
A Methodology for the Numerical Computation of

Normal Forms, Centre Manifolds and First Integrals of

Hamiltonian Systems

�Angel Jorba

Departament de Matem�atica Aplicada i An�alisi

Universitat de Barcelona

Gran Via 585, 08007 Barcelona (Spain)

E-mail: angel@maia.ub.es

December 28th, 1997

Abstract

This paper deals with the e�ective computation of normal forms, centre mani-

folds and �rst integrals in Hamiltonian mechanics. These kind of calculations are

very useful since they allow, for instance, to give explicit estimates on the di�u-

sion time or to compute invariant tori. The approach presented here is based on

using algebraic manipulation for the formal series but taking numerical coe�cients

for them. This, jointly with a very e�cient implementation of the software, allows

big savings in both memory and execution time of the algorithms if we compare

with the use of commercial algebraic manipulators. The algorithms are presented

jointly with their C/C++ implementations, and they are applied to some concrete

examples coming from celestial mechanics.

Keywords: normal forms, centre manifolds, �rst integrals, algebraic manipulators, in-
variant tori.

1



Contents

1 Introduction 4

1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1 Dynamics near an elliptic equilibrium point . . . . . . . . . . . . . 5
1.1.2 Dynamics in a centre manifold . . . . . . . . . . . . . . . . . . . . . 6

1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Previous computer packages . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Programming considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Basic Tools 9

2.1 Storing and retrieving monomials . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Taking advantage of symmetries . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Di�erent number of variables . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Handling Homogeneous Polynomials 13

3.1 Sums and products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Poisson bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 ASCII �les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Binary �les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Examples 16

4.1 Example I: Normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.1 Complexi�cation and power expansion . . . . . . . . . . . . . . . . 17
4.1.2 The normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 Back to real coordinates . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.4 Main program and results . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Example II: First integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Example III: Centre manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Changes of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.1 The inverse change . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Reali�cation of power expansions . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.1 The realifying table . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.2 The main algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5.3 The �nal output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.4 A few remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 The linear part of the change . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Tests of the software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.8 Invariant tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2



5 E�ciency Considerations 32

5.1 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.1 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.2 Centre manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.3 First integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.4 Changes of variables . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Error Control 38

6.1 Interval arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 An example with interval arithmetic . . . . . . . . . . . . . . . . . . . . . 40

7 Extensions 41

8 Acknowledgements 44

A Basics on Hamiltonian Mechanics 44

A.1 Basic de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.3 Canonical transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.4 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.4.1 On the convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.5.1 The Dirichlet theorem . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.5.2 KAM and Nekhoroshev theory . . . . . . . . . . . . . . . . . . . . . 52

A.6 Centre manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.7 First integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B Linear normal form for the equilibrium points of the RTBP 55

B.1 The equilateral points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.2 The collinear points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

References 63

3



1 Introduction

The importance of invariant objects in understanding the phase space of a dynamical
system is well-known since Poincar�e. Invariant objects are not only interesting by them-
selves but also because they organize the ow nearby. Despite its importance, there are
not many numerical methods to compute such objects. The aim of this paper is to explain
some techniques that can help to perform some of these computations, in the particular
case in which the system is Hamiltonian. As we will see, many topics can be extended
to general (analytic) systems and also to discrete dynamical systems. Among the several
possible approaches, we have chosen methods based on the computation of (truncated)
normal forms and (approximated) �rst integrals. Truncated normal forms are very useful
since they provide, under suitable hypotheses, integrable approximations to the dynamics.
The integrable character allows to explicitly give all the invariant objects (like tori) in
the phase space. If the normal form approximates the true dynamics, then the invariant
objects of the initial system are also approximated accordingly (for examples of this, see
[29], [50], [32]). Approximated �rst integrals are quantities that are almost preserved
by the ow of the system. This means that their surface levels are almost invariant by
the ow. This property can be used to obtain information about some aspects of the
dynamics. For instance, if one is able to estimate the corresponding remainders, then it
is not di�cult to bound the di�usion velocity around elliptic �xed points (for a numerical
example, see [11]).

One of the main problems faced when considering these kind of computations is how
\to store" the object in the computer. The easiest case is the computation of a single
trajectory, that can be stored as a sequence of points in the phase space. Note that,
when the invariant object has bigger dimension, it can be very di�cult (usually, it is
impossible) to store it by simply storing a net of points. The approach taken here is to
use some kind of series expansion (like a power or Fourier expansions, or a combination
of both) to represent the object. The advantage is that in many cases only \a few" terms
of these series are needed to get a good accuracy and that they can be handled very
easily. As disadvantages we note that sometimes they have convergence problems making
impossible to represent the object in this way. Due to the particularities of the problems
considered here we will only focus on the use of power expansions. You can �nd examples
with trigonometric expansions in [27] and [23]. For a general discussion, see [44] and [49].

Sometimes, when only a qualitative description of the dynamics is needed, it is enough
to use a low order computation (this is the typical situation encountered, for instance,
in the analysis of a bifurcation). This is not the case considered here. The methodology
presented in this paper is directed to produce high order computations, with a high degree
of accuracy, ready for use in many practical applications. This necessity usually comes
from the applications of the dynamical systems theory to real problems, like the design
and analysis of trajectories for some spacecrafts (see [21], [22], [12], [15], [16], [17], [18],
[19], [20] and [47]). We also want to mention that, sometimes in academical problems,
one needs to perform very accurate computations. In this direction we refer, as examples,
to [45] and [48], where the computation (by means of formal expansions) of exponentially

4



small quantities is considered.
Hence, the �rst point addressed is how to build an e�cient algebraic manipulator (in

a quite e�cient language like C or C++) in order to handle these expansions in a very
fast way, and using as little memory as possible. Then, as an application, we will use
these routines to study some aspects of the Restricted Three Body Problem (RTBP).
More concretely, we will show how to use these techniques to describe the dynamics near
the �ve equilibrium points of the RTBP. The paper also discusses related topics like error
analysis (including the use of interval arithmetic), e�ciency (both from the memory and
speed points of view) and some possible extensions (more variables, time dependence,
etc.) to these routines. The source code for (almost) all the algorithms explained here
can be retrieved from the web server http://www.maia.ub.es/dsg, in the \preprints and
publications" section.

In this work we have made extensive use of the particularities of Hamiltonian systems,
so many of the algorithms explained here can not be used outside of this environment.
However, the methodology we use to build algebraic manipulators is very general and can
be applied in a lot of di�erent contexts. To facilitate the reading, in Appendix A we have
included a summary of the main concepts and properties of Hamiltonian systems.

In the next sections we summarize a few problems to justify the necessity of this
kind of computations. Of course, there are many other applications of these tools (both
practical and theoretical) beyond the ones presented here. We have selected a few simple
ones to have concrete problems to work with, and to be able to give concrete results. We
hope that the interested reader will not have problems in applying these ideas to similar
problems in other �elds.

In order to simplify the exposition, we restrict ourselves to analytic and autonomous
Hamiltonian systems with three degrees of freedom (3DOF), having a �xed point at the
origin. In Section 7 we will discuss possible extensions to more general contexts.

1.1 Examples

Now let us give a few problems where classical numerical methods (i.e., numerical inte-
grations of single trajectories) are not enough to give a good answer. They will be used as
examples along this paper. As it has been mentioned before, we assume some knowledge
of Hamiltonian mechanics.

1.1.1 Dynamics near an elliptic equilibrium point

Let us assume that we are interested in the dynamics near an elliptic equilibrium point
(that, for simplicity, we will locate at the origin) of a three degrees of freedom Hamiltonian
system. Note that, as the phase space is of dimension six, it is very di�cult to get a
\picture" of the dynamics using numerical integration of single trajectories.

Assume we are able to rewrite the initial Hamiltonian H as

H = H0 +H1; (1)

5



where H0 is an integrable Hamiltonian (so, in this case, the phase space is completely
foliated by invariant tori) and H1 is a non integrable one. Then, if H1 is small enough
near the point, the trajectories corresponding to H0 are close to the trajectories of H
(at least for moderate time spans). Hence, from the integrable character of H0 it is not
di�cult to obtain approximations for the invariant tori of H. The e�ect that H1 has on
the solutions of H0 is discussed in Appendix A. Essentially one has that, near the origin,
most of the tori of H0 are not destroyed by H1 but only slightly deformed. However, it
is generally accepted that H1 can create some trajectories that escape from any small
vicinity of the origin, making this point unstable. This phenomenon is usually called
di�usion, and it was �rst noticed by V.I. Arnol'd in [3].

Let us assume that we are also interested in estimates of the di�usion time near the
origin. Note that computational e�ort needed to do this by single numerical integration
is too big that it can not be considered a feasible option: the big number of trajectories
one has to consider plus the huge time interval of integration (this also introduces the
problem of accumulation of rounding errors) for each one makes this calculation impossible
for present computers. An alternative procedure can be the following: let us assume that
we are able to rewrite the initial HamiltonianH as in (1). AsH0 is integrable, the di�usion
present in H must come from H1. Hence, one can easily derive bounds for the di�usion
time in terms of the size of H1. Of course, in order to produce realistic di�usion times one
needs to have H1 as small as it can be. A standard way of producing the splitting (1) is
by means of a normal form calculation: H0 is the normal form and H1 the corresponding
remainder (see [14] and also [43] and [28]).

There are alternative ways of estimating the di�usion time near elliptic equilibrium
points. For instance, one can construct approximate �rst integrals near the point and
estimate the \drift" of these integrals. Of course, although one can use as many �rst
integrals as degrees of freedom, it is enough to use a single positive-de�nite integral (near
the point, its level surfaces split the phase space in two connected components so they
act as a barrier to the di�usion).

We want to note that although from the theoretical point of view both approaches are
equivalent (the �rst integrals we compute are in fact the action variables of the normal
form), from the computational point of view they behave di�erently. We will see this in
detail later on.

1.1.2 Dynamics in a centre manifold

Let us consider a 3DOF Hamiltonian system with an equilibrium point at the origin.
Assume that the linear ow around this point is of the type centre�centre�saddle.

We are interested in �nding a description of the dynamics in a neighbourhood (as big
as possible) of the origin. One possibility is to perform the so-called reduction to the
centre manifold. That is, to perform changes of variables in order to uncouple (up to
some �nite order) the hyperbolic behaviour from the centre one (one can look at this as
a partial normal form). Hence, the restriction of the Hamiltonian to this (approximate)
centre manifold will be a 2DOF Hamiltonian system. So, selecting an energy level H = h

6



and doing a suitable Poincar�e section we can produce a collection of 2-D plots that can
give a good description of the dynamics. This was �rst used in [15] (see also [26]).

1.2 Methodology

Here we will present the methodology we use to deal with those computations, based
on the use of algebraic manipulators. There are several possible schemes, depending on
the kind of calculation we are interested in. For instance, if the procedure only needs
to substitute trigonometric series in the nonlinear terms of the equations (like in the
Lindstedt-Poincar�e method, see [15], [23] and [26]), one of the best choices is to look
for a recurrent expression of those nonlinear terms (the substitution is simply done by
inserting the series into the recurrence). In this paper, we will apply schemes that work
with the power expansion of the Hamiltonian (when the system is not Hamiltonian, one
must work with the di�erential equations {or with the equations of the map if the system
is discrete{ but, of course, this increases the computational e�ort). So a general scheme
for the problems considered here is the following:

1. Power expansion of the Hamiltonian around the origin.

2. Complexi�cation of the Hamiltonian. This is not a necessary step but, as we will
see, it allows to simplify further computations.

3. Changes of variables (usually by means of Poisson brackets), up to some �nite order.

4. Reali�cation of the �nal Hamiltonian. Again, this is not a necessary step. It is done
only to reduce the size of the resulting series.

5. Computation of the change of variables that goes from the initial Hamiltonian to
the �nal one.

So, one needs computer routines for all these steps. A natural way of handling the power
expansions is as a sequence of homogeneous polynomials:

H =
X
k�2

Hk;

where Hk is an homogeneous polynomial of degree k. So one of the most important
problems will be to deal with homogeneous polynomials of several variables. As we will
see, the bottleneck (according to speed) of the methods exposed here is given by the speed
we can manage homogeneous polynomials.

1.3 Previous computer packages

There are several computer packages that, in principle, are able to deal with the com-
putations mentioned here. Among the commercial software may be the most well-known
packages are Maple and Mathematica. They have the advantage of being very general

7



packages (they can deal with much more problems than the ones exposed here) but, on the
other hand, they are not very e�cient (both in time and memory) in each concrete case.
So if one is interested in low order computations (sometimes this is enough in academic
problems) they can be considered as a valid option. But if one wants to reach high orders,
commercial packages are not competitive at all. In this case one has to go to software
very adapted to the particularities of the problem to take advantage of them. This is the
line we have followed in this work. In fact, it is possible to write even faster routines (see
Section 5) but then the code is, in our opinion, more obscure. In some cases (especially
when you take into account the developping {and debugging{ time), the gain in speed is
not big enough to justify the loss of clarity. Anyway, we hope the reader interested in this
point will not have problems in modifying the software.

There are some other packages similar to this one in the literature. In fact, there is a
long tradition in the Celestial Mechanics �eld about building algebraic manipulators. We
cite, among others, [13], [24], [7], [6], [40], [8] and [34] (see also references therein). These
works are directed to concrete problems of Celestial Mechanics and are very e�cient when
dealing with them.

1.4 Programming considerations

The programming language used here is ANSI C, except when we have had to use complex
numbers. In this case we have used the capability of C++ to overload the arithmetic
operators with the complex operations. It is not strictly necessary to know C or C++
to read this paper but, to see the details of the implementation of the algorithms, it is
necessary to look at the source code. Details about C and C++ programming can be
found in the standard references [33] and [51].

If the reader does not have (and does not want to have) a C++ compiler, it is not
di�cult (but tedious) to rewrite these operations in order to have an ANSI C source code.
Another interesting possiblity is to use the SCC package (see [41]). This is, essentially, a
preprocessor that allows to de�ne new operations and overload with them the standard
arithmetic operators (in a similar way that C++ does). SCC translates this code into C,
to be processed by a standard C compiler.

It is not di�cult to use these algorithms in other languages. In fact, the �rst version
of these routines was written in Fortran 77. The main advantage (in our opinion) that
C gives in this problems is the dynamic allocation of memory and the use of structures.
In Fortran 77 one has to set some parameters before compiling in order to declare big
enough arrays, to have room for the expansions as well as working space.

The paper is structured as follows: Sections 2 and 3 give the details on the alge-
braic manipulators, Section 4 is devoted to some applications of this software to concrete
problems, Section 5 discuss the e�ciency of these methods as well as some improvements
to them. Section 6 contains some remarks about the propagation of the rounding er-
rors. Finally, Section 7 points out some extensions to these methods to be used in more
complex problems (for instance, when the Hamiltonian depends on time in a periodic or
quasiperiodic way). We have added a couple of Appendices in order to make the paper self

8



contained: Appendix A contains a short description of the properties of Hamiltonian sys-
tems used here and Appendix B contains a basic description of the Restricted Three Body
Problem, as well as some properties that are used in the applications. We have included
these appendices because we are not aware of similar summaries in the literature.

2 Basic Tools

In this section we will describe the basic algorithms and routines used to handle homoge-
neous polynomials. This is the most important part of the package. In what follows, to
simplify the notation, we will assume that the set of the natural numbers, N , contains 0.

2.1 Storing and retrieving monomials

Let us assume that we want to store an homogeneous polynomial Pn of degree n, with 6
variables (x0; : : : ; x5),

Pn =
X
k2N6

jkj=n

pkx
k;

where we use the notation xk � xk00 : : : xk55 and jkj = k0 + � � � + k5. For the moment we
assume that all the coe�cients pk are di�erent from zero. Let us de�ne  6(n) = #fk 2
N
6 such that jkj = ng (that is,  6(n) denotes the number of monomials of Pn).
To store the polynomial we use an array of  6(n) components (the kind of array

depends on the kind of coe�cients of the polynomial), and we use the position (index)
of a coe�cient inside the vector to know the monomial it corresponds to. To this end we
will construct a function (let us call it llex6) that, given a place inside the array (that
is, an integer between 0 and  6(n)� 1) it returns the multiindex that corresponds to this
coe�cient. Of course we need the inverse function (we call it exll6) to know where to
store a given monomial.

Before going into the details of these functions, we want to stress that they are the
most important ones: if they are e�cient, the package will be e�cient. This will be
discussed in Section 5.2.

Let us go back to the software. In order to have a fast implementation, we use
an integer array (we assume here that every integer is four bytes long) to store some
information to be used by function llex6. This array has  6(n) components and each
one contains (encoded) the multiindex of the corresponding coe�cient. We use this array
in the obvious way: each time we need to know the exponent of the monomial whose
coe�cient is stored in the place j of the homogeneous polynomial, we get it from the
component j of this array.

The way of encoding the multiindex k is the following: as we know the degree we
are working with, one of the exponents (say k0) is redundant, so we only need to store
k1; : : : ; k5. This has to be stored inside a 32 bits number, so we can use 6 bits for each
index, leaving 2 unused. This introduces the restriction kj < 64. As we want to handle

9



homogeneous polynomials the maximum degree allowed is 63, more than enough for the
applications done here.

2.2 The routines

Here we go into the details of the basic routines of the manipulator. Their source code is
stored in the �le mp6.c. As these routines are the most important ones, we will discuss
them more carefully. For portability reasons, in the heading of several �les we rede�ne
the standard type int as integer. This is because the �rst version of these routines was
developed in an old 286 machine (where ints were 2 bytes long) and it was run on a HP
workstation (ints were 4 bytes long). So, if we work with the type integer we can control
the kind of integers used (simply by rede�nig this type). Of course, this is not relevant
for present (1997) computers.

Headings of the �le mp6.c

Here we have placed the declarations of three variables that must be accessible by all the
routines in this �le. They are named nor, clmo and psi, and are initialized by routine
imp6. Their meaning is explained in the next sections.

Routine imp6

This routine has to be called before using any other routine in the package, because it
allocates and initializes some internal arrays to store the encoded multiindices. The only
parameter of this routine is an integer (nr) that contains the maximum degree we want
to use. This value is stored in the variable nor.

Before continuing, let us de�ne the function  i(n) as

 i(n) = #fk 2 N i such that jkj = ng;

that can be easily evaluated by means of the recurrence

 i(n) =
nX

j=0

 i�1(j) =

 
n + i� 1

i� 1

!
: (2)

The routine starts doing a couple of checks to verify that we are calling it with a
suitable degree and that the integer type of the machine (or compiler) is long enough.

