible to ap-
proximate a continuous function on the boundary
of a compact K by functions that are harmonic in
a neighborhood of K. This is exactly what we will
need in the next section.

4. CONSTRUCTION OF THE NUMERICAL METHOD

Under some hypotheses, it is possible to obtain a
numerical approximation of the capacity of a com-
pact set K. This will be done by solving a least-
square problem.

Hypothesis 4.1. Let K be a compact subset of C with
a finite number of components K; (j = 0,...,n)

such that, for each j, the interior K; is nonempty
and has closure K;.

The construction proceeds in 4 steps.

Step 1. Because of properties (b) and (c) of the log-
arithmic capacity from Theorem 2.1, we can sup-
pose without loss of generality that O is in IO(O and
that D := C,, \ K is a domain. Define

K:={2€C:1/2¢K}.

The set K is certainly closed and, since 0 € K ,
is also bounded and therefore compact. We now
pick points A1, Az,..., A, € C such that \; € IO(]'
for 5 = 1,...,n. By the definition of K, the set
A:={1/Ai,...,1/A,} has a nonempty intersection
with each bounded component of the complement
of K. Let §, be the class of all functions of the
form Re ¢(z)+alog|r(z)|, where a € R and where ¢
and r are rational functions such that the poles
of ¢, 7 and 1/r are in A.

Keldys’s theorem (Theorem 3.3) applied with K,
A and ¢(z) := —log|z| (note that ¢ is continuous
on 9K since dist(0,0K) > 0), shows that, for all
e > 0, there exists a function Re g + alog |r| in F
such that

|- log |2| — Reg(z) — alog|r(2)|]| ,z <&,

where || - ||z denotes the supremum on a set E. We
can rewrite the last inequality in the following way:

|log|z| — Req(1/z) — alog|r(1/z <e.

Mo

This suggests that we define

g(z) :==log|z| — Req(1/z) —alog|r(1/z)|.

As ¢ is continuous on the boundary of K, and
as D is a regular domain (Theorem 3.2), we deduce,
with the help of Theorem 3.1, the existence of a
unique function A, harmonic on D and such that
lim, ,. h(z) = g(¢) for all ¢ € OK. The function
g — h has the following properties:

(a) it is harmonic on D \ {oo};
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(b) (g — h)(2) =log|z| + O (1) as z — oo;

© (g —h)(z) >0as z—(, forall ( € OK.

By the definition of the Green’s function and The-
orem 2.2, we deduce that g — h is the Green’s func-
tion for D, i.e., gp(z,00) = g(z) — h(z), for all
z € D. But we know from Theorem 2.3 that gp is
related to the capacity of the complement of D by

log C(K) +0(1)
as z — oo. Putting these facts together, we get
Req(1/z) +alog|r(1/z)| + h(z) =logC(K)+o(1)

as z — 00. The left-hand side is continuous at
infinity since h is harmonic at this point and

gp(z,00) =log|z| —

Re g(w) + alog |r(w)]
is continuous at 0. Thus, we have
log C(K) = Req(0) + alog|r(0)| + h(oo),
which is the same as
C(K) = |r(0)|*efe 1 gh(eo),

By the maximum principle for harmonic func-
tions, we find |h(o0)| < ||hllo.p = ||P||sx. By con-
struction, h is a function that satisfies

lim h(z) = §(¢)

z—¢

Therefore, we find that |h(c0)| < ||g|lsx, and by
the definition of § this says that |h(c0)| < e. We
have shown that

C(K) = é[r(0)|*e"*®),

for all ¢ € K.

where € € [e77, €].

We have now transformed our problem of esti-
mating the capacity of K into a problem of uniform
approximation of log|z| on 0K by functions of the
class §3, where §; = {z = u(1/2) : u € Fa}. We
know from Keldys’s theorem that this is possible,
but in practice the theorem does not give a con-
structive way to obtain the desired approximation.
In fact, it is clear that the geometry of 0K and the
choice of \; will play an important role in finding

a good approximation of log |z|. In the following,
we shall restrict ourselves to a subspace of §; and
a finite number of points of 0K.

