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We develop methods for the rapid computation of the regulator
of a real quadratic congruence function field K = kx)(v/D). By
extending Shanks’ infrastructure ideas in real quadratic number
fields to real quadratic congruence function fields we obtain a
baby step—giant step method for evaluating the regulator of K
in O(\D|1/4) polynomial operations. We also show the existence
of an effective algorithm which computes the regulator uncon-
ditionally in O(|D|”5) polynomial operations. By implement-
ing both methods on a computer, we found that the O(/D|"*)-
algorithm tends to be far better than the baby step—giant step
algorithm in those cases where the regulator exceeds 10°.

1. INTRODUCTION

Let k = F, be a finite field of odd characteristic
with ¢ elements and let K = k(z)(v/D), where D
is a monic, squarefree polynomial of even degree.
Such a field is known as a real quadratic congruence
function field (of odd characteristic). If & = u +
vvV/D € K with u,v € k(z), then the conjugate of
a is given by & = u — vv/D. The norm of a is
defined as N(a) = aad = u? —v?D, giving a rational
function.

The ring of integers of K is Ok = k[z][V/D]. Let
€ = O3 be the group of units in Og. We know
that € = k* x (¢) where ¢ € K is a fundamental
unit. In this case, the decomposition of the infinite
place 0o of k(x) is 0o = 0oy - 002 , where 00, and 0o,
are the infinite places of K/k with respect to O.
Denoting by v; and v, the corresponding normalized
valuations of K, we define the natural number

R = v (e)] = |ua(e)| = 1
as the regulator of K/k with respect to Ok. A re-

sult of F. K. Schmidt [1931] shows its connection
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with two further invariants, namely the ideal class
number h' and the divisor class number h,

h = RHK'.

The regulator is not only an important invari-
ant, it is also of cryptographic relevance. In [Schei-
dler et al. 1996], a secure key-exchange protocol was
developed by making use of the arithmetic in real
quadratic function fields. Computation of the regu-
lator is itself an instance of computing a discrete log-
arithm as defined in that same article; furthermore,
the size of the regulator also provides a measure for
the key space.

The purpose of this paper is to show how R can be
efficiently computed by adapting the infrastructure
techniques of Shanks [1972], originally applied to
real quadratic number fields, to real quadratic func-
tion fields. In order to do this we must first briefly
discuss the continued fraction expansion of elements
of K. This algorithm goes back to Artin [1924a]. We
then modify the techniques of [Williams and Wun-
derlich 1987; Stephens and Williams 1988a; 1988b]
in order to apply Shanks’s infrastructure ideas to
K. These results, discussed in much greater detail
in [Stein and Zimmer 1991; [1992]], provide us with
algorithms that compute R in O(q/4 8 P) poly-
nomial operations. We then show how the ideas of
Lenstra [1982] and Schoof [1982] can be applied to
the problem of determining R. From these consid-
erations we produce an algorithm for calculating R
that executes unconditionally in O(g*/®) 98 P) poly-
nomial operations. Finally, we implemented the al-
gorithms and compared their running times.

2. THE BABY STEP METHOD

Let L := k(x). be the completion of k(z) with re-
spect to co. Then L is the field of power series in the
variable 1/x, and the completions of K with respect
to 0o; and oo, are isomorphic to L:

K., =2 K, k() =k((1/x)).

Also, K is a subfield of k((1/z)). We then only have
to fix one of the two places. Let oc; be the place
which corresponds to the branch where v1 = 1.
Then we define the continued fraction expansion in
K via Laurent series at oo; in the variable 1/z.

2A. Continued Fractions

In L = k((1/z)) we define, for a nonzero element
a= Zézim c;zt with ¢; # 0:

dega =1, la| = ¢,
!
) (2-1)
sgna=¢;, |a] = Zcixl
=0

If [ is negative we have || = 0. For completeness,
we set deg0 = —oo and |0 = 0. We now introduce
continued fraction expansions on L in the sense of
Artin. Many properties of these continued fractions
can be found in [Artin 1924a; Weis and Zimmer
1991]; many others can easily be established by anal-
ogy to results given in [Perron 1913; Williams and
Wunderlich 1987]. (See also [Stephens and Williams
1988a; 1988b].) For an element o € L\ k(x), we put
ap =, ag == |ap ], and

1
Qip1 = ( Qi1 = [, (2-2)

oy — ai)
fori € Ng. (Here and in the sequel, N and Ny denote

the positive and nonnegative integers, respectively.)
As usual we define

i

1
02’—1—1 2=H— fOI'iGN.

Qj

0, :=1, (2-3)

Jj=1

We note that |o;| = |a;] > ¢ > 1 for i € N. In
contrast to the case of real quadratic number fields,
we have to distinguish two forms of periodic behav-
ior. Let @ € L. We say that the continued fraction
expansion of « is quasiperiodic if there are integers
v > 1y > 0 and a constant ¢ € k* such that

o, = cay,. (2-4)
The smallest positive integer v — v, for which (2-4)
holds is called the quasiperiod of the continued frac-
tion expansion of . The expansion of « is called
periodic if (2—4) holds with ¢ = 1. The smallest
positive integer v — vy for which (2-4) holds with
c = 1 is called the period of the continued fraction
expansion of a.. In the periodic case, the quasiperiod
divides the period, and they both start at the same
index v.
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2B. Reduction

We consider the continued fraction expansion of a
real quadratic irrationality of the form

a=(P+VD)/Q,

for a € L\ k(x), where P, Q € k[z], Q # 0, Q divides
(D — P?). In this situation, we put Qo = Q, P, = P,
a =a, Q_, = (D—P?/Q, and d = |V/D]. We
iterate

Pi+1 = aiQi - P Qi+1 = (D - ‘Pi2+1)/Qi7

for i € Ng. Then 0 # Q;, P; € k[z], Q;| (D — P?),
and

(2-5)

o; = (P, +VD)/Qi

Defining r; € k[z] to be the remainder on division
of P, +d by @;, we obtain

for ¢ € Ny. (2-6)

Pyi=d—r; for ¢ € Ny,

Qiy1 = Qi1+ a;(r; —ri_qy) forieN, (2-7)
a; = (P; 4+ d)div Q; for ¢ € Ny,
ri = (P; + d) mod Q; for ¢ € Ny.