The �rst step is to allocate space to store the values of the function  i(j). At this
moment we only need to know  6 but we will also compute  2; : : : ;  5 (they will be needed
later on). To this end we allocate a rectangular matrix psi with the �rst index ranging
from 2 to 6 and the second one from 0 to nor. Then, the values  i(j) are computed (using
the recurrence given in (2)) and stored in the position (i; j) of the matrix psi.

Next step is to allocate space for the table clmo. The �rst dimension of this table
ranges from 0 to nor, and it refers to the degree of the homogeneous polynomials. If the
�rst index is i, the second index ranges from 0 to  6(i)�1 � psi[6][i]�1. The position

10



(i; j) of this array is the encoded version of the multiindex of the monomial number j
of a polynomial of degree i. Once this table has been allocated, we have to �ll it with
the information about the multiindices. First of all we de�ne an order inside the set of
multiindices of a given degree: Let k be a multiindex of degree n and let us de�ne k as
the integer number (in base n + 1) k5k4k3k2k1k0 (for instance, if k = (1; 2; 3; 4; 5; 6) then
k = 654321). Then, the order is given by

k(1) < k(2) , k(1) < k(2):

This is usually called reverse lexicographic order. Now, for a given degree i, we compute
all the multiindices according to this order and we store them in the table clmo: the �rst
one for degree i is (i,0,0,0,0,0), and all the others are generated by routine prxk6 (see
below). We store the components of each multiindex in the corresponding place of clmo,
using 6 bits for each component: this means that the coded version of the multiindex is
(note that we do not code k0 because, as we know the degree, it is redundant)

k1 + k2 � 26 + k3 � 212 + k4 � 218 + k5 � 224: (3)

This is the value we will store in clmo[i][j], where we have assumed that j stands for
the place of the multiindex (and the monomial) inside this order.

Finally, the routine returns the amount of memory (in Kbytes) used by these tables.
It is up to the calling routine to print this value.

Routine amp6

It frees the memory allocated by imp6. Of course, once it has been called the manipulator
can not be used until a new call to imp6 has been done.

Routine llex6

Given a place lloc and a degree no, it computes the multiindex corresponding to them.
The way it works is very straightforward because the multiindex is contained (encoded) in
clmo[no][lloc], and to decode it we only need to invert (3) using the modulus function.
An improvement for this routine consists in directly extracting the corresponding bits
from clmo[no][lloc].

Routine exll6

Given a multiindex k of degree no (this is redundant information but it is very useful to
avoid calling these routines in a wrong way), it returns the corresponding place. So, this
is the inverse of llex6. The implementation of this routine can be done in many ways.
Let us see the one we have used here. Let us denote by k = (k0; : : : ; k5) the multiindex
and let n be k0 + � � �+ k5. De�ne k

(5) as (k0; : : : ; k4) and let n5 = n� k5 be the degree of
k(5). Then, if we are able to compute

11



1. the number of multiindices (`0; : : : ; `5) of 6 variables with degree n such that 0 �
`5 < k5,

2. the place it corresponds to k(5) among the multiindices of 5 variables of degree n5,

then, the sum of these two quantitites is the place we are looking for. The �rst of these
numbers is  5(n5 + 1) + � � � +  5(n), and can be easily obtained from the table psi.
The second one is the same problem we want to solve, but with one dimension less, so
we can apply again the same procedure until we reach dimension 2 (this corresponds to
polynomials of two variables), where the solution of the problem becomes obvious. An
improvement for this routine is to use auxiliar tables to reduce these integer computations.

Routine ntph6

This routine returns the number of monomials of a given degree (this information is
contained in the array psi).

Routine prxk6

It is used to produce all the multiindices of a given order, according to the order we are
using. For more details, we refer to the source code.

2.3 Taking advantage of symmetries

It is quite common in physical examples to have some kind of symmetry in the Hamilto-
nian. For instance, in the examples used in this paper we have a symmetry with respect
to the variable z (see (4) and Appendix B). This implies that not all the possible mono-
mials of the power expansion of the Hamiltonian are really present. In the examples used
here we have that, if i is the exponent of z and j the exponent of pz, the only monomials
that appear in the expansion are the ones in which i+ j is even. Hence, taking this into
account it is possible to reduce the amount of memory used and the computing time by
an approximate factor of two.

In order to exploit the symmetry we have developped special versions of the routines
of Section 2.2. The source code is stored in the �les mp6s.c and mp6p.c.

File mp6s.c contains the same routines as mp6.c (but with an \s" at the end of the
name, to be able to use them in the same program if necessary), but assuming that the
only monomials present are the ones that satisfy that k4 + k5 is even. As they work in a
very similar way, we only mention the main di�erences:

imp6s Function  6(n) is not longer valid to compute the number of monomials, because
of the symmetry. The number of monomials for a given degree n is now given by

[n
2
]X

j=0

(2j + 1) 4(n� 2j);

where [n
2
] denotes the integer part of n=2.

12



exll6s To have a simple formula for the position corresponding to a given index, we
have changed the order used for the monomials: we �rst use the reverse lexicogra�c
order for the exponents (k4; k5) and, in second place, the reverse lexicographic order
for the exponents (k0; k1; k2; k3). This is usally called product reverse lexicographic
order. It allows to easily derive a closed formula for the position (see the source
code).

prxk6s It is changed in order to produce the exponents in the product reverse lexico-
graphic order de�ned above.

File mp6p.c contains the same routines as mp6s.c, but with a di�erent symmetry: here
it is assumed that all the monomials that are present satisfy that k4+k5 is odd (this kind
of symmetry will appear in some computations, see Section 4.4). The implementation is
almost identical to the one of mp6s.c, so we do not add further remarks.

In fact, as the examples considered in this paper have the above mentioned simmetry,
we do not make use of the routines in mp6.c. We have included them for the sake of
completeness, and because they are the most natural ones to start describing how these
kind of routines work.

Finally, let us note that if the symmetries are \too complex" to derive closed formulas
for the routines exll, one can always perform a binary search on the array clmo. In this
case, it is very convenient to use an order such that the integer values stored in clmo are
sorted as integer numbers. Although this is not as e�cient as a closed formula, it can be
easily applied in all the cases.

2.4 Di�erent number of variables

As the examples in this paper are three degrees of freedom Hamiltonian systems, the basic
routines explained here handle polynomials with six variables. If one is interested in a
di�erent number of variables, it is not di�cult to build the corresponding basic routines.
For instance, in Section 4.1.3 we need to handle the normal form of a 3DOF Hamiltonian
system, that depends on 3 variables. To this end it is very easy to write the corresponding
routines, using the same algorithms as for six variables. We have put those routines in
�le mp3.c, Note that this �le is, essentially, a minor modi�cation of �le mp6.c. In a
similar way we have derived the routines of mp4s.c and mp4p.c, that are needed during
the reduction to the centre manifold (see Section 4.3).

3 Handling Homogeneous Polynomials

The routines of this section are contained in the �les basop6s.cc and basop6sp.cc. Note
that we have several versions of some of them, in order to deal with polynomials with
di�erent symmetries. As before, we recommend to give a look at the source code, since
it will clarify (we hope!) our explanations.

13



3.1 Sums and products

Let p1 and p2 be two arrays containing (the coe�cients of) homogeneous polynomials of
degrees g1 and g2.

Let us assume that both polynomials are of the same degree and that we want to add
them, storing the result in an array called p3. If we call nm the number of monomials of
one of these polynomials (this is the value returned by a routine like ntph6), then the
sum is easily computed:

for (i=0; i<nm; i++) p3[i]=p1[i]+p2[i];

Here we have assumed that we have de�ned the operation + for the type of the coe�cients
of the polynomial: if they are double variables one does not need to do anything special
since they are already de�ned in any C compiler. If they are of complex1 type, we assume
that we are working in C++ or that we are using a C extension able to overload the
arithmetic operators (like [41]) with the complex operations. If the coe�cients are more
sophisticated types, we assume that we have the corresponding arithmetic, as well as a
way of overload the arithmetic operators.

Note that, in a similar way, it is very easy to implement the product of a complex

number by a polynomial, so we avoid any comment on that.
Let us see the product of homogeneous polynomials (now we are not assuming that p1

and p2 have the same degree). The algorithm is very straightforward and uses the rutines
explained in Section 2: Let us call n1 and n2 the number of monomials of each polynomial
p1 and p2. Then, to multiply the monomial number i of p1 with the monomial number
j of p2 we only have to compute the corresponding multiindices k(i) and k(j), to ask for
the position where the coe�cient of the monomial k(i) + k(j) must be stored, and to add
there the product of the coe�cients. Doing this for all the possible values of i and j we
obtain the desired product. You can give a look at the source code for more details.

3.2 Poisson bracket

The Poisson bracket of two homogeneous polynomials can be implemented using the same
ideas as the product. The algorithm we have used is based on the following identity:

8<
:
X
k;`

pk;`x
ky`;

X
k0;`0

qk0;`0x
k0y`

0

9=
; =

X
k;`;k0;`0

pk;`qk0;`0

0
@ 3X
j=1

(kj`
0
j � k0j`j)

xk+k
0

y`+`
0

xjyj

1
A ;

where, of course, k, `, k0 and `0 belong to N
3 . Thus, for any term of this sum, we

proceed as in the product of homogeneous polynomials: we look �rst for the exponents of
the monomials involved, then we compute the exponents of the resulting monomials and,
�nally, in the position corresponding to those monomials, we add the resulting coe�cients.
For more details, look at the source code.

1Unless otherwise speci�ed, complex means a structure with two members of type double: the real
and the imaginary part

14



3.3 Input and output

We have coded several routines in order to read and write power expansions and homoge-
neous polynomials (both in ASCII and binary format). We are not providing a complete
set of routines to handle all the possible situations, but we simply give the ones needed
in the examples. As we have mentioned before, our intention is to show that they can be
written very easily and we hope that the interested reader will not have any problem in
coding any similar routine.

You will see that there are a lot of di�erent routines, each one for a di�erent purpose.
Although it is not di�cult to write a common front-end for all of them we have not
done so. The main reason is that the aim of this paper is not to give an easy-to-use
library of functions but to show how to build such a library. Hence, we have avoided any
construction that hides the inner working of the routines.

3.3.1 ASCII �les

There are several routines to read and write homogeneous polynomials and series. The
format is very easy: for each coe�cient, we compute the corresponding exponents and we
write the exponents followed by the value of the coe�cient. We use a single line for each
coe�cient.

There are several sets of routines for the di�erent kind of series (mp6s, mp6p, real or
complex coe�cients, etc.). Some of the routines use a threshold to decide if a monomial
has to be written or not (if the absolute value of the coe�cient is smaller than the
threshold, the monomial is not written).

The advantage of ASCII �les is that they can be printed and read by an ordinary
text editor. The main disadvantage is that they are very big and that they are written
and read very slowly. Hence, they are only used to write the �nal results and to store
intermediate values during the developping/debugging stages.

3.3.2 Binary �les

This format is used to store intermediate calculations or series that are only used as an
input for other programs (like the changes of variables).

The routines that write homogeneous polynomials simply write (sequentially) all the
coe�cients in the �le, without storing the exponents of the corresponding monomials.
The reading routine will read all the coe�cients in a row, without any checking (except,
of course, the end of �le), and they will be stored sequentially in the corresponding array.
Each coe�cient is then identi�ed by its position inside the �le. This is to minimize the
size of the �le and to maximize the speed at which the �le is handled.

The routines that write series simply write sequentially the homogeneous polynomials,
adding a little bit of information to the �le according to the kind of series stored. This
extra information is put at the beginning and consist of four integer values, with the
following meaning:

1. The �rst integer contains the number of variables of the expansion.

15



2. The second integer contains the kind of simmetry of the expansion. This value can
be:

0: No symmetry. All the monomials are present in the �le.

1: Symmetry of 's' kind: all the monomials such that the sum of the exponents
of the last two variables is odd are missing.

2: Symmetry of 'p' kind: all the monomials such that the sum of the exponents
of the last two variables is even are missing.

3. The third integer is the initial degree of the expansion (usually, it is 1 or 2).

4. The fourth integer is the �nal degree of the expansion.

The reading routine checks this information and gives the corresponding error messages
when necessary. Note that there is nothing indicating the kind of coe�cients of the stored
series. It is up to the user to take this into account.

Of course, writting in this way assumes that the reading routine will use the same
algebraic manipulator as the writting routine, since the exponent of a monomial is known
from the position of the monomial inside the series. You have to take this into account if
you modify these routines.

4 Examples

In this section we are going to apply these routines to perform some practical computations
on a concrete model. For this purpose we have selected the well-known Restricted Three
Body Problem (RTBP), near one of the �ve equilibrium points L1;:::;5 of the system. For
a basic description of this problem, see Appendix B.

4.1 Example I: Normal form

The Hamiltonian H of the RTBP, in suitable adimensional units and with the origin at
L5, takes the form

H =
1

2
(p2x + p2y + p2z) + ypx � xpy +

�
1

2
� �

�
x�
p
3

2
y � 1� �

rPS
� �

rPJ
; (4)

where r2PS = (x � xS)
2 + (y � yS)

2 + z2, r2PJ = (x � xJ)
2 + (y � yJ)

2 + z2, xS = 1=2,
yS = �p3=2, xJ = �1=2 and yJ = �p3=2. The \�" sign is for L4 while \+" is for L5.
The mass ratio is taken below the Routh critical value, so the origin is linearly stable.

16



4.1.1 Complexi�cation and power expansion

The �rst step is to produce a power expansion of (4) up to a �nite order N ,

H =
NX
n=2

Hn;

where Hn denotes a homogeneous polynomial (in six variables) of degree n. To describe
how to produce such expansion, let us focus �rst on the term 1=rPS of (4). Naming  the
angle between (xS; yS; 0) and (x; y; z), and being �2 = x2 + y2 + z2 one has

1

rPS
=

1p
1� 2� cos + �2

=
1X
n=0

�nPn(cos );

where Pn is the Legendre polynomial of degree n. Let us de�ne An as �nPn(cos ) (note
that An is an homogeneous polynomial of degree n). Then, from the well-known recurrence
of the Legendre polynomials one obtains

An+1 =
2n+ 1

n+ 1
(xxS + yyS)An � n

n + 1
(x2 + y2 + z2)An�1; (5)

starting with A0 = 1 and A1 = xxS + yyS. Note that this recurrence can be easily
implemented using a routine that multiplies homogeneous polynomials. Moreover, as the
computational e�ort is not very high and it is numerically stable, this recurrence is very
suitable for a practical computation. Of course, the expansion of 1=rPJ can be done in
the same way, and the remaining terms of (4) can be added directly to the sum of these
two expansions.

Before continuing, let us make a very important remark. As the �rst step is to put
H2 in normal form (see Section B.1), and this is done by a linear change of variables, we
can insert this change of variables directly into the recurrence (5), in order to produce
the expansion with this �rst change already done. This is much better than to compose
the change with the �nal expansion. Note that the real normal form of H2 is

H2 =
!1

2
(x2 + p2x) +

!2

2
(y2 + p2y) +

1

2
(z2 + p2z);

where we have kept the same notation for the variables and we have used that the fre-
quency in the vertical direction is always 1 (for all �). In order to facilitate the computa-
tion of the generating function, it is very convenient to \diagonalize" H2 (see Section A.4
for more details). This can be done by a (complexifying) change of variables:

x =
q1 +

p�1p1p
2

; px =

p�1q1 + p1p
2

; (6)

and similar expressions for the other variables. So, we compose this change with the �rst
one to obtain a (complex and symplectic) linear change of variables that brings the initial
H2 into the normal form

H2 =
p�1!1q1p1 +

p�1!2q2p2 +
p�1q3p3: (7)

17



This is, in fact, the change inserted into the recurrence (5) to produce the expansion in
these variables.

The routines that perform this expansion are contained in the �le exp-l5.cc. Let us
give a short description of them.

ccvl5 It computes the change of variables that put the initial H2 into the �nal normal
form (7). This change is derived in Section B.1.

exp l5 This is the main routine for the expansion of the Hamiltonian. It calls exrec and
reste.

exrec This routine performs one of the recurrences (5). It is called twice by exp l5 (�rst
to expand 1=rPS and then 1=rPJ).

reste This routine computes the terms in (4) that are neither 1=rPS nor 1=rPJ .

4.1.2 The normal form

The next step is the computation of the normal form. We use Lie series, since they are
very suitable to perform explicit computations. More details on this method are contained
in Sections A.3 and A.4, and here we will only focus on the implementation. The main
properties of the Poisson bracket used here are that it is bilinear and that, if Pr and
Qs are homogeneous polynomials of degrees r and s respectively, then fPr; Qsg is an
homogeneous polynomial of degree r + s� 2.

The computation is done in several steps, one for each degree. Let us explain the
�rst of these steps. We want to compute a generating function G3 (an homogeneous
polynomial of degree 3) such that the transformed Hamiltonian

H 0 = H + fH;G3g+ 1

2!
ffH;G3g ; G3g+ 1

3!
fffH;G3g ; G3g ; G3g+ � � � ; (8)

has no terms of degree 3. Using that H = H2 +H3 +H4 + � � � one obtains that the terms
of degree 3 of the transformed Hamiltonian H 0 are

H 0
3 = H3 + fH2; G3g :

Hence, we ask H 0
3 = 0. This equation is easily solved, because H2 is of the form (7): let

us denote by kq the three indices of k that correspond to the variable q and by kp the
ones of p. The expressions of H3 and G3 can be written as

H3 =
X
jkj=3

hk3q
kqpk

p

; G3 =
X
jkj=3

gk3q
kqpk

p

:

Hence, assuming that the frequencies ! = (!1; !2; 1) of H2 are rationally independent, it
is not di�cult to obtain the coe�cients gk3 of G3:

gk3 =
�hk3p�1 hkp � kq; !i :

18



As in this case jkj is odd, the denominator hkp � kq; !i is never zero. When jkj is even
one must consider the case kp = kq (note that, as the components of ! are rationally
independent, this is the only possiblity to produce a zero divisor). This implies that this
monomial can not be elliminated and then we select the corresponding gk3 equal to zero.
Of course, if one wants to perform the normal form up to degree N , it is enough to ask
hk; !i 6= 0 when 0 < jkj < N . If this condition is not satis�ed we can still perform
a resonant normal form, that is, we can elliminate all the monomials except the ones
for which hk; !i = 0 (usually called resonant monomials). Even when the frequencies
are rationally independent, some of the denominators hk; !i can be very small, reducing
drastically the domain where these transformations are valid. In this case is also possible
to leave those monomials in the normal form, in order to keep a reasonable size for the
domain of convergence (note that then the normal form will not be integrable, see [43]
for a discussion of this technique).

