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We construct an algorithm for estimating the capacity of nice

compact subsets of the plane. Our method is based on a re-

lation between capacity and Green’s function together with a

uniform harmonic approximation theorem. We use the simple

least-square technique and, what is most important, we can

obtain a bound on the error made in the estimated capacity.

1. INTRODUCTIONTake a compact and connected conducting body inR3 , and give it a certain amount of electric charge.The charge will distribute itself so as to minimizethe total electrostatic energy. The ratio betweenthe body's charge and the value of the equilibriumpotential on the surface is called the capacity.This notion can be extended to more general setsand potentials. Here we are interested in compactsubsets of R2 = C . In the plane it is natural to con-sider a repulsion law that decays with the inverseof the distance (rather than inverse squared), sothe relevant potential is logarithmic. The capacityof a compact set K with respect to this potential iscalled the logarithmic capacity. Precise de�nitionswill be given in the next section.Our problem is to estimate the logarithmic ca-pacity C(K) of a compact subset K of the plane.It is well known that, in general, capacity is quitedi�cult to compute. As a matter of fact, interest-ing questions about logarithmic capacity are stillopen. One of them can be found in [Ransford1994]. There are many inequalities involving loga-rithmic capacity (see [P�olya and Szeg}o 1951; Pom-merenke and Gerd 1975], for example), but in mostof them, the compact set K needs to be connected.
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222 Experimental Mathematics, Vol. 6 (1997), No. 3We shall conduct experiments using an algorithmbased on a relation between Green's function andlogarithmic capacity. Even though we will have tomake some hypotheses on K, we want to keep thedisconnected case in mind.Our method transforms the problem of comput-ing C(K) into a problem of uniform harmonic ap-proximation on @K. One of our basic tools is anapproximation theorem of Keldy�s. However, sincethe proof of this theorem is nonconstructive, itseems hard to construct an actual approximatingharmonic function within a given positive ". Thisis where it becomes experimental. We shall try toget a good approximation by employing a least-square technique.One could think of using a standard �nite ele-ment method to estimate the capacity of a com-pact set. In fact, when we know an approximation~h of the solution h to the Dirichlet problem on thecomplement of K, we can compute an estimate forC(K). The main problem with this method is thedi�culty in obtaining a bound on the error. Whatwe need is an estimate of ~h�h at a particular point(pointwise estimate). This is fairly hard to obtainwhen using a �nite element method (see [Wahlbin1991, Section 10], for example). Our method isquite easy to implement and has the advantage ofgiving a bound on the error.We shall proceed as follows. In Section 2 we re-call the de�nition of logarithmic capacity and ofthe Green's function, some of their most famil-iar properties, and the interrelationship betweenthe two concepts. Section 3 recalls the Dirichletproblem and states the approximation theorem ofKeldy�s needed later. In Section 4 we develop thealgorithm itself. Section 5 is devoted to the deriva-tion of error bounds for our method. In Section 6we particularize the algorithm to connected sets, acase where many of the expressions simplify con-siderably. Finally, in Section 7 we look at fourexamples, showing how the method can be goodsometimes and bad at other times. We use it toimprove theoretically known bounds on C(K) forsome speci�c compact sets K.

2. DEFINITIONS AND BASIC RESULTSIf � is a �nite Borel measure with compact supportin C , its logarithmic potential is the subharmonicfunctionp�(z) := ZC log jz � wj d�(w); for z 2 C :Since the notion of potential induces a notion ofenergy we can de�ne the energy of �. This is thequantity I(�) := ZC p�(z) d�(z):There are several ways one could think to mea-sure how large a subset of the complex plane is.For example, one could use diameter, area (or moregenerally, its measure with respect to �), and so on.The idea of capacity is just another way of doingthat. In fact, capacity gauges how good a set is forsupporting measures with high energy.Let K be a compact subset of C . The logarith-mic capacity, or simply the capacity, of K is thenonnegative real numberC(K) := sup� eI(�);where the supremum is taken over all probabilityBorel measures with support in K. A set of ca-pacity zero is called a polar set. If K is nonpo-lar, the supremum is attained by a unique mea-sure called the equilibrium measure on K [Ransford1995, Theorems 3.3.2 and 3.7.6].Proofs of the following properties of logarithmiccapacity can be found, for example, in [Ransford1995, Theorems 5.1.2, 5.1.3, 5.1.4, 5.2.5, 5.3.4 and5.3.5].
Theorem 2.1 (Properties of the logarithmic capacity).Let K;K1;K2; : : : be compact subsets of C . Then:
(a) If K1 � K2, then C(K1) � C(K2).
(b) If �; � 2 C , then C(�K + �) = j�jC(K).
(c) C(K) = C(@eK), where @eK is the exteriorboundary of K, that is, the boundary of the un-bounded component of C nK.



Rostand: Computing Logarithmic Capacity with Linear Programming 223

(d) If (Kn)n�1 is a decreasing sequence, thenC� 1\n=1Kn� = limn!1C(Kn):
(e) If (Kn)n�1 is an increasing sequence such thatK = S1n=1Kn is compact , thenC(K) = limn!1C(Kn):
(f) If K is the union of the sets Kn, and if the di-ameter of K is less than or equal to d, then1log(d=C(K)) �Xn 1log(d=C(Kn)) :
(g) If K has area A, then C(K) �pA=�.
(h) If K has diameter d, then C(K) � d=2.
(i) If q is a polynomial of the form q(z)=Pnk=0 akzk,then C(q�1(K)) = �C(K)janj �1=n :Property (b) shows that capacity behaves well un-der translation and dilatation. Property (c) sayswe can �ll up the holes of a set without changingits capacity. However, logarithmic capacity doesnot have the nice union and complement proper-ties of a measure. This lack is certainly one of thereasons why capacity is di�cult to compute.We recall the de�nition of Green's function andsome of its elementary properties, which we willuse in Section 4.Let D be a domain of C1 , that is, a connectedopen subset of the Riemann sphere. A Green'sfunction on D is a function gD : D�D ! (�1;1]such that for all w 2 D,
(a) z 7! gD(z; w) is harmonic on D n fwg;
(b) gD(w;w) =1, and as z ! wgD(z; w) = � log jzj+O (1) if w =1,� log jz � wj+O (1) if w 6=1;
(c) gD(z; w) ! 0 as z ! � for all � 2 @1D. Here,@1D means the boundary of D taken with re-spect to the sphere topology.