We notice that degr; < deg @, for ¢ > 0. Finally,

N(0i+1) = 0i+1§i+1 - (_1)ZQZ/QO

for 1 € Ny,

A real quadratic irrationality is said to be reduced
if |a] < 1 < |al, or equivalently, |P — v/D| < |Q| <
|P4+/D|. Artin [1924a, p. 193] showed that if some
«; is reduced for ¢ € Ny, then so are all o, for
j > 4. From the properties of a reduced real quad-
ratic irrationality [Artin 1924a, p. 194] we obtain
the following result.

(2-8)

Proposition 2.1. If, in the continued fraction expan-
ston of a real quadratic irrationality o, some o, s
reduced for ig > 0, then we have for all © > ig:

(@ |P| = |P;+vD| = |VD| = |d|.

(b) sgn P, = sgnv/D. Indeed, the two highest coeffi-
cients are equal.

(© |a;:Q;| = |VD|. In particular, 1 < |a;| < |V/D|
and 1 < |Q;| < ‘\/l_)‘

It is well-known that the continued fraction algo-

rithm can be interpreted as a reduction process. In
fact, we can prove the following result.

Theorem 2.2. Let o be a real quadratic irrationality.
Then the «;’s are reduced for

7> maX{O, %deng — idegD—i— 1}.

The bounds in Proposition 2.1 for the polynomials
P; and Q); lead to the periodicity of the continued
fraction expansion of real quadratic irrationalities in
the case of a finite field k. This had already been
proved in [Artin 1924a).

2C. Symmetries

The continued fraction expansion of & = v/D is pe-
riodic with period n and quasiperiodic with quasi-
period m. We easily see that « is not reduced; but
«; is reduced, and, therefore, so is «; for any ¢ > 1.
Results concerning periodicity can be deduced as
in [Perron 1913]. Artin [1924a, p. 195-197] showed
that € = k* X (0,41 ), and the regulator R of K
with respect to O is then
R =deg0,,,1. (2-9)
We also know that, for s € Ng, we have @, € k* if
and only if s = Am with A > 0. Furthermore,
N(Oypy1) € K* for A > 1. (2-10)
As in the case of a real quadratic number field,
there exist symmetries with respect to the period
and to the quasiperiod.

Theorem 2.3. With ¢ € k* chosen such that aq4,, =
cay, we have:

Pi+1:Pm7i fori:(),...,m—l,
Qi = C(il)i_lQm—i fO’f’i = 07 -,
1 :
—= =V fori=0,...,m—1.
Qo —i

Using proof techniques similar to those employed in
the real quadratic number field case, we can also ob-
tain duplication formulas with respect to the quasi-
period. For computing the regulator of K, we com-
pute the continued fraction expansion of a = v/D
until we reach half of the quasiperiod. We need to
recursively calculate the quantities a;, r;, P;, @i,
where we use the optimized formulas in (2-7). This
iterative process is known as the baby-step method.
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3. THE BABY STEP - GIANT STEP METHOD

3A. Ideals and Continued Fractions

We summarize properties of integral ideals and in-
troduce their continued fraction expansion. The cor-
responding proofs can be found in [Artin 1924a].
Any nonzero subset a of O is an integral ideal if and
only if there exist S, P,Q € k[z] with Q| (D — P?)
such that a = SQF ,[z] + (SP + SvD)F[z]. In this
case, we call {SQ, SP+S+v/D} a k[z]-basis of a, and
we write a = [SQ, SP + Sv/D). If an integral ideal
a is given with such a k[z]-base, we define the norm
of a by
Q5?

sgn (QS5?)
Note that sgn N(a) = 1. We say that an integral
Ok-ideal a is primative, if S can be chosen to be 1,
that is, if a = [Q, P + VD] with Q| (D — P?). A
k[x]-base of an integral ideal a can be chosen to be
in adapted form, meaning that

a= [T, R+ SVD] forsome T,R,S € k[z] (3-2)

with deg R < degT. The polynomials T, R, S are
unique up to constant factors. For any Og-ideal a,
the Og-ideal a := {@; «a € a} is called the conjugate
ideal of a. If a = (o) = a0 with a € K, we call a
a principal O -tdeal. We say that two integral Og-
ideals a and b are equivalent, written a ~ b, if there
exist some nonzero elements «, 3 € O such that
(@)a = (B)b.

Let a; = [Qi, P + \/5], for ¢ = 1,2, be primitive
Ok-ideals given with adapted bases. By using essen-
tially the same ideas as Gauss, as in [Shanks 1971],
[Lenstra 1982] or [Stephens and Williams 1988a], we
can compute the product of a; and a,, i.e. a prim-
itive Og-ideal ¢ and a polynomial S € k[z] such
that aja; = (S)c. This can be done in O(deg D)
polynomial operations. (We use this expression to
mean one of the basic arithmetic operations of ad-
dition, subtraction, multiplication, division with re-
mainder, degree comparison, or assignment in k[z].)

An integral Og-ideal a is called a reduced Ok-
ideal if a is primitive and if there exists a F,[z]-
basis of the form {Q, P + v/D} with polynomials
Q, P € F[x] such that Q | (D — P?) and |P—v/D| <
|Q| < |P + /D, or equivalently, if (P + v D)/Q is
a reduced real quadratic irrationality.

N(a) = € k[z]. 3-1)

Theorem 3.1. A primitive Ok -ideal a is reduced if and

only if [N (a)| < [V/D|.

Let a be any primitive Og-ideal, and let Q, P €
F,[z] with Q| (D — P?) be such that a = [Q, P +
VD]. If we set a := (P ++/D)/Q, then « is a real
quadratic irrationality, and we can carry through
the continued fraction expansion of a. With Q;, P; €
[F,[z] defined as in (2-5), we let a; := a, Qo = @,
Py := P, and for 1 € N, we let

a; = [Qi—la Pi—1+\/5]- (3-3)

For i € N we know from (2-6) that
a1 = (P—1 + @)/Qi—la

where P, 1,Q; 1 € F,[z], Qi1 # 0, and @, di-
vides (D — P? ;). We deduce that each a; is a primi-
tive integral Og-ideal. Most of the following results
correspond to those for real quadratic number fields
(see [Williams and Wunderlich 1987], for example).
However, we shall prove them using the terminol-
ogy of integral ideals. It is easy to prove (see [Stein

1992]) that Quf;, Quf; € Ok for i € N, and that

(Qoei) a; = (Qi—l) ag.

