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Abstract

This paper deals with the effective computation of normal forms, centre mani-
folds and first integrals in Hamiltonian mechanics. These kind of calculations are
very useful since they allow, for instance, to give explicit estimates on the diffu-
sion time or to compute invariant tori. The approach presented here is based on
using algebraic manipulation for the formal series but taking numerical coefficients
for them. This, jointly with a very efficient implementation of the software, allows
big savings in both memory and execution time of the algorithms if we compare
with the use of commercial algebraic manipulators. The algorithms are presented
jointly with their C/C++ implementations, and they are applied to some concrete
examples coming from celestial mechanics.
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1 Introduction

The importance of invariant objects in understanding the phase space of a dynamical
system is well-known since Poincaré. Invariant objects are not only interesting by them-
selves but also because they organize the flow nearby. Despite its importance, there are
not many numerical methods to compute such objects. The aim of this paper is to explain
some techniques that can help to perform some of these computations, in the particular
case in which the system is Hamiltonian. As we will see, many topics can be extended
to general (analytic) systems and also to discrete dynamical systems. Among the several
possible approaches, we have chosen methods based on the computation of (truncated)
normal forms and (approximated) first integrals. Truncated normal forms are very useful
since they provide, under suitable hypotheses, integrable approximations to the dynamics.
The integrable character allows to explicitly give all the invariant objects (like tori) in
the phase space. If the normal form approximates the true dynamics, then the invariant
objects of the initial system are also approximated accordingly (for examples of this, see
[29], [50], [32]). Approximated first integrals are quantities that are almost preserved
by the flow of the system. This means that their surface levels are almost invariant by
the flow. This property can be used to obtain information about some aspects of the
dynamics. For instance, if one is able to estimate the corresponding remainders, then it
is not difficult to bound the diffusion velocity around elliptic fixed points (for a numerical
example, see [11]).

One of the main problems faced when considering these kind of computations is how
“to store” the object in the computer. The easiest case is the computation of a single
trajectory, that can be stored as a sequence of points in the phase space. Note that,
when the invariant object has bigger dimension, it can be very difficult (usually, it is
impossible) to store it by simply storing a net of points. The approach taken here is to
use some kind of series expansion (like a power or Fourier expansions, or a combination
of both) to represent the object. The advantage is that in many cases only “a few” terms
of these series are needed to get a good accuracy and that they can be handled very
easily. As disadvantages we note that sometimes they have convergence problems making
impossible to represent the object in this way. Due to the particularities of the problems
considered here we will only focus on the use of power expansions. You can find examples
with trigonometric expansions in [27] and [23]. For a general discussion, see [44] and [49].

Sometimes, when only a qualitative description of the dynamics is needed, it is enough
to use a low order computation (this is the typical situation encountered, for instance,
in the analysis of a bifurcation). This is not the case considered here. The methodology
presented in this paper is directed to produce high order computations, with a high degree
of accuracy, ready for use in many practical applications. This necessity usually comes
from the applications of the dynamical systems theory to real problems, like the design
and analysis of trajectories for some spacecrafts (see [21], [22], [12], [15], [16], [17], [18],
[19], [20] and [47]). We also want to mention that, sometimes in academical problems,
one needs to perform very accurate computations. In this direction we refer, as examples,
to [45] and [48], where the computation (by means of formal expansions) of exponentially



small quantities is considered.

Hence, the first point addressed is how to build an efficient algebraic manipulator (in
a quite efficient language like C or C++) in order to handle these expansions in a very
fast way, and using as little memory as possible. Then, as an application, we will use
these routines to study some aspects of the Restricted Three Body Problem (RTBP).
More concretely, we will show how to use these techniques to describe the dynamics near
the five equilibrium points of the RTBP. The paper also discusses related topics like error
analysis (including the use of interval arithmetic), efficiency (both from the memory and
speed points of view) and some possible extensions (more variables, time dependence,
etc.) to these routines. The source code for (almost) all the algorithms explained here
can be retrieved from the web server http://www.maia.ub.es/dsg, in the “preprints and
publications” section.

In this work we have made extensive use of the particularities of Hamiltonian systems,
so many of the algorithms explained here can not be used outside of this environment.
However, the methodology we use to build algebraic manipulators is very general and can
be applied in a lot of different contexts. To facilitate the reading, in Appendix A we have
included a summary of the main concepts and properties of Hamiltonian system:s.

In the next sections we summarize a few problems to justify the necessity of this
kind of computations. Of course, there are many other applications of these tools (both
practical and theoretical) beyond the ones presented here. We have selected a few simple
ones to have concrete problems to work with, and to be able to give concrete results. We
hope that the interested reader will not have problems in applying these ideas to similar
problems in other fields.

In order to simplify the exposition, we restrict ourselves to analytic and autonomous
Hamiltonian systems with three degrees of freedom (3DOF), having a fixed point at the
origin. In Section 7 we will discuss possible extensions to more general contexts.

1.1 Examples

Now let us give a few problems where classical numerical methods (i.e., numerical inte-
grations of single trajectories) are not enough to give a good answer. They will be used as
examples along this paper. As it has been mentioned before, we assume some knowledge
of Hamiltonian mechanics.

1.1.1 Dynamics near an elliptic equilibrium point

Let us assume that we are interested in the dynamics near an elliptic equilibrium point
(that, for simplicity, we will locate at the origin) of a three degrees of freedom Hamiltonian
system. Note that, as the phase space is of dimension six, it is very difficult to get a
“picture” of the dynamics using numerical integration of single trajectories.

Assume we are able to rewrite the initial Hamiltonian H as

H = H, + H,, (1)



where Hj is an integrable Hamiltonian (so, in this case, the phase space is completely
foliated by invariant tori) and H; is a non integrable one. Then, if H; is small enough
near the point, the trajectories corresponding to Hy are close to the trajectories of H
(at least for moderate time spans). Hence, from the integrable character of Hy it is not
difficult to obtain approximations for the invariant tori of H. The effect that H; has on
the solutions of Hj is discussed in Appendix A. Essentially one has that, near the origin,
most of the tori of Hy are not destroyed by H; but only slightly deformed. However, it
is generally accepted that H; can create some trajectories that escape from any small
vicinity of the origin, making this point unstable. This phenomenon is usually called
diffusion, and it was first noticed by V.I. Arnol’d in [3].

Let us assume that we are also interested in estimates of the diffusion time near the
origin. Note that computational effort needed to do this by single numerical integration
is too big that it can not be considered a feasible option: the big number of trajectories
one has to consider plus the huge time interval of integration (this also introduces the
problem of accumulation of rounding errors) for each one makes this calculation impossible
for present computers. An alternative procedure can be the following: let us assume that
we are able to rewrite the initial Hamiltonian H asin (1). As Hj is integrable, the diffusion
present in H must come from H;. Hence, one can easily derive bounds for the diffusion
time in terms of the size of H;. Of course, in order to produce realistic diffusion times one
needs to have H; as small as it can be. A standard way of producing the splitting (1) is
by means of a normal form calculation: Hj is the normal form and H; the corresponding
remainder (see [14] and also [43] and [28]).

There are alternative ways of estimating the diffusion time near elliptic equilibrium
points. For instance, one can construct approximate first integrals near the point and
estimate the “drift” of these integrals. Of course, although one can use as many first
integrals as degrees of freedom, it is enough to use a single positive-definite integral (near
the point, its level surfaces split the phase space in two connected components so they
act as a barrier to the diffusion).

We want to note that although from the theoretical point of view both approaches are
equivalent (the first integrals we compute are in fact the action variables of the normal
form), from the computational point of view they behave differently. We will see this in
detail later on.

1.1.2 Dynamics in a centre manifold

Let us consider a 3DOF Hamiltonian system with an equilibrium point at the origin.
Assume that the linear flow around this point is of the type centrexcentrexsaddle.

We are interested in finding a description of the dynamics in a neighbourhood (as big
as possible) of the origin. One possibility is to perform the so-called reduction to the
centre manifold. That is, to perform changes of variables in order to uncouple (up to
some finite order) the hyperbolic behaviour from the centre one (one can look at this as
a partial normal form). Hence, the restriction of the Hamiltonian to this (approximate)
centre manifold will be a 2DOF Hamiltonian system. So, selecting an energy level H = h



and doing a suitable Poincaré section we can produce a collection of 2-D plots that can
give a good description of the dynamics. This was first used in [15] (see also [26]).

1.2 Methodology

Here we will present the methodology we use to deal with those computations, based
on the use of algebraic manipulators. There are several possible schemes, depending on
the kind of calculation we are interested in. For instance, if the procedure only needs
to substitute trigonometric series in the nonlinear terms of the equations (like in the
Lindstedt-Poincaré method, see [15], [23] and [26]), one of the best choices is to look
for a recurrent expression of those nonlinear terms (the substitution is simply done by
inserting the series into the recurrence). In this paper, we will apply schemes that work
with the power expansion of the Hamiltonian (when the system is not Hamiltonian, one
must work with the differential equations —or with the equations of the map if the system
is discrete— but, of course, this increases the computational effort). So a general scheme
for the problems considered here is the following:

1. Power expansion of the Hamiltonian around the origin.

2. Complexification of the Hamiltonian. This is not a necessary step but, as we will
see, it allows to simplify further computations.