When a Green's function exists, D is said to be aregular domain.Proofs of the following well known facts can befound in [Ransford 1995, Section 4.4], for example.
Theorem 2.2 (Properties of the Green’s function). Let Dbe a regular domain of C1 . Then:
(a) There exists one and only one Green's functiongD on D.
(b) gD(z; w) > 0 for all z; w 2 D.
(c) If (Dn)n�1 is an increasing sequence of regulardomains such that [Dn = D, then gDn(z; w) "gD(z; w) for all z; w 2 D.
(d) gD(z; w) = gD(w; z) for all z; w 2 D.There is a fundamental relation between Green'sfunction and capacity. We shall use it in the con-struction of the numerical method.
Theorem 2.3. If K is a compact set such that D,the unbounded component of C1 nK, is a regulardomain, thengD(z;1) = log jzj � logC(K) + o (1) as z !1:A simple proof using Frostman's theorem can befound in [Ransford 1995, Theorem 5.2.1].
3. DIRICHLET PROBLEM AND KELDYŠ’S THEOREMThe Dirichlet problem has been widely studied. Inthis section we shall state an existence theoremwhich is not the most general, but which will besu�cient for our need.
Theorem 3.1. Let D be a regular domain of C1 andlet ' : @1D ! R be a continuous function. Then,there exists one and only one harmonic functionh on D such that limz!� h(z) = '(�) for all � 2@1D.
Proof. The uniqueness of the solution follows di-rectly from the maximum principle for harmonicfunctions. The existence of the solution can beproved by Perron's method. We set h := supu2U uwhere U is the collection of all subharmonic func-tions u on D such that lim supz!� u(z) � '(�) for



224 Experimental Mathematics, Vol. 6 (1997), No. 3each � 2 @1D. Then h has the desired properties[Ransford 1995, Section 4.1]. �In the following, we will use domains of a particulartype and we would like to know if they are regular.
Theorem 3.2. Let K be a compact subset of C suchthat each of its components contains at least twopoints. Then each component D of the complementof K is a regular domain.The proof uses the concept of a barrier and we willnot go into it. The interested reader can �nd alldetails in [Ransford 1995, Section 4.2].
Theorem 3.3 (Keldyš). Let K be a compact subsetof C such that C nK has a �nite number of com-ponents. Let � be a subset of C nK which has atleast one point in each bounded component of C nK.Then each continuous function ' : @K ! R can beuniformly approximated on @K by functions of theform Re q(z)+a log jr(z)j, where a 2 R and q and rare rational functions such that q, r and 1=r havetheir poles in � [ f1g.The proof is based on several results including theHahn-Banach theorem and the Riesz representa-tion theorem. In [Ransford 1995, Theorem 6.3.3]you will �nd the proof of a more general state-ment but you can easily recover the particular casewe need with the help of [Ransford 1995, Theorem3.8.3]. Note that the Stone{Weierstrass theoremdoes not apply here since the collection of approx-imating functions does not form an algebra.Keldy�s's theorem says that it is possible to ap-proximate a continuous function on the boundaryof a compact K by functions that are harmonic ina neighborhood of K. This is exactly what we willneed in the next section.
4. CONSTRUCTION OF THE NUMERICAL METHODUnder some hypotheses, it is possible to obtain anumerical approximation of the capacity of a com-pact set K. This will be done by solving a least-square problem.

Hypothesis 4.1. Let K be a compact subset of C witha �nite number of components Kj (j = 0; : : : ; n)such that , for each j, the interior �Kj is nonemptyand has closure Kj .The construction proceeds in 4 steps.
Step 1. Because of properties (b) and (c) of the log-arithmic capacity from Theorem 2.1, we can sup-pose without loss of generality that 0 is in �K0 andthat D := C1 nK is a domain. De�ne~K := fz 2 C : 1=z 62 Kg:The set ~K is certainly closed and, since 0 2 �K,is also bounded and therefore compact. We nowpick points �1; �2; : : : ; �n 2 C such that �j 2 �Kjfor j = 1; : : : ; n. By the de�nition of ~K, the set� := f1=�1; : : : ; 1=�ng has a nonempty intersectionwith each bounded component of the complementof ~K. Let F� be the class of all functions of theform Re q(z)+a log jr(z)j, where a 2 R and where qand r are rational functions such that the polesof q, r and 1=r are in �.Keldy�s's theorem (Theorem 3.3) applied with ~K,� and '(z) := � log jzj (note that ' is continuouson @ ~K since dist(0; @ ~K) > 0), shows that, for all" > 0, there exists a function Re q + a log jrj in F�such that