Once the generating function has been computed, we can use (8) to compute the
transformed Hamiltonian. Let us see the implementation we have used for this formula.
Assume we are working with an expansion of H up to degree N :

H = H2 +H3 + � � �+HN�1 +HN ;

and, for instance, we want to transform it using as a generating function an homogeneous
polynomial G3 of degree 3. To save memory, the result will be stored in the same space
used for H. To give the idea, let us write explicitly the �rsts steps of the method:

step 1.1 HN  HN + fHN�1; G3g
step 2.1 HN�1  HN�1 + fHN�2; G3g
step 2.2 HN  HN + 1

2!
ffHN�2; G3g ; G3g

step 3.1 HN�2  HN�2 + fHN�3; G3g
step 3.2 HN�1  HN�1 +

1

2!
ffHN�3; G3g ; G3g

step 3.3 HN  HN + 1

3!
fffHN�3; G3g ; G3g ; G3g

...

Note that the Poisson bracket done in step 2.1 can be re-used to compute step 2.2, the
one in 3.1 can be used in 3.2 and this last one in 3.3, and so on. In this way, we are
minimizing the number of arithmetic operations (each Poisson bracket is done only once),
we can work on the initial Hamiltonian (the parts of it that are overwritten are not needed
in further steps) and the need of working space is not very big: we need working space
for two homogeneous polynomial of degree N in the worst case (one is used to store the
Poisson bracket done in i.j-1 to be used in i.j, the other one is to compute the next
Poisson bracket). This has been implemented in routine traham (see below).

The routines for these algorithms are contained in �le nf6s.cc. Let us give a short
description of them:

19



nf6s The main routine for the computation of the normal form. It assumes that the
initial Hamiltonian H2 is in diagonal form. The routine gets the frequencies ! from
the corresponding places of H2 and, for each degree, it computes the generating
function of the change of variables (see cage) and transforms the Hamiltonian (see
traham). The generating function is written in a binary �le, degree by degree. As
this is not considered a series but a sequence of di�erent generating functions, no
heading is added to the �le (this heading was explained in Section 3.3.2).

cage Computes the generating function corresponding to a given degree. One of the
parameters is a pointer to a function that, given the exponents of the monomial,
returns 1 if the monomial has to be removed from the normal form, and 0 otherwise.
This is done in this way in order to facilitate to change the \killing criterion".

traham This transforms the Hamiltonian according to the algorithm mentioned above,
using the generating function computed in cage. After the transformation, the
routine puts zero in the places that corresponds to killed monomials. This lines can
be commented if the user does not want to do that. In this case, those values will
not be exactly zero because of the rounding errors (see Section 6 for a more detailed
discussion).

Moreover, in the �le kill-nf.c there is the function that decides if a given monomial
has to be killed or not (see remarks in routine cage above).

4.1.3 Back to real coordinates

The �nal step is to realify the transformed Hamiltonian. The case of seminormal forms
can be done using the considerations in Section 4.4 (see also Section 4.3).

Let us start by using the inverse of the complexifying change (6),

qj =
xj �

p�1yjp
2

; pj =
�p�1xj + yjp

2
; j = 1; 2; 3; (9)

where we use q1, q2, q3, p1, p2 and p3 for x, y, z, px, py and pz respectively. In order to
put the Hamiltonian in the easiest possible form, we compose this change with

xj =
q
2Ij cos�j; yj = �

q
2Ij sin�j; j = 1; 2; 3:

This is equivalent to

qj = I1=2 exp(
p�1�j); pj = �

p�1I1=2 exp(�p�1�j); (10)

Hence, as the monomials that appear in the normal form have the same exponent both
for positions and momenta (kq = kp in the notation above), the change (10) makes them
to depend only on the actions Ij:

hkq
kqpk

p

= hk(
p�1)jkqjIkq :

20



Routines in �le rnf6s.cc apply the change (10) to the normal form. As we have to
deal with polynomials of three variables, we need the routines of mp3.c. Now, let us give
a brief description of rnf6s.cc.

rnf6s Applies the change (10) to the normal form. It assumes that the manipulator
contained in mp3.c has been initialized by the calling routine.

check rlf This is to check if a given multiindex corresponds to the normal form. It
is used by rnf6s to know which ones are the terms to realify (all the others are
assumed to be zero).

4.1.4 Main program and results

A main program that uses these routines is contained in the �le main nf.cc. It is a very
short and easy to read program that computes the normal form, up to a given order,
around the equilibrium point L5 of the RTBP. The output of the program is contained in
several �les: the normal form is stored in the ASCII �le nf.res, the generating function is
stored in the binary �le nf.gen and the linear change of variables used to diagonalize the
linearized vector�eld around L5 is put in the ASCII �le nf.cvl. The parameters used in
the actual run (the degree and the mass parameter) are stored in the ASCII �le nf.ctl.

In Table 1 we include the �rst terms of the normal form for the Earth-Moon case.
The last column in that table corresponds to the imaginary part of the coe�cients and it
should be zero. It is not zero due to the rounding errors in this process. This column is
not taken into account for subsequent computations with the normal form, but we have
included it to give an heuristic estimate about how roundo� errors behave in this case.
See also remarks in Section 6.2.

4.2 Example II: First integrals

Let us assume that we are interested in computing (approximate) �rst integrals of a given
Hamiltonian system H, in a neigbourhood of an equilibrium point. Of course, if H is not
integrable, the �rst integrals will not be convergent but, close enough to the equilibrium
point, they will be quantities that are almost preserved by the ow. This can be used for
di�erent purposes, for instance to bound the di�usion time around an elliptic equilibrium
point. We refer to Section A.7 for more details.

Let us summarize the procedure to compute those integrals. Let H =
P

j�2Hj the
power expansion of H around the equilibrium point (that for simplicity we assume is
the origin), where each Hj is an homogeneous polynomial of degree j. Let us denote by
F =

P
j�2 Fj the expansion for the �rst integral we are looking for. Then, as F must

satisfy fH;Fg = 0, one has the following recursive equation

fH2; Fng = �
nX

j=3

fHj; Fn�j+2g ; (11)

21



1 0 0 9.5450087346985146e-01 0.0000000000000000e+00

0 1 0 -2.9820811951603865e-01 0.0000000000000000e+00

0 0 1 1.0000000000000000e+00 0.0000000000000000e+00

2 0 0 1.1568661352624510e-01 1.9950987004677088e-15

1 1 0 -1.7127952377596927e+00 1.6464553654140052e-14

0 2 0 3.3855424993051031e-01 -1.6132819906367057e-14

1 0 1 8.9130919974620498e-02 7.6519569570206439e-16

0 1 1 2.2531870698905809e-01 -1.8153505446248392e-15

0 0 2 -2.2354591332438556e-03 -9.4980345474466460e-17

3 0 0 -2.9478784724938123e-01 -8.8195876408494016e-14

2 1 0 8.1656946590496773e+00 -2.4411186045905709e-11

1 2 0 -5.4586887250177915e+02 -1.5117692624804247e-10

0 3 0 -5.1021278394561250e+01 -4.4683867166008548e-11

2 0 1 -4.3799694571855952e-01 1.4016167918231831e-13

1 1 1 1.4116984215354037e+01 -9.8915697135260128e-12

0 2 1 2.0187058976961225e+00 -1.7373839789087187e-12

1 0 2 -5.5905039470536266e-02 -1.9157633989231475e-14

0 1 2 -1.7898209821803412e-01 1.0442695912981926e-14

0 0 3 -5.1325740689130392e-05 -1.8243944685427148e-15

4 0 0 1.2775512804655591e+00 -6.7431830234291555e-10

3 1 0 -3.5068853734061122e+01 -5.4267568786972957e-10

2 2 0 -5.4875008796056733e+04 4.6093383107028067e-08

1 3 0 3.2223469268329442e+04 1.5779814576740623e-07

0 4 0 3.5185007412806153e+03 -7.6035412461354353e-09

3 0 1 2.1759346547114546e+00 -4.0412062928307053e-10

2 1 1 2.0101335538551211e+01 -1.8846523533034277e-09

1 2 1 1.3647631576893851e+04 1.2205347940204729e-08

0 3 1 1.4507386615262367e+03 -1.4038343557712580e-09

2 0 2 2.1938211094638973e+00 -6.7723532456943524e-11

1 1 2 -4.9540209943972513e+01 6.1719014476874278e-10

0 2 2 -1.0178742459873320e+01 3.9061093991945888e-11

1 0 3 3.5475354854384022e-02 8.1934049924464103e-13

0 1 3 7.1211245121958200e-02 1.7453335694916767e-11

0 0 4 5.2188851777046352e-04 3.2941657400195349e-13

Table 1: This table contains the coe�cients of the normal form for the Earth-Moon
case (� = 1:2150581623433623� 10�2). The �rst three columns contain the exponents
of the actions, and the fourth and �fth columns are the real and imaginary part of the
coe�cients. Imaginary parts must be zero, but they are not due to the rounding errors
(see more comments in the text).

22



that puts Fn in terms of Fn�1, : : :, F2 and H. To simplify the discussion, let us assume

that H2 is in complex diagonal form, that is, H2 =
P

j

p�1!jqjpj. As
n
qjpj; q

`p`
o
= 0,

we have that

1. the coe�cients of the monomials q`p` of Fn can not be determined,

2. if the coe�cient of the monomial q`p` in the right-hand side of (11) is not zero, this
equation can not be solved.

There are conditions under which the right-hand side of (11) does not contain monomials of
the form q`p`. For instance, when the frequencies are nonresonant (hk; !i = 0 () k = 0)
and the initial Hamiltonian is reversible (i.e., an even function of the momenta).

The example we are going to use is again the RTBP near L4;5 for the Sun{Jupiter
case, for which the frequencies are nonresonant.2 As in this case the Hamiltonian is not
reversible, we need another kind of argument to justify the solvability of equation (11).
Here we will use (without proof) that this equation can be solved for the RTBP case, and
that it is enough to take zero the terms of Fn that we can not determine (q`p`). We refer
to [11] for a discussion of these properties.

Another point worth to mention is that F2 is not determined by the method, but
it should be selected by the user. In [11], as they want to have 3 �rst integrals F (j),

j = 1; 2; 3, they use F
(j)
2 =

p�1qjpj, j = 1; 2; 3. We note that, if one only wants to
bound the di�usion around the point, it is enough to compute a single de�nite-positive
�rst integral. This can be achieved using, for instance, F2 =

P
j

p�1qjpj. Of course, one
can put di�erent \weights" in front of each qjpj to try to optimize the size of the region
of e�ective stability (we recall that this region is, in general, not spherical).

4.2.1 Implementation

Note that most of the routines needed for this case have already been developed for the
normal form computation. In fact, we only need to implement the recursion (11) and the
reali�cation of the (approximate) �rst integral.

An overall of the program is the following. First we expand the Hamiltonian around
the equilibrium point using the same rutines as in the normal form case (the ones of the �le
exp-l5.cc). In this way we obtain a complexi�ed expansion such that the second degree
terms are in diagonal form. Then, we solve recurrently equation (11), where the initial
value F2 is provided by the user (this is done by the routines of the �le fi.cc). Once the
�rst integral has been computed up to the desired order, it is reali�ed (the routines for
this are in the �les irex.cc and re6s.cc, and the reali�cation process will be explained
in Section 4.5) and written to the ASCII �le fi.res. This is the only �le produced by
this program. The main program that controls this process is in main-fi.cc.

2As in the normal form case, we only need the nonresonance condition up to a �nite order. Hence,
this is a condition that can be checked in practical examples.

23



4.3 Example III: Centre manifolds

Let us consider the dynamics near one of the collinear points L1;2;3 of the RTBP. We recall
that the linearization of the vector�eld at these points is of the type centre�centre�saddle.
In order to give an accurate description of the dynamics in a neighbourhood of L1;2;3 one
can perform the so-called reduction to the centre manifold. This process is explained with
more detail in Section A.6 and the idea is the following: let us assume that the diagonal
form of H2 is

H2 = �q1p1 +
p�1!2q2p2 +

p�1!3q3p3; �; !2; !3 2 R:

Hence, the hyperbolic direction is given (at �rst order) by the variables (q1; p1). Let us
perform canonical transformations on the Hamiltonian (in the same way it has been done
in Section 4.1.2) but now, instead of cancelling all the nonresonant monomials, we only
cancel monomials such that the exponent of q1 is di�erent from the exponent of p1 (for
a di�erent scheme that cancels less monomials, see [46]). Then, after a �nite number of
transformations, the Hamiltonian takes the form

H = H(0)(q1p1; q2; p2; q3; p3) +R(q1; p1; q2; p2; q3; p3);

where H(0) is the part of the Hamiltonian that we have arranged and R denotes the
remainder. As H(0) depends on the product q1p1 we can perform the change I1 = q1p1 to
produce

H = H(0)(I1; q2; p2; q3; p3) +R(I1; '1; q2; p2; q3; p3);

where ' is the conjugate variable of I1. If we drop the remainder R (it is very small
near the origin) then I1 is a �rst integral of the system and putting I1 = 0 we are skip-
ping the hyperbolic part of the Hamiltonian H(0). The resulting two degrees of freedom
Hamiltonian represents the ow inside the (approximation to the) centre manifold. So,
near the origin, the phase space of the original Hamiltonian must be the phase space of
H(0)(0; q2; p2; q3; p3) times an hyperbolic direction. To visualize the phase space of H(0)

one can �x the value of the Hamiltonian and then use a Poincar�e section. Varying the
value of the Hamiltonian we will obtain a collection of 2-D plots representing the dynamics
in the phase space. This has already been done in [15], [26] and [27].

4.3.1 Implementation

The implementation is very similar to the one of the normal form, with the only di�erence
that now we want to kill less monomials. Hence, for the computation of the complex
normal form we have used exactly the same routines as before (the ones contained in the
�le nf6s.cc), only changing the function used to decide which monomials are killed (this
function is stored in the �le kill-nf.c for the normal form case and now is the one in
the �le kill-cm.c).

The main di�erence appears when we need to realify the transformed Hamiltonian.
In the normal form case, reali�cation is done by taking advantage ot the particularities

24



of a complete normal form. Here it is a little bit more di�cult. Let us summarize the
process. First, to save memory, the (still complex) partial normal form is written in a
binary �le and then it is read monomial by monomial. For each monomial corresponding
to the centre manifold3 (otherwise the monomial is discarded) we compute the result of
applying the realifying change (9) to this monomial. The process is the same one used in
Section 4.5 (see there for more details), but for four variables monomials. The reali�ed
monomials are added to the reali�ed series (di�erent complex monomials can contribute
to the same reali�ed monomial) until all the complex monomials are transformed. The
routines that perform the realifying process are stored in the �les irex.cc and rcm6s.cc.
Finally, the centre manifold is written to an ASCII �le. The main program for this
computation is stored in the �le main-cm.cc.

The output �les are: cm.res contains (in ASCII format) the Hamiltonian reduced to
its centre manifold, cm.gen is a binary �le with the generating function used, cm.cvl is
an ASCII �le with the linear change used to put H2 in diagonal form and cm.ctl contains
the parameters used in the actual run.

4.4 Changes of variables

An important part of the computations is to produce the changes of variables going from
the �nal coordinates (normal form or centre manifold) to the initial ones. This can be
used for several purposes, ranging from estimates on the di�usion time to the practical
computation of invariant tori (of any dimension). We refer to [32] for examples of this.

The global change is split in two di�erent sub-changes. The �rst one is the linear
change that puts H2 in diagonal form (we will refer to these coordinates as \diagonal"
coordinates) plus the translation of the origin from the libration point to the centre of
masses of the RTBP. The second sub-change consists of the nonlinear change that goes
from the normal form (or centre manifold) coordinates to the diagonal ones. Here we will
focus on this last change since the �rst one is explicitly given in Appendix B.

The process to obtain the nonlinear change is the following. Let us start by considering
the �rst change of variables done on the Hamiltonian by means of a generating function
G3. The corresponding change for this transformation can be obtained by applying the
transformation (8) to a single coordinate qi or pi (1 � i � 3),

q
(3)

i = qi + fqi; G3g+ 1

2!
ffqi; G3g ; G3g+ � � � ; (12)

p
(3)

i = pi + fpi; G3g+ 1

2!
ffpi; G3g ; G3g+ � � � ; (13)

where q
(3)

i , p
(3)

i denotes the series obtained in this transformation. This is done using the
algorithm explained in Section 4.1.2. Note that expressions (12) and (13) are changes of
coordinates: they relate the coordinates of the transformed Hamiltonian under G3 (they

are qi, pi) with the initial (diagonal) coordinates q
(3)

i , p
(3)

i . This idea can be used to

3Those are the monomials such that the exponent of q1 is equal to the exponent of p1.

25



produce the changes to higher orders. For instance,

q
(4)

i = q
(3)

i +
n
q
(3)

i ; G3

o
+

1

2!

nn
q
(3)

i ; G3

o
; G3

o
+ � � � ;

p
(4)

i = p
(3)

i +
n
p
(3)

i ; G3

o
+

1

2!

nn
p
(3)

i ; G3

o
; G3

o
+ � � � ;

is the transformation that goes from the normal form coordinates of degree 4 to the initial
diagonal coordinates. Of course, this transformation is done on the expressions (12) and
(13) as if they were Hamiltonians, by means of the algorithm explained in Section 4.1.2.
In this way, we obtain the explicit transformation that puts the Hamiltonian in normal
form up to the desired order. Note that, when doing these transformations, it is only
necessary to transform up to the same degree as in the normal form.

Let us note that the obtained series are still in complex coordinates. They are reali�ed
using the methods that will be explained in Section 4.5.

The change corresponding to the centre manifold has some di�erences with the change
for the normal form case. As the centre manifold is of dimension four (the �rst two
variables have been set to zero), the �nal change is given by six real expansions, each one
depending on four variables (the �rst four expansions are of the type mp4s and the last
two are of the type mp4p).

4.4.1 The inverse change

As before, we are going to focus on the nonlinear part of the change, since the linear part
is easily inverted. We only provide routines for the normal form case (the inverse change
for the centre manifold can be produced similarly).

This computation is based on the following fact: the change induced by the generating
function G is the inverse of the change induced by the generating function �G. This is
because the change is the time one ow of the Hamiltonian G, and to reverse the time in
this ow one has to change the sign of the vector�eld, i.e., of the Hamiltonian G. Hence,
one can use the same scheme as before but using as generating functions �Gn, �Gn�1,
..., �G4, �G3, in this order. We refer to the previous section for more comments.

As before, the obtained series are still in complex coordinates. Section 4.5 deals with
the algorithms used to realify them.