3. Changes of variables (usually by means of Poisson brackets), up to some finite order.

4. Realification of the final Hamiltonian. Again, this is not a necessary step. It is done
only to reduce the size of the resulting series.

5. Computation of the change of variables that goes from the initial Hamiltonian to
the final one.

So, one needs computer routines for all these steps. A natural way of handling the power
expansions is as a sequence of homogeneous polynomials:

H:ZHka

k>2

where Hj is an homogeneous polynomial of degree k. So one of the most important
problems will be to deal with homogeneous polynomials of several variables. As we will
see, the bottleneck (according to speed) of the methods exposed here is given by the speed
we can manage homogeneous polynomials.

1.3 Previous computer packages

There are several computer packages that, in principle, are able to deal with the com-
putations mentioned here. Among the commercial software may be the most well-known
packages are Maple and Mathematica. They have the advantage of being very general
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packages (they can deal with much more problems than the ones exposed here) but, on the
other hand, they are not very efficient (both in time and memory) in each concrete case.
So if one is interested in low order computations (sometimes this is enough in academic
problems) they can be considered as a valid option. But if one wants to reach high orders,
commercial packages are not competitive at all. In this case one has to go to software
very adapted to the particularities of the problem to take advantage of them. This is the
line we have followed in this work. In fact, it is possible to write even faster routines (see
Section 5) but then the code is, in our opinion, more obscure. In some cases (especially
when you take into account the developping —and debugging— time), the gain in speed is
not big enough to justify the loss of clarity. Anyway, we hope the reader interested in this
point will not have problems in modifying the software.

There are some other packages similar to this one in the literature. In fact, there is a
long tradition in the Celestial Mechanics field about building algebraic manipulators. We
cite, among others, [13], [24], [7], [6], [40], [8] and [34] (see also references therein). These
works are directed to concrete problems of Celestial Mechanics and are very efficient when
dealing with them.

1.4 Programming considerations

The programming language used here is ANSI C, except when we have had to use complex
numbers. In this case we have used the capability of C++ to overload the arithmetic
operators with the complex operations. It is not strictly necessary to know C or C++
to read this paper but, to see the details of the implementation of the algorithms, it is
necessary to look at the source code. Details about C and C+4 programming can be
found in the standard references [33] and [51].

If the reader does not have (and does not want to have) a C++ compiler, it is not
difficult (but tedious) to rewrite these operations in order to have an ANSI C source code.
Another interesting possiblity is to use the SCC package (see [41]). This is, essentially, a
preprocessor that allows to define new operations and overload with them the standard
arithmetic operators (in a similar way that C++ does). SCC translates this code into C,
to be processed by a standard C compiler.

It is not difficult to use these algorithms in other languages. In fact, the first version
of these routines was written in Fortran 77. The main advantage (in our opinion) that
C gives in this problems is the dynamic allocation of memory and the use of structures.
In Fortran 77 one has to set some parameters before compiling in order to declare big
enough arrays, to have room for the expansions as well as working space.

The paper is structured as follows: Sections 2 and 3 give the details on the alge-
braic manipulators, Section 4 is devoted to some applications of this software to concrete
problems, Section 5 discuss the efficiency of these methods as well as some improvements
to them. Section 6 contains some remarks about the propagation of the rounding er-
rors. Finally, Section 7 points out some extensions to these methods to be used in more
complex problems (for instance, when the Hamiltonian depends on time in a periodic or
quasiperiodic way). We have added a couple of Appendices in order to make the paper self



contained: Appendix A contains a short description of the properties of Hamiltonian sys-
tems used here and Appendix B contains a basic description of the Restricted Three Body
Problem, as well as some properties that are used in the applications. We have included
these appendices because we are not aware of similar summaries in the literature.

2 Basic Tools

In this section we will describe the basic algorithms and routines used to handle homoge-
neous polynomials. This is the most important part of the package. In what follows, to
simplify the notation, we will assume that the set of the natural numbers, N, contains 0.

2.1 Storing and retrieving monomials

Let us assume that we want to store an homogeneous polynomial P, of degree n, with 6
variables (zo, ..., x5),

k
P, = Z Pk,
keN®
|k|=n
k ko

where we use the notation 2% = 2f°... 2% and |k| = ko + - -- + k5. For the moment we
assume that all the coefficients py, are different from zero. Let us define ¢g(n) = #{k €
N° such that |k| = n} (that is, ©6(n) denotes the number of monomials of P,).

To store the polynomial we use an array of tg(n) components (the kind of array
depends on the kind of coefficients of the polynomial), and we use the position (index)
of a coefficient inside the vector to know the monomial it corresponds to. To this end we
will construct a function (let us call it 11ex6) that, given a place inside the array (that
is, an integer between 0 and tg(n) — 1) it returns the multiindex that corresponds to this
coefficient. Of course we need the inverse function (we call it ex116) to know where to
store a given monomial.

Before going into the details of these functions, we want to stress that they are the
most important ones: if they are efficient, the package will be efficient. This will be
discussed in Section 5.2.

Let us go back to the software. In order to have a fast implementation, we use
an integer array (we assume here that every integer is four bytes long) to store some
information to be used by function 1lex6. This array has 1s(n) components and each
one contains (encoded) the multiindex of the corresponding coefficient. We use this array
in the obvious way: each time we need to know the exponent of the monomial whose
coefficient is stored in the place j of the homogeneous polynomial, we get it from the
component j of this array.

The way of encoding the multiindex £ is the following: as we know the degree we
are working with, one of the exponents (say k¢) is redundant, so we only need to store
ki,...,ks. This has to be stored inside a 32 bits number, so we can use 6 bits for each
index, leaving 2 unused. This introduces the restriction k; < 64. As we want to handle
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homogeneous polynomials the maximum degree allowed is 63, more than enough for the
applications done here.

2.2 The routines

Here we go into the details of the basic routines of the manipulator. Their source code is
stored in the file mp6.c. As these routines are the most important ones, we will discuss
them more carefully. For portability reasons, in the heading of several files we redefine
the standard type int as integer. This is because the first version of these routines was
developed in an old 286 machine (where ints were 2 bytes long) and it was run on a HP
workstation (ints were 4 bytes long). So, if we work with the type integer we can control
the kind of integers used (simply by redefinig this type). Of course, this is not relevant
for present (1997) computers.

Headings of the file mp6.c

Here we have placed the declarations of three variables that must be accessible by all the
routines in this file. They are named nor, clmo and psi, and are initialized by routine
imp6. Their meaning is explained in the next sections.

Routine imp6

This routine has to be called before using any other routine in the package, because it
allocates and initializes some internal arrays to store the encoded multiindices. The only
parameter of this routine is an integer (nr) that contains the maximum degree we want
to use. This value is stored in the variable nor.

Before continuing, let us define the function ¢;(n) as

Yi(n) = #{k € N’ such that |k| = n},

that can be easily evaluated by means of the recurrence
= . n+i—1
wtn =3 vet) = (T, )
=0

The routine starts doing a couple of checks to verify that we are calling it with a
suitable degree and that the integer type of the machine (or compiler) is long enough.

The first step is to allocate space to store the values of the function ;(j). At this
moment we only need to know s but we will also compute v, . .., 15 (they will be needed
later on). To this end we allocate a rectangular matrix psi with the first index ranging
from 2 to 6 and the second one from 0 to nor. Then, the values ;(j) are computed (using
the recurrence given in (2)) and stored in the position (i, j) of the matrix psi.

Next step is to allocate space for the table clmo. The first dimension of this table
ranges from 0 to nor, and it refers to the degree of the homogeneous polynomials. If the
first index is ¢, the second index ranges from 0 to ¢(i) —1 = psi[6] [i] —1. The position
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(¢,7) of this array is the encoded version of the multiindex of the monomial number j
of a polynomial of degree . Once this table has been allocated, we have to fill it with
the information about the multiindices. First of all we define an order inside the set of
multiindices of a given degree: Let k be a multiindex of degree n and let us define k as
the integer number (in base n + 1) kskykskokiko (for instance, if k = (1,2,3,4,5,6) then
k = 654321). Then, the order is given by

EV < k@ o k() < (@),

This is usually called reverse lexicographic order. Now, for a given degree i, we compute
all the multiindices according to this order and we store them in the table clmo: the first
one for degree i is (1,0,0,0,0,0), and all the others are generated by routine prxké (see
below). We store the components of each multiindex in the corresponding place of clmo,
using 6 bits for each component: this means that the coded version of the multiindex is
(note that we do not code k¢ because, as we know the degree, it is redundant)

ki + Ky x 25 + k3 x 212 4 ky x 2% + k5 x 224, (3)

This is the value we will store in clmo[i] [j1, where we have assumed that j stands for
the place of the multiindex (and the monomial) inside this order.

Finally, the routine returns the amount of memory (in Kbytes) used by these tables.
It is up to the calling routine to print this value.