First note that if o; = (P; 4+ v/D)/Q; is reduced
for an index i € Ny, then the ideal a;,; is reduced,
because the reduced F [x]-base for a;;; is given by
{Q;, P, +v/D}. From 2.2 we then immediately de-
rive the following theorem.

(3-4)

Theorem 3.2. If a = a; = [Qo, Py + /D] is any prim-
itive Qg -ideal, then a; is reduced for

1> 1y = max{l, %deng—idegD—i—Z}.

Conversely, if a; is reduced, the basis representation
in (3-3) need not be the reduced one. This means
that «;_; is not necessarily reduced.

Lemma 3.3. Let o be a real quadratic irrationality,
and let i € N. Then «; is reduced if and only if

|Qi—1] < |\/5|

This means that if a; is reduced for an ¢ € N, then
«; is reduced, since, by Theorem 3.1, |N(a;)| =

|Qi—1] < |\/5|
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Lemma 3.4. If, in the continued fraction expansion
of a := (P ++/D)/Q, there exists a minimal | € N
such that |Q,_1| < |V/D|, then a, is reduced, and

Qi1
Qo
Now we will see that the continued fraction algo-

rithm applied to a reduced ideal produces all equiv-
alent, reduced ideals.

‘éz‘ <1, |6 >

Theorem 3.5. Let a = a; and b be two equivalent
reduced integral O -ideals. Then there exists v € a
such that

where 0 < |y| < |N(a)|. Then there exists some
v €N andc € F, such that b = a, andy = cN(a),.

The theorem corresponds to [Williams and Wunder-
lich 1987, Theorem 4.5, and a complete proof for the
case of a real quadratic congruence function field is
given in [Stein 1992]. The existence of such a vy € a
can be guaranteed in the same way as in [Williams
and Wunderlich 1987, Lemma 3.1].

3B. Distance and Giant Steps

Let a = a; and b be two equivalent, reduced, inte-
gral Ok-ideals. By Theorem 3.5, there exists some
v € N such that b = a,, and by (3-4), we have
(N(a)d,)a, = (N(a,))a. Then we define the dis-

tance from a to b as
§(b,a) = 6(a,,a) = degh,.

We always put 4, := d(a,,a).

Remark 3.6. Distance is only defined between equiv-
alent, reduced ideals. From (2-3) and because «; is
reduced for ¢ > 1, we deduce that the distance func-
tion ¢; is strictly increasing in ¢, i.e. §;;; > §;. Since
the values of the distance function are integers, we
have 6;4; > 6;+4. Thus, if 6; = d;, we conclude that
a; = a;. Especially, if there are v, j,1 € N such that
9; <0, <6, then a, € {a;;5 <i <1}, and §; =0
if and only if a; = a. Conversely, if a; = a; then
d; = 6; + IR where R is the regulator of K. In this
case we deduce from (3-4) that §; and 6; differ only
by a unit.

Furthermore, by (2-8), (2-3) and Proposition 2.1(c),
we see that

i—2
0; = $deg D — deg Qo + » _ dega,

j=1

forieN,1>2. (3-6)

In the sequel, we let a = a1 = (1) = O =
[1,V/D]. With reference to (3-3), we have ap = @ =
VD. Clearly, a is reduced, because |[N(a)] = 1 <
|V/D|. Also a;; = (6;11) are reduced principal ide-
als for ¢ € Ny, where 9i+1 € Ok. Then ¢; := 6(a;,a)
is defined for all i € N. Note that, by (3-6) and
Proposition 2.1(c),

%degD—i—i—Q < §; < (z’—l)-%degD
fori e N, ¢ > 2.

Let b be an arbitrary reduced Ok-ideal. We de-
velop the continued fraction expansion of b as in
(3-3) and denote by P/, Q., 0, and ¢, := §(b;,b)
the quantities appearing in the continued fraction
expansion applied to b. For any s,t € N, we find
a polynomial S € F,[z] and a primitive Ox-ideal
¢ such that a,b, = (S)c. We apply the continued
fraction algorithm to ¢ = ¢;. By Theorem 3.2, it
is guaranteed that, after a finite number of steps,
we will obtain a reduced ideal equivalent to c¢. We
denote by P/, Q7 and 6! the quantities appearing
in the continued fraction expansion applied to ¢. In
view of Lemma 3.4, let [ € N minimal such that
|Q1_,| < |v/D|; hence, ¢ is reduced. Summarizing,
we get the following chain of equivalent ideals

3-7)

¢ ~cn~ (S)c=ab, = (0,)b, ~ b, ~b.
Thus, ¢; and b are equivalent. Since they both are
reduced, by Theorem 3.5 there must exist some v €
N such that ¢; = b,. We derive a result that can
be proven analogously to [Williams and Wunderlich
1987, Theorem 5.2].

Theorem 3.7. In the situation above there exists some
Ce FZ such that

0;:00502% and 0, =104, +d,+ f,

where f := degf) —degS € Z and —deg D + 2 <
f<o.

Note that the quantities s,¢ can be arbitrarily large
here, but [ is bounded by a fixed small quantity
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which depends on D. Furthermore, the integer f,
the “error”, is bounded and is always less than 0.
In general, f is small compared to d, or ;. The
result is of special interest for large s,t. As in the
number field case, we expect the distance function
to be roughly linear. Therefore, we really have giant
steps. In the situation of the theorem we define a
new operation called giant step by

as*bt = (buaf):(claf)'

Consequently, a giant step is a composition of two
operations, namely computation of the product of
two primitive Og-ideals and reduction of the primi-
tive part of the product using the continued fraction
algorithm. Let m be the quasiperiod of the contin-
ued fraction expansion of a = v/D. From (2-10),
we deduce that a,,.1 = a1 = a = Ok, and from
(2-9), we see that R = §,,11, where R is the regula-
tor of K. We easily derive that ay,, ;41 = a;41 and
Oamiir1 = AR+ ;1 for ¢ € N. Furthermore, by Re-
mark 3.6 and (3-6) with ¢t :=2 and ¢ = ¢ + (i — 2),
we have §; > L1degD +i—2fori e N, i > 2.
Next, we consider the effects of symmetries in the
case @« = v/D. For a; defined in (3-3), we have
a; = [Qi_1, P, +v/D]. Theorem 2.3 then yields

(3-8)

0 = 0py_jye for 1 <i<m+1. (3-9)

If we set 8, := 0(a;,a) = &,—ir2, We get
R = Si—l—&-—degQi_l for1<i<m+1. (3-10)

We see that the conjugate ideals are exactly those
which occur before the quasiperiod is reached.