Step 2. If u*(z) := Req(%)+alog|r(})| is a member
of §x, then the poles and zeros of r(z) are in A =
{1/A1,...,1/X.}. Thisimplies that r is of the form

r(z) = c(z - )\il)ml--- (z - )\in)mn,

where ¢ is a constant and m;, are integers. So,

z — —

alog|r(z)| = alog|c| + aka log 3
k

k=1

Also, ¢ is a rational function whose poles are in A.
Thus, it can be written as the sum of its principal
parts at each 1/, plus a polynomial. If we fix two
integers Ny and Ny, the class §;(No, V) is defined
as being the subclass of §3 in which ¢ is of the form

q(z) = Za]z’—l—zn:z:a]k( ) ja

k=1 j=1

with a;, a;, € C. Therefore a typical function of
FX(Ny, Ny) looks like

N1
z) =b0+ZRe%
"‘ZZRe(ng(

k=1 j=1

) ) Zbklog

where a; and aj;, are complex constants (possibly
different from the ones in the preceding equation)
and b, are real constants. Writing a; = ¢; + id;
and aj, = c¢j;, + id;;,, we have the expression

N1 .
u*(z) = by +ZRGM

i=1 #
+ Z Re cﬂ;tzf\lzk + Z by, log ‘

k=1 j=1

where now all the constants are real.
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We shall try to approximate log |z| by functions
from §{(Ny, N1). In order to do so, we take an N-
point discretization of the boundary of K, say {z; €
OK :1=1...N}. Aswill beevident later, we must
choose N large enough, namely N > 14 2N; +
n(2Noy + 1) := M. We now use the least-square
method to determine the “best” constants by, c;,
d;, cji and djy, i.e., those for which u* is as close
as possible to log |z| on {z,...,2x}.

If A is a matrix, we denote by A{O 7t the part of
the [-th row of A starting at column j, and ending
at column j;. We define an N x M real matrix A
by the following relations: for [ =1,..., N,

Ap = (1),
A%Nﬁl = (Rezfl,...,Rezl_Nl),
Afvl+2’2N1+1 = (—Imz*, ..., — Imszl);

fork=1,...,n,

A2N1+2+(k)—1)N072N1+1+kN0

1
. 1 . No
— 1 1
: <Re (Zz—Ak> ,---,Re <Zl—>\k> ),

A2N1+2+(’n+k71)N072N1+1+(’C+Tl)N0
1

z ! z No
P . d - d
< m(Zz-M) Y m<zl—>\k> )7

and finally

A2N1 +242nNg,2N1+14+n+2nNy
1

= (1o ).

Also, let b be a column vector of dimension N
whose [-th component is the real number log|z).
Finally, let z be an M-dimensional vector whose
entries are

2 =M 21— An

y. .., log

2] 2]

b07

Ciy..-3CNy,y

dy,...,dn,

C115-+-3CNo1; R Cins- -+ CNon»
dlla-"adNola R dlna"'adNona
bl,...,bn. 4.1)

Step 3. Considering x as a variable vector, our goal
is to minimize the function g(z) := ||Az — b||s,
where || - ||2 is the standard Euclidean norm. We
know from linear algebra that the solution-set of
this problem is always nonempty. The solutions
are characterized by

AT Az = A"b. (4.2)

In fact, we can explicitly compute the unique solu-
tion Z with minimal norm. Set p :=rank A < M.
It is always possible to find orthogonal matrices
Unxny and Viysyr such that UTAV = 3, where &
is an N x M matrix defined by

! 0 otherwise.
The o; are the positive singular values of A, which
we can suppose to be ordered: oy > gy > -+ >
o, > 0.

For each vector x, we have
2

lAz—bl3 = U7 (AWVVT)z—b)

2

- HZVT:U—UTI) ’
2
p B N B
=" (oa(VT2)~UFb) + 3 (UfD)".
=1 i=p+1

If Z is a solution to the least-square problem, it is
clear that (V1z); = Ulb/o; for i = 1,...,p. If
we set (VIZ); =0 for i = p+1,...,M and define
2j\_4><N by

e ={7

then we get V1Z = TU”b, which is equivalent to

Z= A", with AT = VXTU”.

ifi=7<p,
elsewhere,

We call A' the pseudo-inverse matriz of A. If
rank A = M, then AT = (AT A)=' AT, which could
also be deduced from (4.2).

Step 4. The last step is to put together everything

we know so far. An approximation of log |z| on 0K
can now be obtained in the following way. First,
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compute the singular values decomposition of A,
using, for example, an iterative method [Golub and
van Loan 1983]. From this, we can apply the rea-
soning of Step 3 to obtain a vector Z satisfying
|AZ — ||, < ||Az — b||, for all vectors x in RM. If
we recall the identification (4.1), it is clear that we
have now found a function of §;(Ny, N;), namely

Ny ~ .5
~ . d.
ﬂ*(z) = bO + ZRG G —:jz J

j—l
- C]k-l‘ldjk)

-I—Zi)klog‘z_
k=1

which is a “good” approximation of log |z| at each
z of OK. If the number of points N taken on the
boundary of K is sufficiently big, and if 0K is not
too “bad”, one can hope that this approximation
will be good everywhere on K and will therefore
generate a small error in the capacity.