� log jzj �Re q(z)� a log jr(z)j

@ ~K < ";where k �kE denotes the supremum on a set E. Wecan rewrite the last inequality in the following way:

 log jzj �Re q(1=z) � a log jr(1=z)j

@K < ":This suggests that we de�ne~g(z) := log jzj �Re q(1=z) � a log jr(1=z)j:As ~g is continuous on the boundary of K, andasD is a regular domain (Theorem 3.2), we deduce,with the help of Theorem 3.1, the existence of aunique function h, harmonic on D and such thatlimz!� h(z) = ~g(�) for all � 2 @K. The function~g � h has the following properties:
(a) it is harmonic on D n f1g;
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(b) (~g � h)(z) = log jzj+O (1) as z !1;
(c) (~g � h)(z)! 0 as z ! �, for all � 2 @K.By the de�nition of the Green's function and The-orem 2.2, we deduce that ~g�h is the Green's func-tion for D, i.e., gD(z;1) = ~g(z) � h(z), for allz 2 D. But we know from Theorem 2.3 that gD isrelated to the capacity of the complement of D bygD(z;1) = log jzj � logC(K) + o (1)as z !1. Putting these facts together, we getRe q(1=z)+a log jr(1=z)j+h(z) = logC(K)+ o (1)as z ! 1. The left-hand side is continuous atin�nity since h is harmonic at this point andRe q(w) + a log jr(w)jis continuous at 0. Thus, we havelogC(K) = Re q(0) + a log jr(0)j + h(1);which is the same asC(K) = jr(0)jaeRe q(0)eh(1):By the maximum principle for harmonic func-tions, we �nd jh(1)j � khk@1D = khk@K . By con-struction, h is a function that satis�eslimz!� h(z) = ~g(�) for all � 2 @K:Therefore, we �nd that jh(1)j � k~gk@K , and bythe de�nition of ~g this says that jh(1)j � ". Wehave shown thatC(K) = ~"jr(0)jaeRe q(0);where ~" 2 [e�"; e"].We have now transformed our problem of esti-mating the capacity ofK into a problem of uniformapproximation of log jzj on @K by functions of theclass F ��, where F �� := fz 7! u(1=z) : u 2 F�g. Weknow from Keldy�s's theorem that this is possible,but in practice the theorem does not give a con-structive way to obtain the desired approximation.In fact, it is clear that the geometry of @K and thechoice of �j will play an important role in �nding

a good approximation of log jzj. In the following,we shall restrict ourselves to a subspace of F �� anda �nite number of points of @K.
Step 2. If u�(z) := Re q( 1z )+a log jr( 1z )j is a memberof F ��, then the poles and zeros of r(z) are in � =f1=�1; : : : ; 1=�ng. This implies that r is of the formr(z) = c�z � 1�1�m1 � � � �z � 1�n�mn ;where c is a constant and mk are integers. So,a log jr(z)j = a log jcj+ a nXk=1mk log ����z � 1�k ���� :Also, q is a rational function whose poles are in �.Thus, it can be written as the sum of its principalparts at each 1=�k plus a polynomial. If we �x twointegers N0 and N1, the class F ��(N0; N1) is de�nedas being the subclass of F �� in which q is of the formq(z) = N1Xj=0 ajzj + nXk=1 N0Xj=1 ajk�z � 1�k��j ;with aj ; ajk 2 C . Therefore a typical function ofF ��(N0; N1) looks likeu�(z) = b0 + N1Xj=1 Re ajzj+ nXk=1 N0Xj=1 Re�ajk� zz��k�j�+ nXk=1 bk log ����z��kz ���� ;where aj and ajk are complex constants (possiblydi�erent from the ones in the preceding equation)and bk are real constants. Writing aj = cj + idjand ajk = cjk + idjk , we have the expressionu�(z) = b0 + N1Xj=1 Re cj + idjzj+ nXk=1 N0Xj=1 Re (cjk + idjk)zj(z � �k)j + nXk=1 bk log ����z � �kz ���� ;where now all the constants are real.



226 Experimental Mathematics, Vol. 6 (1997), No. 3We shall try to approximate log jzj by functionsfrom F ��(N0; N1). In order to do so, we take an N -point discretization of the boundary ofK, say fzl 2@K : l = 1 : : : Ng. As will be evident later, we mustchoose N large enough, namely N � 1 + 2N1 +n(2N0 + 1) := M . We now use the least-squaremethod to determine the \best" constants bk, cj ,dj , cjk and djk, i.e., those for which u� is as closeas possible to log jzj on fz1; : : : ; zNg.If A is a matrix, we denote by Aj0;j1l the part ofthe l-th row of A starting at column j0 and endingat column j1. We de�ne an N �M real matrix Aby the following relations: for l = 1; : : : ; N ,A1l := (1);A2;N1+1l := (Re z�1l ; : : : ;Re z�N1l );AN1+2;2N1+1l := (� Im z�1l ; : : : ;� Im z�N1l );for k = 1; : : : ; n,A2N1+2+(k�1)N0;2N1+1+kN0l :=  Re� zlzl��k�1 ; : : : ;Re� zlzl��k�N0! ;A2N1+2+(n+k�1)N0;2N1+1+(k+n)N0l :=  � Im� zlzl��k�1 ; : : : ;� Im� zlzl��k�N0! ;and �nallyA2N1+2+2nN0;2N1+1+n+2nN0l := �log ����zl � �1zl ���� ; : : : ; log ����zl � �nzl ����� :Also, let b be a column vector of dimension Nwhose l-th component is the real number log jzlj.Finally, let x be an M -dimensional vector whoseentries areb0;c1; : : : ; cN1 ;d1; : : : ; dN1 ;c11; : : : ; cN01; : : : ; c1n; : : : ; cN0n;d11; : : : ; dN01; : : : ; d1n; : : : ; dN0n;b1; : : : ; bn: (4.1)

Step 3. Considering x as a variable vector, our goalis to minimize the function g(x) := kAx � bk2,where k � k2 is the standard Euclidean norm. Weknow from linear algebra that the solution-set ofthis problem is always nonempty. The solutionsare characterized byATAx = AT b: (4.2)In fact, we can explicitly compute the unique solu-tion ~x with minimal norm. Set � := rankA � M .It is always possible to �nd orthogonal matricesUN�N and VM�M such that UTAV = �, where �is an N �M matrix de�ned by�ji := n�i if i = j � �,0 otherwise.The �i are the positive singular values of A, whichwe can suppose to be ordered: �1 � �2 � � � � ��� > 0.For each vector x, we havekAx�bk22 = 