3C. The Algorithm

The idea of the optimized baby step—giant step al-
gorithm is to create a stock of principal, reduced
ideals up to an index s+ 71 where T > i deg D, and
s, as we shall show, should be of order ¢!/ dee?,
By using giant steps we jump to principal ideals in
the same chain lying at a distance of about 24, away
from each other. Because of the quasiperiodicity of
the continued fraction expansion of a = /D, we
must reach one of the stored ideals. We only have
to make sure that the step size is not greater than
the length of the initial interval. The correctness
of the algorithm is similar to that in [Stephens and
Williams 1988b, p. 814-815] and is fully described
in [Stein 1992, p. 144 f£].

Algorithm 3.8 (Regulator1).

Input: £ = F, and D € k[z] monic, squarefree of even
degree.
Output: R, the regulator of k(z)(v/D).

1. Put s« [¢/Y%eP | and T « |1deg D +1].

2. By carrying out the continued fraction expansion
of @ = /D, compute a; and §; up to the least 8,
such that 6, > ds,7, starting with a; = (1) =
O . Store and sort them on some coefficients of
N(a;) in the form

(aia 61) - (N(al)a 132'—1761') .
If P, =P, for a minimal 1 <v < n, set

R < 26,,1 —deg@,; return.

IfQ,/sen @, = Qu+1/58n Q41 for a minimal 1 <
©w<mn,set

R < 20,41 —degQ, +dega,;1; return.

3. Set (by, f1) < as * ag; 0] < 205 + f1; j « L.

4. While (b] ¢ {al, fg, .. .,an}U{ﬁl,ﬁz, . ,ﬁn}) do:
(b1, fix1) < byxby; 65,y < 07 + 05 + fi41;
j—J+ 1L

5. We have []j S {al,ag, .. .,an} U {ﬁl,ﬁg, . .,ﬁn}.
Ifb; =a; € {ar,...,a,} set R« &} — §;; return.
If bj = Etl S {ﬁl,...,ﬁn} set

R+ (5; + (Sl — deng_l;

return.

Note that after step 2 the objects have been sorted,
so that in the while-loop of step 4 the searching is
being performed on sorted objects. For instance, if q
is large, this can be done by hashing with respect to
one fixed coefficient of N(a;). The baby step —giant
step techniques of Algorithm 3.8 for computing the
regulator R of a real quadratic congruence function
field K, have a complexity of

O(q(1/4) degD) (3_1-])

polynomial operations. This is based on the follow-
ing observations. We denote by g the genus and by
h the divisor class number of K. Let

Gos)=(1—g) (1-q7)"
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and let ((s) be the zeta function for K. Then it
is well known (see [Eichler 1966, pp. 299-306], for
example) that

s 1 =110-3)

where g = fdegD — 1 (see [Deuring 1973]) and
lwi| = q'/? for i =1,2,...

,2g. Furthermore,

h=L(1)=¢L(1/q); (3-12)

thus,
Wi <n< (DY
Therefore, we may assume that h = O(q(}/?dee D),

On the other hand, we know that h = Rh', where b/
is the ideal class number; thus R = O(q(1/?des D),
We know that the distance function is strictly in-
creasing. By (3-7), we may then assume that m =
O(R) = O(q'/?4%eP) since R = §,,,1. Further-
more, m =~ sz, where s is the number of baby steps
and z the number of giant steps. We see that an
optimal choice for them should be

s O(q/MeDy  and 2z~ O(ql/deeD),

In the continued fraction expansion, the only op-
erations which are necessary depend on polynomial
arithmetic in finite fields. We know from Proposi-
tion 2.1 that the polynomials occurring are bounded
in their degrees by %deg D. The same argument
holds for the quantities that appear in the ideal
product, and by Theorem 3.2 the number of steps
to reduce a primitive ideal is O(deg D). Thus, the
complexity of a giant step and a baby step is poly-
nomial in log(q) and deg D. Asymptotically, those
factors are included in

O(q(1/4) deg D)

polynomial operations. Thus, the total complexity
determining R by our algorithms is

O(s+2z)= O(qzdegD)

polynomial operations. The iterative algorithms of
Section 2C have a complexity of O(g(/? 4 D) poly-
nomial operations, because the iterations in the con-
tinued fraction expansion have to be carried out up
to the quasiperiod m or m/2.

4. THE O(|D|"*)-METHOD

In this section we will use the basic ideas of Lenstra
[1982] and Schoof [1982] to show how to compute R
in O(q1/®) 46 D) = O(| D|*/®) polynomial operations
over k if deg D > 8. For deg D = 4 or 6, we actually
obtain faster methods. We first point out that if R <
G for some G € Z, we can determine it in O(s+G/s)
polynomial operations by using an algorithm like
Algorithm 3.8 with a step size s. Thus, we will now
assume that such an algorithm has been executed
and that no regulator has been found for an upper
bound z on the search parameter 7 which guarantees
that R > G. Such a bound is given by

o G+6T+s _
z= 0. —deg D 1 2) =0((G + s)/s).

For instance, if one performs s = |v/G| baby steps
and z = O(v/G) giant steps, then one can determine
whether R < G in O(v/G) polynomial operations.

We now divide the problem of determining R into
two parts. In the first part we find an estimate E of
h; in the next part we use the estimate to produce an
integer h* R which is divisible by R and then deter-
mine h*. Unlike the situation of a real quadratic
number field as dealt with in [Lenstra 1982] and
[Schoof 1982], we do have the Riemann Hypothe-
sis here; thus, it will turn out that our algorithm
for determining R is of unconditional complexity
O(q*/®)9). Furthermore, we shall attempt to present
an algorithm which is computationally efficient.