N1 -~ .
~ c--l—zd
p(z,y) = Re <bo+z <
j=1

k=

and using (5.1) we get

C; -I—Zd
|V‘P|:‘<bo+z ’

j=1 k=1 j=1
n

C]k + ldjk

iz

n Np + d ’
+ZZ C]Ic 1 ]lc kz: —10gZ>

No j>\lc C]k +Zd]k)ZJ 1

We have already shown that
C(K) = &e% (),
where ¢ € [e7¢, €°], and where
u(z) -
Equation (4.3) shows immediately that

C(K) = 5exp(50 +zn:§0:éjk>.

k=1 j=1

6:‘ log|z|H8K.

This concludes the construction.

5. A THEORETICAL BOUND ON THE ERROR

With a bit of knowledge about the geometry of K,
one can obtain a rigorous bound for ¢ in terms of
the coefficients appearing in 4*. We first notice
that for any holomorphic function f(z + iy) :=
p(x,y) +iv(z,y) on a domain U we have

'l = |V(Re f)| = |Vl (5.1)

on U, where Vi is the gradient of p. It is now easy
to obtain a crude estimate for the gradient of the
two-variable real function ¢(x,y) := 4*(z + iy) —
log |z + iy|. With z = x + iy, we can write

— log z)

+ Z by, log

Z—Ak

(¢ +1id;) id;)
Z Z]+1

kl]l

Z_>\k: Jj+1

by 1
+kz_:z(z—>\k) Tz

Z J |CJ + Zd |
|z|]+1

(o)

k=1 j=1

ZZ 5 1] |60 + idji | |2

|Z — Ak|]+1

Z 10| [ e L1
el =Ml T

From this inequality, we see that the geometric properties of K appearing in 1(z) are the distances

between z and 0, and between z and .
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Now suppose we have chosen N points {z }/Y, on the boundary of K, and suppose also we have a positive
number § such that

0K C U{z |z — 2| < 0}.

=1

Then, for each z € 0K, there exists an [ with |z — 2| < § and we have

lp(2)] < l(2)] + 521'15 [Vo(zi + €)1

Therefore,

i (6)tog el < max { ot 8 sup €)1

n

J1¢;+id;| 7 Akl |cjk+2djk|(|zl|+5)
S | max {\u Z —logIZz|\+5(Z(||_7m ZZ (2 —a|—8)i+1

Jj=1 kl]l

Bel e 1
*Z (Tl —=0) (|2 — k|—6)+<|zz|—6>>}’

where we are assuming that ¢ is small enough to satisfy § < |z| and 0 < |z — A\g| for all [ and &.

6. A PARTICULAR CASE: CONNECTED SETS Also, with the notation of Section 5 we have

If K is a connected compact subset of C, then sev-

eral of the previous expressions simplify. Indeed, £ < max {‘u z)—log | le + 52 M}
since A is then empty, the problem reduces to ap- =1, g)+t
proximating log |z| by functions of the type
Ny y 7. EXAMPLES
u"(z) = by + Z Re cj-i_% We shall now look at some numerical examples of
j=1 # the preceding construction. We first want to get
) an idea about the method’s performance. An easy
The matrix A reduces to way to do this is to use a symbolic computation
1 Rez; ! ... Re Z;Nl “Imz ... —Im Z;Nl software like Maple V Release 3. When this stage
is completed and when we need a more efficient
: L N = N ’ tool, we will use a Fortran program together with
I Rezy ... Rezpy ™ —Imzy ... —Imzy™ the well known Linpack library [Anderson et al.
and the vectors 2 and b look like 1995]‘ for m?merical matrix computations. All cal-
culations will be run on a Sun Sparcstation 20.
z = (bo,crs- s Onyyday s dyy), Example 7.1 (The ellipse). Consider the compact
b! = (log |z, - -, log|zn])- 2 )
K::{z:x-l—iye((::?-l-yzgl}.

Therefore, the capacity of K is given simply by
The capacity of an ellipse with semiaxes a and b is

C(K) = ée'. known to be 1(a + b) [Ransford 1995, Table 5.1],
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so C(K) = 2. This theoretical value will allow us
to verify our results.