Routine amp6

It frees the memory allocated by imp6. Of course, once it has been called the manipulator
can not be used until a new call to imp6 has been done.

Routine 11lex6

Given a place 11loc and a degree no, it computes the multiindex corresponding to them.
The way it works is very straightforward because the multiindex is contained (encoded) in
clmo [no] [11oc], and to decode it we only need to invert (3) using the modulus function.
An improvement for this routine consists in directly extracting the corresponding bits
from clmo[no] [11loc].

Routine ex116

Given a multiindex k of degree no (this is redundant information but it is very useful to
avoid calling these routines in a wrong way), it returns the corresponding place. So, this
is the inverse of 11ex6. The implementation of this routine can be done in many ways.
Let us see the one we have used here. Let us denote by k = (ko, ..., ks) the multiindex
and let n be ko + - - - + ks. Define k©®) as (ko, ..., ks) and let ns = n — ks be the degree of
k®). Then, if we are able to compute
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1. the number of multiindices ({y, ..., ¢s) of 6 variables with degree n such that 0 <
65 < k5,

2. the place it corresponds to k() among the multiindices of 5 variables of degree ns,

then, the sum of these two quantitites is the place we are looking for. The first of these
numbers is ¥5(ns + 1) + -+ - + ¢5(n), and can be easily obtained from the table psi.
The second one is the same problem we want to solve, but with one dimension less, so
we can apply again the same procedure until we reach dimension 2 (this corresponds to
polynomials of two variables), where the solution of the problem becomes obvious. An
improvement for this routine is to use auxiliar tables to reduce these integer computations.

Routine ntph6

This routine returns the number of monomials of a given degree (this information is
contained in the array psi).

Routine prxk6

It is used to produce all the multiindices of a given order, according to the order we are
using. For more details, we refer to the source code.

2.3 Taking advantage of symmetries

It is quite common in physical examples to have some kind of symmetry in the Hamilto-
nian. For instance, in the examples used in this paper we have a symmetry with respect
to the variable z (see (4) and Appendix B). This implies that not all the possible mono-
mials of the power expansion of the Hamiltonian are really present. In the examples used
here we have that, if 7 is the exponent of z and j the exponent of p,, the only monomials
that appear in the expansion are the ones in which 7 + j is even. Hence, taking this into
account it is possible to reduce the amount of memory used and the computing time by
an approximate factor of two.

In order to exploit the symmetry we have developped special versions of the routines
of Section 2.2. The source code is stored in the files mp6s.c and mp6p.c.

File mp6s.c contains the same routines as mp6.c (but with an “s” at the end of the
name, to be able to use them in the same program if necessary), but assuming that the
only monomials present are the ones that satisfy that k4 + k5 is even. As they work in a
very similar way, we only mention the main differences:

imp6s Function ¢4(n) is not longer valid to compute the number of monomials, because
of the symmetry. The number of monomials for a given degree n is now given by

[3]

w3

(27 + 1)tba(n — 2j),
§=0

where [3] denotes the integer part of n/2.
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ex116s To have a simple formula for the position corresponding to a given index, we
have changed the order used for the monomials: we first use the reverse lexicografic
order for the exponents (ky, k5) and, in second place, the reverse lexicographic order
for the exponents (ko, k1, k2, k3). This is usally called product reverse lexicographic
order. It allows to easily derive a closed formula for the position (see the source
code).

prxk6s It is changed in order to produce the exponents in the product reverse lexico-
graphic order defined above.

File mp6p . ¢ contains the same routines as mp6s . c, but with a different symmetry: here
it is assumed that all the monomials that are present satisfy that k4 + k5 is odd (this kind
of symmetry will appear in some computations, see Section 4.4). The implementation is
almost identical to the one of mp6s.c, so we do not add further remarks.

In fact, as the examples considered in this paper have the above mentioned simmetry,
we do not make use of the routines in mp6.c. We have included them for the sake of
completeness, and because they are the most natural ones to start describing how these
kind of routines work.

Finally, let us note that if the symmetries are “too complex” to derive closed formulas
for the routines ex11, one can always perform a binary search on the array clmo. In this
case, it is very convenient to use an order such that the integer values stored in clmo are
sorted as integer numbers. Although this is not as efficient as a closed formula, it can be
easily applied in all the cases.

2.4 Different number of variables

As the examples in this paper are three degrees of freedom Hamiltonian systems, the basic
routines explained here handle polynomials with six variables. If one is interested in a
different number of variables, it is not difficult to build the corresponding basic routines.
For instance, in Section 4.1.3 we need to handle the normal form of a 3DOF Hamiltonian
system, that depends on 3 variables. To this end it is very easy to write the corresponding
routines, using the same algorithms as for six variables. We have put those routines in
file mp3.c, Note that this file is, essentially, a minor modification of file mp6.c. In a
similar way we have derived the routines of mp4s.c and mp4p.c, that are needed during
the reduction to the centre manifold (see Section 4.3).

3 Handling Homogeneous Polynomials

The routines of this section are contained in the files basop6s.cc and basop6sp.cc. Note
that we have several versions of some of them, in order to deal with polynomials with
different symmetries. As before, we recommend to give a look at the source code, since
it will clarify (we hope!) our explanations.
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3.1 Sums and products

Let p1 and p2 be two arrays containing (the coefficients of) homogeneous polynomials of
degrees g1 and g2.

Let us assume that both polynomials are of the same degree and that we want to add
them, storing the result in an array called p3. If we call nm the number of monomials of
one of these polynomials (this is the value returned by a routine like ntph6), then the
sum is easily computed:

for (i=0; i<nm; i++) p3[i]l=pil[il+p2[il;

Here we have assumed that we have defined the operation + for the type of the coefficients
of the polynomial: if they are double variables one does not need to do anything special
since they are already defined in any C compiler. If they are of complex! type, we assume
that we are working in C4++ or that we are using a C extension able to overload the
arithmetic operators (like [41]) with the complex operations. If the coefficients are more
sophisticated types, we assume that we have the corresponding arithmetic, as well as a
way of overload the arithmetic operators.

Note that, in a similar way, it is very easy to implement the product of a complex
number by a polynomial, so we avoid any comment on that.

Let us see the product of homogeneous polynomials (now we are not assuming that p1
and p2 have the same degree). The algorithm is very straightforward and uses the rutines
explained in Section 2: Let us call ny and ny the number of monomials of each polynomial
pl and p2. Then, to multiply the monomial number ¢ of p1 with the monomial number
j of p2 we only have to compute the corresponding multiindices £ and kU, to ask for
the position where the coefficient of the monomial £ + k) must be stored, and to add
there the product of the coefficients. Doing this for all the possible values of 7 and j we
obtain the desired product. You can give a look at the source code for more details.

3.2 Poisson bracket

The Poisson bracket of two homogeneous polynomials can be implemented using the same
ideas as the product. The algorithm we have used is based on the following identity:

k, ¢ K0 & ' / $k+k,yl+l’
> ety Y aw eyt = D preaw e | D (ki — ki) ———— |,
kot

K0 kLK 0 j=1 TiYj

where, of course, k, ¢, k' and ¢ belong to N3>. Thus, for any term of this sum, we
proceed as in the product of homogeneous polynomials: we look first for the exponents of
the monomials involved, then we compute the exponents of the resulting monomials and,
finally, in the position corresponding to those monomials, we add the resulting coefficients.
For more details, look at the source code.

!Unless otherwise specified, complex means a structure with two members of type double: the real
and the imaginary part
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3.3 Input and output

We have coded several routines in order to read and write power expansions and homoge-
neous polynomials (both in ASCIT and binary format). We are not providing a complete
set of routines to handle all the possible situations, but we simply give the ones needed
in the examples. As we have mentioned before, our intention is to show that they can be
written very easily and we hope that the interested reader will not have any problem in
coding any similar routine.

You will see that there are a lot of different routines, each one for a different purpose.
Although it is not difficult to write a common front-end for all of them we have not
done so. The main reason is that the aim of this paper is not to give an easy-to-use
library of functions but to show how to build such a library. Hence, we have avoided any
construction that hides the inner working of the routines.

3.3.1 ASCII files

There are several routines to read and write homogeneous polynomials and series. The
format is very easy: for each coefficient, we compute the corresponding exponents and we
write the exponents followed by the value of the coefficient. We use a single line for each
coefficient.

There are several sets of routines for the different kind of series (mp6s, mp6p, real or
complex coefficients, etc.). Some of the routines use a threshold to decide if a monomial
has to be written or not (if the absolute value of the coefficient is smaller than the
threshold, the monomial is not written).

The advantage of ASCII files is that they can be printed and read by an ordinary
text editor. The main disadvantage is that they are very big and that they are written
and read very slowly. Hence, they are only used to write the final results and to store
intermediate values during the developping/debugging stages.

3.3.2 Binary files

This format is used to store intermediate calculations or series that are only used as an
input for other programs (like the changes of variables).

The routines that write homogeneous polynomials simply write (sequentially) all the
coefficients in the file, without storing the exponents of the corresponding monomials.
The reading routine will read all the coefficients in a row, without any checking (except,
of course, the end of file), and they will be stored sequentially in the corresponding array.
Each coefficient is then identified by its position inside the file. This is to minimize the
size of the file and to maximize the speed at which the file is handled.