UT (A(V V T )x�b)


22= 


�V Tx�UT b


22= �Xi=1 ��i(V Tx)i�UTi b�2+ NXi=�+1�UTi b�2 :If ~x is a solution to the least-square problem, it isclear that (V T ~x)i = UTi b=�i for i = 1; : : : ; �. Ifwe set (V T ~x)i = 0 for i = �+1; : : : ;M and de�ne�+M�N by (�+)ji := � ��1i if i = j � �,0 elsewhere,then we get V T ~x = �+UT b, which is equivalent to~x = A+b; with A+ = V �+UT :We call A+ the pseudo-inverse matrix of A. IfrankA =M , then A+ = (ATA)�1AT , which couldalso be deduced from (4.2).
Step 4. The last step is to put together everythingwe know so far. An approximation of log jzj on @Kcan now be obtained in the following way. First,



Rostand: Computing Logarithmic Capacity with Linear Programming 227compute the singular values decomposition of A,using, for example, an iterative method [Golub andvan Loan 1983]. From this, we can apply the rea-soning of Step 3 to obtain a vector ~x satisfyingkA~x� bk2 � kAx � bk2 for all vectors x in RM . Ifwe recall the identi�cation (4.1), it is clear that wehave now found a function of F ��(N0; N1), namely~u�(z) = ~b0 + N1Xj=1 Re ~cj + i ~djzj+ nXk=1 N0Xj=1 Re (~cjk + i ~djk)zj(z � �k)j+ nXk=1 ~bk log ����z � �kz ���� ; (4.3)which is a \good" approximation of log jzj at eachzl of @K. If the number of points N taken on theboundary of K is su�ciently big, and if @K is nottoo \bad", one can hope that this approximationwill be good everywhere on @K and will thereforegenerate a small error in the capacity.

We have already shown thatC(K) = ~"e~u�(1);where ~" 2 [e�"; e"], and where" = 

~u�(z)� log jzj

@K :Equation (4.3) shows immediately thatC(K) = ~" exp�~b0 + nXk=1 N0Xj=1 ~cjk�:This concludes the construction.
5. A THEORETICAL BOUND ON THE ERRORWith a bit of knowledge about the geometry of K,one can obtain a rigorous bound for " in terms ofthe coe�cients appearing in ~u�. We �rst noticethat for any holomorphic function f(x + iy) :=�(x; y) + i�(x; y) on a domain U we havejf 0j = jr(Re f)j = jr�j (5.1)on U , where r� is the gradient of �. It is now easyto obtain a crude estimate for the gradient of thetwo-variable real function '(x; y) := ~u�(x + iy) �log jx+ iyj. With z = x+ iy, we can write'(x; y) = Re ~b0 + N1Xj=1 ~cj + i ~djzj + nXk=1 N0Xj=1 (~cjk + i ~djk)zj(z � �k)j + nXk=1 ~bk log z � �kz � log z!and using (5.1) we getjr'j = �����~b0 + N1Xj=1 ~cj + i ~djzj + nXk=1 N0Xj=1 (~cjk + i ~djk)zj(z � �k)j + nXk=1 ~bk log z � �kz � log z�0 ����= ����� N1Xj=1 j(~cj + i ~dj)zj+1 � nXk=1 N0Xj=1 j�k(~cjk + i ~djk)zj�1(z � �k)j+1 + nXk=1 ~bk�kz(z � �k) � 1z ����� N1Xj=1 j j~cj + i ~dj jjzjj+1 + nXk=1 N0Xj=1 j j�kj j~cjk + i ~djkj jzjj�1jz � �kjj+1 + nXk=1 j~bkj j�kjjzj jz � �kj + 1jzj=: (z):From this inequality, we see that the geometric properties of K appearing in  (z) are the distancesbetween z and 0, and between z and �k.



228 Experimental Mathematics, Vol. 6 (1997), No. 3Now suppose we have chosen N points fzlgNl=1 on the boundary ofK, and suppose also we have a positivenumber � such that @K � n[l=1fz : jz � zlj < �g:Then, for each z 2 @K, there exists an l with jz � zlj < � and we havej'(z)j � j'(zl)j+ � supj�j�� jr'(zl + �)j:Therefore,

~u�(z)�log jzj

@K � maxl=1;:::;N�j'(zl)j+� supj�j�� j (zl+�)j�� maxl=1;:::;N���~u�(zl)�log jzlj��+�� N1Xj=1 j j~cj+i ~dj j(jzlj��)j+1+ nXk=1 N0Xj=1 j j�kj j~cjk+i ~djkj(jzlj+�)j�1(jzl��kj��)j+1+ nXk=1 j~bkj j�kj(jzlj��)(jzl��kj��) + 1(jzlj��)��;where we are assuming that � is small enough to satisfy � < jzlj and � < jzl � �kj for all l and k.
6. A PARTICULAR CASE: CONNECTED SETSIf K is a connected compact subset of C , then sev-eral of the previous expressions simplify. Indeed,since � is then empty, the problem reduces to ap-proximating log jzj by functions of the typeu�(z) = b0 + N1Xj=1 Re cj + idjzj :The matrix A reduces to0B@ 1 Re z�11 : : : Re z�N11 � Im z�11 : : : � Im z�N11... ...1 Re z�1N : : : Re z�N1N � Im z�1N : : : � Im z�N1N 1CA ;and the vectors x and b look likexT = (b0; c1; : : : ; cN1 ; d1; : : : ; dN1);bT = (log jz1j; : : : ; log jzN j):Therefore, the capacity of K is given simply byC(K) = ~"e~b0 :