Let e : [0,1] — C be the parametrization of
0K given by e(s) := 3cos(2ms) 4 2isin(2ws). Fix
two integers N and N;, and consider the boundary
points z; = e¢([/N) for [ = 1,...,N. Now compute
each entry of the matrix A and the vector b as de-
scribed in Step 3 of the construction. Once this is
done, we can solve the problem min, ||Az—bl|,. We
have two options. In general we do not know the
rank of the matrix AT A, and therefore, we do not
know if it is invertible. As a consequence, we must
use the singular-value decomposition method ex-
plained in the previous section. However, as AT A

is usually invertible, we can try to solve the lin-
ear system ATAzr = ATb with a direct method.
If Maple finds that det ATA = 0, we will have to
use the singular-value decomposition method. The
advantage of solving the linear system is that it
reduces the time of computation.

The listing below shows how easy it is to imple-
ment the algorithm in Maple. We define the ellipse
parametrization e and two procedures makeA and
makeb whose function is to construct the matrix A
and the vector b using e, N and N;. The last sec-
tion has showed us that the capacity of K is simply
the exponential of the first component of z. This is
what we compute in the last lines of the program.

Loading the linear algebra package and setting the precision to 16.

> with(linalg): Digits:=16:

Defining the ellipse and choosing N and N1.
> e:=5->3%cos (2*Pi*s)+2*xI*sin(2*Pi*s);

> N:=20: N1:=5:

Procedures constructing A and b.
> makeA:=proc(A) local zl,i,j;
>  A:=matrix(N,1+2*N1);

for j from N1+2 to 2xN1+1 do A[i,j]:=-Im(zl**(-j+N1+1)); od;

> for i from 1 to N do

> zl:=evalf (e(i/N));

> Ali,1]:=1;

> for j from 2 to N1+l do A[i,j]:=Re(zl**(-j+1)); od;
>

> od;

> A

> end:

> makeb:=proc(b) local zl,i;

> b:=vector(N);

> for i from 1 to N do b[i]:=evalf(log(abs(e(i/N)))); od;
> b

> end:

Counstructing A and b.
> makeb(b): makeA(A):

Solving the linear system.

> x:=map(fnormal,linsolve (transpose(A)\&*A,transpose(A)\&*b)):

Computing the capacity.
> cap:=proc(x) exp(x[1]) end:
> cap(x);

2.499959590588404

A Maple program to compute the capacity of an ellipse.
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Pr. N, N Capacity Error Time
16 5 20 | 2.499959590588404 4.0x107° 3.3
16 5 30 | 2.500000047414742 4.7x1078 3.6
24 5 50 | 2.50000000000002289858647 2.3x10714 15.2
24 8 50 | 2.50000000003393085922722 3.4x107 11 44.5
24 8 80 | 2.49999999999999999996875 3.1x1020 98.1
36 10 120 | 2.50000000000000000000000000000060743 | 6.1x1073! 176.7

TABLE 1. Computation of the capacity of an ellipse (Example 7.1) using Maple V Release 3. The first column is
the working precision (number of digits) used in all operations. The last column gives the cpu time, in seconds,

needed to perform all calculations.

The result is surprising. We have chosen N =
20 points on the boundary of K and N; = 5 as
maximal order. The error is less than 5 x 107>,
Table 1 shows some results obtained with different
choices of N and N;.

We remark two things. First, the step from row 3
to row 4 shows that we have to take a sufficient
number of points on the boundary. Indeed, since
we add the terms 1/2%, 1/27 and 1/2%, it is possi-
ble that bigger oscillations appear in between the
points of the discretization. The approximation is
better at each z;, but worse in between them. If we
increase the number of points (here we go from 50
to 80), then the error becomes much smaller. We
also note that the problem of the ellipse is rather
simple. Its geometry seems to give a fairly fast
convergence. This is perhaps not too surprising
considering that an ellipse is a simple perturbation
of a circle, for which the method gives an exact
result.

Example 7.2 (The triangle). In this example the ca-
pacity is still known, but the boundary is not as
nice as for the ellipse. Let K be the equilateral
triangle centered at 0 with one of its vertices at 1.
We have

30(3)°

82

C(K) = ~ 0.7304992431031596.

This can be computed, for example, via conformal
mappings. The Schwarz—Christoffel formula gives
us an explicit expression for the conformal map-
ping of the complement of K onto the exterior of
the unit disc [Nehari 1952, Chapter IV, Section 6].