The routines that write series simply write sequentially the homogeneous polynomials,
adding a little bit of information to the file according to the kind of series stored. This
extra information is put at the beginning and consist of four integer values, with the
following meaning;:

1. The first integer contains the number of variables of the expansion.
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2. The second integer contains the kind of simmetry of the expansion. This value can
be:

0: No symmetry. All the monomials are present in the file.

1: Symmetry of ’s’ kind: all the monomials such that the sum of the exponents
of the last two variables is odd are missing.

2: Symmetry of 'p’ kind: all the monomials such that the sum of the exponents
of the last two variables is even are missing.

3. The third integer is the initial degree of the expansion (usually, it is 1 or 2).
4. The fourth integer is the final degree of the expansion.

The reading routine checks this information and gives the corresponding error messages
when necessary. Note that there is nothing indicating the kind of coefficients of the stored
series. It is up to the user to take this into account.

Of course, writting in this way assumes that the reading routine will use the same
algebraic manipulator as the writting routine, since the exponent of a monomial is known
from the position of the monomial inside the series. You have to take this into account if
you modify these routines.

4 Examples

In this section we are going to apply these routines to perform some practical computations
on a concrete model. For this purpose we have selected the well-known Restricted Three
Body Problem (RTBP), near one of the five equilibrium points L, 5 of the system. For
a basic description of this problem, see Appendix B.

4.1 Example I: Normal form

The Hamiltonian H of the RTBP, in suitable adimensional units and with the origin at
Ls, takes the form

TF Y~ - 4
2 rps TPy @)

1 1 V3 1—p

H = 5 (pz +p, +p2) +yp: — apy + (5 —u)

where r%g = (v — x5)? + (y —ys)> + 2%, 1%, = (v —27)% + (y — ys)? + 2%, 25 = 1/2,
ys = FV3/2, x; = —1/2 and y; = F/3/2. The “~7" sign is for L, while “+” is for Ls.
The mass ratio is taken below the Routh critical value, so the origin is linearly stable.
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4.1.1 Complexification and power expansion

The first step is to produce a power expansion of (4) up to a finite order N,

N
H=) H,
n=2

where H, denotes a homogeneous polynomial (in six variables) of degree n. To describe
how to produce such expansion, let us focus first on the term 1/rpg of (4). Naming ¢ the
angle between (zg,ys,0) and (z,y, ), and being p? = ? + y? + 2% one has

1 1

= = " P, (cos ),
rps /1 —2pcosi + p? ;::Up n(cos )

where P, is the Legendre polynomial of degree n. Let us define A, as p"P,(cos) (note
that A, is an homogeneous polynomial of degree n). Then, from the well-known recurrence
of the Legendre polynomials one obtains

2nj_r11 (z2s + yys)An — — _T: .
starting with Ay = 1 and A; = xxg + yys. Note that this recurrence can be easily
implemented using a routine that multiplies homogeneous polynomials. Moreover, as the
computational effort is not very high and it is numerically stable, this recurrence is very
suitable for a practical computation. Of course, the expansion of 1/rp; can be done in
the same way, and the remaining terms of (4) can be added directly to the sum of these
two expansions.

Before continuing, let us make a very important remark. As the first step is to put
H, in normal form (see Section B.1), and this is done by a linear change of variables, we
can insert this change of variables directly into the recurrence (5), in order to produce
the expansion with this first change already done. This is much better than to compose
the change with the final expansion. Note that the real normal form of H, is

(2% 4+ y° + 25 A, 1, (5)

An+1 =

1
= @4 p2) + 2P ) + S (P 4D,

2 2 2

where we have kept the same notation for the variables and we have used that the fre-
quency in the vertical direction is always 1 (for all ). In order to facilitate the computa-
tion of the generating function, it is very convenient to “diagonalize” H, (see Section A.4
for more details). This can be done by a (complexifying) change of variables:

P T i RN Ve U g )
\/5 ) x \/i )
and similar expressions for the other variables. So, we compose this change with the first

one to obtain a (complex and symplectic) linear change of variables that brings the initial
H, into the normal form

Hy =/ —1wiqip1 + vV —1waqaps + vV —1gsps. (7)

H,
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This is, in fact, the change inserted into the recurrence (5) to produce the expansion in
these variables.

The routines that perform this expansion are contained in the file exp-15.cc. Let us
give a short description of them.

ccvl5 It computes the change of variables that put the initial Hs into the final normal
form (7). This change is derived in Section B.1.

exp_15 This is the main routine for the expansion of the Hamiltonian. It calls exrec and
reste.

exrec This routine performs one of the recurrences (5). It is called twice by exp-15 (first
to expand 1/rpgs and then 1/rp;).

reste This routine computes the terms in (4) that are neither 1/rpg nor 1/rp;.

4.1.2 The normal form

The next step is the computation of the normal form. We use Lie series, since they are
very suitable to perform explicit computations. More details on this method are contained
in Sections A.3 and A.4, and here we will only focus on the implementation. The main
properties of the Poisson bracket used here are that it is bilinear and that, if P, and
()s are homogeneous polynomials of degrees r and s respectively, then {P.,Qs} is an
homogeneous polynomial of degree r + s — 2.

The computation is done in several steps, one for each degree. Let us explain the
first of these steps. We want to compute a generating function G5 (an homogeneous
polynomial of degree 3) such that the transformed Hamiltonian

H’:H+{H,G3}+%{{H,Gg},Gg}Jr%{{{H,Gg},Gg},Ga}Jr"'a (8)

has no terms of degree 3. Using that H = Hy + H3 + H, + - - - one obtains that the terms
of degree 3 of the transformed Hamiltonian H' are

Hé — H3 —|— {HQ, Gg} .

Hence, we ask H} = 0. This equation is easily solved, because Hs is of the form (7): let
us denote by k? the three indices of k£ that correspond to the variable ¢ and by kP the
ones of p. The expressions of H3 and G3 can be written as

Hy= > hig"p",  G3=" kg™ p".
|k|=3 |k|=3

Hence, assuming that the frequencies w = (w1, ws, 1) of Hy are rationally independent, it
is not difficult to obtain the coefficients g% of Gj:

b —hj
B = T (ke — ke, )
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As in this case |k| is odd, the denominator (kP — k7, w) is never zero. When |k| is even
one must consider the case k? = k? (note that, as the components of w are rationally
independent, this is the only possiblity to produce a zero divisor). This implies that this
monomial can not be elliminated and then we select the corresponding g5 equal to zero.
Of course, if one wants to perform the normal form up to degree N, it is enough to ask
(k,w) # 0 when 0 < |k| < N. If this condition is not satisfied we can still perform
a resonant normal form, that is, we can elliminate all the monomials except the ones
for which (k,w) = 0 (usually called resonant monomials). Even when the frequencies
are rationally independent, some of the denominators (k,w) can be very small, reducing
drastically the domain where these transformations are valid. In this case is also possible
to leave those monomials in the normal form, in order to keep a reasonable size for the
domain of convergence (note that then the normal form will not be integrable, see [43]
for a discussion of this technique).

Once the generating function has been computed, we can use (8) to compute the
transformed Hamiltonian. Let us see the implementation we have used for this formula.
Assume we are working with an expansion of H up to degree N:

H=Hy+Hy+-+ Hy_, + Hy,

and, for instance, we want to transform it using as a generating function an homogeneous
polynomial G5 of degree 3. To save memory, the result will be stored in the same space
used for H. To give the idea, let us write explicitly the firsts steps of the method:

step 1.1 Hy < Hy +{Hy_1,G35}

step 2.1 Hy_1 < Hy_1+{Hn_2,G3}

step 2.2 Hy <+ Hy + % {{Hy 2,G3},G3}

step 3.1 Hy o+ Hy o+ {Hy_3,G3}

step 3.2 Hy_y < Hy_i + 5 {{Hn_3,G5},Gs}
step 3.3 Hy < Hy + 5 {{{Hn_3,G3},G3} ,Gs}

Note that the Poisson bracket done in step 2.1 can be re-used to compute step 2.2, the
one in 3.1 can be used in 3.2 and this last one in 3.3, and so on. In this way, we are
minimizing the number of arithmetic operations (each Poisson bracket is done only once),
we can work on the initial Hamiltonian (the parts of it that are overwritten are not needed
in further steps) and the need of working space is not very big: we need working space
for two homogeneous polynomial of degree N in the worst case (one is used to store the
Poisson bracket done in i.j-1 to be used in i.j, the other one is to compute the next
Poisson bracket). This has been implemented in routine traham (see below).