4A. An Estimate for h

Let P represent any prime polynomial in k[z] and
define x(P) € {—1,+1,0} by Artin’s [1924a] symbol

[%]. We have
1
> .41
Define (see [Reichardt 1936])

=#{P:|P|=q¢"} =1 (¢"+ 1) u(v/k),

kv

Lig)=(1-q°

T

P

where p denotes the Mobius function, and

N, = #{ p : p prime ideal of K, |[N(p)| = ¢" }.
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From the results in [Artin 1924a] on how P splits in
K, we know that when v is odd

=2 Y e Y = Y
x(P)=1  x(P)=0  |P|=¢"
IP\q IP\q

and when v is even

No= > 1+ Y (x(P)+1

x(P)=-1 |P|=q"
|P|=q¢"/?

From [Artin 1924b] we have
Zka :qu_l_sw
kv
where
29
=S
i=1
It follows by Mobius inversion that if ¥ > 1, then
v(N, —n,) = Zskuy/k
k|v

thus,
v|N, —n,| < 2ngk/2.

k|v

Hence, for all v > 1, we get

v (4-2)

> X<P>‘ < (29 +2)d() ¢
g

Here d(n) denotes the number of divisors of n. Now
consider

e L)

\P|>q
o0
=— E E vS,(n/v),
’IL
n:w+1 y‘n

v>w

where

|P=¢*
Notice that if 2|j, then 0 < Si(j) < my; and if
214, then k|S,(5)| < (29 + 2) d(k) ¢*/? by (4-2). Tt
follows that

S vS(n/v)| <q+(2g+2) Y ¢*d).
ll//>‘77ll) n/l:/‘:dd

Clearly,
) <ng" n/2

Z qu/2

vi|n
n/v odd

for n < 4. Also, if n > 5, it is easy to show that
n/d(n) > 3/2; hence,
> o

Z ¢? d(v) < d(n

vin vin

n/v odd n/v odd
(n/6)+(1/2) _ 1)
n/2 (q
<t (4 + )

< 3d(n)q¥?* <nq"2

Hence,
Z VS,,(’]’L/[/) < (29 + 2) nq”/2 + qn/2
A
and
00 )
np_ (2943)g7""”
|B(w, D)) <(29+3)n_zw+lq =
(4-3)
If we put
(29 + 3) q /2
Ylw, D)= TP -1 (4-4)
it follows that
-1
x(P )>
1- _ A/
< maX{ e"l’(’w,D) _ 1’ 1 _ e-dj(w‘D) }
=t (4-5)

By our earlier results,

h=q¢"L(1/q)=¢’(1—q7") 1H< )_1-

P

We set
-1
: “1y- x(P
E'w,D)=¢'(1-¢ )" ] < —%) ;
|P|<q®
(4-6)
and let our estimate of h be defined by
E(w, D) = rmd(E'(w, D)), (4-7)

where rnd(y) denotes the nearest integer to y. Then

|h — E(w, D)| < E'(w,D)(e"™P) — 1) + 1
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by (4-5). Putting

L(w, D) = [VE W D)™ P -1+ 1], @

we get
|h — E(w, D)| < L*(w, D).

We also need to show that E(w,D) can not be-
come too large.

(4-9)

Theorem 4.1. There exist positive constants ¢, c* such
that

1
¢ —q¢° < E(w,D) < cwq’.
w
Proof. Put
)
M (w, 1 X ,
1] i

( 7
‘)

/_\

It suffices to show that M (w) = O(w)
Q(1/w). We have

v=1 q”
and ,
n, = + t,,,
where
lv/2]
i 3 v/2
< S Lo
1% 2v
i=0
Since
oYL Lo 1
qu - qu -1 exp v _1 ’
we get
log M (w) zw: e <§:1+T
g u:lqu_l_uzll/ ,
where

oo

3 1
T < = —_—.
| |<2 Zlu(q"/Q—l)

v=

It follows that

log M (w) = logw + O(1);

hence,
M(w) = O(w).
Similarly, one can show that M*(w) = Q(1/w). O
Corollary 4.2. If
2 3 —w/2
$(w, D) = (29+3)q " <1,

q1/2 -1

there exist positive constants C, C* such that
_ (9/2)=(w+1/4) - T (2. D
=94 (w, D)
< C V@ /G g/,

Proof. Note that 0 < y < a/b < 1 implies
2b—a
1< 270
C TS —a?

Thus, if ¢ (w, D) < 1, there exist a,b > 0 such that
¥(w, D) < a/b < 1. From this we derive that

2b—a
D) 1< ——— D).
e <2@_@ww,>
Also, e¥®P) —1 > ¢)(w, D). The result then follows
from (4-4), (4-8), and Theorem 4.1. O

4B. Computation of R

Let y be any nonnegative integer and define the prin-
cipal ideal a(y) by a(y) = ax, where

6(ar, 1) <y, 0(dky1,01) >y

Since 6(a;41,a;) > 1, we see that a(y) is well de-
fined. We also note that a(y) can be computed in
O(deg D logy) baby steps and giant steps. This can
be easily: let

y =2y + 257y + - 4 by,

where by =1 and b; = 0 or 1 for 1 < ¢ < k, be the
binary representation of y. That is, if sg = 1 and
Spa1 = 28,+b, 41 forn=20,1,2,...k+1, thens, =y
and k = [log,y]. For a given n, let a,, = a(s,) and
let a, = a,, * a,,; then

5((1” al) = 26(am7 al) + f,

where —degD +2 < f < 0. Also, §(a,,41,a,,) <
%deg D; thus,

2s, —2deg D + 2 < d(a,,a;) < 2s,.

It follows that, given a(s,) and d(a(s,), a1), we need
only perform one giant step and at most 2deg D
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baby steps, starting at a,, in order to find é(a;, a;)
and a; (= a(s,+1)) such that

d(ag, a1) <285, +bog1 = Spg1,  0(gg1,01) > Sy

We will also require the following simple observa-
tion, which we state here as a lemma.

Lemmad3. Let T, F € Z and 0 <T < F. If a and b
are reduced principal ideals such that

5(a,a,) = 8(b, 1) + T (mod R),

then a = b;, where by = b. Furthermore, 1 <i<mn
for any n such that 6(b,,b,) > F.