Also, with the notation of Section 5 we have" � maxl=1;:::;N���~u�(zl)� log jzlj��+ � N1Xj=1 j j~cj+i ~dj j(jzlj��)j+1�:
7. EXAMPLESWe shall now look at some numerical examples ofthe preceding construction. We �rst want to getan idea about the method's performance. An easyway to do this is to use a symbolic computationsoftware like Maple V Release 3. When this stageis completed and when we need a more e�cienttool, we will use a Fortran program together withthe well known Linpack library [Anderson et al.1995] for numerical matrix computations. All cal-culations will be run on a Sun Sparcstation 20.
Example 7.1 (The ellipse). Consider the compactK := fz = x+ iy 2 C : x29 + y24 � 1g:The capacity of an ellipse with semiaxes a and b isknown to be 12(a + b) [Ransford 1995, Table 5.1],



Rostand: Computing Logarithmic Capacity with Linear Programming 229so C(K) = 52 . This theoretical value will allow usto verify our results.Let e : [0; 1] ! C be the parametrization of@K given by e(s) := 3 cos(2�s) + 2i sin(2�s). Fixtwo integers N and N1, and consider the boundarypoints zl = e(l=N) for l = 1; : : : ; N . Now computeeach entry of the matrix A and the vector b as de-scribed in Step 3 of the construction. Once this isdone, we can solve the problem minx kAx�bk2. Wehave two options. In general we do not know therank of the matrix ATA, and therefore, we do notknow if it is invertible. As a consequence, we mustuse the singular-value decomposition method ex-plained in the previous section. However, as ATA

is usually invertible, we can try to solve the lin-ear system ATAx = AT b with a direct method.If Maple �nds that detATA = 0, we will have touse the singular-value decomposition method. Theadvantage of solving the linear system is that itreduces the time of computation.The listing below shows how easy it is to imple-ment the algorithm in Maple. We de�ne the ellipseparametrization e and two procedures makeA andmakeb whose function is to construct the matrix Aand the vector b using e, N and N1. The last sec-tion has showed us that the capacity of K is simplythe exponential of the �rst component of x. This iswhat we compute in the last lines of the program.Loading the linear algebra package and setting the precision to 16.> with(linalg): Digits:=16:De�ning the ellipse and choosing N and N1.> e:=s->3*cos(2*Pi*s)+2*I*sin(2*Pi*s);> N:=20: N1:=5:Procedures constructing A and b.> makeA:=proc(A) local zl,i,j;> A:=matrix(N,1+2*N1);> for i from 1 to N do> zl:=evalf(e(i/N));> A[i,1]:=1;> for j from 2 to N1+1 do A[i,j]:=Re(zl**(-j+1)); od;> for j from N1+2 to 2*N1+1 do A[i,j]:=-Im(zl**(-j+N1+1)); od;> od;> A> end:> makeb:=proc(b) local zl,i;> b:=vector(N);> for i from 1 to N do b[i]:=evalf(log(abs(e(i/N)))); od;> b> end:Constructing A and b.> makeb(b): makeA(A):Solving the linear system.> x:=map(fnormal,linsolve(transpose(A)\&*A,transpose(A)\&*b)):Computing the capacity.> cap:=proc(x) exp(x[1]) end:> cap(x); 2.499959590588404A Maple program to compute the capacity of an ellipse.



230 Experimental Mathematics, Vol. 6 (1997), No. 3Pr. N1 N Capacity Error Time16 5 20 2.499959590588404 4.0�10�5 3.316 5 30 2.500000047414742 4.7�10�8 3.624 5 50 2.50000000000002289858647 2.3�10�14 15.224 8 50 2.50000000003393085922722 3.4�10�11 44.524 8 80 2.49999999999999999996875 3.1�10�20 98.136 10 120 2.50000000000000000000000000000060743 6.1�10�31 176.7
TABLE 1. Computation of the capacity of an ellipse (Example 7.1) using Maple V Release 3. The �rst column isthe working precision (number of digits) used in all operations. The last column gives the cpu time, in seconds,needed to perform all calculations.The result is surprising. We have chosen N =20 points on the boundary of K and N1 = 5 asmaximal order. The error is less than 5 � 10�5.Table 1 shows some results obtained with di�erentchoices of N and N1.We remark two things. First, the step from row 3to row 4 shows that we have to take a su�cientnumber of points on the boundary. Indeed, sincewe add the terms 1=z6, 1=z7 and 1=z8, it is possi-ble that bigger oscillations appear in between thepoints of the discretization. The approximation isbetter at each zl, but worse in between them. If weincrease the number of points (here we go from 50to 80), then the error becomes much smaller. Wealso note that the problem of the ellipse is rathersimple. Its geometry seems to give a fairly fastconvergence. This is perhaps not too surprisingconsidering that an ellipse is a simple perturbationof a circle, for which the method gives an exactresult.

Example 7.2 (The triangle). In this example the ca-pacity is still known, but the boundary is not asnice as for the ellipse. Let K be the equilateraltriangle centered at 0 with one of its vertices at 1.We haveC(K) = 3�( 13)38�2 � 0:7304992431031596:This can be computed, for example, via conformalmappings. The Schwarz{Christo�el formula givesus an explicit expression for the conformal map-ping of the complement of K onto the exterior ofthe unit disc [Nehari 1952, Chapter IV, Section 6].