Then, we can use [Ransford 1995, Theorem 5.2.3],
which links the capacity of the unit disc (which
is 1) to that of K.

In order to estimate the capacity of K using our
method, it suffices to repeat each step of the first

example. We define the parametrization ¢ : [0,1] —
C by

1—3s+3se3™ if0<s<sz,
t(s) :=¢ (2—3s)ei™+ (3s—1)ei™ if L <s <2,
3(1—s)es™ 435 —2 if 2 <s<1.

We choose as before the points z; = ¢({/N), but we
have to make sure that N is a multiple of 3 if we
want the vertices of K to be in the discretization.
The rest of the algorithm is exactly the same. The
results have been compiled in Table 2, where the
working precision was 12 digits.

We immediately notice that the convergence is
much slower in the case of a triangle. The function
we want to approximate, log |t(s)|, is continuous
on [0,1], but is not differentiable at the vertices

N, N Capacity Error Time
5 30 | 0.69288 0.038 3.8
5 90 | 0.69107 0.040 9.7
5 150 | 0.69093 0.040 15.6

10 90 | 0.70166 0.029 24.1

20 90 | 0.70761 0.023 73.2

30 120 | 0.71156 0.019 202.3

40 120 | 0.71808 0.012 412.8

50 150 | 0.71563 0.015 | 1205.5

TABLE 2. Computation of the capacity of an equi-
lateral triangle (Example 7.2) using Maple V Re-
lease 3.
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of the triangle, that is, at s = 0,%,2,1. It is at
those points that the approximation is more diffi-
cult. If we want to apply the algorithm with more
points, we must use a more efficient programming
language.

The Linpack Fortran library is a collection of
routines that perform numerical computations with
matrices in double precision. One procedure, for
example, solves the least-square problem for given
A and b. Tt thus suffices to write a simple program
in Fortran or C that constructs the matrix A and
the vector b and that calls that subroutine. Table 3
shows the results obtained with this program.

One thing is now evident: the convergence is
very difficult. It is impossible to go beyond N; =
120. Indeed, since the working precision is at most
10716, terms like 1/2'° would extraordinary am-
plify any round-off error.

What could be done to improve the rate of con-
vergence? Here are two possibilities. First, we can
change the distribution of points on 0K in order
to enhance the particular situation at each vertex.
Fix a number p € (0,1] and let m, : [0,1] — [0,1]

N, N Capacity Error | Time
50 150 0.71563 0.015 0.3
50 210 0.71428 0.015 04
50 390 0.71424 0.015 0.9
50 600 0.71423 0.015 1.5
60 600 0.71552 0.015 1.9
70 600 0.71628 0.015 2.5
80 600 0.71702 0.013 3.2
80 900 0.71688 0.014 4.9
90 900 0.71707 | 0.013 6.3

100 900 0.71718 0.013 74

100 1200 0.71799 0.013 11.9

100 1500 0.71715 0.013 16.3

100 1800 0.71737 | 0.013 21.6

100 | 2100 0.71758 0.013 26.1

110 | 2100 0.71767 | 0.013 31.2

120 | 2100 0.71764 0.013 36.3

TABLE 3. Computation of the capacity of an equi-
lateral triangle using Linpack.

be the homeomorphism defined by the condition
that the derivative m, (z) equals

1 2
9 9
3-2p ifwe(L2)u(d

{p if z € (0,

The new parametrization ¢t o m, is “slower” near
of the triangle vertices and hence, more points will
be chosen in the neighborhood of each vertex.

A second idea to increase the performance of this
method is to enlarge the space of functions onto
which we project log |z|. In the construction of the
algorithm we used the minimal set A, that is, a
set with exactly one point in the interior of each
component of K that does not contain 0. However,
nothing prevents us from taking more points in A,
and therefore obtaining a wider set of functions
with which to approximate log|z|.

If we combine these two ideas, we get some some-
what better results. For example, take A\, =1 —d,
Xy = €2™/3)\; and Ay = €*"/3), for a certain d €
(0,1). Now try the algorithm for different values
of d and p. The results are shown in Table 4.

The last example shows that even in a simple
case like a triangle, the numerical computations
can be difficult. We shall now look at examples
where the capacity is not explicitly known. We
shall try to estimate the error and to improve the
standard estimates.

Example 7.3. Let K be the compact set shown in
Figure 1, which is the union of the unit circle cen-
tered at the origin, the unit half-circle (Imz > 0)
centered at 3 + 07, and the unit half-circle (Rez >
0) centered at 3s.