The routines for these algorithms are contained in file nf6s.cc. Let us give a short
description of them:
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nf6s The main routine for the computation of the normal form. It assumes that the
initial Hamiltonian H, is in diagonal form. The routine gets the frequencies w from
the corresponding places of Hy and, for each degree, it computes the generating
function of the change of variables (see cage) and transforms the Hamiltonian (see
traham). The generating function is written in a binary file, degree by degree. As
this is not considered a series but a sequence of different generating functions, no
heading is added to the file (this heading was explained in Section 3.3.2).

cage Computes the generating function corresponding to a given degree. One of the
parameters is a pointer to a function that, given the exponents of the monomial,
returns 1 if the monomial has to be removed from the normal form, and 0 otherwise.
This is done in this way in order to facilitate to change the “killing criterion”.

traham This transforms the Hamiltonian according to the algorithm mentioned above,
using the generating function computed in cage. After the transformation, the
routine puts zero in the places that corresponds to killed monomials. This lines can
be commented if the user does not want to do that. In this case, those values will
not be exactly zero because of the rounding errors (see Section 6 for a more detailed
discussion).

Moreover, in the file kill-nf.c there is the function that decides if a given monomial
has to be killed or not (see remarks in routine cage above).

4.1.3 Back to real coordinates

The final step is to realify the transformed Hamiltonian. The case of seminormal forms
can be done using the considerations in Section 4.4 (see also Section 4.3).
Let us start by using the inverse of the complexifying change (6),

=YW, TV g (9)
]— \/5 9 J_ \/5 b - ) )

where we use ¢, ¢2, g3, p1, p2 and ps for z, y, z, p,, p, and p, respectively. In order to
put the Hamiltonian in the easiest possible form, we compose this change with

xj =1/2I;cos¢;, y; =—y/2]jsin¢;, j=1,2,3.
This is equivalent to
g = I'?exp(V=1¢;), p; = —V—1I'"? exp(—V~1¢y), (10)

Hence, as the monomials that appear in the normal form have the same exponent both
for positions and momenta (k% = k” in the notation above), the change (10) makes them
to depend only on the actions I;:

h qkq kP __ hk( / )|kq|Ilcq
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Routines in file rnf6s.cc apply the change (10) to the normal form. As we have to
deal with polynomials of three variables, we need the routines of mp3.c. Now, let us give
a brief description of rnf6s.cc.

rnf6s Applies the change (10) to the normal form. It assumes that the manipulator
contained in mp3.c has been initialized by the calling routine.

check r1f This is to check if a given multiindex corresponds to the normal form. It
is used by rnf6s to know which ones are the terms to realify (all the others are
assumed to be zero).

4.1.4 Main program and results

A main program that uses these routines is contained in the file main_nf.cc. It is a very
short and easy to read program that computes the normal form, up to a given order,
around the equilibrium point L5 of the RTBP. The output of the program is contained in
several files: the normal form is stored in the ASCII file nf . res, the generating function is
stored in the binary file nf.gen and the linear change of variables used to diagonalize the
linearized vectorfield around Ly is put in the ASCII file nf.cvl. The parameters used in
the actual run (the degree and the mass parameter) are stored in the ASCII file nf . ctl.

In Table 1 we include the first terms of the normal form for the Earth-Moon case.
The last column in that table corresponds to the imaginary part of the coefficients and it
should be zero. It is not zero due to the rounding errors in this process. This column is
not taken into account for subsequent computations with the normal form, but we have
included it to give an heuristic estimate about how roundoff errors behave in this case.
See also remarks in Section 6.2.

4.2 Example II: First integrals

Let us assume that we are interested in computing (approximate) first integrals of a given
Hamiltonian system H, in a neigbourhood of an equilibrium point. Of course, if H is not
integrable, the first integrals will not be convergent but, close enough to the equilibrium
point, they will be quantities that are almost preserved by the flow. This can be used for
different purposes, for instance to bound the diffusion time around an elliptic equilibrium
point. We refer to Section A.7 for more details.

Let us summarize the procedure to compute those integrals. Let H = 3 ;5 H; the
power expansion of H around the equilibrium point (that for simplicity we assume is
the origin), where each H; is an homogeneous polynomial of degree j. Let us denote by
F = 3";5, I the expansion for the first integral we are looking for. Then, as F' must
satisfy {H, F'} = 0, one has the following recursive equation

{Hy, F,} = — é {Hj, Foji2}, (11)
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1[0|0]| 9.5450087346985146e-01 | 0.0000000000000000e+00
0|1]0|-2.9820811951603865e-01 | 0.0000000000000000e+00
0|01 1.0000000000000000e+00 | 0.0000000000000000e+00
2010 1.1568661352624510e-01 1.9950987004677088e-15
111)|0|-1.7127952377596927e+00 | 1.6464553654140052e-14
0|2]|0| 3.3855424993051031e-01 | -1.6132819906367057e-14
1101 8.9130919974620498e-02 | 7.6519569570206439¢e-16
0|11 2.2531870698905809e-01 | -1.8153505446248392¢-15
00| 2| -2.2354591332438556e-03 | -9.4980345474466460e-17
3|10]|0|-2.9478784724938123e-01 | -8.8195876408494016e-14
2|1]0| 8.1656946590496773e+00 | -2.4411186045905709e-11
12| 0| -5.4586887250177915e+02 | -1.5117692624804247e-10
0|3]|0]|-5.1021278394561250e+01 | -4.4683867166008548e-11
21 0|1 -4.3799694571855952e-01 1.4016167918231831e-13
1111 1.4116984215354037e+01 | -9.8915697135260128e-12
0|21 2.0187058976961225e+00 | —1.7373839789087187e-12
10| 2| -5.5905039470536266e-02 | —-1.9157633989231475e-14
0|1]2]|-1.7898209821803412e-01 1.0442695912981926e-14
0|0]| 3| -5.1325740689130392e-05 | -1.8243944685427148e-15
41010 1.2775512804655591e+00 | -6.7431830234291555e-10
31| 0| -3.5068853734061122e+01 | -5.4267568786972957e-10
2|12]0|-5.4875008796056733e+04 | 4.6093383107028067e-08
113|0]| 3.2223469268329442e+04 | 1.5779814576740623e-07
0|4]|0| 3.5185007412806153e+03 | —-7.6035412461354353e-09
3101 2.1759346547114546e+00 | -4.0412062928307053e-10
2111 2.0101335538551211e+01 | -1.8846523533034277¢-09
1121 1.3647631576893851e+04 | 1.2205347940204729e-08
0131 1.4507386615262367e+03 | -1.4038343557712580e-09
21012 2.1938211094638973e+00 | -6.7723532456943524e-11
11| 2| -4.9540209943972513e+01 | 6.1719014476874278e-10
0|2|2]|-1.0178742459873320e+01 | 3.9061093991945888e-11
10| 3| 3.5475354854384022e-02 | 8.1934049924464103e-13
0|1]|3]| 7.1211245121958200e-02 | 1.7453335694916767e-11
0|0| 4| 5.2188851777046352e-04 | 3.2941657400195349e-13

Table 1: This table contains the coefficients of the normal form for the Earth-Moon
case (u = 1.2150581623433623 x 1072). The first three columns contain the exponents
of the actions, and the fourth and fifth columns are the real and imaginary part of the
coefficients. Imaginary parts must be zero, but they are not due to the rounding errors
(see more comments in the text).

22



that puts F), in terms of F,,_1, ..., F, and H. To simplify the discussion, let us assume
that H, is in complex diagonal form, that is, Ho = 37, vV —1w;q;p;. As {quj,qul} =0,
we have that

1. the coefficients of the monomials ¢‘p’ of F,, can not be determined,

2. if the coefficient of the monomial ¢’p® in the right-hand side of (11) is not zero, this
equation can not be solved.

There are conditions under which the right-hand side of (11) does not contain monomials of
the form ¢‘p’. For instance, when the frequencies are nonresonant ({(k,w) =0 <= k = 0)
and the initial Hamiltonian is reversible (i.e., an even function of the momenta).

The example we are going to use is again the RTBP near L,; for the Sun—Jupiter
case, for which the frequencies are nonresonant.? As in this case the Hamiltonian is not
reversible, we need another kind of argument to justify the solvability of equation (11).
Here we will use (without proof) that this equation can be solved for the RTBP case, and
that it is enough to take zero the terms of F, that we can not determine (¢‘p%). We refer
to [11] for a discussion of these properties.

Another point worth to mention is that F5 is not determined by the method, but
it should be selected by the user. In [11], as they want to have 3 first integrals FO),
j =1,2,3, they use F\¥) = V—=1¢;pj, 7 = 1,2,3. We note that, if one only wants to
bound the diffusion around the point, it is enough to compute a single definite-positive
first integral. This can be achieved using, for instance, F» = 3=;v/—1¢;p;. Of course, one
can put different “weights” in front of each ¢;p; to try to optimize the size of the region
of effective stability (we recall that this region is, in general, not spherical).

4.2.1 Implementation

Note that most of the routines needed for this case have already been developed for the
normal form computation. In fact, we only need to implement the recursion (11) and the
realification of the (approximate) first integral.

An overall of the program is the following. First we expand the Hamiltonian around
the equilibrium point using the same rutines as in the normal form case (the ones of the file
exp-15.cc). In this way we obtain a complexified expansion such that the second degree
terms are in diagonal form. Then, we solve recurrently equation (11), where the initial
value Fy is provided by the user (this is done by the routines of the file fi.cc). Once the
first integral has been computed up to the desired order, it is realified (the routines for
this are in the files irex.cc and re6s.cc, and the realification process will be explained
in Section 4.5) and written to the ASCII file fi.res. This is the only file produced by
this program. The main program that controls this process is in main-fi.cc.