Proof. Since a and b are reduced and principal, we
know by Theorem 3.5 and some of our later obser-
vations that we may assume a = a,, b = a, with
1 < r,s < m, where m is the quasi period of the
continued fraction expansion of o = VD. Ifr < s,
replace r by r +m > s. We now have r > s and

d(ar,a1) =d(as,a1) + 7 < 6(as,ay) + F
S 6(115, al) + 6(an+5717 as)
= 6(an+s—17 al)-

It follows that r < s+n—1. If we put r = s+i—1,
then ¢ > 1 and @ < n; also, a, = b;. O

First note that for degD < 6, i.e. ¢ =1 or 2, we
obtain a better approximation of A by making use of
(3-13). In this case, the approximation of h is given
immediately without further computations. Also,
it will turn out for g > 3 that the optimal choice
for wis w = (29 — 1)/5. For the approximation
of h, we need w € N, and therefore set there w =
rnd((n — 3)/5), where n = deg D = 2g + 2. Then
w = |n/5] —1,if n =0 (mod 10), and w = |n/5],
otherwise. We also assume that ¢ is sufficiently large
that ¢ (w, D) < 1.

Algorithm 4.4 (Regulator2).

Input: k = F, and D € k[z] monic, squarefree of even
degree.
Output: R, the regulator of k(z)(v/D).

1. If g =1, set s < |¢*%]; G+« [¢*?];
E<+ q+1; L+ [vV2¢'4.
If g =2, set s < [¢*3]; G <« |¢*3];
E+ @®+6q+1; L+ [2¢"4/q+1].
If g >3, set s < [¢®9 V3], G+ [qH9D/5];
w < rnd((2g — 1)/5); compute E and L by
(4-4), (4-6), (4-7), and (4-8).

2. Use Algorithm 3.8 to test whether R < G. If
R < @, return R.

3. We have R > G and |h — E| < L?. Compute a
multiple hg = h*R of R such that hy < E + L?,
as follows:

a. Determine ay = a(E), 0y, a; = a(L), and Js.

b. Let b; < a; and proceed in baby steps from b;
to produce the ideals by, ba, bs, ..., b, with dis-
tance 01,05, ...,0;, where 0, < 6(b;, by), until
;> 6,4 3 deg D. Put 8 = {by,bs,bs,...,b,}.

c. Set ¢; < a, and 67 < J,. For j > 2 define ¢;
and 07 recursively by

(Cj,fj) <~ CL*Cjq, 5;-‘<—5(cj,a1),

proceeding until ¢; € 8 or ¢; € 8 for some j.
d. If ¢; = b; then hg < 67 — 0(b;, a1).
If ¢; = b; then hg <= 67 +3(b;, a1) —deg N (b;).
4. We have hy = h*R, where hy < E + L?. Put
B« (E+ L?)/G and h* + 1. For each rational
prime divisor 7 of hy such that r < B, do:
a. Compute a(hy/r?) for f = 1,2,... until find-
ing the least 3 such that | N (a(ho/r?))| # 1.
b. Set h* < h*r’='; B« B/rf=1.
5. Set R < hy/h* and return R.

In step 3 we have |h — E| < L? by (3-13) and (4-9).
If §(a,,a;) = h = W' R, it is likely that a, will tend
to have distance from a; which is close to E rather
than farther away. In the case of quadratic num-
ber fields this was observed by Nield and Shanks
[1974]. Thus, it is most efficient to start searching
for a, by examining those ideals which are closest to
E and then moving farther away in each direction.
That this sort of search can be easily conducted is
demonstrated by the following theorem.

Theorem 4.5. If 67 > L? + deg D, then ¢; or ¢; € 8
for some j such that 1 < j < mn.

Proof. We consider two cases, depending on whether
or not h > d(ax,a;) — deg N(a;). Since both cases
have similar proofs, we will provide a proof for the
case when h > §(ay, a;) — deg N(ag) only. We will
make use of the notation established above.

Since §(ag, ax_1) < 3 deg D, we have

—degN(ak.) S(Sm—(skgh'R—E—i—%degD
<L2+%degD.
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Also, by (3-10) and Remark 3.6

O =t R — 6(ag, a1) + deg N(ay)
for some t; € 7Z; thus,

0 < 6,40, —t1R < L* + deg D.

Let F =4, + 0, — t; R and there exists 7 < mn such
that 67 ;, < F' < ¢5; hence, if s = 07 — F, we have
0 < s <d;. Since

op+ 5 = 67 (mod R),
we must have ¢; € § by Lemma 4.3. 0

Notice that we must find some ¢; or ¢; € § by per-
forming only O(L) giant steps and O(L) baby steps.
Furthermore, if ¢; = b;, then R |07 —d(b;, a1) and if
¢; = b;, then R[67+6(b;,a,) —deg N(b;). Thus, this
theorem provides us with an algorithm which finds
an integral multiple of R in O(L) polynomial opera-
tions. As j here increases we are searching the region
bounded by E — L? and E + L? by starting near E
and moving farther and farther from F in both di-
rections in order to find h* R such that h* R < E+L>.
In step 4 of Algorithm 4.4, we compute h*. We
first note that h* < (E 4+ L?)/R < B. Thus, if r
is a rational prime divisor of A*, then r must be
a divisor of A*R and r < B. Also, if r°=' || A,
then N(a(h*R/r?)) # 1, and N(a(h*R/r")) =1 for
1 < i < B —1. The method in step 4 certainly
determines h* and then R = h*R/h".

Now we discuss the correct choice of w for g > 3.
If we always assume that n is sufficiently small com-
pared to ¢, we obtain from Theorem 4.1, Corollary
4.2 and (4-4) that E(w,D) = O(¢?), ¢¥(w,D) =
O(¢t* V72), Lw,D) = O(qa/» /1), and
L(w, D) = Q(ql9/Y~(w+1/4) Because there are only
O(g™) primes P such that |P| < ¢“ and because
the evaluation of the symbol [%] can be done in
O(deg D + log q) operations, we see that the evalua-
tion of E = E(w, D) can be done in O(¢") polyno-
mial operations. We then let

G := E(w,D)/\/q L(w,D) = O(q®¥/9+w=3)/8),

We thus obtain B = (E(w,D) + L(w, D)?*)/G =
O(q9/9=(@=3)/8) " From this we derive that the op-
timal choice for w is w = (29 — 1) /5, and Algorithm
4.4 determines R unconditionally in

0(q®*?) = O(|D|'")

polynomial operations. In particular, in the case
g =3 (mod 5), Algorithm 4.4 performs O(q(?9~1/5)
polynomial operations. For instance, if ¢ = 3, Al-
gorithm 4.4 determines R in O(g) polynomial op-
erations. In the cases ¢ = 1 or 2, we derive faster
methods, since the approximation of h is given di-
rectly by (3-13). By the same arguments as above,
we can find R unconditionally in O(q'/*) or O(g**)
polynomial operations if g = 1 or 2, respectively.