The capacity of K can be estimated with in-
equalities from the theory. Indeed, the diameter
of K is 4v/2, so property (h) of Theorem 2.1 shows
that C(K) < 2v/2 < 2.82842713. On the other
hand, property (g) of the same theorem leads to
C(K) > V2 > 1.41421356.
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Ny Ny N d P Capacity Error Time
0 50 600 - 0.80 0.71493 1.6x1072 1.4
0 50 600 - 0.60 0.71733 1.3x1072 1.4
0 50 600 - 0.50 0.71745 1.3x1072 1.4
0 50 600 - 0.40 0.72501 5.5x1073 1.4
0 50 600 - 0.35 0.73076 2.6x10* 1.4
0 50 600 - 0.30 0.73683 6.3x1073 1.4
5 50 600 0.70 0.35 0.73478 4.3x1073 2.3
5 50 600 0.50 0.35 0.72723 3.3x1073 2.3
5 50 600 0.30 0.35 0.72689 3.6x1073 2.3
b) 50 600 0.10 0.35 0.72845 2.0x1073 2.3
b) 50 600 0.05 0.35 0.72983 6.7x10~% 2.3
b) 50 600 0.03 0.35 0.73066 1.6x10~% 2.3
8 50 600 0.03 0.35 0.73065 1.5x10~% 2.9
10 50 600 0.03 0.35 0.73062 1.2x10~% 3.3
12 60 900 0.03 0.35 0.73042 7.9x107° 7.5

TABLE 4. Computation of the capacity of an equilateral triangle using Linpack, with a nonuniform parametriza-

tion and a variable A set.

L A

FIGURE 1. The compact K of Example 7.3.

The boundary of K is made of 3 disjoint curves.
Let d : [0,3] — C be the function

e2rie fo<s <1
4oy — 2 ifl<z< %
d(z) == 3+ ™32 if 2 < g <2
3i 4 e2mi@=9M jf2 < g <2
145 — 4ix if 2 <z <3.

As z runs from 0 to 3, the parametrization d
describes the boundary of K, with discontinuities
at 1 and 2.

If N is a multiple of 3, we choose the points z; =
d(3l/N) for l =1,...,N. Let n be the number of
points in A (we must have n > 2 in order to be sure
that §3 is dense in the set of continuous functions
on 0K). Let also A\, = 3 + %z and )\, = %—I—3i
be two points in K. For the purpose of getting a
first idea of what is going on in this example, we
choose the parameters, rather arbitrarily, as n = 2,
N = 600, Ny = 5, and N; = 20. The result is
C(K) = 2.17844, computed in 0.6s.

Since we do not know the exact value of C'(K),
we may look at the error graph, that is, the graph
of u*(d(z)) — log |d(z)| on the interval [0, 3]. With
more than 12000 points in [0,3] we get Figure 2.
This immediately gives us a bound on the maxi-
mum possible error. Indeed, we see that

and so C(K) is in the interval

u*(z) —log |Z|H8K <0.15,

[e0152.17844, ¢°152.17844] = [1.875, 2.531).

This is a better estimate than the theoretical one
stated above.
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FIGURE 2. Error graph for the compact of Example 7.3, with n =2, N =600, Ny = 5, N1 = 20.

We could also get a rigorous bound on the error
by using the calculus made in Section 5. As the
N = 600 points are uniformly distributed on 0K
(in the sense of the parametrization d), we can take
d > sin(37/N) = sin(7/200) > 0.015707. With
this choice of § we have

which is pretty close to the previous bound.

Let’s look back at the error graph. We notice
that the error on the interval [0,1] is quite small
(of order 1x107?), and hence, the approximation of
log |z| on the unit circle is easy—no surprise here!
However, the points x = 1.5 and z = 2.5 are com-
paratively bad. They correspond to the junction
of the circle arcs with the segments where the dis-
tance from the origin is the largest (z = 4 and
z = 4i). At those points, log |z| is more difficult to
approximate.

To solve this problem, we repeat the idea of
the previous example. We first reparametrize the
boundary to get more points near the corners of
K. We compose d with the homeomorphism m,, :

u*(z) —log |zl|| . < 0.151874,

[0,3] — [0,3] determined by the condition that

m;,(z) equals

1 if z € (0,1),
p if € (1,5)U(53) V(T F) Ul

3 —2p otherwise.