4.5 Reali�cation of power expansions

A common operation at the end of these computations is the reali�cation of the complex
power expansions obtained, because we are usually interested in the dynamics correspond-
ing to real coordinates. Hence, reali�ed expansions are much smaller (the memory needed
to store them is halved) and this implies that all the computations involving them are also
faster. We want to stress that it is not compulsory to perform such reali�cation, because
all the computations with these expansions can be done with the complexi�ed version.
The reali�cation is only used for e�ciency reasons.

26



Now let us explain the algorithm used. To simplify the discussion, let us assume we
have to realify a 6 variables expansion, in which all the variables have been previously
complexi�ed. Note that it is possible to have a complex expression in which not all the
variables have been complexi�ed (see, for instance, the expansion of the Hamiltonian in
Section 4.3). To start, let us focus on the reali�cation of a single monomial,

ckq
k1
1 p

k2
1 q

k3
2 p

k4
2 q

k5
3 p

k6
3 : (14)

Then, in order to apply the realifying change (9), let us make the following remarks:

1. If we know the reali�cation of the product qk11 p
k2
1 , for any k1 and k2, we know the

reali�cation of all the products qk32 p
k4
2 , qk53 p

k6
3 (the only di�erence is in the subindices

of the variables).

2. If we know the reali�cations of the three couples q
k2j�1

j p
k2j
j (j = 1; 2; 3), the prod-

uct of these reali�ed expansions (note that each one of them is an homogeneous
polynomial with two variables) is not di�cult to compute, since we are multiplying
polynomials that depend on di�erent variables.

Hence, we will apply the following scheme: �rst we will compute the reali�cations of
all the powers qk11 p

k2
1 , where the exponent (k1; k2) is such that 0 < k1 + k2 � n, and n

denotes the degree up to which we plan to realify. The result of each reali�cation will be
stored in a table (see below). Then, for each monomial like (14), we will obtain from the
table the reali�cations of the three couples qk11 p

k2
1 , qk32 p

k4
2 and qk53 p

k6
3 (they will be three

homogeneous polynomials of degrees k1 + k2, k3 + k4 and k5 + k6, respectively). Finally,
we will form the product (14), taking advantage of the fact that the three homogeneous
polynomials depend only on two variables, and that these variables are di�erent. Let us
explain this with more detail.

4.5.1 The realifying table

Now we consider the problem of computing and storing expressions like qipj, i 2 N , j 2 N ,
where

q =
x�p�1yp

2
; p =

�p�1x + yp
2

: (15)

Let us start by the storing procedure. Let us �x i and j, and let us de�ne m = i+j. Then,
the substitution of (15) into qipj produces an homogeneous polynomial of degree m, in the
variables x and y. A natural way of naming the di�erent coe�cients of this polynomial
is to use a single integer to denote the monomial we refer to: monomial number 0 will be
xmy0, monomial number 1 will be xm�1y1, and so on. Generically, the monomial number
k will be xm�kyk, 0 � k � m. Note that we need three indices (i; j; k) to identify one
of these coe�cients (i, j refer to the monomial qipj, and k refers to the position of the
coe�cient inside the reali�cation of qipj). Hence, we can look at all these reali�cations as
polynomials with three variables: the coe�cient number k of the reali�cation of qipj is the
coe�cient of the monomial (i; j; k) of a (real but not homogeneous) polynomial of degree

27



2m. This implies that, to store all these reali�cations, it is enough to allocate space for a
three variables power expansion up to degree 2n, where n denotes the maximum degree
we plan to realify. Note that not all the monomials of this expansion are going to be used,
but

1. the amount of memory used by the whole table is not very big (see examples below),

2. in this way the access to the elements of the table is very easy (we can use the
manipulator mp3 explained before) and very fast.

It would be possible to only allocate the elements we really need, but this would decrease
the speed of the program and, as it has been said before, the amount of memory saved is
not enough (in our opinion) to justify the increase in complexity of the program.

To simplify (and to speed up) the computation of the realifying table we also initialize
a couple of auxiliar tables, one with the negative powers of

p
2 and another one with the

binomial coe�cients. With these auxiliar tables, it is not di�cult to compute the di�erent
powers qipj and to store them in the corresponding place of the table.

The routines that initialize the realifying process have been stored inside the �le
irex.cc. They are the following:

ini real This routine allocates space for the table that will contain the reali�cations
of the di�erent monomials qipj. It also computes and stores that table. This ru-
tine calls routine imp3 (�le mp3.c) to initialize the tables needed to handle power
expansions with three variables.

end real This routine frees the space allocated by ini real, including a call to amp3 to
free the space allocated by imp3.

coef This routine computes the coe�cient of the monomial xk�jyj in qk or pk.

4.5.2 The main algorithm

Now it is not very di�cult to realify a power series. In order to minimize the amount of
RAM4 used, the series to be reali�ed is �rst written in a (binary) �le. Then, this �le is
read sequentially and each monomial is reali�ed and added to the (proper place of the)
resulting series.

So, the only point that needs to be discussed is the reali�cation of a single monomial.
The process is as follows. Let us use the same notation as in (14). Note that each couple

q
kj
i p

kj+1

i becomes, once reali�ed, an homogeneous polynomial of degree kj + kj+1 in two
variables, xi and yi. The coe�cients of this polynomial are stored in the suitable places of
the realifying table (see Section 4.5.1). Therefore, in order to multiply these three reali�ed
polynomials, we will use three (nested) loops to \run" over the coe�cients of them (these
coe�cients are directly obtained from the realifying table). In this way we will obtain the

4If this word means nothing to you, ask to your system manager. You should know about the maximum
amount of RAM you can use without collapsing your computer.

28



coe�cients of the reali�cation of (14) as the product of these three coe�cients with the
coe�cent ck. The exponent that corresponds to this �nal product is easily obtained and
this allows to add the coe�cient to the suitable place of the resulting series.

4.5.3 The �nal output

Before continuing with the description of the algorithm let us explain, up to now, what
we have obtained. As before, to simplify the discussion we will focus on a couple position-
momentum that we will denote as q1, p1. Let us denote the initial change of variables
that we want to realify as

q01 = q1 +O2(q; p);

p01 = p1 +O2(q; p);

where the \primed" variables are the initial ones and the \unprimed" variables the �nal
ones. Of course, O2(q; p) denotes the higher order terms of the change that we do not write
explicitly. After the reali�cation process we have just described, we obtain something like

x01 �
p�1y01p
2

=
x1 �

p�1y1p
2

+O2(x; y);

�p�1x01 + y01p
2

=
�p�1x1 + y1p

2
+O2(x; y):

The next (and �nal) step is to isolate x01 = x01(x; y) and y
0
1 = y01(x; y). For instance, x01

can be isolated from the �rst equation by taking real parts and multiplying by
p
2, and y01

can be obtained by the �rst equation by taking the imaginary parts times �p2. A similar
process can be applied to the second equation to obtain the same expressions. May be
the most important conclusion we can get from this fact is that it is enough to compute
only one of the expressions for the change of variables: for instance, to obtain the changes
of variables for the normal form of Section 4.1 (a 3DOF Hamiltonian) we only need to
compute the changes for the three positions. The changes for the three corresponding
momenta are obtained from them when realifying (note that we are using that we have
complexi�ed with respecto all the variables). Of course, we have taken advantage of this
property in the software.

4.5.4 A few remarks

In some cases, it is necessary to realify not all the variables, but only some of them.
A typical example appears when we have been dealing with an expansion of the kind
centre�saddle. The saddle variables does not need to be complexi�ed, since they already
appear in \diagonal form" (see Section 4.1.1). Hence, once the computation is �nished,
they are still in real form. Of course, the realifying change have to be only applied to
the couples qi, pi that have been complexi�ed. The main di�erence appears in the change
that corresponds to variables that have not been complexi�ed. Let us denote by q1, p1

29



one of these couples. After the reali�cation (of the complexi�ed variables), the change for
q1, p1 looks like

x01 = x1 +O2(x; y);

y01 = y1 +O2(x; y):

We have changed q1, p1 by x1, y1 to denote that the reali�cation has been done. Note
that the realifying changes have been applied to variables qj, pj, j 6= 1 (they only a�ect
to O2(x; y)). Hence, we have directly the change of variables (in particular, all the imag-
inary parts of the coe�cients of this change must vanish), without need of taking real or
imaginary parts. The bad news are that now we need to compute both changes (for x01
and y01), since we can not derive easily one from another.

4.6 The linear part of the change

We have seen how to produce the nonlinear change for variables used to achieve the
normal form but, to reach the initial coordinates we still need to apply the linear change
used at the beginning to put H2 in normal form. This change has been computed in order
to diagonalize the second degree terms of the Hamiltonian, and it has been stored in a
�le. In principle, this transformation goes from the \diagonal" coordinates of H2 to the
usual coordiantes of the RTBP centreed at the equilibrium point. If one is interested in
the inverse change, it is not di�cult to see that the inverse of any symplectic matrix M
can be obtained as M�1 = �JM>J , that is very suitable for numerical purposes.

4.7 Tests of the software

We have done some checks on the software, to be sure that there are no bugs present.
The tests we have done are very similar for the three examples so we will mainly focus on
the tests for the normal form computation.

To this end, we have written the program ninf, that produces a numerical integration
of the normal form obtained. In fact, as the normal form is integrable, this program
computes the gradient of the normal form for the given actions to obtain the frequencies
and then it simply tabulates the solution. Then, this table is sent through the changes
of variables into the synodical coordinates of the RTBP. Finally, program rtbp tests this
table in the following way: for each point of the table, it integrates (numerically) the point
to obtain a prediction for the following point of the table. Then, the program writes the
di�erences between the two points (the one obtained from the changes of variables and
the one obtained using numerical integration). Ideally, if the normal form, the changes of
variables and the numerical integration were all exact (zero error), these di�erences must
be zero. Of course, they are not zero due to the several sources of error.

Let us illustrate this. We have taken the initial conditions I1 = I2 = I3 = �0, with
initial phases �1 = �2 = �3 = 0, for t = 0 (let us call u0 to this initial condition). We
have tabulated the corresponding solution at t = 0:1 (let us call u1 to this vallue), and
we have sent both points to synodical coordinates, to obtain two points v0 and v1. Then,

30



�0 kv1 � v
1
0k2 �0 kv1 � v

1
0k2

0.00001 2.4828078245222093e-16 0.00008 3.4023375555581652e-10

0.00002 5.1198523403369423e-15 0.00016 8.8211434435268124e-08

0.00004 1.3192410121093586e-12 0.00032 2.3101212284736493e-05

Table 2: Di�erences between a normal form prediction and a numerical integration. The
local error of the numerical integration is of the order of 10�16 and the normal form (and
the corresponding changes of variables) have been computed up to degree 16.

we have computed (numerically) the trajectory of the RTBP that starts at v0, till t = 0:1
(let us call this point v10), with a local error of the order of the roundo� of the arithmetic.
The di�erence kv1 � v10k2 is given in Table 2.

Note that the parameter �0 is, essentially, the distance from the initial condition to
the origin. If the software is working properly, the error kv1�v10k2 is due to the truncation
of the power series (to degree 16, in the case corresponding to Table 2). Hence, the error
should behave like c�n0 , being n the last order in the normal form that we have taken into
account (see below). Then, one has that the order of the error can be approximated by

n �
ln
�
e1
e2

�
ln
�
�
(1)

0

�
(2)

0

� :

Applying this to the results in Table 2 we obtain Table 3. The �rst value in this table is
not very accurate because the estimation of the error is not realistic for �

(1)

0 = 0:00001 (it
is smaller than 10�16 and this is not detected since we are working with double precision
arithmetic). The other values are more accurate and produce an exponent for �0 that is
very close to 8. Note that if the order of the normal form in the (q; p) variables is 16,
in the Poincar�e variables (see (10)) is 8. Moreover, note that the numerical integrations
are done on the di�erential equations (that involve the derivatives of the Hamiltonian).
This means that the error for this case is not of the order of the neglected terms of
the Hamiltonian but of the neglected terms of the corresponding di�erential equations.
Hence, as �0 \moves" in the space of the Poincar�e coordinates, we expect and estimated
exponent of the same order as the biggest degree present in the normal form expressed in
Poincar�e variables.

The same procedure can be applied for the centre manifold computation and for the
�rst integrals, to estimate the order of the error. The concrete calculations for these cases
are left to the reader.

4.8 Invariant tori

Here we note that, using the tools we have developed, it is very easy to compute invariant
tori close to any of the libration points of the RTBP. For instance, let us focus on the
neighbourhood of the L5 point of the Earth-Moon RTBP.

31



�
(1)

0 �
(2)

0 n

0.00001 0.00002 4.366

0.00002 0.00004 8.009

0.00004 0.00008 8.011

0.00008 0.00016 8.018

0.00016 0.00032 8.033

Table 3: Estimation of the order of the error.

Figure 1 is a 2-D torus obtained by taking, in the normal form, the actions I1 = I2 =
0:0001, and I3 = 0. This corresponds to an elliptic (planar) Lyapunov tori obtained from
two of the (three) linear oscillations at L5 (see [30]). Figure 2 corresponds to a 2-D elliptic
torus obtained taking I1 = I3 = 0:0001 and I2 = 0. This torus can also be seen as coming
from the linear oscillations around the periodic Lyapunov family associated to the vertical
oscillation at L5 (see [32]). In both cases, we have plotted a dot every 0.1 units of time.

It is not di�cult to compute Poincar�e sections of these trajectories, to see that they
are invariant curves. We left this for the interested reader, as well as the computation
of more invariant tori. Finally, let us note that it is also possible to ask for a tori with
pre�xed frequencies: one has to solve a system of three nonlinear equations to �nd the
corresponding actions. Of course, this is only possible for suitable frequencies.

5 E�ciency Considerations

When one considers the optimality of a given calculation, there are two main things to
be taken into account: the algorithm used and its implementation. Here we are not going
to discuss the e�ciency of the algorithm selected (although there are other possibilities,
for example to use quadratic schemes instead of linear ones; see, for instance, [35]), and
we are going to focus on their implementation.

Now let us make a few remarks on the optimality of these routines. The implementa-
tion we have selected here (to use integer functions {sometimes called \hash functions"{
to know the position corresponding to a given exponent and viceversa) allows for very
easy implementations, but adds an overhead to the program (the time taken by these
functions and the memory used by the integer tables). In some cases, it is possible to use
speci�c orders for the polynomials such that the main operations can be performed di-
rectly, without the help of such functions: for instance, when dealing with polynomials of
one variable, we can store the coe�cient of the monomial xj into the position number j of
the corresponding array, so all the operations can be performed trivially (for instance, the
product of two polynomials is p[i]*q[j]!r[i+j]). Note that this is still possible in two
variables but it becomes more tricky in several variables. Moreover, if the coe�cients of
the polynomials are sophisticated types (like trigonometric polynomials), the time taken
by the hash functions is unnoticeable in front of the time taken by the operation involving

32



0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

-0.56 -0.54 -0.52 -0.5 -0.48 -0.46 -0.44 -0.42 -0.4

Figure 1: Projection on the (x; y) plane (synodical coordinates) of an elliptic 2-D in-
variant tori near L5. The intrinsic frequencies are !1 = 0:954347344380 and !2 =
�0:298324062073. The normal frequency is !n = 1:00003161731.

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

-0.52 -0.51 -0.5 -0.49 -0.48 -0.47 -0.46 -0.45
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

-0.52 -0.51 -0.5 -0.49 -0.48 -0.47 -0.46 -0.45

Figure 2: Projections on the (x; y) plane (left) and on the (x; z) plane (right) of a 2-
D invariant tori near L5. The intrinsic frequencies are !1 = 0:954532905738 and !2 =
1:00000846050. The normal frequency is !n = �0:298356646196.

33



the coe�cient. So, in our opinion, the gain obtained by using this kind of tricks is not
big enough to compensate for the increase of complexity of the code.

In what follows, the measures of the time needed for the programs to execute have
been taken from runs done on a Pentium Pro 200 MHz PC running Linux, with the GNU
compiler gcc/g++ version 2.7.2.1. The amount of needed memory has been estimated
directly from the size of the expansions.

5.1 Storage

Let us start by considering the e�ciency from the point of view of the amount of memory
used by the programs. As the memory is allocated and freed dynamically, we will focus
on the \worst moment" of the program, that is, when the maximum amount of memory
is needed.

Table 4 displays the number of monomials for some of the expansions used here. From
this table, and knowing the number of series we use in each program, it is not di�cult to
have an idea of the order of the amount of memory needed.

5.1.1 Normal forms

On a normal form computation as the one performed here, we use the following expansions
(let us denote as n the maximum degree wanted):

1. A power expansion up to degree n of the type mp6s (for the Hamiltonian).

2. An auxiliar power expansion (to be used only during the computation of the power
expansion of the Hamiltonian) of the same degree as the Hamiltonian.

3. Three polynomials of degree n, of the type mp6s, to be used as a working space
during the normal form computations.

We have to note that the expansion in item 2 and the three polynomials in item 3 are
needed in di�erent places of the program, so we only need to take the maximum of them.

In fact we need a little bit of memory (like the inner tables of the manipulators or the
three-variables expansion for the normal form), but the above mentioned series are the
most important ones.

Concerning the amount of hard disk memory used, we note that we need

1. A binary �le to store the generating function. This is about the size of a power
expansion of degree n, of the type mp6s.

2. A few extra ASCII �les (to store the normal form, the control parameters, etc.)
that, as they are very small, we skip them.

Of course, one can modify the program in order to write more information (you can
ask for intermediate series) of less (you can skip the writting of the generating function if

34



mp4s mp6s mp6p

n �(n)
Pn

j=0�(j) n �(n)
Pn

j=0�(j) n �(n)
Pn

j=0�(j)

0 1 1 0 1 1 0 0 0

1 2 3 1 4 5 1 2 2

2 6 9 2 13 18 2 8 10

3 10 19 3 32 50 3 24 34

4 19 38 4 70 120 4 56 90

5 28 66 5 136 256 5 116 206

6 44 110 6 246 502 6 216 422

7 60 170 7 416 918 7 376 798

8 85 255 8 671 1589 8 616 1414

9 110 365 9 1036 2625 9 966 2380

10 146 511 10 1547 4172 10 1456 3836

11 182 693 11 2240 6412 11 2128 5964

12 231 924 12 3164 9576 12 3024 8988

13 280 1204 13 4368 13944 13 4200 13188

14 344 1548 14 5916 19860 14 5712 18900

15 408 1956 15 7872 27732 15 7632 26532

16 489 2445 16 10317 38049 16 10032 36564

17 570 3015 17 13332 51381 17 13002 49566

18 670 3685 18 17017 68398 18 16632 66198

19 770 4455 19 21472 89870 19 21032 87230

20 891 5346 20 26818 116688 20 26312 113542

21 1012 6358 21 33176 149864 21 32604 146146

22 1156 7514 22 40690 190554 22 40040 186186

23 1300 8814 23 49504 240058 23 48776 234962

24 1469 10283 24 59787 299845 24 58968 293930

25 1638 11921 25 71708 371553 25 70798 364728

26 1834 13755 26 85463 457016 26 84448 449176

27 2030 15785 27 101248 558264 27 100128 549304

28 2255 18040 28 119288 677552 28 118048 667352

29 2480 20520 29 139808 817360 29 138448 805800

30 2736 23256 30 163064 980424 30 161568 967368

31 2992 26248 31 189312 1169736 31 187680 1155048

32 3281 29529 32 218841 1388577 32 217056 1372104

Table 4: Number of monomials for expansions of the kind mp4s, mp6s and mp6p. Here, n
denotes the degree, �(n) is the number of monomials in a polynomial of degree n, andPn

j=0�(j) is the number of monomials in a expansion up to degree n.