The methods of Buchmann and Williams [1989]
can be employed to provide an algorithm which will
find i’ (given a divisor A of A') in O(q%? /(Rh)?)
polynomial operations. Also, if A’ < ¢°, then we can
compute h in O(¢**/(h)?) polynomial operations;
thus, if, as is frequently the case, h’' is small, we
can compute h' quickly. We do this by putting H =
W /h, and H =Ne(E'(w, D)/(hR)), where E'(w, D)
is given by (4-6). Here, we make use of ¢(w, D)
as defined in (4-4), or any other upper bound on
|B(w, D)|. If we put

then H = H when w is large enough that

H+1
log =
H+ F

> ¢(w, D).

5. COMPUTATIONS

5A. General Features

Our computations were run on a Sun SPARC Ul-
tra 1/140 under Solaris 2.5. We made use of the
computer algebra system SIMATH [Zimmer et al.
1997], written in C and developed by the research
group of Prof. H. G. Zimmer at the Universitiat des
Saarlandes in Saarbriicken, Germany. All our com-
putations were done over prime fields F,,, i.e., g =p
prime, and p < 230 — 1. The discriminants D were
selected as follows: For an even number n and a
prime p we randomly constructed a monic, square-
free polynomial D of degree n in F,[z]. For small
regulators (R < 10°), Algorithm 3.8 is completely
sufficient. We were more interested in what happens
if the regulator becomes large. When will Algorithm
4.4 be faster? And, what will be its limit of utility?
In view of the condition ¢ (w, D) < 1 and the lim-
its for the approximation (see below), we restricted
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our attention for p and n = deg D to the range in
Table 1.

P n D n D n
3 40-50 11 10-34 41-113  4-18
5 20-44 | 13,17 4-28 127-1409 4-14
7 16-38 | 19-37 4-24 1423230 4-8

TABLE 1. Computation range

Moreover, we generally bounded the number of
baby steps in Algorithm 3.8 by 100000 because of
space restrictions, since, for each computed ideal,
one has to store 2 polynomials of degree less than or
equal g, and one integer § which represents the dis-
tance of the stored ideal. For the baby step—giant
step part of Algorithm 4.4 we limited the number of
baby steps to 20000, when p?¢ < 10'2. In general, the
maximal number of baby steps was set to 100000
except for g=1 or 2. When g=1, 2, we limited
the number of baby steps to 400000 and 300000, re-
spectively. Algorithm 4.4 works best in those cases
where the genus is small. If, in addition, p is large,
the approximation is more accurate, since then, by
(4-4), ¥(w, D) is small. The crossover, where Algo-
rithm 4.4 becomes more efficient than the optimized
baby step—giant step algorithm, occurs pretty early.
Indeed, we discovered that Algorithm 4.4 should be
used as soon as R > 108.

To get an accurate approximation, however, we
restricted ourselves to the case ¥(w, D) < 1. This
condition is true for p = 3 and w > 8§, for p =5 and
w >4, forp="T7and w > 3, for p=11 and w > 2,
for p > 13 and w > 1.

5B. Approximation Details
To compute the approximation
E(w,D) = rmd(E'(w, D))

of h, we used the formula

w

[[F(. D),

q_lu:1

gott

E'(w,D) =

where, for 1 <v < a,

v v Sv v ty
q q q
F(v,D) = =
0= 11 ¢’ —x(P) <q”—1> <Q”+1>’

|[Pl=q"

and s,, t,, denote the sum over all monic prime poly-
nomials of degree v with x(P) =1 and x(P) = —1,

respectively. For each v we first generated all monic,
prime polynomials P of degree v and then computed
x(P) = [%]. Finally, two binary exponentiations
yield F'(v, D). Note that the generation of all monic,
prime polynomials of a given degree could be pre-
computed. But, since the time for this step is very
small compared to the evaluation of the [%] , We in-
cluded the generation in the algorithm and thus in
the total running time.

Note that each monic polynomial of degree 1 is
prime. For the generation of all monic, prime poly-
nomials of a degree v > 2, we used a sieving proce-
dure analogous to the sieve of Eratosthenes. We in-
stalled an array LP of dimension v with p*~*(p—1)
entries. Each dimension [ of the array, 1 < [ <
v, represents the possible coefficients for x'~! over
F,. First, we put LP[i][is]...[i,] < 0 for 0 <
I1,02,---,0,1 < p—land 1 <1, < p—1. We
then set LP[iy][iz]...[i,] to 1, if its corresponding
polynomial ¥ + i12" ! + i 2 + - + 0,12 + 1,
has a factor of degree less than v. The remaining
entries of the array with value 0 then represent the
monic, prime polynomials of degree v. Of course,
this method caused restrictions in the choice of p
and n because of space limitations (see Table 1).

Most of the time needed by Algorithm 4.4 is spent
on the search for a multiple of the regulator in the
approximated interval and the test of whether R
is less than the bound G. In comparison to these
steps, the approximation, most of whose time is
spent on the evaluation of the Artin symbols, takes
much less time. For instance, if ¢ = 1000003 and
D = 28 + 1717427 + 421525 + 774542° + 974162* +
688832 +5196822 4592492+ 98911, the approxima-
tion took 13.25 sec, whereas the total running time
was 4 min 23.42 sec, and the search for a multiple
was performed in 2 min 4.88 sec. For ¢ = 2999999
and D = 28 4+ 171488327 4 292516625 + 2569382° +
2705750z + 72226823 + 12610692% + 2139572z +
1286480, the approximation took 8 min 10.66 sec,
the search for a multiple 9 h 7 min 3.46 sec, and the
total running time was 9 h 24 min 15.58 sec.