We also choose some extra \;. We try several val-
ues of the parameters and try to minimize the error
by looking at the graph error. We are able to re-
duce by a factor of 10 the error on C(K). Indeed,
if we define A3 = 3.95 + 0.054, Ay = 0.05 + 3.951,
As = 2.054-0.05¢ and A\g = 0.05+42.05¢, we find that
the choices n = 6, N = 4800, N, = 20, N; = 10,
and p = 0.1 give C(K) = 2.196961, in 130.9s.
Figure 3 shows a plot of the function

u*(d(my(2))) — log |d(my ()]

on [0, 3]. The curve is bounded above by 5 x 10~
and bounded below by —1.05 x 1072. Hence, if we
add 2.75 x 1073 to the function u*, the maximum
error reduces to 7.75 x 1072, and C(K) lies in
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FIGURE 3. Error graph for the compact of Example 7.3, with n = 6, N = 4800, Ny = 20, N; =10, p=0.1.

[6—0.00752.19696160.00275’ 60'00752.19696160'00275]
= [2.18655, 2.21960).

Now let’s try to get a rigorous bound as before.
Taking § > sin37(3—2p)/N > 0.005497759 we get
the estimate

u*(d(my(x))) — log |d(m,(z))|| < 4467.75.

It is easy to understand why we obtain such a big
number. The problem comes from the choices of
the extra A\, and from the degree of the principal
parts at each A, that is Ny. Indeed, there are
points of the discretization for which |z, — Ay| =~
0.05 for £ > 3 and then the terms

G (&5 + idji] (J2] + 6)7
(|2t = x| = 9)7+t

in the estimate of ¢ can become very large, espe-
cially when 5 approaches Ny. We need to decrease
Ny. A good rigorous bound can be obtain with the
choices n = 6, N = 9999, N, = 5, N, = 5, and
p=1; we get C(K) =2.196961 with ¢ < 0.0229.

Example 7.4 (Discs). As a last example, take the
compact

K = {4}UgA<4— 2k1_2,2ik)

={4}UA(0,1) UA(2,5) UAB,HU---,

4

where A(z,r) is the closed disk of radius r centered
at z. (See Figure 4.) Our goal is to improve the
bounds on C(K) that we know from the theory.

D a.
N

A
@&

FIGURE 4. The compact K of Example 7.4.
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FIGURE 5. Error graph for the compact of Example 7.4, with n =5, NV = 1000, Ny = 12, N; = 15.

Part (g) of Theorem 2.1 readily shows that

! f: L 2 1.154701
— W_EE = — = 1l. .
™= 2 V3

Getting an upper bound for C(K) is more difficult.
Let K, be the union of the first n discs (so that
K, := A(0,1)). The first idea is to use part (f)
with K,,. Unfortunately, the series diverges and
this inequality gives nothing better than the fact
that C(K) < 2, which can be deduced from prop-
erty (h). However, if we use part (b) with o = 1
and part (f) with the two compact sets K; and
K\ K,, we find a better estimate, namely
C(K) < 5 x 471085)/(10520) 9 374199,

We now want to improve these bounds.

If we know the capacity of K,,, we can repeat the
last argument with K,, and K \ K,, to get a better
upper bound. Each K,, is an admissible compact
for the algorithm of the previous section. Let us
take A\, = 4 — 2 (*=2_ A first computation with
n =5, N = 1000, Ny = 12, and N; = 15 gives

C(K5) = 1.581659 in 3.9s. Figure 5 shows that
the maximum possible error is 5 x 107°.

Before increasing the number of discs, we have
to wonder how far this will make sense. With the
given working precision, the computer is incapable
of distinguishing between any of the discs after the
fiftieth. Thus, we have to take n < 50. Also, it is
probable that even low order terms will be gigantic
as n increases. In order to avoid this problem, we
generalize the algorithm by letting N, vary with
Ar. For example, if n is small, we can take several
terms (just as in the previous computation), but
as n increases, we must decrease N,. We take N =
1200 and N; = 12, and we apply this new idea.