35



degree time nf time cm RAM HD
8 0.40 0.46 0.058 0.025

12 8.01 9.51 0.306 0.153

16 82.25 95.77 1.218 0.609

24 3002.14 3505.71 9.595 4.798

32 48422.61 55769.46 44.435 22.217

Table 5: Time (in seconds) and memory (in megabytes) needed for the normal form (nf)
and centre manifold (cm) computation. We want to note that cm needs, to store a temporal
�le, about the same space as the results. This implies that, to run this program, you need
to have twice the column \HD" of disk free.

you are not interested in the change of variables). In such a case, you should re-estimate
the amount of memory you need.

In Table 5 we have summarized these estimates on the amount of memory needed. We
have assumed that each coe�cient is a double precision complex number, that is, each
one needs 16 bytes to be stored.

5.1.2 Centre manifolds

The only di�erence between a normal form and a centre manifold computation (concerning
the amount of memory used) appears when realifying the Hamiltonian restricted to the
centre manifold. From the program, it is seen that this only a�ects to the amount of hard
disk needed. In Table 5 we have summarized those values. As in the normal form case,
we have skipped the size of the ASCII �le with the �nal Hamiltonian, since it is not very
big. We note that this �le is written after erasing the temporal �le, so if it was room for
this �le, there is enough room for the results. However, if one wants precise estimations of
the �nal amount of used disk, one must take into account the size of that ASCII �le. The
concrete runs displayed there have been done for the L1 case of the Earth-Sun system.

5.1.3 First integrals

The calculation of a �rst integral is a little bit simpler than a normal form one. In fact,
the program needs RAM space for the Hamiltonian and the �rst integral, and disk space
for the results as well as a temporary (binary) �le used to realify the �rst integral. In the
actual version of the program, the output �le is an ASCII �le, to be able to look directly at
the results using an standard text editor (like vi or emacs). In Table 6 we have included
the time and memory used for several runs of the program. Note that we have been using
a lower degree for the calculations. This is because the huge amount of disk space needed
to store the output in ASCII format. If one is interested in running to higher orders it
should be better to change the program in order to store the �rst integral in a binary �le

36



degree time RAM HD tmp. HD �nal
8 0.38 0.05 0.02 0.11

12 5.36 0.30 0.15 0.67

16 49.98 1.16 0.58 2.66

20 337.09 3.56 1.78 8.17

24 1800.57 9.15 4.58 20.99

Table 6: Time (in seconds) and memory (in megabytes) needed for the calculation of a
�rst integral. The column \HD tmp." only refers to the temporal (binary) �les, while the
column \HD �nal" only refers to the �nal (ASCII) �le.

(this is, in fact, very easy using the routines provided here). Then, the amount of disk
space is similar to the one used by the centre manifold program (see Table 5).

5.1.4 Changes of variables

Let us discuss the calculations needed to obtain the expansions for the changes of variables
corresponding to the normal form case. We will only focus on the direct changes, since
the inverse ones need (approximately) the same amount of memory and time.

As before, n will denote the degree of the expansion of the transformation. During
the computation of the direct change, we use one expansion up to degree n and three
homogeneous polynomials of degree n. In fact, we need polynomials of the type mp6s

for the transformation corresponding to the four �rst variables, and of the type mp6p for
the last two. As the polynomials of the type mp6s contain more monomials than the
corresponding ones of the type mp6p, we have done the memory estimations for the type
mp6s. They are summarized in Table 7.

A special case is the computation of the changes of variables corresponding to the
reduction to the centre manifold. In this case, we obtain six series, each one depending
on four variables (see Section 4.4), so the �nal amount of disk space is smaller than in
the normal form case. To estimate the maximum amount of disk space needed during the
execution, we note that this occurs during the reali�cation of the last couple of variables.
At this moment, we have four real series (of the type mp4s) written in the disk, and we
write a temporal �le with a complex series (of the type mp6p) corresponding to the last
couple of variables. From these observations, it is not di�cult to derive the �gures shown
in Table 7.

5.2 Speed

Finally let us discuss the optimality, according to the speed, of these routines. To start
the discussion, let us focus on the routine that multiplies homogeneous polynomials (see
Section 3): for each couple of monomials that we are multiplying we need to know the

37



degree time cvnf time cvcm RAM HD cvnf HD cvcm

8 1.11 1.32 0.06 0.07 0.03

12 24.24 29.36 0.29 0.43 0.17

16 272.46 330.22 1.05 1.72 0.63

20 1942.21 2340.47 3.01 5.30 1.90

24 10395.05 12644.89 7.31 13.64 4.80

Table 7: Time (in seconds) and memory (in megabytes) needed for the computation of
the changes of variables for the normal form (cvnf) and the centre manifold (cvcm).

exponents of them and the position to store the result. As every product is an unavoidable
operation (we recall that we are discussing the optimality of the implementation, not of
the algorithm), all the overhead of this implementation is due to the routines that look
for exponents and positions. In fact, if these routines use zero time, the product would
be optimal, since all the time spend by the product would correspond to the unavoidable
operations. This is also true for the other routines (Poisson brackets, power expansions,
etc.). For this reason we say that the optimality of the package is basically given by the
optimality of the routines of the �les mp6s.c, mp6p.c, etc. In order to quantify this, we
have done a run of the program nf using the pro�ling facilities of the compiler. The
results are shown in Table 8. Note that we must eliminate from this table the time used
by routine mcount, since it des not belong to our program (it has been introduced by the
pro�ler). Then, it is clear that the time taken by routines exll6s and llex6s is a little
bit less than 50% of the total time taken by the program. This implies that if we were
able to optimize these routines in order to reduce the time they take to almost zero, the
factor in the total gain in speed would be close to 2 (but not better!). Moreover, Table 8
gives precise information about the routines one must optimize to make the program run
faster.

Tables 5, 6 and 7 contain the time for several runs of the software. We stress that
those are approximate values: time has been taken from a single run of the program,
and the amount of RAM memory needed has been estimated form the size of the several
expansions used (you should increase these �gures a little bit to obtain the real amount
of memory used).

6 Error Control

A very important point is to know the numerical errors introduced in the coe�cients when
this huge amount of computations is performed. A �rst (heuristic) indication is given by
the size of the imaginary parts of the real normal forms, centre manifolds or �rst integrals
that are not zero due to the roundo� errors. It is very natural to take these values as zero
because they must vanish in an exact computation.

38



Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

40.15 51.96 51.96 269 193.16 347.79 papu6s

26.48 86.23 34.27 mcount

26.46 120.47 34.24 84136095 0.00 0.00 exll6s

6.02 128.26 7.79 55490539 0.00 0.00 llex6s

0.58 129.01 0.75 14 53.57 6737.27 traham

0.24 129.32 0.31 66 4.70 11.02 pph6s

0.04 129.37 0.05 14 3.57 3.95 cage

0.01 129.38 0.01 14 0.71 1.10 put0

0.01 129.39 0.01 1 10.00 747.48 exp_l5

0.01 129.40 0.01 1 10.00 54.09 reste

0.01 129.41 0.01 1 10.00 15.34 rnf6s

0.00 129.41 0.00 76062 0.00 0.00 kill_nf

0.00 129.41 0.00 38044 0.00 0.00 check_rlf

0.00 129.41 0.00 38032 0.00 0.00 prxk6s

0.00 129.41 0.00 1474 0.00 0.00 ntph6s

0.00 129.41 0.00 164 0.00 0.00 exll3

0.00 129.41 0.00 164 0.00 0.00 llex3

0.00 129.41 0.00 156 0.00 0.00 prxk3

0.00 129.41 0.00 26 0.00 0.00 ntph3

0.00 129.41 0.00 14 0.00 0.00 wpb6s

0.00 129.41 0.00 5 0.00 0.00 uneix

0.00 129.41 0.00 2 0.00 341.69 exrec

0.00 129.41 0.00 1 0.00 0.00 amp3

0.00 129.41 0.00 1 0.00 0.00 amp6s

0.00 129.41 0.00 1 0.00 0.00 ccvl5

0.00 129.41 0.00 1 0.00 0.00 imp3

0.00 129.41 0.00 1 0.00 0.00 imp6s

0.00 129.41 0.00 1 0.00 95140.00 main

0.00 129.41 0.00 1 0.00 94377.18 nf6s

0.00 129.41 0.00 1 0.00 0.00 wctl5

0.00 129.41 0.00 1 0.00 0.00 wcvl

0.00 129.41 0.00 1 0.00 0.00 wea3

Table 8: Output of the pro�ler for a run (up to degree 16) of the program nf. The �rst
column contains the percentage of the total running time of the program used by this
function and the fourth column contains the number of times this function is called. The
last column indicates the name of the function. We note that routine mcount do not
belong to our program but to the pro�ler.

39



Note that the testing methods discussed in Section 4.7 provide a rough idea of the
global amount of error we have accumulated in the computations. This should be enough
if we are only interested in numerical results, since this is typically the kind of output
obtained from classical numerical methods (think of the solution of an ode, pde or simply
the solution of a linear system). In fact, we are in a better position compared with other
numerical procedures, since we have a good checking procedure.

However, if one is interested in these methods to be used in a computer assisted proof,
we need a much better mechanism to control the error. This is the reason to introduce the
interval arithmetic. In what follows, we are going to focus on a normal form computation,
although the same ideas can be extended to the other examples considered here.

6.1 Interval arithmetic

In order to carry exact bounds on the error let us assume that, instead of a oating point
number, we have an interval such that it contains the number. To add two intervals, we
simply add the lower bounds of the interval using rounding toward �1, and we add the
upper bounds using rounding toward +1. In this way we ensure that the result of the
addition is contained in the �nal interval. The same ideas can be used to easily derive
the operations -, * and �.

The next step is to code e�ciently those routines. Fortunately, most of the actual
processors allow to the user to alter the rounding mode, to set a rounding toward �1 or
to the nearest (this is the default). To do this, many compilers and/or operating systems
have suitable functions in their libraries. Here we have used the corresponding routines
of the Linux operating system (with the compiler gcc from Gnu), running on an Intel
processor. The main disadvantages of this are that the memory requirements are doubled
and the execution time is much bigger. This last inconvenient is due to the architecture
of the processors, since when the rounding mode of the processor is changed, the pipeline
of the processor is re-started with the corresponding loss of performance.

As we have written all the code in C++, it is very easy to use the capacity of over-
loading the arithmetic operators to substitute the standard complex arithmetic by our
interval arithmetic (you can also use [41] if you want to avoid using C++). Then, it is not
di�cult to obtain the normal form but, instead of the coe�cients, we will obtain intervals
containing the exact values. This is what allows to derive computer assisted proofs. See
[10] and [36] to see concrete applications of these ideas.

6.2 An example with interval arithmetic

Here we have included the computation of the normal form around L5 for the RTBP using
interval artihmetic. The idea is to give a feeling about how these computations are.

In Table 9 we have included the normal form, using double precision interval arith-
metic, around the L5 point of the RTBP, for the mass parameter corresponding to the
Earth-Moon system. We have skipped the imaginary parts because they can be assumed

40



to be zero (this is one advantage of interval computations). It is interesting to compare
these results with the ones presented in Table 1.

First of all, note the big size of the intervals, specially for the highest degrees displayed.5

Of course, this does not prove that coe�cients in Table 1 contain big numerical errors,
but it suggests that we should check this more carefully. In order to do that, we can use a
higher precision arithmetic. In this case, we have taken the standard quadruple precision
arithmetic that it is contained in the libraries of many compilers (this concrete computa-
tion has been done on a Sun workstation). The results are displayed in Table 10. It is
interesting to compare this last table with Table 1: if we take the coe�cients in Table 10
as exact, we note that the error in the ones of Table 1 is of the order of the imaginary
part. This suggests an heuristic criterion to estimate the accuracy of this computation.

Now, it is clear the ampli�cation of errors that we have in this process. There are two
(standard) ways of overcome this phenomenon:

1. Intervalar arithmetic. Note that, although the intervals grow very fast, they are
still providing exact bounds for the coe�cients, that can be useful in order to derive
computer assisted proofs (they are going to be a much sharper bound than any
other estimation obtained by analytical methods).

2. Multiple precision arithmetic. This is the \brute force" solution, but it is valid in
several cases. The advantages are obvious, but one should note that, when dealing
with realistic problems, it is not always a feasible option (for instance, the mass
parameter corresponding to the Earth-Moon case is only known up to 10 or 11
digits, so there is no gain in using multiple precision).

Of course, in academic problems it is always possible to use a combination of both, to
derive very accurate coe�cients and/or very sharp estimates for them.

Concerning the normal form around L5 of the RTBP, let us add that the ampli�cation
of errors is bigger when the mass ratio � is smaller.

Finally, let us note that the routines for interval arithmetic and the extension for
quadruple precision are not included in the software.

7 Extensions

In this package we have only considered the case of autonomous Hamiltonians with three
degrees of freedom. It is not di�cult to extend the ideas and the routines presented
here to more degrees of freedom. For instance, to work with a four degrees of freedom
Hamiltonian system (without any symmetry) one only needs to write the basic routines of
the corresponding �le mp8.c, and to introduce minor modi�cations in the other routines.

If one is interested in the computation of normal forms around another objects, in
[32] it is explained (from a numerical point of view) the computation of the normal form

5We have not tried to optimize the algorithm to minimize the growing of the intervals. It is possible,
then, to obtain narrower intervals with a di�erent implementation.

41



lower bound upper bound

1 0 0 9.5450087346978552e-01 9.5450087346991741e-01

0 1 0 -2.9820811951634596e-01 -2.9820811951573489e-01

0 0 1 1.0000000000000000e+00 1.0000000000000000e+00

2 0 0 1.1568661303889360e-01 1.1568661401345537e-01

1 1 0 -1.7127952451731403e+00 -1.7127952303486182e+00

0 2 0 3.3855424323176919e-01 3.3855425662676453e-01

1 0 1 8.9130919836368838e-02 8.9130920112820977e-02

0 1 1 2.2531870640182916e-01 2.2531870757604811e-01

0 0 2 -2.2354591590257877e-03 -2.2354591074729147e-03

3 0 0 -2.9479121860441637e-01 -2.9478447589701773e-01

2 1 0 8.1656201621290165e+00 8.1657691558011720e+00

1 2 0 -5.4586913901624575e+02 -5.4586860598896601e+02

0 3 0 -5.1021371160130911e+01 -5.1021185629532283e+01

2 0 1 -4.3799836956028315e-01 -4.3799552187429924e-01

1 1 1 1.4116969490546651e+01 1.4116998940124972e+01

0 2 1 2.0186927381142823e+00 2.0187190572228246e+00

1 0 2 -5.5905224456048508e-02 -5.5904854484518651e-02

0 1 2 -1.7898271680742539e-01 -1.7898147963031263e-01

0 0 3 -5.1334316020434586e-05 -5.1317165340935330e-05

4 0 0 1.2677680341002997e+00 1.2873345241823699e+00

3 1 0 -3.5434024811722338e+01 -3.4703682770952582e+01

2 2 0 -5.4877274309542030e+04 -5.4872743283411488e+04

1 3 0 3.2220252371445298e+04 3.2226686164319515e+04

0 4 0 3.5177942440398037e+03 3.5192072384618223e+03

3 0 1 2.1707021092443028e+00 2.1811671985342400e+00

2 1 1 1.9986363951466046e+01 2.0216307091992348e+01

1 2 1 1.3647290105217136e+04 1.3647973048501415e+04

0 3 1 1.4506020027436316e+03 1.4508753202967346e+03

2 0 2 2.1927585054381780e+00 2.1948837131021719e+00

1 1 2 -4.9551211330863225e+01 -4.9529208559599283e+01

0 2 2 -1.0188391081203008e+01 -1.0169093839605921e+01

1 0 3 3.5386579632358917e-02 3.5564130055718124e-02

0 1 3 7.0933774363425073e-02 7.1488715816371950e-02

0 0 4 5.1925348264703075e-04 5.2452355219756441e-04

Table 9: Coe�cients of the normal form, for the Earth-Moon case, obtained using inter-
valar arithmetic. Only the real parts are presented.

42



real part imaginary part

1 0 0 0.9545008734698507e+00 0.0000000000000000e+00

0 1 0 -0.2982081195160388e+00 0.0000000000000000e+00

0 0 1 0.1000000000000000e+01 0.0000000000000000e+00

2 0 0 0.1156866135262217e+00 -0.1927100002836750e-32

1 1 0 -0.1712795237759768e+01 -0.8974646880952045e-32

0 2 0 0.3385542499303071e+00 -0.4812484744069060e-32

1 0 1 0.8913091997461692e-01 -0.4814824860968090e-33

0 1 1 0.2253187069890425e+00 -0.1155557966632342e-32

0 0 2 -0.2235459133244455e-02 0.0000000000000000e+00

3 0 0 -0.2947878472529007e+00 -0.1521362462732897e-29

2 1 0 0.8165694658984183e+01 0.1185016987263866e-28

1 2 0 -0.5458688725020474e+03 -0.1174332188770398e-28

0 3 0 -0.5102127839458834e+02 -0.1863024703269571e-28

2 0 1 -0.4379969457189379e+00 -0.1484998366081301e-30

1 1 1 0.1411698421534677e+02 0.3358157455523530e-29

0 2 1 0.2018705897693666e+01 -0.3811527650397076e-30

1 0 2 -0.5590503947042638e-01 0.1150165425481089e-30

0 1 2 -0.1789820982175625e+00 -0.5503192785483820e-31

0 0 3 -0.5132574067108261e-04 -0.1954016422742883e-32

4 0 0 0.1277551279966923e+01 0.6516229084136752e-27

3 1 0 -0.3506885376119049e+02 0.1930958293998747e-25

2 2 0 -0.5487500879622420e+05 0.1108578486500471e-24

1 3 0 0.3222346926821930e+05 0.1264834400557989e-24

0 4 0 0.3518500741321633e+04 -0.2977673781142404e-25

3 0 1 0.2175934654360213e+01 0.1498922726564656e-27

2 1 1 0.2010133553242287e+02 0.4112326735122740e-26

1 2 1 0.1364763157688629e+05 0.4301991684680189e-26

0 3 1 0.1450738661531158e+04 0.6827018990166253e-27

2 0 2 0.2193821109377304e+01 0.2410685221214210e-28

1 1 2 -0.4954020994411146e+02 0.1635601948530436e-27

0 2 2 -0.1017874245948335e+02 0.1985868172512715e-27

1 0 3 0.3547535485371232e-01 -0.4504667333242595e-30

0 1 3 0.7121124512960337e-01 0.9633349924466193e-29

0 0 4 0.5218885184995916e-03 0.1527174289047186e-30

Table 10: Coe�cients of the normal form, for the Earth-Moon case, obtained using
quadruple precision. The last column contains the imaginary parts of the coe�cients,
which should be zero.