Then, we can use [Ransford 1995, Theorem 5.2.3],which links the capacity of the unit disc (whichis 1) to that of K.In order to estimate the capacity of K using ourmethod, it su�ces to repeat each step of the �rstexample. We de�ne the parametrization t : [0; 1]!C byt(s) := 8<: 1�3s+3se 23�i if 0 � s < 13 ,(2�3s)e 23�i+(3s�1)e 43�i if 13 � s < 23 ,3(1�s)e 43�i+3s�2 if 23 � s � 1.We choose as before the points zl = t(l=N), but wehave to make sure that N is a multiple of 3 if wewant the vertices of K to be in the discretization.The rest of the algorithm is exactly the same. Theresults have been compiled in Table 2, where theworking precision was 12 digits.We immediately notice that the convergence ismuch slower in the case of a triangle. The functionwe want to approximate, log jt(s)j, is continuouson [0; 1], but is not di�erentiable at the verticesN1 N Capacity Error Time5 30 0.69288 0.038 3.85 90 0.69107 0.040 9.75 150 0.69093 0.040 15.610 90 0.70166 0.029 24.120 90 0.70761 0.023 73.230 120 0.71156 0.019 202.340 120 0.71808 0.012 412.850 150 0.71563 0.015 1205.5
TABLE 2. Computation of the capacity of an equi-lateral triangle (Example 7.2) using Maple V Re-lease 3.



Rostand: Computing Logarithmic Capacity with Linear Programming 231of the triangle, that is, at s = 0; 13 ; 23 ; 1. It is atthose points that the approximation is more di�-cult. If we want to apply the algorithm with morepoints, we must use a more e�cient programminglanguage.The Linpack Fortran library is a collection ofroutines that perform numerical computations withmatrices in double precision. One procedure, forexample, solves the least-square problem for givenA and b. It thus su�ces to write a simple programin Fortran or C that constructs the matrix A andthe vector b and that calls that subroutine. Table 3shows the results obtained with this program.One thing is now evident: the convergence isvery di�cult. It is impossible to go beyond N1 =120. Indeed, since the working precision is at most10�16, terms like 1=z130 would extraordinary am-plify any round-o� error.What could be done to improve the rate of con-vergence? Here are two possibilities. First, we canchange the distribution of points on @K in orderto enhance the particular situation at each vertex.Fix a number p 2 (0; 1] and let mp : [0; 1] ! [0; 1]N1 N Capacity Error Time50 150 0.71563 0.015 0.350 210 0.71428 0.015 0.450 390 0.71424 0.015 0.950 600 0.71423 0.015 1.560 600 0.71552 0.015 1.970 600 0.71628 0.015 2.580 600 0.71702 0.013 3.280 900 0.71688 0.014 4.990 900 0.71707 0.013 6.3100 900 0.71718 0.013 7.4100 1200 0.71799 0.013 11.9100 1500 0.71715 0.013 16.3100 1800 0.71737 0.013 21.6100 2100 0.71758 0.013 26.1110 2100 0.71767 0.013 31.2120 2100 0.71764 0.013 36.3
TABLE 3. Computation of the capacity of an equi-lateral triangle using Linpack.

be the homeomorphism de�ned by the conditionthat the derivative m0p(x) equals( p if x 2 (0; 19) [ ( 29 ; 49) [ ( 59 ; 79) [ ( 89 ; 1),3� 2p if x 2 ( 19 ; 29) [ ( 49 ; 59) [ ( 79 ; 89).The new parametrization t � mp is \slower" nearof the triangle vertices and hence, more points willbe chosen in the neighborhood of each vertex.A second idea to increase the performance of thismethod is to enlarge the space of functions ontowhich we project log jzj. In the construction of thealgorithm we used the minimal set �, that is, aset with exactly one point in the interior of eachcomponent of K that does not contain 0. However,nothing prevents us from taking more points in �,and therefore obtaining a wider set of functionswith which to approximate log jzj.If we combine these two ideas, we get some some-what better results. For example, take �1 = 1� d,�2 = e2�i=3�1 and �3 = e2�i=3�2 for a certain d 2(0; 1). Now try the algorithm for di�erent valuesof d and p. The results are shown in Table 4.The last example shows that even in a simplecase like a triangle, the numerical computationscan be di�cult. We shall now look at exampleswhere the capacity is not explicitly known. Weshall try to estimate the error and to improve thestandard estimates.
Example 7.3. Let K be the compact set shown inFigure 1, which is the union of the unit circle cen-tered at the origin, the unit half-circle (Im z � 0)centered at 3 + 0i, and the unit half-circle (Re z �0) centered at 3i.The capacity of K can be estimated with in-equalities from the theory. Indeed, the diameterof K is 4p2, so property (h) of Theorem 2.1 showsthat C(K) � 2p2 � 2:82842713. On the otherhand, property (g) of the same theorem leads toC(K) � p2 � 1:41421356.



232 Experimental Mathematics, Vol. 6 (1997), No. 3N0 N1 N d p Capacity Error Time0 50 600 { 0.80 0.71493 1.6�10�2 1.40 50 600 { 0.60 0.71733 1.3�10�2 1.40 50 600 { 0.50 0.71745 1.3�10�2 1.40 50 600 { 0.40 0.72501 5.5�10�3 1.40 50 600 { 0.35 0.73076 2.6�10�4 1.40 50 600 { 0.30 0.73683 6.3�10�3 1.45 50 600 0.70 0.35 0.73478 4.3�10�3 2.35 50 600 0.50 0.35 0.72723 3.3�10�3 2.35 50 600 0.30 0.35 0.72689 3.6�10�3 2.35 50 600 0.10 0.35 0.72845 2.0�10�3 2.35 50 600 0.05 0.35 0.72983 6.7�10�4 2.35 50 600 0.03 0.35 0.73066 1.6�10�4 2.38 50 600 0.03 0.35 0.73065 1.5�10�4 2.910 50 600 0.03 0.35 0.73062 1.2�10�4 3.312 60 900 0.03 0.35 0.73042 7.9�10�5 7.5
TABLE 4. Computation of the capacity of an equilateral triangle using Linpack, with a nonuniform parametriza-tion and a variable � set.
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FIGURE 1. The compact K of Example 7.3.The boundary of K is made of 3 disjoint curves.Let d : [0; 3]! C be the functiond(x) := 8>>>><>>>>: e2�ix if 0 � x � 14x� 2 if 1 < x � 323 + e2�i(x�3=2) if 32 < x � 23i+ e2�i(x�9=4) if 2 < x � 5214i� 4ix if 52 < x � 3.