2As in the normal form case, we only need the nonresonance condition up to a finite order. Hence,
this is a condition that can be checked in practical examples.
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4.3 Example III: Centre manifolds

Let us consider the dynamics near one of the collinear points L; 5 3 of the RTBP. We recall
that the linearization of the vectorfield at these points is of the type centre x centre xsaddle.
In order to give an accurate description of the dynamics in a neighbourhood of L, 53 one
can perform the so-called reduction to the centre manifold. This process is explained with
more detail in Section A.6 and the idea is the following: let us assume that the diagonal
form of H, is

Hy = Agip1 + vV —1waqeps + vV —1lwsqsps, A, wo,ws € R

Hence, the hyperbolic direction is given (at first order) by the variables (qi,p;). Let us
perform canonical transformations on the Hamiltonian (in the same way it has been done
in Section 4.1.2) but now, instead of cancelling all the nonresonant monomials, we only
cancel monomials such that the exponent of ¢; is different from the exponent of p; (for
a different scheme that cancels less monomials, see [46]). Then, after a finite number of
transformations, the Hamiltonian takes the form

H = H(O)(Chpl, 92, P2, 43, P3) + R(q1, D1, G2, D2, @3, P3),

where H® is the part of the Hamiltonian that we have arranged and R denotes the
remainder. As H® depends on the product ¢;p; we can perform the change I; = ¢;p; to
produce

H = H(O)(Il,q2,p2,q3,p3) + R(11, 1, @2, D2, 3, P3) s

where ¢ is the conjugate variable of I;. If we drop the remainder R (it is very small
near the origin) then I is a first integral of the system and putting I; = 0 we are skip-
ping the hyperbolic part of the Hamiltonian H®. The resulting two degrees of freedom
Hamiltonian represents the flow inside the (approximation to the) centre manifold. So,
near the origin, the phase space of the original Hamiltonian must be the phase space of
H(O)(O, 2, D2, q3, p3) times an hyperbolic direction. To visualize the phase space of H©)
one can fix the value of the Hamiltonian and then use a Poincaré section. Varying the
value of the Hamiltonian we will obtain a collection of 2-D plots representing the dynamics
in the phase space. This has already been done in [15], [26] and [27].

4.3.1 Implementation

The implementation is very similar to the one of the normal form, with the only difference
that now we want to kill less monomials. Hence, for the computation of the complex
normal form we have used exactly the same routines as before (the ones contained in the
file nf6s.cc), only changing the function used to decide which monomials are killed (this
function is stored in the file kill-nf.c for the normal form case and now is the one in
the file kill-cm.c).

The main difference appears when we need to realify the transformed Hamiltonian.
In the normal form case, realification is done by taking advantage ot the particularities
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of a complete normal form. Here it is a little bit more difficult. Let us summarize the
process. First, to save memory, the (still complex) partial normal form is written in a
binary file and then it is read monomial by monomial. For each monomial corresponding
to the centre manifold® (otherwise the monomial is discarded) we compute the result of
applying the realifying change (9) to this monomial. The process is the same one used in
Section 4.5 (see there for more details), but for four variables monomials. The realified
monomials are added to the realified series (different complex monomials can contribute
to the same realified monomial) until all the complex monomials are transformed. The
routines that perform the realifying process are stored in the files irex.cc and rcmés.cc.
Finally, the centre manifold is written to an ASCII file. The main program for this
computation is stored in the file main-cm. cc.

The output files are: cm.res contains (in ASCII format) the Hamiltonian reduced to
its centre manifold, cm.gen is a binary file with the generating function used, cm.cvl is
an ASCII file with the linear change used to put Hs in diagonal form and cm.ctl contains
the parameters used in the actual run.

4.4 Changes of variables

An important part of the computations is to produce the changes of variables going from
the final coordinates (normal form or centre manifold) to the initial ones. This can be
used for several purposes, ranging from estimates on the diffusion time to the practical
computation of invariant tori (of any dimension). We refer to [32] for examples of this.

The global change is split in two different sub-changes. The first one is the linear
change that puts Hy in diagonal form (we will refer to these coordinates as “diagonal”
coordinates) plus the translation of the origin from the libration point to the centre of
masses of the RTBP. The second sub-change consists of the nonlinear change that goes
from the normal form (or centre manifold) coordinates to the diagonal ones. Here we will
focus on this last change since the first one is explicitly given in Appendix B.

The process to obtain the nonlinear change is the following. Let us start by considering
the first change of variables done on the Hamiltonian by means of a generating function
G3. The corresponding change for this transformation can be obtained by applying the
transformation (8) to a single coordinate ¢; or p; (1 <i < 3),

1
1
pY = pi+{Pi,G3}+5{{Pi;G3}aG3}+"'a (13)

where ql@), pl@) denotes the series obtained in this transformation. This is done using the

algorithm explained in Section 4.1.2. Note that expressions (12) and (13) are changes of

coordinates: they relate the coordinates of the transformed Hamiltonian under G3 (they

3 6

are ¢;, p;) with the initial (diagonal) coordinates ¢, p;”’. This idea can be used to

3Those are the monomials such that the exponent of q; is equal to the exponent of p;.
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produce the changes to higher orders. For instance,

i = o+ (oG} + o {{a.Gs}, Gs} +o o,
Y = o (G} 4 o ({76} G} o

is the transformation that goes from the normal form coordinates of degree 4 to the initial
diagonal coordinates. Of course, this transformation is done on the expressions (12) and
(13) as if they were Hamiltonians, by means of the algorithm explained in Section 4.1.2.
In this way, we obtain the explicit transformation that puts the Hamiltonian in normal
form up to the desired order. Note that, when doing these transformations, it is only
necessary to transform up to the same degree as in the normal form.

Let us note that the obtained series are still in complex coordinates. They are realified
using the methods that will be explained in Section 4.5.

The change corresponding to the centre manifold has some differences with the change
for the normal form case. As the centre manifold is of dimension four (the first two
variables have been set to zero), the final change is given by six real expansions, each one
depending on four variables (the first four expansions are of the type mp4s and the last
two are of the type mp4p).

4.4.1 The inverse change

As before, we are going to focus on the nonlinear part of the change, since the linear part
is easily inverted. We only provide routines for the normal form case (the inverse change
for the centre manifold can be produced similarly).

This computation is based on the following fact: the change induced by the generating
function G is the inverse of the change induced by the generating function —G. This is
because the change is the time one flow of the Hamiltonian G, and to reverse the time in
this flow one has to change the sign of the vectorfield, i.e., of the Hamiltonian GG. Hence,
one can use the same scheme as before but using as generating functions —G,, —G,,_1,
..., =G4, —G3, in this order. We refer to the previous section for more comments.

As before, the obtained series are still in complex coordinates. Section 4.5 deals with
the algorithms used to realify them.

4.5 Realification of power expansions

A common operation at the end of these computations is the realification of the complex
power expansions obtained, because we are usually interested in the dynamics correspond-
ing to real coordinates. Hence, realified expansions are much smaller (the memory needed
to store them is halved) and this implies that all the computations involving them are also
faster. We want to stress that it is not compulsory to perform such realification, because
all the computations with these expansions can be done with the complexified version.
The realification is only used for efficiency reasons.
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Now let us explain the algorithm used. To simplify the discussion, let us assume we
have to realify a 6 variables expansion, in which all the variables have been previously
complexified. Note that it is possible to have a complex expression in which not all the
variables have been complexified (see, for instance, the expansion of the Hamiltonian in
Section 4.3). To start, let us focus on the realification of a single monomial,

Cray PY 05" P 455 (14)
Then, in order to apply the realifying change (9), let us make the following remarks:

1. If we know the realification of the product qlflple, for any ky and ko, we know the
realification of all the products gispht, ¢hspke (the only difference is in the subindices
of the variables).

2j—1, kaj

2. If we know the realifications of the three couples q;-g p; (j = 1,2,3), the prod-
uct of these realified expansions (note that each one of them is an homogeneous
polynomial with two variables) is not difficult to compute, since we are multiplying
polynomials that depend on different variables.

Hence, we will apply the following scheme: first we will compute the realifications of
all the powers ¢"'p*  where the exponent (k1,k2) is such that 0 < ky + ko < n, and n
denotes the degree up to which we plan to realify. The result of each realification will be
stored in a table (see below). Then, for each monomial like (14), we will obtain from the
table the realifications of the three couples q’flp’fz, q§3p’2°4 and q’§5p’§6 (they will be three
homogeneous polynomials of degrees k; + ko, k3 + k4 and ks + kg, respectively). Finally,
we will form the product (14), taking advantage of the fact that the three homogeneous
polynomials depend only on two variables, and that these variables are different. Let us
explain this with more detail.