43



around a periodic orbit of the spatial RTBP. The routines used there are based in the
methodology explained here.

The case in which the Hamiltonian depends on time can also be considered. For in-
stance, let us consider the Hamiltonian of the RTBP with a perturbation that depends
periodically on time. In this case, one can still use the routines here but one has to change
the basic arithmetic: now, the coe�cients of the monomials are going to be Fourier se-
ries. We can store Fourier series in complex form as polynomials of one variable, using
an array to put the coe�cients and using the place inside the array to know the corre-
sponding exponent (in this case one should say frequency instead of exponent). As the
relation between positions and frequencies is very easy and one does not need to write
any special function for this.6 Then, one needs to write the arithmetic routines (sums and
products) for these Fourier series and to use them instead of the complex arithmetic for
the coe�cients. Note that this can be easily done if you are using a C extension allowing
for overload of arithmetic operators, as C++ or SCC (see [41]) do. Finally, you have to
modify the input/output routines accordingly. This is what we have done in [28] or [50],
for the case of a periodically perturbed Hamiltonian system.

8 Acknowledgements

The techniques exposed here have been learned or developed with some colleages from the
Dynamical Systems Group at Barcelona (http://www.maia.ub.es/dsg). I am specially
indebted with Carles Sim�o for the fruitful discussions we have had about this subject. In
fact, my �rst algebraic manipulator (see [12]) started as an undergraduate project at the
University of Barcelona.

I want to thank R. de la Llave for suggesting this work, J. Villanueva for his remarks
and R. Broucke, A. Giorgilli and J. Henrard for some bibliographical comments. I also
want to acknowledge the hospitality of TICAM (University of Texas at Austin), where
this project started.

The �nancial support comes from the Spanish grant DGICYT PB94{0215, the EC
grant ERBCHRXCT940460, and the Catalan grant CIRIT 1996SGR{00105. This re-
search was also supported in part by the Institute for Mathematics and its Applications
(IMA), with funds provided by the National Science Foundation.

A Basics on Hamiltonian Mechanics

In this appendix we give the basic de�nitions and properties related to Hamiltonian
systems. The information presented here is biased towards the items needed in this

6This changes drastically when one has to deal with quasiperiodic time-dependent functions, because
the mapping between postions and frequencies is more complex. The main problem comes from the fact
that these series are usually a little bit \sparse" and it is very convenient to store only the meaningful
coe�cients, to save memory. This is used and discussed in [15] and [18].

44



paper. A more complete and rigorous presentation can be found in any textbook on this
subject (see, for instance, [2], [38] or, for a more formal approach, [1]).

To simplify the discussion, from now on we will assume (without explicit mention)
that all the functions that will appear here are analytic.

A.1 Basic de�nitions

A Hamiltonian system is a (continuous) dynamical system whose ow satis�es an ordinary
di�erential equation of the kind:

_q =
@H

@p
; _p = �@H

@q
: (16)

Variable p 2 R` is called momentum and variable q 2 R` is called position. The function
H � H(p; q; t) is called the Hamiltonian of the system (16), and equations (16) are known
as the Hamilton equations. Moreover, ` is known as the number of degrees of freedom of
the Hamiltonian H.

If we de�ne the matrix J as:

J =

 
0 I

�I 0

!
;

where I is the identity matrix `� `, then we can write equations (16) as:

_z = JrH(z); z = (q; p):

As J satis�es J> = �J , it de�nes a symplectic form7 !0 on R2` :

!0(u; v) = u>Jv; u; v 2 R2` :

A matrix M is said to be symplectic if it satis�es

M>JM = J:

A function f ,
f : R` � R` ! R

(p; q) 7! f(p; q)

is said to be a �rst integral of the Hamiltonian H if its surface levels are invariant by the
ow (16), this is, if f takes a constant value on each orbit of the system. It is immediate
to check that the function H is always a �rst integral of the Hamiltonian H.

The Poisson bracket of two functions f(p; q) and g(p; q) is de�ned as:

ff; gg = rf>Jrg = @f

@q

@g

@p
� @f

@p

@g

@q
:

7A symplectic form is a non degenerate bilinear skew symmetric form

45



It is not di�cult to show that, if f is a �rst integral of the Hamiltonian H, then it must
satisfy fH; fg = 0.

Two functions f(p; q) and g(p; q) are said to be in involution if their Poisson bracket
is zero,

ff; gg = 0:

The functions ffjg1�j�n are said to be independent on some open domain D if the vectors
frfjg1�j�n, de�ned on the domain D, are linearly independent on each point of the
domain.

In the next sections we will use the following property of the Poisson bracket: if Pr
and Qs are homogeneous polynomials of degree r and s respectively, then fPr; Qsg is an
homogeneous plynomial of degree r + s� 2.

In what follows, we will assume that all the Hamiltonians that will appear here are
autonomous (they do not depend on time) and with ` degrees of freedom.

A.2 Basic properties

Let us assume that a Hamiltonian system H has ` �rst independent integrals, ffjg1�j�`,
that are in involution. Let us de�neM0 as

M0 = f(p; q) : fj(p; q) = f
(0)

j ; j = 1; : : : ; `g:

Then, the well-known Liouville-Arnol'd theorem (see [2] or [5]) says that:

1. The manifoldM0 is invariant by the ow.

2. IfM0 is a compact connected manifold,8 then it is di�eomorphic to the ` dimensional
torus

T
` = f(�1; : : : ; �`)mod 2�g:

In this last case it is possible to introduce, by means of a change of variables (p; q) =
F (I; �) (I 2 R

` is the new momentum and � 2 T
` is the new position) the so-called

action-angle variables (I are the actions and � are the angles). In these variables the
Hamiltonian does not depend on the angles, H = H(I), so the equations of motion are of
the form

_I = 0; _� =
@H

@I
� !(I):

Note that these equations can be easily integrated:

I(t) = I0; �(t) = !(I0)t+ �0:

8Of course, there are other possibilities that we will not discuss here, since they will not be necessary
in this presentation.

46



If the values !(I0) � !0 are linearly independent over the rationals, each solution is a
dense quasiperiodic trajectory on a torus of dimension `. It is very common to use the
frequency vector to identify a concrete torus of the system. If the map

I 7! @H

@I
(I) � !(I)

is a di�eomorphism (between suitable domains), it is also possible to identify a torus by
the value of the action variable.

If hk; !0i = 0 for some k 2 Z
`, then the orbits on this torus are not dense: if there

are `i independent frequencies, the torus I = I0 contains a (` � `i)-parametric family of
`i dimensional tori, being each one densely �lled by any trajectory starting on it. These
tori of dimension `i are known as lower dimensional tori, while the tori of dimension ` are
called maximal dimensional ones.

A.3 Canonical transformations

Now let us consider the e�ect that the changes of variables have on Hamiltonian systems.
Let H(q; p) be a Hamiltonian function, and let us consider a change of variables (q; p) =
	(x; y). Note that the Hamilton equations obtained from the Hamiltonian H � 	 can
be di�erent from the equations obtained applying the transformation 	 to the Hamilton
equations related to H. When these di�erential equations coincide, it is said that the
transformation 	 preserves the Hamiltonian form.

A change of variables is called canonical when it preserves the Hamiltonian form (for
any Hamiltonian function). It is not di�cult to show a transformation is canonical if and
only if the di�erential of the change (on any point) is a symplectic matrix.

Canonical transformations are very useful both from the theoretical and the practical
points of view, since they allow to work on a single function (the Hamiltonian) instead of
a system of 2` di�erential equations.

Note that to produce canonical changes of variables is not an easy problem, since it
is very di�cult to impose that the di�erential be a symplectic matrix. Fortunately, there
exists several techniques to produce such transformations. The one that we will use here
is based on the following properties of the Hamiltonian ows:

1. Let �t(x; y) be the time t ow of a Hamiltonian system. Then, (q; p) = �t(x; y) is
a canonical transformation.

2. Let G(q; p) a Hamiltonian system with ` degrees of freedom, and let (q0(t); p0(t)) be
a solution of G. Then,

d

dt
f(q0(t); p0(t)) = ff;Gg (q0(t); p0(t)); (17)

for any smooth function f .

47



Now, it is not di�cult to see that to transform a Hamiltonian H by means of the time 1
ow of a Hamiltonian G, we can apply the formula

Ĥ � H + fH;Gg+ 1

2!
ffH;Gg ; Gg+ 1

3!
fffH;Gg ; Gg ; Gg+ � � � ; (18)

where Ĥ denotes the transformed Hamiltonian. This formula is deduced applying the
Taylor formula for the transformation and using (17) for the derivatives involved. The
Hamiltonian G is usually called the generating function of the change of variables.

The expression (18) is very suitable for e�ective computations, since it can be easily
implemented on a computer. Note that all the operations involved are very simple if we
are working with some kind of expansions (power expansions, Fourier expansions, etc.).
One can argue that the problem for this kind of transformation (for a practical point of
view) is that it is de�ned by an in�nite series. This is not a problem since we usually work
with a �nite truncation of these series. This will produce a high order approximation to
the results wanted that, in many cases, are good enough for pratical purposes. On the
other hand, it is possible to derive rigorous estimates on the size of this remainder so one
can obtain bounds on the error of the results obtained with the truncated series (see [43],
[28] or [32] for numerical examples of this).

A.4 Normal forms

We are going to restrict ourselves to the normal form around a �xed point of a Hamiltonian
system. For normal forms around more complex objects (like periodic orbits or invariant
tori), see [9], [30] or [31].

Let H be a real analytic Hamiltonian of ` degrees of freedom having an elliptic equilib-
rium point that, without loss of generality, we can assume that it is located at the origin.
The case in which the equilibrium is of the type \some centres" times \some saddles" will
be discussed later.

Let us start by expanding H in power series around the origin,

H(q; p) = H2(q; p) +H3(q; p) +H4(q; p) + � � � ; (19)

where Hj(q; p) is an homogeneous polynomial of degree j in the variables (q; p). Our
purpose is to perform (canonical) transformations in order to simplify as much as possible
this expansion. Ideally, one would like to remove completely all the Hj with j � 3
but we will see that this is, generically, impossible. What we will show here is that,
under some hypotheses, it is possible to remove the necessary terms to produce integrable
approximations to the dynamics.

In order to simplify the subsequent steps, it is very convenient to simplify H2(q; p).
Let A be the linearization of the Hamiltonian ow of H around the origin (i.e., A =
JrH2(0; 0)). As A is an elliptic matrix, we can reduced it to Â = C�1AC, being C a real

48



matrix and Â of the following form

Â =

0
BB@
Â1

. . .

Â`

1
CCA ;

where the elements outside the Âj are zero, and

Âj =

 
0 !j
�!j 0

!
; !j 2 R; j = 1; : : : ; `:

It is not di�cult to check that this change can be selected canonical. If we call (x; y) to
the new variables (x is the position and y the momentum), we want to note that the order
(\permutation") of these variables to achieve this form for Â is (x1; y1; x2; y2; : : : ; x`; y`).
In these coordinates, H2 takes the form

Ĥ2(x; y) =
X̀
j=1

!j

2

�
x2j + y2j

�
: (20)

In order to simplify the computations in the normal form process (basically, the com-
putations of generating functions), we will perform the following (linear and symplectic)
transformation:

xj =
qj +

p�1pjp
2

; yj =

p�1qj + pjp
2

; (21)

where we call (again) (q; p) to the new variables. In these variables, H2 takes the form

H2(q; p) =
X̀
j=1

p�1!jqjpj:

In what follows, we will denote ! = (!1; : : : ; !`), and we will assume that the values !j,
1 � j � `, are linearly independent over the rationals.

Let us assume that the initial expansion (19) has been rewritten in these variables,
and we want to apply a sequence of canonical transformations (based on the scheme (18)).
Let us start by trying to remove H3, by means of a generating function G3 that is also a
homogeneous polynomial of degree 3. From (18) it is immediate to see that the monomials
of degree 3 of the transformed Hamiltonian Ĥ obtained using a generating function G3

are given by
Ĥ3 = H3 + fH2; G3g :

Let us try to select a G3 such that Ĥ3 is zero. To this end, we introduce the following
notation: if z = (z1; : : : ; zn) and k = (k1; : : : ; kn) 2 Nn , we de�ne

zk = zk11 � � � zknn ; jkj = k1 + � � �+ kn:

49



Then, we write H3 and G3 as

H3(q; p) =
X

jkqj+jkpj=3

hkq;kpq
kqpkp; G3(q; p) =

X
jkqj+jkpj=3

gkq;kpq
kqpkp:

Next step is to solve the equation Ĥ3 = 0. Note that LH2
(�) = fH2; �g is a linear operator

in diagonal form, because

LH2
(qkqpkp) =

n
H2; q

kqpkp
o
=
p�1 hkp � kq; !i qkqpkp:

Note that this diagonal form is due to the complex coordinates introduced in (21). Now
it is very easy to �nd a G3 such that fH2; G3g = �H3:

G3(q; p) =
X

jkqj+jkpj=3

�hkq ;kpp�1 hkp � kq; !i
qkqpkp:

Of course, we need that the denominators hk; !i do not vanish for any k 2 Z` n f0g. As
jkqj+ jkpj = 3, this condition is automatically satis�ed if the components of the frequency
vector ! = (!1; : : : ; !`) are linearly independent over the rationals.

We rename the transformed Hamiltonian as H, that now takes the form

H(q; p) = H2(q; p) +H4(q; p) +H5(q; p) + � � � :

The next step is to look for a generating transformation G4 (a homogeneous polynomial
of degree 4), to remove the monomials of degree 4 from H. Note that this is not possible
in general, since LH2

has some zero eigenvalues:

LH2
(qkpk) =

n
H2; q

kpk
o
= 0:

Note that this never happens for monomials of odd degree. The monomials of the type
qkpk are usually called resonant monomials or unavoidable resonances. Hence, when we
try to solve the equation LH2

(G4) = �H4 we only can solve for the monomials of H4 of
the form qkqpkp, with kq 6= kp:

G4(q; p) =
X

jkqj+jkpj=4

kq 6=kp

�hkq ;kpp�1 hkp � kq; !i
qkqpkp:

With this change, H takes the form (we call again H to the transformed Hamiltonian)

H(q; p) = H2(q; p) + �H4(q; p) +H5(q; p) + � � � ; (22)

where
�H4 =

X
jkj=2

�hkq
kpk:

50



Fortunately, the monomials present in �H4 do not obstruct integrability: let us skip the
terms in (22) of order bigger than 4 (this is what we call the normal form of the initial
Hamiltonian (19) up to degree 4). Let us apply the canonical transformation

xj = I
1=2
j exp(

p�1�j); yj = �
p�1I1=2j exp(�p�1�j); j = 1; : : : ; `: (23)

so that the truncated Hamiltonian takes the form

H = H(I) = h!; Ii+H2(I); H2(I) =
X
jkj=2

�hkI
k; I = (I1; : : : ; I`):

This is now an integrable Hamiltonian, that gives an approximate description of the
dynamics around the equilibrium point. The equations of motion are

_I = 0; _� =
@H(I)

@I
= �!(I):

The solutions are I = I0 (that correspond to invariant tori) and � = �!(I0)t + �0, that is
a quasiperiodic ow on the torus.

Of course, the process of reduction to normal form can be done up to any �nite order.
Skipping the remainder and using (23) we obtain a Hamiltonian like

H = H(I) = h!; Ii+
NX
n=2

Hn(I):

A.4.1 On the convergence

Generically, the normal form reduction is a divergent process. The divergence is mainly
due to the e�ect of the divisors hk; !i that appear in the generating functions (in fact, it
is possible to have divergence even in the absence of small divisors, see [25]). In order to
control the size of these denominators, it is usual to ask for a Diophantine condition like

j hk; !i j > c

jkj ; k 2 Z n f0g;  > `� 1: (24)

This allows to derive estimates on the size of the remainder obtained when we stop the
normal form to some order N . Note that the set of ! such that condition (24) is not
satis�ed has Lebesgue measure O(c).

In fact, one may look at a normal form as a power expansion of a non-analytic C1

function at the origin. The power series is divergent but, if we stop the expansion to
some order N , the remainder behaves like O(RN+1), where R denotes the distance to the
origin. This last property is what makes these expansions useful.

A.5 Stability

Here we will explain some of the applications of the normal forms. Let us consider the
neighourhood of an elliptic equilibrium point (that we locate at the origin) of a ` > 1

51



degrees of freedom autonomous Hamiltonian system H(q; p). Consider an initial condition
close to the origin. We are interested in knowing if the corresponding trajectory will be
close to the origin for all times (stability in the sense of Lyapounov), or if it is going to
escape to a distance O(1) from the equilibrium point.

A.5.1 The Dirichlet theorem

This is a particular case in which the stability problem can be easily solved. Let us call
M to the Hessian matrix of the Hamiltonian at the origin (we recall that M is symmetric
and that r(q;p)H(0; 0) = 0). Assume that M is a positive de�nite matrix. Then, the
Dirichlet theorem says that origin is Lyapounov stable.

The proof is based on the fact that, close to the point, the level surfaces of the Hamil-
tonian are \like ellipsoids" having the origin inside (those manifolds are of codimension 1
so they split the phase space). Then, as they are invariant for the dynamics, they act as
a barrier that the trajectories starting near the point can not cross. Note that the same
argument holds if there exists a �rst integral, de�ned on a neighbourhood of the origin,
that is positive de�nite at (0; 0).

Unfortunately, there are many interesting cases where the matrix M is not positive
de�nite and, hence, we need a di�erent kind of results to study the stability.