The results are displayed in Table 5. In each
computation, the order Ny of the principal part
around A, varies from 12 to 2 as A, gets closer
to 4. The column labeled Error is the maximum
value seen on the graph of |u*(z) —log |z|‘ where
z € 0K,. For example, Figure 6 display the er-
ror graph for n = 46. More than 100000 points
have been calculated to draw this curve which is
continuous on each interval (n—1, n), the parame-
trization domain of disc number n. Hence, by the
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n C(K,) Error Time

n C(K,) Error Time

3x 1074 9.6
2x 107 12.8
6 x 10~° 16.4
6 x 107° 19.8
3x107° 23.5
3x107° 27.0
3x107° 30.3
8 x 1076 33.6
8 x 1076 36.5
5x 1076 39.6

8 1.6084424559
10 1.6109518683
12 1.6115219754
14 1.6116515135
16 1.6116809506
18 1.6116876417
20 1.6116891577
22 1.6116895080
24 1.6116895789
26 1.6116896064

8x 1075 42.1
1x107° 44.8
6 x 10~¢ 47.2
5x 1076 50.3
5x 1076 52.4
8x 1075 54.5
2x107° 56.9
2x107° 99.5
5x 1076 60.5
4x10°5 62.5

28 1.6116896006
30 1.6116895940
32 1.6116896039
34 1.6116896099
36 1.6116896069
38 1.6116895999
40 1.6116895603
42 1.6116895936
44 1.6116896052
46 1.6116896120

TABLE 5. Computation of the capacity of the set of Example 7.4 using the adaptive method.

reasoning already described, we have
1.611685 < C(K) < 1.674152.

Thus the theoretical upper bound computed before
was rather imprecise. Since we are using the same
technique here, we can guess that in fact C'(K) is
much closer to C'(K,,) than suggested by the max-
imal error.

We wonder now if we could get a rigorous bound
on the error using the technique of Section 5. Be-
fore starting any computation, we mention some

4e-06 T T T T

facts. First, suppose we have M equidistributed
points on a circle of radius r. Then, if we want
to cover this circle with discs of radius § centered
at each of the M points, we need to choose § >
2r sin(7/(2M)). Since r = 2'7% for disc number
k, we see that ¢ varies a lot from a part of K to
another. This suggests that we use several ¢, for
example one for each disc:

0 = 227 Fsi fork=1...n.

m
n—
2N/n’

3e-06
2e-06 ‘

le-06

-1e-06 [

-2e-06

-3e-06

-4e-06 L L . !
0 5 10 15 20

25 30 35 40 45 50

FIGURE 6. Error graph for the compact of Example 7.4, with n = 46, N = 1000, N; = 12, Ny variable.
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However, even with this improvement, there is still
a difficulty. In the expression of the upper bound
for ¢, we have terms like

G |E55 + idji | (2] + 6)7 2
(|Zz - >\k| - 5)j+1

These terms are very large when £k = n—1. Indeed,
we then have |z — A\;| = 27" for each point on the
last circle and since j is running from 1 to Ny we
have factors of order

(27" — ) Nt
With our previous choice of §, we get
—No—1
91 _ §)~No—1 _ gn(No+1) (1 4 ﬂ)
( ) sin o
s 9P(No+1) <1 n 2(No + 1)n7r> ‘
N

Therefore, we cannot expect a good bound on the
error when n and N, are big. We can try to com-
pensate with a high number of points, but since
the linear system is huge (due to the number of
Ar) it now becomes impracticable. In fact, with
the hardware we are using it is difficult to exceed
5000 points.

Here is an example of the rigorous bound ob-
tained with n = 10, N = 4800, Ny = 5 and N; = 5:

C(Ky) = 1.6109514835, &< 6.7x 107%,

8. CONCLUSION

The method developed in this paper was based on
an approximation theorem from Keldys. This the-
orem asserts that log|z| can be uniformly approx-
imated on the compact set considered above by
harmonic functions of the class F5. Unfortunately,
the proof of the theorem is nonconstructive, and
given a positive €, we do not have any algorithm
to construct a harmonic function e-close to log |z|.
The idea here was to project the function log |z| on
a subspace §(Ny, N1), taking a finite number of
points on 0K. Our projection was the least-square
method. We do not really know if it is always pos-
sible to approximate log |z| in this way. That was

a hypothesis of the algorithm. This suggests a di-
rection for further research. Indeed, it would be
interesting to know if the subspaces §{(Ny, N;) re-
ally allow approximation of log|z|. How should N,
and NN, increase and what is the best way of pick-
ing the boundary points? Also, one can ask if it
is possible to improve the argument of Section 5
in order to obtain a better rigorous bound on the
maximum of |u*(z) — log |2||.

The reader may have noticed that if we knew
an explicit harmonic function h equal to log |z| on
0K (Dirichlet problem), then the problem of find-
ing C(K) would be solved. As mentioned before,
one might think of using a standard algorithm like
the finite element method to obtain an approxima-
tion of h. However, since the approximation we
obtain is not itself harmonic we cannot apply the
maximum principle and it is much more difficult
to obtain a bound on the error we make and hence
on the error on C(K).
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