4.5.1 The realifying table

Now we consider the problem of computing and storing expressions like ¢‘p’, i € N, j € N,

where
r—+—1y vV —lz+y
v 7 V2

Let us start by the storing procedure. Let us fix ¢ and 7, and let us define m = i+ j. Then,
the substitution of (15) into ¢'p’ produces an homogeneous polynomial of degree m, in the
variables  and y. A natural way of naming the different coefficients of this polynomial
is to use a single integer to denote the monomial we refer to: monomial number 0 will be
2™y°, monomial number 1 will be 2™ 'y!, and so on. Generically, the monomial number
k will be 2™ *y* 0 < k < m. Note that we need three indices (4, j, k) to identify one
of these coefficients (7, j refer to the monomial ¢‘p/, and k refers to the position of the
coefficient inside the realification of ¢'p’). Hence, we can look at all these realifications as
polynomials with three variables: the coefficient number k of the realification of ¢'p’ is the

coefficient of the monomial (4, j, k) of a (real but not homogeneous) polynomial of degree

(15)
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2m. This implies that, to store all these realifications, it is enough to allocate space for a
three variables power expansion up to degree 2n, where n denotes the maximum degree
we plan to realify. Note that not all the monomials of this expansion are going to be used,
but

1. the amount of memory used by the whole table is not very big (see examples below),

2. in this way the access to the elements of the table is very easy (we can use the
manipulator mp3 explained before) and very fast.

It would be possible to only allocate the elements we really need, but this would decrease
the speed of the program and, as it has been said before, the amount of memory saved is
not enough (in our opinion) to justify the increase in complexity of the program.

To simplify (and to speed up) the computation of the realifying table we also initialize
a couple of auxiliar tables, one with the negative powers of v/2 and another one with the
binomial coefficients. With these auxiliar tables, it is not difficult to compute the different
powers ¢'p’ and to store them in the corresponding place of the table.

The routines that initialize the realifying process have been stored inside the file
irex.cc. They are the following:

ini real This routine allocates space for the table that will contain the realifications
of the different monomials ¢'p’. It also computes and stores that table. This ru-
tine calls routine imp3 (file mp3.c) to initialize the tables needed to handle power
expansions with three variables.

end_real This routine frees the space allocated by ini_real, including a call to amp3 to
free the space allocated by imp3.

coef This routine computes the coefficient of the monomial 2*~797 in ¢* or pF.

4.5.2 The main algorithm

Now it is not very difficult to realify a power series. In order to minimize the amount of
RAM* used, the series to be realified is first written in a (binary) file. Then, this file is
read sequentially and each monomial is realified and added to the (proper place of the)
resulting series.

So, the only point that needs to be discussed is the realification of a single monomial.
The process is as follows. Let us use the same notation as in (14). Note that each couple
qupfj“ becomes, once realified, an homogeneous polynomial of degree k; + k;;; in two
variables, z; and y;. The coefficients of this polynomial are stored in the suitable places of
the realifying table (see Section 4.5.1). Therefore, in order to multiply these three realified
polynomials, we will use three (nested) loops to “run” over the coefficients of them (these
coefficients are directly obtained from the realifying table). In this way we will obtain the

41f this word means nothing to you, ask to your system manager. You should know about the maximum
amount of RAM you can use without collapsing your computer.
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coefficients of the realification of (14) as the product of these three coefficients with the
coefficent ¢;. The exponent that corresponds to this final product is easily obtained and
this allows to add the coefficient to the suitable place of the resulting series.

4.5.3 The final output

Before continuing with the description of the algorithm let us explain, up to now, what
we have obtained. As before, to simplify the discussion we will focus on a couple position-
momentum that we will denote as ¢;, p;. Let us denote the initial change of variables
that we want to realify as

q; = QI+02(Q7p)7
pll = p1+02(Q7p)7

where the “primed” variables are the initial ones and the “unprimed” variables the final
ones. Of course, Oy(q, p) denotes the higher order terms of the change that we do not write
explicitly. After the realification process we have just described, we obtain something like

Vs VR Vi V)
Vi
VT Y VTt
i N

The next (and final) step is to isolate =} = 2 (x,y) and y; = y}|(z,y). For instance, x}
can be isolated from the first equation by taking real parts and multiplying by v/2, and 3!
can be obtained by the first equation by taking the imaginary parts times —v/2. A similar
process can be applied to the second equation to obtain the same expressions. May be
the most important conclusion we can get from this fact is that it is enough to compute
only one of the expressions for the change of variables: for instance, to obtain the changes
of variables for the normal form of Section 4.1 (a 3DOF Hamiltonian) we only need to
compute the changes for the three positions. The changes for the three corresponding
momenta are obtained from them when realifying (note that we are using that we have
complexified with respecto all the variables). Of course, we have taken advantage of this
property in the software.

+ OZ(xay)a

+ OZ(xay)‘

4.5.4 A few remarks

In some cases, it is necessary to realify not all the variables, but only some of them.
A typical example appears when we have been dealing with an expansion of the kind
centre xsaddle. The saddle variables does not need to be complexified, since they already
appear in “diagonal form” (see Section 4.1.1). Hence, once the computation is finished,
they are still in real form. Of course, the realifying change have to be only applied to
the couples g;, p; that have been complexified. The main difference appears in the change
that corresponds to variables that have not been complexified. Let us denote by ¢, p1
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one of these couples. After the realification (of the complexified variables), the change for
q1, p1 looks like

xll = x1+02(x,y),
Y = yi+ O(x,y).

We have changed ¢, p1 by z1, y; to denote that the realification has been done. Note
that the realifying changes have been applied to variables g;, p;, j # 1 (they only affect
to Oz(x,y)). Hence, we have directly the change of variables (in particular, all the imag-
inary parts of the coefficients of this change must vanish), without need of taking real or
imaginary parts. The bad news are that now we need to compute both changes (for x
and y}), since we can not derive easily one from another.

4.6 The linear part of the change

We have seen how to produce the nonlinear change for variables used to achieve the
normal form but, to reach the initial coordinates we still need to apply the linear change
used at the beginning to put Hy in normal form. This change has been computed in order
to diagonalize the second degree terms of the Hamiltonian, and it has been stored in a
file. In principle, this transformation goes from the “diagonal” coordinates of Hy to the
usual coordiantes of the RTBP centreed at the equilibrium point. If one is interested in
the inverse change, it is not difficult to see that the inverse of any symplectic matrix M
can be obtained as M~' = —JM T J, that is very suitable for numerical purposes.

4.7 Tests of the software

We have done some checks on the software, to be sure that there are no bugs present.
The tests we have done are very similar for the three examples so we will mainly focus on
the tests for the normal form computation.

To this end, we have written the program ninf, that produces a numerical integration
of the normal form obtained. In fact, as the normal form is integrable, this program
computes the gradient of the normal form for the given actions to obtain the frequencies
and then it simply tabulates the solution. Then, this table is sent through the changes
of variables into the synodical coordinates of the RTBP. Finally, program rtbp tests this
table in the following way: for each point of the table, it integrates (numerically) the point
to obtain a prediction for the following point of the table. Then, the program writes the
differences between the two points (the one obtained from the changes of variables and
the one obtained using numerical integration). Ideally, if the normal form, the changes of
variables and the numerical integration were all exact (zero error), these differences must
be zero. Of course, they are not zero due to the several sources of error.

Let us illustrate this. We have taken the initial conditions I; = I, = I3 = A\g, with
initial phases ¢1 = ¢ = ¢3 = 0, for ¢ = 0 (let us call uy to this initial condition). We
have tabulated the corresponding solution at ¢ = 0.1 (let us call u; to this vallue), and
we have sent both points to synodical coordinates, to obtain two points vy and v;. Then,

30



Ao o1 — vgll2 Ao o1 — vgll2
0.00001 | 2.4828078245222093e-16 || 0.00008 | 3.4023375555581652e-10
0.00002 | 5.1198523403369423e-15 || 0.00016 | 8.8211434435268124e—08
0.00004 | 1.3192410121093586e-12 || 0.00032 | 2.3101212284736493e-05

Table 2: Differences between a normal form prediction and a numerical integration. The
local error of the numerical integration is of the order of 107'® and the normal form (and
the corresponding changes of variables) have been computed up to degree 16.

we have computed (numerically) the trajectory of the RTBP that starts at vg, till ¢ = 0.1
(let us call this point v}), with a local error of the order of the roundoff of the arithmetic.
The difference ||v; — vg||2 is given in Table 2.

Note that the parameter \q is, essentially, the distance from the initial condition to
the origin. If the software is working properly, the error ||v; —v}||2 is due to the truncation
of the power series (to degree 16, in the case corresponding to Table 2). Hence, the error
should behave like c\fj, being n the last order in the normal form that we have taken into
account (see below). Then, one has that the order of the error can be approximated by

Applying this to the results in Table 2 we obtain Table 3. The first value in this table is
not very accurate because the estimation of the error is not realistic for )\(()1) = 0.00001 (it
is smaller than 10716 and this is not detected since we are working with double precision
arithmetic). The other values are more accurate and produce an exponent for A\, that is
very close to 8. Note that if the order of the normal form in the (g,p) variables is 16,
in the Poincaré variables (see (10)) is 8. Moreover, note that the numerical integrations
are done on the differential equations (that involve the derivatives of the Hamiltonian).
This means that the error for this case is not of the order of the neglected terms of
the Hamiltonian but of the neglected terms of the corresponding differential equations.
Hence, as A\g “moves” in the space of the Poincaré coordinates, we expect and estimated
exponent of the same order as the biggest degree present in the normal form expressed in
Poincaré variables.