A.5.2 KAM and Nekhoroshev theory

In the last section we have seen that, using a �nite number of steps of a normal form
scheme, we can put the Hamiltonian into the form

H(x; y) = H2(x; y) +
2NX
j=3

�Hj(x; y) +R2N (x; y):

Now, using condition (24) it is possible to derive estimates on the size of the remainder
R2N that are of the kind c1 exp(�c2(1=R)2=(+1)) (c1 > 0, c2 > 0). Here R denotes
the radius of the ball centreed at the origin on which we take the norm of R2N , and it
is assumed to be su�ciently small. This has been obtained optimizing the size of the
remainder with respect to the degree up to which the normal form is obtained, for each
value of R.

From this bound on the remainder, it is not di�cult to obtain lower bounds on the
di�usion time (i.e., the time to move away) around the point. For instance, if we call
T (R) to the time to go out from a ball of radius 2R starting in a ball of radius R, we have

T (R) � c3 exp

0
@c4

�
1

R

� 2
+1

1
A ;

being c3 and c4 positive constants. Of course, this is not a proof of stability but a
\bound on the unstability". This kind of estimates are what is usually called Nekhoroshev
estimates.

52



A second approach is to try to remove completely the remainder. This can not be done
using the normal form scheme we have explained in the previous sections, but it can be
done through a Newton method. This is a quadratically convergent iterative scheme, that
only converges on a Cantor set of the phase space. On this Cantor set, the trajectories
take place on invariant tori and, hence, they never go away from a vicinity of the point.
The Lebesgue measure of the complementary of this Cantor set can be bounded by a
quantity like c5 exp(�c6(1=R)2=(+1)), c5 > 0, c6 > 0. This kind of results belong to the
so-called KAM theory. To decide about the stability we must take into account the motion
outside the Cantor set of invariant tori. For instance, let us consider �rst the case ` = 2.
The phase space is four dimensional and, �xing the energy level H = h we restrict to a
three dimensional space. The invariant tori are of dimension 2 so they split the phase
space and, hence, this allows to conclude the Lyapounov stability of the elliptic point.
The case ` = 3 (or bigger) is much more di�cult. The reason is the following: �xing
the energy level produces a �ve dimensional invariant manifold and the invariant tori are
three dimensional so they do not split phase space and we can not conclude stability. In
fact, the stability of Hamiltonian systems with three or more degrees of freedom is today
an open question. The more accepted conjecture says that they are, generically, unstable
(see [3]). The unstability mechanism is usually known as Arnol'd di�usion.

It is outside the scope of this paper to give detailed explanations of these results. We
refer to books like [4] or [5] for a general explanation, and to [30] for more concrete results
around invariant objects (like elliptic points, periodic orbits or invariant tori).

A.6 Centre manifolds

Let us consider now a Hamiltonian with three degrees of freedom, in a neighbourhood of an
equilibrium point of the type centre�centre�saddle, that we will assume to be the origin.
Of course, this is an unstable equilibrium point but we are interested in the existence of
trajectories that remain close to the point for all times. If we consider the linearization
of the vector�eld at this point, and we skip the hyperbolic part, we obtain a couple of
harmonic oscillators. Hence, for the linearized vector�eld, we have a couple of families
of periodic orbits near the point, plus the quasiperiodic solutions obtained as product
of the two families of periodic orbits. These quasiperiodic solutions are sometimes called
Lissajous orbits. Let us consider now the e�ect of the nonlinear terms of the vector�eld on
these bounded solutions. Under generical conditions the well-known Lyapounov centre
theorem says that, for each linear (periodic) oscillation, there exists a one-parametric
family of periodic orbits of the complete Hamiltonian system that emanates from the
point in a tangent way to the linear family of oscillations. The limit frequency of these
periodic orbits at the �xed point is the frequency of the linear oscillations (for a proof
see, for instance, [42]). A similar result holds for the Lissajous orbits. Under general
hypotheses, it can be shown that these linear oscillations can be extended to the complete
system as a Cantorian family of invariant tori. Moreover, the measure of the gaps between
tori is exponentially small with the distance to the origin (for the proofs, see [30]).

To give a more accurate description of the dynamics around the point, let us apply

53



a normal form technique, as it has been done in previous sections. We start expanding
the Hamiltonian in power series around the point (as in (19)). Next we write the second
degree terms H2 in real coordinates such that

H2(x; y) = �x1y1 +
!2

2

�
x22 + y22

�
+
!3

2

�
x23 + y23

�
; (�; !2; !3) 2 R3 :

The coordinates x1, y1 are already in diagonal form, so we only need to complexify the
couples (x2; y2) and (x3; y3). Using the change (21) for these two couples we obtain

H2(q; p) = �q1p1 +
p�1!2q2p2 +

p�1!3q3p3:

Now we can start a normal form process as the one described in Section A.4 but, instead of
killing all the possible monomials, we will only kill the monomials such that the exponent
of q1 is di�erent from the exponent of p1 (for a di�erent killing criterion, see [46]). That
is, the generating function used to remove monomials of degree n will be of the form

X
kq1 6=kp1

�hkqkp
(kp1 � kq1)�+

p�1(kp2 � kq2)!2 +
p�1(kp3 � kq3)!3

:

As kq1 6= kp1, the denominators of the generating function are bounded from below and
this is the reason for which the normal form process diverges very slowly (like an harmonic
series, see [25]).

If we stop this scheme after a �nite number of steps, we obtain a Hamiltonian like

H(q; p) = HN(q1p1; q2; q3; p2; p3) +R(q; p):
Neglecting the remainderR (it is very small near the origin), we can de�ne I1 = q1p1 (this
is a canonical change if we de�ne properly the corresponding angle variable) to obtain a
HamiltonianHN(I1; q2; q3; p2; p3). Note that the equation corresponding to the variable I1
is _I1 = 0 so it is a �rst integral of the system. Selecting the value I1 = 0 we are restricting
the Hamiltonian HN to an invariant manifold that is tangent at the origin with the linear
central part of the system. This is the so called reduction to the centre manifold.

Once I1 has been replaced by 0, we have obtained a two degrees of freedom Hamiltonian
system Hc � HN(0; q2; q3; p2; p3), where the origin is an elliptic equilibrium point. It is
not di�cult to produce a qualitative description of the dynamics of Hc: the phase space
is four dimensional, so let us �x a energy level Hc = hc to reduce to a three dimensional
phase space. Now, Poincar�e sections are two dimensional and can be plotted easily.
Doing several plots for several values of hc one gets a description of the trajectories that
remain close to the origin. The dynamics of the initial Hamiltonian near the origin can
be obtained adding the hyperbolic part that we have skipped when reducing to the centre
manifold. See [26] or [27] for examples of this.

Although this reduction is divergent in general, we can apply KAM techniques to
show, under suitable hypotheses, the existence of a Cantorian centre manifold,9 completely
�lled up by invariant tori. The complementary of the measure of this manifold (in the
parameters space) decreases exponentially with the distance to the origin. See [30] for
more details.

9This manifold is parametrized by two parameters, and each parameter moves on a Cantor set.

54



A.7 First integrals

Again, let us consider the dynamics near an equilibrium point of a Hamiltonian system.
Now we are interested in producing �rst integrals of the motion. Of course, if the Hamil-
tonian is not integrable (this is, in fact, the general case) these integrals are not going to
exist but, as we will see, it is still possible to produce approximate �rst integrals that can
be useful for some applications.

To simplify the discussion, we will assume that the equilibrium point is at the origin
and that it is of elliptic type. The case in which some directions are hyperbolic can be
done in a very similar way.

As in the previous cases, let us assume that the Hamiltonian is expanded in power
series (as in (19)), with H2 in diagonal form (as in (20)). Let us denote by F the (wanted)
�rst integral, that we will expand in power series around the origin as F =

P
j�2 Fj, where

Fj denotes a homogeneous polynomial of degree j. From the condition fH;Fg = 0 it is
immediate to obtain the following recurrence:

fH2; Fng = �
nX

j=3

fHj; Fn�j+2g : (25)

Hence, due to the diagonal form of H2, it is very easy to solve Fn in terms of F2; : : : ; Fn�1,
assuming the standard non resonant conditions on the frequencies of the point.10 Then,
given a F2, we can compute the following terms F3, F4 and so on.

As usual, the series F =
P

j�2 Fj is divergent. However, from its asymptotic character
we can derive quasi-integrals of motion by simply truncating the series to �nite order. This
means that, if fn denotes a quasi-integral and (q(t); p(t)) is an orbit of the Hamiltonian
system H then,

_fn(q(t); p(t)) = fH; fng (q(t); p(t))
Bounding the Poisson bracket of this formula in a neighbourhood of the elliptic point one
can derive estimates on the di�usion time near the point. For an application of these
techniques, see [11]. See also [37] for an early construction of quasi-integrals.

B Linear normal form for the equilibrium points of

the RTBP

Let us start with a brief description of the so-called Restricted Three Body Problem
(RTBP). More details can be obtained in (almost) any textbook on Celestial Mechanics,
like [52].

Let us consider two punctual masses (usually called primaries) that attract each other
according to the gravitational Newton's law. Let us assume that they are moving in

10As it has been mentioned before, the operator LH2
(�) = fH2; �g is not bijective. Then it is possible

that, if the right hand side of (25) contains resonant monomials, this equation can not be solved. There
are several cases when it can be proved that such monomials never appear. See [11] for a discussion of
this.

55



circular orbits around their common centre of masses, and let us consider the motion
of an in�nitessimal particle (here, in�nitessimal means that its mass is so small that we
neglect the e�ect it has on the motion of the primaries and we only take into account the
e�ect of the primaries on the particle) under the attraction of the two primaries. The
study of the motion of the in�nitessimal particle is what is known as RTBP.

To simplify the equations of motion, let us take units of mass, length and time such
that the sum of masses of the primaries, the gravitational constant and the period of the
motion of the primaries is 1, 1 and 2� respectively. With these units the distance between
the primaries is also equal to 1. We denote as � the mass of the smallest primary (the
mass of the biggest is then 1� �), � 2 (0; 1

2
].

The system of reference is de�ned as follows: the origin is taken at the centre of masses
of the primaries, the X-axis points to the biggest primary (with this orientation), the Z-
axis points to the direction of the vector of angular motion of the primaries with respect
to their common centre of masses (it is perpendicular to the plane of motion) and the
Y -axis is de�ned such that we obtain an orthogonal, positive-oriented system of reference.
Note that we have de�ned a rotating system of reference, that is usually called synodic.
In this system, the primary of mass � is at the point (� � 1; 0; 0) and the one of mass
1� � is at (�; 0; 0).

De�ning momenta as PX = _X�Y , PY = _Y +X and PZ = _Z, the equations of motion
can be written in Hamiltonian form. The corresponding Hamiltonian function is

H =
1

2
(P 2

X + P 2
Y + P 2

Z) + Y PX �XPY � 1� �
r1
� �

r2
; (26)

being r21 = (X � �)2 + Y 2 + Z2 and r22 = (X � �+ 1)2 + Y 2 + Z2.
It is well-known that the system de�ned by (26) has �ve equilibrium points. Two of

them can be found as the third vertex of the two equilateral triangles that can be formed
using the two primaries as vertices (usually called L4;5 or Lagrangian points). The other
three lay on the X-axis and are usually called L1;2;3 or Eulerian points (see Figure 3).

In the next sections we will study the linear behaviour around these �ve equilibrium
points. We will obtain the linear normal form around them as well as the corresponding
(symplectic) changes of variables. These calculations are summarized in [14] and [15], and
here we give them in detail. They have been included for completeness.

B.1 The equilateral points

The equilibrium points L4 and L5 are located at (�� 1

2
;�

p
3

2
; 0), where the upper (\�")

sign is for L4 while the lower (\+") one is for L5. These points are known to be linearly

stable when the mass parameter � is less than the Routh critical value �R = 1

2

�
1�

q
23

27

�
�

0:03852. In what follows we will assume that our mass parameter is less than �R (the
interested reader should not have any problem to complete the opposite case).

The �rst step is to translate the origin of coordinates to the equilibrium point. This

56



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5

L1L2 L3

L5

L4

EM
� �� �

�

�

Figure 3: The �ve equilibrium points of the RTBP. The graphic corresponds to the Earth{
Moon case, � � 0:01215.

is done applying the (symplectic) change

X = x+ �� 1

2
; PX = px �

p
3

2
;

Y = y �
p
3

2
; PY = py + �� 1

2
;

Z = z; PZ = z;

to the Hamiltonian (26). As before, the upper sign is for the L4 case and the lower one for
the L5 case (this rule for the signs will be used along this section). To simplify notation,
we call again H to the Hamiltonian obtained,

H =
1

2
(p2x + p2y + p2z) + ypx � xpy +

�
1

2
� �

�
x�
p
3

2
y � 1� �

rPS
� �

rPJ
;

where r2PS = (x � xS)
2 + (y � yS)

2 + z2, r2PJ = (x � xJ)
2 + (y � yJ)

2 + z2, xS = 1=2,
yS = �p3=2, xJ = �1=2 and yJ = �p3=2. Note that (xS; yS; 0) are the coordinates of
the big primary in the new coordinates and that (xJ ; yJ ; 0) is the position of the small
one.11

The next step is to expand H around the origin. Note that, as the origin is an
equilibrium point, the �rst order terms must vanish (we simply don't care about the
constant value H(0), since it is irrelevant to the dynamics). The �rst non-trivial terms

11The subindices correspond to \Sun" and \Jupiter". They provide a classical example for the RTBP,
where the small particle can be an asteroid.

57



are of second order and they are responsible for the linear dynamics around the point.
They are

H2 =
1

2
(p2x + p2y + p2z) + ypx � xpy + 1

8
x2 � 5

8
y2 � axy + 1

2
z2;

where a = �3
p
3

4
(1� 2�). Note that the behaviour in the (z; pz) directions is uncoupled

of the behaviour in the (x; y; px; py) directions. Moreover, the motion on the z-axis corre-
sponds to an harmonic oscillator with frequency 1 (for all �), that it is already in (real)
normal form. Hence, we restrict ourselves to the (x; y; px; py)-plane:

H2 =
1

2
(p2x + p2y) + ypx � xpy + 1

8
x2 � 5

8
y2 � axy: (27)

Let us de�ne the 4� 4 matrix J as

J =

 
0 I2
�I2 0

!
;

where I2 denote the 2� 2 identity matrix. The equations of motion of (27) are given by
the linear system 0

BBB@
_x
_y
_px
_py

1
CCCA = JrH2 = JHess(H2)

0
BBB@

x

y

px
py

1
CCCA : (28)

An easy computation shows that the matrix M = JHess(H2) is given by

M =

0
BBB@

0 1 1 0
�1 0 0 1
�1

4
a 0 1

a 5

4
�1 0

1
CCCA : (29)

The characteristic polynomial is p(�) = �4 + �2 + 27

16
� a2. From this expression it is easy

to obtain that system (28) is stable if � � �R = 1

2

�
1�

q
23

27

�
(this is the so-called Routh

mass) and unstable if �r < � � 1

2
. As we are studying the case � < �R, we assume that

the solutions of p(�) = 0 are all purely imaginary, that is, �j = �!j
p�1, j = 1; 2. The

real values !j are the frequencies of the linear oscillations at the equilibrium points L4;5,
and it is trivial to show that they always di�er when 0 < � < �R. Let us call !1 the one
that satis�es !2

1 >
1

2
and !2 the one such that !2

2 <
1

2
. For the moment we do not specify

the sign we take for each frequency. These signs will be determined below.
Now we want to obtain a real (and symplectic) change of variables such that the

Hamiltonian (27) is reduced to its (real) normal form. The �rst step will be to look for
the eigenvectors of the matrixM given by (29). To simplify the computation, we wil take
advantage of the special form of this matrix. We denote by M� the matrix M � �I4, and
we de�ne the following splitting in 2� 2 blocks:

M� =

 
A� I2
B A�

!
; A� =

 
�� 1
�1 ��

!
; B =

 
�1

4
a

a 5

4

!
:

58



Here, � denotes one of the eigenvalues of the matrix M . The kernel of M� is now easy to
�nd: to solve  

A� I2
B A�

! 
w1

w2

!
=

 
0
0

!
;

we can start by solving (B � A2)w1 = 0 and then w2 = �Aw1 (note that the kernel of
(B �A2) is trivial to �nd since it is a 2� 2 matrix). In this way, we �nd the eigenvector
(2�+a; �2� 3

4
; �2+a�+ 3

4
; �3+ 5

4
�+a)>. Now, as the eigenvalues ofM satisfy � =

p�1!,
! 2 R, we obtain that the frequencies ! are determined by the equation

!4 � !2 +
27

16
� a2 = 0: (30)

We also apply � =
p�1! to the expression of the eigenvector and, separating real and

imaginary parts, we obtain that it can be expressed as u+
p�1v, where

u(!) =
�
a;�!2 � 3

4
;�!2 + 3

4
; a
�>

v(!) =
�
2!; 0; a!;�!3 + 5

4
!
�>

9>=
>; : (31)

We start considering the change of variables given by the matrix C = (u1; u2; v1; v2), where
uj and vj denote the values of u and v given by (31) corresponding to the frequencies
!j, j = 1; 2. For the moment we do not specify which sign is taken for each frequency.
In order to know whether C is simplectic or not, we check the property C>JC = J : a
tedious but not di�cult computation produces

C>JC =

 
0 D

�D 0

!
; D =

 
d(!1) 0
0 d(!2)

!
:

where d(!) = !(2!4 + 1

2
!2 � 3

4
). Of course, to derive this expression you need to use the

properties (30) and !2
1!

2
2 =

27

16
� a2. Note that the zeros obtained in C>JC and D were

expected, due to the way we have constructed C. The only question was to know whether
d were 1 or not. As it is not, we need to perform some scaling to the columns of C: let

us de�ne sj =
q
d(!j), j = 1; 2 and let us rede�ne C as (u1

s1
; u2
s2
; v1
s1
; v2
s2
). This matrix is

now symplectic, but we also want C to be real, that is, we want the values d(!j) to be
positive. This will determine the signs we must choose for the frequencies !j. As !