5C. Examples

We calculated the regulator R of F,(x)(v/D) for rep-
resentative examples. There are two weighted pa-
rameters, ¢ and D; increasing one of them, the de-
gree of D or g, causes the value of h (and frequently



Stein and Williams: Some Methods for Evaluating the Regulator of a Real Quadratic Function Field 131

D D R h Ty Ty
.’)328 + 31,27 + 2x26 + 23325 + 31.22 + 1‘21 + CCZO + x18 + I16 +
5 4x®® + oM+ ot 42212 4 201 4 4010 + 2% + 2% + 227+ 1711004395 1 1im 11.9s
20° + 3zt + 2% + 22 + 3
.’1718 + 51.17 + 8$16 + 6.’1714 + 3313 + 9$12 + 5.’1711 + 33710 + 21}9 +
13 007 4 26 4 1005 + 112° 4 5a® + 702 + 4 + 4 905254803 1  28.8s  6.3s
212 4+ 9211 4 9210 4 749 4+ 628 + 827 + 1228 + 1525 + 4t +
17 1323 4 22 + 132 + 1 533867 2 0.3s 0.3s
841021 + 15210 + 13215 + 1324 + 1323 + 1122+ 162° + 1
17 1528 4 727 + 1125 + 925 + 2% + 923 + 1622 + 3z 4 2 10073466875 1 2;m  13.2s
37 2842727 4 2825 + 2525 + 112* + 1023 + 1622 + 24z + 32 43190 1 0.06s 0.12s
37 2194342% 42428+ 827 +925 43028 + 1624+ 73+ 922 4+-82x+21 999683 2 0.48s 0.40s
216 +921% 42021 + 23213 + 15212 + 342 + 10210 4 142° + 3
37 28 4+ 3227 + 102% + 2125 + 262* + 3322 + 2122 + 30z + 10 59424264612 2 131 m 38
24 4+ 37213 + 22212 + 3121 + 28210 + 462° + 5328 + 727 +
67 6628 + 1305 4 4724 + 192° + 1322 + 235 1+ 41 120619212829 1 20m  20s
212 + 892 + 36210 + 322° + 202 + 927 + 9125 + 792° + 3
13 1904 110323 + 10222 + 1002 + 79 4260652533 4 1gm  12s
991 3458727 +81625+532°+6552* +593x3 +145x% +845x+141 961388306 1 15.8s 1.5s
28 + 91227 + 19525 + 2972% + 99224 + 53623 + 18722 +
1409 12672 + 1194 2778312114 1 25.6s 28
28 +419127 +35162° + 26325 + 461124 + 205323 + 447022 + 3
4999 3811z + 480 62540548337 2 49 m 85s
10009 % + 59002° + 7039z% + 706623 + 207722 + 16952 + 847 17016964 ©6 10.7s 0.5s
10000019  z* + 4550373x2 + 392792622 + 2605091x + 5654317 10000600 1 13.2s 0.2s
100000007  z* + 4862950523 + 4874428122 + 80197137« + 17182861 50001969 2 14.1s 0.3s
1000000007  z* 45572893563 + 7225273802 + 352336240z + 641315936 1000041901 1 22.4s 0.5s

TABLE 2. Comparison of running times for regulator computations, using SIMATH implementations on a Sun
SPARC Ultra 1/140 running Solaris 2.5. T3 is the time needed with Algorithm 3.8, the baby step —giant step

method, and 75 the time needed for determining the regulator with Algorithm 4.4, by approximating h.

the regulator) to increase. Table 2 compares the
running times of Algorithm 3.8 and Algorithm 4.4.
Note that & is just the product of A’ and R. The
computation of the ideal class number does not need
additional time if the methods in the end of Section
4B apply. In fact, the time needed to compute h’
is equivalent to the time needed to compute the ap-
proximation, which, as mentioned above, is consid-
erably less than the total running time of the regu-
lator algorithm. In all cases h = 1 was sufficient.

Table 3 lists examples with large regulators, which
can not be computed in a reasonable amount of time
by the baby step —giant step algorithm.
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P D R B Ty
$50 + I48 +x46 + $44 + I42 +x41 + 1,‘40 + 1.38 +x36 + I34 +
3 232 4 30 42427 4 2425 4 023 4 22 4 20 4 18 4 1T 4 823335273345 1 10% m
2$15+$14+$12+$11+2I9+$8+$6+$4+$3+$2+1
228 4+ 3225 4+ 5224 + 10222 + 3222 + 9221 + 12220 + 219 +
13 1028 + 4217 + 7216 4+ 2415 + 2414 4 413 4 3512 4 12410 4 167061012368298 2 11h
5% + 228 + 627 + 2% + 225 + 102* + 23 + 1122 + 10z + 5
220 4 2219 + 8218 + 12217 4 5216 4 15215 4 3214 44213 +
17 1622 + 1321 + 4210 + 529 + 728 + 927 + 626 + 42° + 164483425957 1 1% m
132% + 223 + 922 + 7
22 4 3122 + 1722 + 3321 + 33218 4+ 27217 + 25216 +
37 4215 4+16214 4+ 35213 + 9212 + 1921 + 16210 4 229 + 2628 + 143889561838517 32 21h
327 + 1525 + 62° + 2% + 223 + 822 + Tz + 2
2164928215 +83,14 4102413 +922412 + 71211 + 62104+ 982° +
113 10428 + 1227 +662° + 1425 + 1002* + 7223 + 72% + 762 +9 222317710463877 1 18m
z'2 4+ 4582 4+ 978210 4 3392° 4+ 37228 + 87427 + 80625 + 1
1409 5112°% 4+ 732% + 138823 + 85222 + 13372 + 869 664973740977494 8 24zm
28 + 63702127 + 11261262 + 150355425 + 13452642 + 3
2999999 294692423 4 182223422 + 1118142x + 203383 2701685961518879123 10 33h
8 + 171488327 + 292516625 + 256938z° + 2705750x* + 1
2999999 2999682 + 12610692 + 21395722 + 1286480 P001031984873848717 3 93h
8 + 19518017 + 37080922% + 3700497x° + 33188z* + L
4000037 326422622 4+ 175429422 + 3133810x + 2240125 32003976721016837378 2 173 h
2% 4+ 49738125 + 8594888x* + 1683380z + 84405892 + 1
10000019 03784z 4 2625724 24992015081505 4 3im
28 +635072302° +4010052* + 8890724123 +8711302222 + 1
100000007 195435885 -+ 67407187 10000127721908079 1 164 m
2% 4+ 2059123712° + 859304427x* + 77543919z + 1
1073741741 60330714422 + 131571390z -+ 807786564 288230461703812884 4  36im

TABLE 3. Regulator computations with Algorithm 4.4 for large examples. 75 is the running time, as in Table 2.

Winnipeg. This work was completed during a post-
doctoral stay of the first author at the Department
of Computer Science.
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