As x runs from 0 to 3, the parametrization ddescribes the boundary of K, with discontinuitiesat 1 and 2.If N is a multiple of 3, we choose the points zl =d(3l=N) for l = 1; : : : ; N . Let n be the number ofpoints in � (we must have n � 2 in order to be surethat F �� is dense in the set of continuous functionson @K). Let also �1 = 3 + 12 i and �2 = 12 + 3ibe two points in �K. For the purpose of getting a�rst idea of what is going on in this example, wechoose the parameters, rather arbitrarily, as n = 2,N = 600, N0 = 5, and N1 = 20. The result isC(K) = 2:17844, computed in 0:6 s.Since we do not know the exact value of C(K),we may look at the error graph, that is, the graphof u�(d(x))� log jd(x)j on the interval [0; 3]. Withmore than 12000 points in [0; 3] we get Figure 2.This immediately gives us a bound on the maxi-mum possible error. Indeed, we see that

u�(z)� log jzj

@K � 0:15;and so C(K) is in the interval[e�0:152:17844; e0:152:17844] = [1:875; 2:531]:This is a better estimate than the theoretical onestated above.
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FIGURE 2. Error graph for the compact of Example 7.3, with n = 2; N = 600; N0 = 5; N1 = 20.We could also get a rigorous bound on the errorby using the calculus made in Section 5. As theN = 600 points are uniformly distributed on @K(in the sense of the parametrization d), we can take� � sin(3�=N) = sin(�=200) � 0:015707. Withthis choice of � we have

u�(z)� log jzj

@K � 0:151874;which is pretty close to the previous bound.Let's look back at the error graph. We noticethat the error on the interval [0; 1] is quite small(of order 1�10�3), and hence, the approximation oflog jzj on the unit circle is easy|no surprise here!However, the points x = 1:5 and x = 2:5 are com-paratively bad. They correspond to the junctionof the circle arcs with the segments where the dis-tance from the origin is the largest (z = 4 andz = 4i). At those points, log jzj is more di�cult toapproximate.To solve this problem, we repeat the idea ofthe previous example. We �rst reparametrize theboundary to get more points near the corners ofK. We compose d with the homeomorphism mp :

[0; 3] ! [0; 3] determined by the condition thatm0p(x) equals8>><>>: 1 if x 2 (0; 1),p if x 2 (1; 76) [ ( 43 ; 53) [ ( 116 ; 136 ) [ ( 73 ; 83)[ ( 173 ; 3),3� 2p otherwise.We also choose some extra �k. We try several val-ues of the parameters and try to minimize the errorby looking at the graph error. We are able to re-duce by a factor of 10 the error on C(K). Indeed,if we de�ne �3 = 3:95 + 0:05i, �4 = 0:05 + 3:95i,�5 = 2:05+0:05i and �6 = 0:05+2:05i, we �nd thatthe choices n = 6, N = 4800, N0 = 20, N1 = 10,and p = 0:1 give C(K) = 2:196961, in 130.9 s.Figure 3 shows a plot of the functionu�(d(mp(x)))� log jd(mp(x))jon [0; 3]. The curve is bounded above by 5� 10�3and bounded below by �1:05� 10�2. Hence, if weadd 2:75 � 10�3 to the function u�, the maximumerror reduces to 7:75� 10�3, and C(K) lies in
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FIGURE 3. Error graph for the compact of Example 7.3, with n = 6; N = 4800; N0 = 20; N1 = 10; p = 0:1.[e�0:00752:196961e0:00275 ; e0:00752:196961e0:00275 ]= [2:18655; 2:21960]:Now let's try to get a rigorous bound as before.Taking � � sin 3�(3�2p)=N � 0:005497759 we getthe estimate��u�(d(mp(x))) � log jd(mp(x))j�� � 4467:75:It is easy to understand why we obtain such a bignumber. The problem comes from the choices ofthe extra �k and from the degree of the principalparts at each �k, that is N0. Indeed, there arepoints of the discretization for which jzl � �kj �0:05 for k � 3 and then the termsjj�kj j~cjk + i ~djkj (jzlj+ �)j�1(jzl � �kj � �)j+1in the estimate of " can become very large, espe-cially when j approaches N0. We need to decreaseN0. A good rigorous bound can be obtain with thechoices n = 6, N = 9999, N0 = 5, N1 = 5, andp = 1; we get C(K) = 2:196961 with " < 0:0229.

Example 7.4 (Discs). As a last example, take thecompactK = f4g [ 1[k=0 ���4� 12k�2 ; 12k �= f4g [ ��(0; 1) [ ��(2; 12) [ ��(3; 14) [ � � � ;where ��(z; r) is the closed disk of radius r centeredat z. (See Figure 4.) Our goal is to improve thebounds on C(K) that we know from the theory.

FIGURE 4. The compact K of Example 7.4.
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FIGURE 5. Error graph for the compact of Example 7.4, with n = 5; N = 1000; N0 = 12; N1 = 15.Part (g) of Theorem 2.1 readily shows thatC(K) �vuut 1� 1Xk=0 � 122k = 2p3 � 1:154701:Getting an upper bound for C(K) is more di�cult.Let Kn be the union of the �rst n discs (so thatK1 := ��(0; 1)). The �rst idea is to use part (f)with Kn. Unfortunately, the series diverges andthis inequality gives nothing better than the factthat C(K) � 52 , which can be deduced from prop-erty (h). However, if we use part (b) with � = 12and part (f) with the two compact sets K1 andK nK1, we �nd a better estimate, namelyC(K) � 5� 4�(log 5)=(log 20) � 2:374199:We now want to improve these bounds.If we know the capacity of Kn, we can repeat thelast argument with Kn and K nKn to get a betterupper bound. Each Kn is an admissible compactfor the algorithm of the previous section. Let ustake �k = 4 � 2�(k�2). A �rst computation withn = 5, N = 1000, N0 = 12, and N1 = 15 gives