2
1 <

1

2
,

if one wants d(!1) > 0 is necessary to take !1 > 0 and, conversely, as !2
2 <

1

2
implies that

we must take !2 < 0 in order to have d(!2) > 0. Hence, the change we have obtained is
real, symplectic and it brings the Hamiltonian (27) into the real normal form

H2 =
!1

2
(x2 + p2x) +

!2

2
(y2 + p2y); (32)

where we recall that !1 > 0 and !2 < 0.
In the paper we have used a complex normal form for H2, because it allows to solve

the homological equation that determines the generating function (see Section A.4) in a

59



very easy way. Now it is not di�cult to derive the change that brings (32) into complex
normal form. We compose the complexifying change

x = q1+
p
�1p1p
2

;

px =
p
�1q1+p1p

2
;

y = q2+
p
�1p2p
2

;

py =
p
�1q2+p2p

2
;

with the above-de�ned matrix C to produce the �nal change used in the paper:

0
BBBBBB@

a
r1
+ 2!1

r1

p�1 2!1
r1

+ a
r1

p�1 a
r2
+ 2!2

r2

p�1 2!2
r2

+ a
r2

p�1
�!2

1
� 3

4

r1

�!2
1
� 3

4

r1

p�1 �!2
2
� 3

4

r2

�!2
2
� 3

4

r2

p�1
�!2

1
+ 3

4

r1
+ a!1

r1

p�1 a!1
r1

+
�!2

1
+ 3

4

r1

p�1 �!2
2
+ 3

4

r2
+ a!2

r2

p�1 a!2
r2

+
�!2

2
+ 3

4

r2

p�1
a
r1
+

�!3
1
+ 5

4
!1

r1

p�1 �!3
1
+ 5

4
!1

r1
+ a

r1

p�1 a
r2
+

�!3
2
+ 5

4
!2

r2

p�1 �!3
2
+ 5

4
!2

r2
+ a

r2

p�1

1
CCCCCCA
;

where

rj =

s
!j

�
4!4

j + !2
j �

3

2

�
; j = 1; 2:

Note that this matrix has been written assuming that the order of variables is for the
initial variables (x; y; px; py) and (q1; q2; p1; p2) for the �nal ones. In the implementation
of the software we have used the orders (x; px; y; py) and (q1; p1; q2; p2), that implies a
permutation on this matrix.

B.2 The collinear points

Let us de�ne, for j = 1; 2, j as the distance from the smallest primary (the one of mass
�) to the point Lj, and 3 as the distance from the biggest primary to L3. It is well-known
(see, for instance, [52]12) that j is the only positive solution of the Euler quintic equation,

5j � (3� �)4j + (3� 2�)3j � �2j � 2�j � � = 0; j = 1; 2;

5j + (2 + �)4j + (1 + 2�)3j � (1� �)2j � 2(1� �)j � (1� �) = 0; j = 3;

where the upper sign in the �rst equation is for L1 and the lower one for L2. These
equations can be solved numerically by the Newton method, using the starting point
(�=3)1=3 for the �rst equation (L1;2 cases), and 1� 7

12
� for the second one (L3 case).

Next step would be to translate the origin to the selected point Lj, as it has been done
for the triangular points. In this case, however, to have good numerical properties for the
coe�cients of the �nal expansions it is better to perform some scaling (see [39], [15], [23]).
As the scalings are not symplectic transformations, let us consider the following process:
�rst we write the di�erential equations related to (26) and then, on these equations, we

12Note that \our" L1 and L2 are swapped with respect to that reference. This lack of agreement for
the de�nition of L1;2 is rather common in the literature: usually, books on celestial mechanics use the
same notation as [52] but books on astrodynamics use the one we have used.

60



perform the following substitution

X = �jx + �+ �j;

Y = �jy;
Z = jz;

where the upper sign corresponds to L1;2, the lower one to L3 and �1 = �1 + 1, �2 =
�1 � 2 and �3 = 3. Note that the unit of distance is now the distance from the
equilibrium point to the closest primary. Finally, it is not di�cult to check that the
di�erential equations obtained can be rewritten in Hamiltonian form, with Hamiltonian

HLj =
1

2

�
p2x + p2y + p2z

�
+ ypx � xpy �

X
n�2

cn(�)�
nPn

 
x

�

!
;

where �2 = x2 + y2 + z2, Pn is the Legendre polynomial of degree n and the coe�cients
cn(�) are given by

cn(�) =
1

3j

 
(�1)n�+ (�1)n (1� �)

n+1
j

(1� j)n+1

!
; j = 1; 2

cn(�) =
(�1)n
3j

 
1� �+ �n+1

j

(1 + j)n+1

!
; j = 3:

As usual, in the �rst equation, the upper sign is for L1 and the lower one for L2.
The linearization around the equilibrium point is given by the second order terms

(linear terms must vanish) of the Hamiltonian that, after some rearranging, takes the
form,

H2 =
1

2

�
p2x + p2y

�
+ ypx � xpy � c2x2 + c2

2
y2 +

1

2
p2z +

c2

2
z2: (33)

It is not di�cult to derive intervals for the values of c2 when � 2 [0; 1
2
] (see Figure 4). As

c2 > 0 (for the three collinear points), the vertical direction is an harmonic oscillator with
frequency !2 =

p
c2. In what follows, we will focus on the planar directions, i.e.,

H2 =
1

2

�
p2x + p2y

�
+ ypx � xpy � c2x2 + c2

2
y2; (34)

where, for simplicity, we keep the name H2 for the Hamiltonian.
Now, we will proceed as in Section B.1. Let us de�ne the matrix M as JHess(H2),

M =

0
BBB@

0 1 1 0
�1 0 0 1
2c2 0 0 1
0 �c2 �1 0

1
CCCA : (35)

The characteristic polynomial is p(�) = �4 + (2� c2)�2 + (1 + c2 � 2c22). Calling � = �2,
we have that the roots of p(�) = 0 are given by

�1 =
c2 � 2�

q
9c22 � 8c2

2
; �2 =

c2 � 2 +
q
9c22 � 8c2

2
:

61



1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5

L1

L2

L3

Figure 4: Values of c2(�), � 2 [0; 1
2
], for the cases L1;2;3.

As � > 0, we have that c2 > 1 that forces �1 < 0 and �2 > 0. This shows that the
equilibrium point is a centre�centre�saddle. Thus, let us de�ne !1 as

p��1 and �1
as
p
�2. For the moment, we do not specify the sign taken for each value (this will be

discussed later on).
Now, as we did in the previous section, we want to �nd a symplectic linear change of

variables casting (34) into its real normal form and, hence, we will look for the eigenvectors
of matrix (35). As usual, we will take advantage of the special form of this matrix: if we
denote by M� the matrix M � �I4, then

M� =

 
A� I2
B A�

!
; A� =

 
�� 1
�1 ��

!
; B =

 
2c2 0
0 �c2

!
:

Now, the kernel of M� can be found using the same tricks as in the previous section:
denoting as (w>1 ; w

>
2 )

> the elements of the kernel, we start solving (B � A2)w1 = 0 and
then w2 = �Aw1. Thus, the eigenvectors of M are given by (2�; �2 � 2c2 � 1; �2 + 2c2 +
1; �3 + (1� 2c2)�)

>, where � denotes the eigenvalues.
Let us start considering the eigenvectors related to !1. From p(�) = 0, we obtain that

!1 veri�es
!4
1 � (2� c2)!2

1 + (1 + c2 � 2c22) = 0:

We also apply � =
p�1!1 to the expression of the eigenvector and, separating real and

imaginary parts as u!1 +
p�1v!1 we obtain

u!1 = (0;�!2
1 � 2c2 � 1;�!2

1 + 2c2 + 1; 0)>;

v!1 = (2!1; 0; 0;�!3
1 + (1� 2c2)!1)

>:

62



Now, let us consider the eigenvalues related to ��1,

u+�1 = (2�; �2 � 2c2 � 1; �2 + 2c2 + 1; �3 + (1� 2c2)�)
>;

v��1 = (�2�; �2 � 2c2 � 1; �2 + 2c2 + 1;��3 � (1� 2c2)�)
>:

We consider, initially, the change of variables C = (u+�1; u!1; v��1 ; v!1). To know whether
this matrix is symplectic or not, we check C>JC = J . It is a tedious computation to see
that

C>JC =

 
0 D

�D 0

!
; D =

 
d�1 0
0 d!1

!
:

This implies that we need to apply some scaling on the columns of C in order to have a
symplectic change. The scaling is given by the factors

d�1 = 2�1((4 + 3c2)�
2
1 + 4 + 5c2 � 6c22); d!1 = !1((4 + 3c2)!

2
1 � 4� 5c2 + 6c22):

Thus, we de�ne s1 =
q
d�1 and s2 =

q
d!1 . As we want the change to be real, we have

to ask d�1 > 0 and d!1 > 0. It is not di�cult to check that this condition is satis�ed for
0 < � � 1

2
in all the points L1;2;3, if �1 > 0 and !1 > 0.

To obtain the �nal change, we have to take into account the vertical direction (z; pz):
to put it into real normal form we use the substitution

z 7! 1p
!2

z; pz 7!
p
!2pz:

This implies that the �nal change is given by the symplectic matrix

C =

0
BBBBBBBBBBB@

2�
s1

0 0 �2�
s1

2!1
s2

0
�2�2c2�1

s1

�!21�2c2�1

s2
0 �2�2c2�1

s1
0 0

0 0 1p
!2

0 0 0
�2+2c2+1

s1

�!21+2c2+1

s2
0 �2+2c2+1

s1
0 0

�3+(1�2c2)�

s1
0 0 ��3�(1�2c2)�

s1

�!31+(1�2c2)!1
s2

0

0 0 0 0 0
p
!2

1
CCCCCCCCCCCA

Finally, to produce the change that brings (33) into its complex normal form, we compose
C with the same complexi�cation as in the previous section.

To end this section, let us remark that here we have used the order (x; y; z; px; py; pz)
for the variables, while in the programs we have used the order (x; px; y; py; z; pz). Of
course, this implies a permutation on this matrix.

References

[1] Abraham R.H., Marsden J.E.: Foundations of Mechanics (2nd edition), Benjamin
(1978).

63



[2] Arnol'd V.I.: Mathematical Methods of Classical Mechanics, Springer-Verlag, New
York (1978).

[3] Arnol'd V. I.: Instability of dynamical systems with several degrees of freedom, Sov.
Math. Dokl. 5:3 (1964), pp. 581{585.

[4] Arnol'd V.I., Avez A.: Ergodic Properties of Classical Mechanics, Benjamin, New
York (1968).

[5] Arnol'd V.I., Kozlov V.V., Neishtadt A.I: Dynamical Systems III, Springer-Verlag
(1988).

[6] Broucke R.: A Fortran-based Poisson series processor and its applications in celestial

mechanics, Celestial Mechanics 45 (1989), pp. 255{265.

[7] Broucke R., Garthwaite K.: A programming system for analytical series expansions

on a computer, Celestial Mechanics 1 (1969), pp. 271{284.

[8] Brumberg V.A., Tarasevich S.V., Vasiliev N.N.: Specialized celestial mechanics sys-

tems for symbolic manipulation, Celestial Mechanics 45 (1989), pp. 149{162.

[9] Bruno A.D.: Local Methods in Nonlinear Di�erential Equations, Springer-Verlag
(1979).

[10] Celletti A., Chierchia L.: Construction of analytic KAM surfaces and e�ective sta-

bility bounds, Commun. Math. Phys. 118 (1988), pp 119{161.

[11] Celletti A., Giorgilli A.: On the stability of the Lagrangian points in the spatial

Restricted Three Body Problem, Celestial Mechanics 50 (1991), pp. 31{58.

[12] D��ez C., Jorba A., Sim�o C.: A dynamical equivalent to the equilateral libration points

of the Earth-Moon system, Celestial Mechanics 50 (1991), pp. 13{29.

[13] Giorgilli A.: A computer program for integrals of motion, Comp. Phys. Comm. 16
(1979), pp. 331{343.

[14] Giorgilli A., Delshams A., Fontich E., Galgani L., Sim�o C.: E�ective stability for

a Hamiltonian system near an elliptic equilibrium point, with an application to the

Restricted Three Body Problem, J. Di�erential Equations 77:1 (1989), pp. 167{198.

[15] G�omez G., Jorba A., Masdemont J., Sim�o C.: Study Re�nement of Semi-Analytical
Halo Orbit Theory, ESOC Contract 8625/89/D/MD(SC), Final Report (1991).

[16] G�omez G., Jorba A., Masdemont J., Sim�o C.: A quasiperiodic solution as a substitute

of L4 in the Earth-Moon system, in Proceedings of the 3rd International Symposium
on Spacecraft Flight Dynamics, ESA Publications Division, ESTEC, Noordwijk, Hol-
land (1991), pp. 35{41.

[17] G�omez G., Jorba A., Masdemont J., Sim�o C.: A dynamical systems approach for the

analysis of the SOHO mission, in Proceedings of the 3rd International Symposium on
Spacecraft Flight Dynamics, ESA Publications Division, ESTEC, Noordwijk, Hol-
land (1991), pp. 449{454.

64



[18] G�omez G., Jorba A., Masdemont J., Sim�o C.: Study of Poincar�e Maps for Orbits
near Lagrangian Points, ESOC Contract 9711/91/D/IM(SC), Final Report (1993).

[19] G�omez G., Jorba A., Masdemont J., Sim�o C.: Study of the transfer from the Earth

to a halo orbit around the equilibrium point L1, Celestial Mechanics 56 (1993), pp.
541{562.

[20] G�omez G., Jorba A., Masdemont J., Sim�o C.: Study of the transfer between halo

orbits in the solar system, Advances in the Astronautical Sciences 84 (1993), pp.
623{637.

[21] G�omez G., Llibre J., Mart��nez R., Sim�o C.: Station Keeping of Libration Point
Orbits, ESOC Contract 5684/83/D/JS(SC), Final Report (1985).

[22] G�omez G., Llibre J., Mart��nez R., Sim�o C.: Study on Orbits near the Triangular
Libration Points in the Perturbed Restricted Three-Body Problem, ESOC Contract
6139/84/D/JS(SC), Final Report (1987).

[23] G�omez G., Masdemont J., Sim�o C.: Lissajous orbits around Halo orbits, preprint
(1997).

[24] Henrard J.: A survey of Poisson series processors, Celestial Mechanics 45 (1989),
pp. 245{253.

[25] Jorba A., Llave R.: Regularity properties of center manifolds and applications, in
preparation.

[26] Jorba A., Masdemont J.: Nonlinear dynamics in an extended neighbourhood of the

translunar equilibrium point, in Hamiltonian Systems with Three or More Degrees of
Freedom, Plenum Press (to appear).

[27] Jorba A., Masdemont J.: Dynamics in the center manifold of the collinear points of

the Restricted Three Body Problem, preprint (1998).

[28] Jorba A., Sim�o C.: E�ective stability for periodically perturbed Hamiltonian systems,
in Hamiltonian Mechanics, Ed. J. Seimenis, Plenum Press, New York (1994), pp.
245{252.

[29] Jorba A., Villanueva J.: E�ective stability around periodic orbits of the spatial RTBP,
in Hamiltonian Systems with Three or more Degrees of Freedom, Plenum Press (to
appear).

[30] Jorba A., Villanueva J.: On the normal behaviour of partially elliptic lower dimen-

sional tori of Hamiltonian systems, Nonlinearity 10 (1997), pp. 783{822.

[31] Jorba A., Villanueva J.: On the persistence of lower dimensional invariant tori under

quasiperiodic perturbations. Journal of Nonlinear Science 7 (1997) pp. 427{473.

[32] Jorba A., Villanueva J.: Numerical computation of normal forms around some peri-

odic orbits of the Restricted Three Body Problem, to appear in Physica D.

[33] Kernighan B., Ritchie D: The C Programming Language (second edition), Prentice
Hall, Englewood Cli�s, New Jersey (1988).

65



[34] Laskar J.: Manipulation des series, in D. Benest et C. Froeschl�e (editors): Modern
Methods in Celestial Mechanics, Editions Fronti�eres (1990).

[35] Llave R., Marco, J. M., Moriy�on, R.: Canonical perturbation theory of Anosov sys-

tems and regularity results for the Liv�sic cohomology equation, Ann. of Math. (2),
123(3) (1986) pp. 537{611.

[36] Llave R., Rana D.: Accurate strategies for small denominator problems, Bull. Amer.
Math. Soc. 22 (1990), pp. 85{90.

[37] Marchal C.: The quasi integrals, Celestial Mechanics 21 (1980), pp. 183{191.

[38] Meyer K. R., Hall G. R.: Introduction to Hamiltonian Dynamical Systems and the
N-Body Problem, Springer-Verlag (1992).

[39] Richardson, D. L.: A note on a Lagrangian formulation for motion about the collinear

points, Celestial Mechanics 22 (1980), pp. 231{236.

[40] Ricklefs R., Je�erys W., Broucke R.: A general precompiler for algebraic manipula-

tion, Celestial Mechanics 29 (1983), pp. 179{190.

[41] Schelter, W.: SCC: An extension of Ansi C. It can be retrieved by anonymous ftp
from ftp.math.utexas.edu:/pub, �le scc.tar.gz.

[42] Siegel C.L., Moser J.: Lectures on Celestial Mechanics, Springer-Verlag (1971).

[43] Sim�o C.: Estabilitat de sistemes hamiltonians, Mem. de la Real Acad. de Ciencias y
Artes de Barcelona, Vol. XLVIII, no. 7 (1989).

[44] Sim�o C.: Analytical and numerical computation of invariant manifolds, in D. Ben-
est et C. Froeschl�e (editors): Modern Methods in Celestial Mechanics, Editions
Fronti�eres (1990), pp. 285-330.

[45] Sim�o C.: Averaging under fast quasiperiodic forcing, in J. Seimenis (editor): Hamil-
tonian Mechanics, Integrability and Chaotic Behaviour, vol. 331 of NATO Adv. Sci.
Inst. Ser. B Phys. Plenum Press, New York (1994), pp. 13{34.

[46] Sim�o C.: E�ective computations in Hamiltonian dynamics, in Cent ans apr�es les
M�ethodes Nouvelles de H. Poincar�e, Soci�et�e Math�ematique de France (1996), pp.
1{23.

[47] Sim�o C.: E�ective computations in celestial mechanics and astrodynamics, lectures
given at CISM Course on Modern Methods of Analytical Mechanics and their Ap-
plications, Udine, Italy (1997).

[48] Sim�o C.: High precision numerical experiments of the splitting of separatrices for

area preserving maps: Re�ned formulae and evidence of resurgence, preprint (1998).

[49] Sim�o C.: Methods of computation of invariant tori in Celestial Mechanics. Applica-

tions to the motion of small bodies, to appear in A. Roy (editor): Proc. NATO ASI:
The Dynamics of Small Bodies in the Solar System.

66



[50] Sim�o C., G�omez G., Jorba A., Masdemont J.: The bicircular model near the trian-

gular libration points of the RTBP, in A.E. Roy and B.A. Steves (editors): From
Newton to Chaos, Plenum Press, New York (1995), pp. 343{370.

[51] Stroustrup B: The C++ Programming Language (second edition), Addison Wesley,
Reading, Massachusetts (1992).

[52] Szebehely V.: Theory of Orbits, Academic Press (1967).

67