C(K5) = 1:581659 in 3:9 s. Figure 5 shows thatthe maximum possible error is 5� 10�5.Before increasing the number of discs, we haveto wonder how far this will make sense. With thegiven working precision, the computer is incapableof distinguishing between any of the discs after the�ftieth. Thus, we have to take n � 50. Also, it isprobable that even low order terms will be giganticas n increases. In order to avoid this problem, wegeneralize the algorithm by letting N0 vary with�k. For example, if n is small, we can take severalterms (just as in the previous computation), butas n increases, we must decrease N0. We take N =1200 and N1 = 12, and we apply this new idea.The results are displayed in Table 5. In eachcomputation, the order N0 of the principal partaround �k varies from 12 to 2 as �k gets closerto 4. The column labeled Error is the maximumvalue seen on the graph of ��u�(z)� log jzj�� wherez 2 @Kn. For example, Figure 6 display the er-ror graph for n = 46. More than 100000 pointshave been calculated to draw this curve which iscontinuous on each interval (n�1; n), the parame-trization domain of disc number n. Hence, by the



236 Experimental Mathematics, Vol. 6 (1997), No. 3n C(Kn) Error Time n C(Kn) Error Time8 1.6084424559 3� 10�4 9.6 28 1.6116896006 8� 10�6 42.110 1.6109518683 2� 10�4 12.8 30 1.6116895940 1� 10�5 44.812 1.6115219754 6� 10�5 16.4 32 1.6116896039 6� 10�6 47.214 1.6116515135 6� 10�5 19.8 34 1.6116896099 5� 10�6 50.316 1.6116809506 3� 10�5 23.5 36 1.6116896069 5� 10�6 52.418 1.6116876417 3� 10�5 27.0 38 1.6116895999 8� 10�6 54.520 1.6116891577 3� 10�5 30.3 40 1.6116895603 2� 10�5 56.922 1.6116895080 8� 10�6 33.6 42 1.6116895936 2� 10�5 59.524 1.6116895789 8� 10�6 36.5 44 1.6116896052 5� 10�6 60.526 1.6116896064 5� 10�6 39.6 46 1.6116896120 4� 10�6 62.5
TABLE 5. Computation of the capacity of the set of Example 7.4 using the adaptive method.reasoning already described, we have1:611685 � C(K) � 1:674152:Thus the theoretical upper bound computed beforewas rather imprecise. Since we are using the sametechnique here, we can guess that in fact C(K) ismuch closer to C(Kn) than suggested by the max-imal error.We wonder now if we could get a rigorous boundon the error using the technique of Section 5. Be-fore starting any computation, we mention some

facts. First, suppose we have M equidistributedpoints on a circle of radius r. Then, if we wantto cover this circle with discs of radius � centeredat each of the M points, we need to choose � �2r sin(�=(2M)). Since r = 21�k for disc numberk, we see that � varies a lot from a part of K toanother. This suggests that we use several �, forexample one for each disc:�k = 22�k sin �2N=n; for k = 1 : : : n:
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FIGURE 6. Error graph for the compact of Example 7.4, with n = 46; N = 1000; N1 = 12; N0 variable.



Rostand: Computing Logarithmic Capacity with Linear Programming 237However, even with this improvement, there is stilla di�culty. In the expression of the upper boundfor ", we have terms likejj�kjj~cjk + i ~djkj(jzlj+ �)j�1(jzl � �kj � �)j+1 :These terms are very large when k = n�1. Indeed,we then have jzl � �kj = 2�n for each point on thelast circle and since j is running from 1 to N0 wehave factors of order(2�n � �)�N0�1:With our previous choice of �, we get(2�n � �)�N0�1 = 2n(N0+1) �1� 4 sin n�2N ��N0�1� 2n(N0+1)�1 + 2(N0 + 1)n�N � :Therefore, we cannot expect a good bound on theerror when n and N0 are big. We can try to com-pensate with a high number of points, but sincethe linear system is huge (due to the number of�k) it now becomes impracticable. In fact, withthe hardware we are using it is di�cult to exceed5000 points.Here is an example of the rigorous bound ob-tained with n = 10, N = 4800, N0 = 5 and N1 = 5:C(K10) = 1:6109514835; " � 6:7� 10�3:
8. CONCLUSIONThe method developed in this paper was based onan approximation theorem from Keldy�s. This the-orem asserts that log jzj can be uniformly approx-imated on the compact set considered above byharmonic functions of the class F�. Unfortunately,the proof of the theorem is nonconstructive, andgiven a positive ", we do not have any algorithmto construct a harmonic function "-close to log jzj.The idea here was to project the function log jzj ona subspace F ��(N0; N1), taking a �nite number ofpoints on @K. Our projection was the least-squaremethod. We do not really know if it is always pos-sible to approximate log jzj in this way. That was

a hypothesis of the algorithm. This suggests a di-rection for further research. Indeed, it would beinteresting to know if the subspaces F ��(N0; N1) re-ally allow approximation of log jzj. How should N0and N1 increase and what is the best way of pick-ing the boundary points? Also, one can ask if itis possible to improve the argument of Section 5in order to obtain a better rigorous bound on themaximum of ��u�(z)� log jzj��.The reader may have noticed that if we knewan explicit harmonic function h equal to log jzj on@K (Dirichlet problem), then the problem of �nd-ing C(K) would be solved. As mentioned before,one might think of using a standard algorithm likethe �nite element method to obtain an approxima-tion of h. However, since the approximation weobtain is not itself harmonic we cannot apply themaximum principle and it is much more di�cultto obtain a bound on the error we make and henceon the error on C(K).
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