The same procedure can be applied for the centre manifold computation and for the
first integrals, to estimate the order of the error. The concrete calculations for these cases
are left to the reader.

4.8 Invariant tori

Here we note that, using the tools we have developed, it is very easy to compute invariant
tori close to any of the libration points of the RTBP. For instance, let us focus on the
neighbourhood of the L5 point of the Earth-Moon RTBP.
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AL A2 n
0.00001 | 0.00002 | 4.366
0.00002 | 0.00004 | 8.009
0.00004 | 0.00008 | 8.011
0.00008 | 0.00016 | 8.018
0.00016 | 0.00032 | 8.033

Table 3: Estimation of the order of the error.

Figure 1 is a 2-D torus obtained by taking, in the normal form, the actions I} = I, =
0.0001, and I3 = 0. This corresponds to an elliptic (planar) Lyapunov tori obtained from
two of the (three) linear oscillations at Lj (see [30]). Figure 2 corresponds to a 2-D elliptic
torus obtained taking I, = I3 = 0.0001 and I, = 0. This torus can also be seen as coming
from the linear oscillations around the periodic Lyapunov family associated to the vertical
oscillation at Lj (see [32]). In both cases, we have plotted a dot every 0.1 units of time.

It is not difficult to compute Poincaré sections of these trajectories, to see that they
are invariant curves. We left this for the interested reader, as well as the computation
of more invariant tori. Finally, let us note that it is also possible to ask for a tori with
prefixed frequencies: one has to solve a system of three nonlinear equations to find the
corresponding actions. Of course, this is only possible for suitable frequencies.

5 Efficiency Considerations

When one considers the optimality of a given calculation, there are two main things to
be taken into account: the algorithm used and its implementation. Here we are not going
to discuss the efficiency of the algorithm selected (although there are other possibilities,
for example to use quadratic schemes instead of linear ones; see, for instance, [35]), and
we are going to focus on their implementation.

Now let us make a few remarks on the optimality of these routines. The implementa-
tion we have selected here (to use integer functions —sometimes called “hash functions”—
to know the position corresponding to a given exponent and viceversa) allows for very
easy implementations, but adds an overhead to the program (the time taken by these
functions and the memory used by the integer tables). In some cases, it is possible to use
specific orders for the polynomials such that the main operations can be performed di-
rectly, without the help of such functions: for instance, when dealing with polynomials of
one variable, we can store the coefficient of the monomial 27 into the position number j of
the corresponding array, so all the operations can be performed trivially (for instance, the
product of two polynomials is p[i]1*q[jl—r[i+j]). Note that this is still possible in two
variables but it becomes more tricky in several variables. Moreover, if the coefficients of
the polynomials are sophisticated types (like trigonometric polynomials), the time taken
by the hash functions is unnoticeable in front of the time taken by the operation involving
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Figure 1: Projection on the (z,y) plane (synodical coordinates) of an elliptic 2-D in-
The intrinsic frequencies are w; = 0.954347344380 and w, =
—0.298324062073. The normal frequency is w, = 1.00003161731.
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Figure 2: Projections on the (z,y) plane (left) and on the (z,z) plane (right) of a 2-
D invariant tori near Ls. The intrinsic frequencies are w; = 0.954532905738 and w, =
1.00000846050. The normal frequency is w, = —0.298356646196.
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the coefficient. So, in our opinion, the gain obtained by using this kind of tricks is not
big enough to compensate for the increase of complexity of the code.

In what follows, the measures of the time needed for the programs to execute have
been taken from runs done on a Pentium Pro 200 MHz PC running Linux, with the GNU
compiler gee/g++ version 2.7.2.1. The amount of needed memory has been estimated
directly from the size of the expansions.

5.1 Storage

Let us start by considering the efficiency from the point of view of the amount of memory
used by the programs. As the memory is allocated and freed dynamically, we will focus
on the “worst moment” of the program, that is, when the maximum amount of memory
is needed.

Table 4 displays the number of monomials for some of the expansions used here. From
this table, and knowing the number of series we use in each program, it is not difficult to
have an idea of the order of the amount of memory needed.

5.1.1 Normal forms

On a normal form computation as the one performed here, we use the following expansions
(let us denote as n the maximum degree wanted):

1. A power expansion up to degree n of the type mp6s (for the Hamiltonian).

2. An auxiliar power expansion (to be used only during the computation of the power
expansion of the Hamiltonian) of the same degree as the Hamiltonian.

3. Three polynomials of degree n, of the type mp6s, to be used as a working space
during the normal form computations.

We have to note that the expansion in item 2 and the three polynomials in item 3 are
needed in different places of the program, so we only need to take the maximum of them.
In fact we need a little bit of memory (like the inner tables of the manipulators or the
three-variables expansion for the normal form), but the above mentioned series are the
most important ones.
Concerning the amount of hard disk memory used, we note that we need

1. A binary file to store the generating function. This is about the size of a power
expansion of degree n, of the type mp6s.

2. A few extra ASCII files (to store the normal form, the control parameters, etc.)
that, as they are very small, we skip them.

Of course, one can modify the program in order to write more information (you can
ask for intermediate series) of less (you can skip the writting of the generating function if
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| mp4s H mp6s H mp6p

n [0 [21,®0) [ n | o) [27,8G) [ n | o(n) |>r,®0)
0 1 1 0 1 1 0 0 0
1 2 3 1 4 5 1 2 2
2 6 9 2 13 18 2 8 10
3 10 19 3 32 50 3 24 34
4 19 38 4 70 120 4 56 90
5 28 66 5 136 256 5 116 206
6 44 110 6 246 502 6 216 422
7 60 170 7 416 918 7 376 798
8 85 255 8 671 1589 8 616 1414
9 110 365 9 1036 2625 9 966 2380
10 146 511 || 10 1547 4172 || 10 1456 3836
11 182 693 || 11 2240 6412 || 11 2128 5964
12 | 231 924 || 12 3164 9576 || 12 3024 8988
13 | 280 1204 || 13 4368 13944 || 13 4200 13188
14 | 344 1548 || 14 5916 19860 || 14 5712 18900
15 | 408 1956 || 15 7872 27732 || 15 7632 26532
16 | 489 2445 || 16 10317 38049 || 16 10032 36564
17 | 570 3015 || 17 13332 51381 || 17 13002 49566
18 | 670 3685 || 18 17017 68398 || 18 16632 66198
19 | 770 4455 || 19 | 21472 89870 || 19 | 21032 87230
20 | 891 5346 || 20 | 26818 116688 | 20 | 26312 113542
21 | 1012 6358 || 21 | 33176 149864 || 21 32604 146146
22 | 1156 7514 || 22 | 40690 190554 || 22 | 40040 186186
23 | 1300 8814 || 23 | 49504 240058 || 23 | 48776 234962
24 | 1469 10283 || 24 | 59787 299845 || 24 | 58968 293930
25| 1638 11921 || 26| 71708 371553 || 26| 70798 364728
26 | 1834 13755 || 26 | 85463 457016 || 26 | 84448 449176
27 | 2030 15785 || 27 | 101248 558264 || 27 | 100128 549304
28 | 22565 18040 || 28 | 119288 677552 || 28 | 118048 667352
29 | 2480 20520 || 29 | 139808 817360 || 29 | 138448 805800
30 | 2736 23256 || 30 | 163064 980424 || 30 | 161568 967368
31 | 2992 26248 || 31 | 189312 1169736 || 31 | 187680 1155048
32 | 3281 29529 || 32 | 218841 1388577 || 32 | 217056 1372104

Table 4: Number of monomials for expansions of the kind mp4s, mp6s and mp6p. Here, n
denotes the degree, ®(n) is the number of monomials in a polynomial of degree n, and

"o ®(j) is the number of monomials in a expansion up to degree n.
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degree | time nf time cm RAM HD
8 0.40 0.46 0.058 0.025
12 8.01 9.51 0.306 | 0.153
16 82.25 95.77 1.218 | 0.609
24| 3002.14 | 3505.71 9.595 | 4.798
32 | 48422.61 | 55769.46 | 44.435 | 22.217

Table 5: Time (in seconds) and memory (in megabytes) needed for the normal form (nf)
and centre manifold (cm) computation. We want to note that cm needs, to store a temporal
file, about the same space as the results. This implies that, to run this program, you need
to have twice the column “HD” of disk free.

you are not interested in the change of variables). In such a case, you should re-estimate
the amount of memory you need.

In Table 5 we have summarized these estimates on the amount of memory needed. We
have assumed that each coefficient is a double precision complex number, that is, each
one needs 16 bytes to be stored.

5.1.2 Centre manifolds

The only difference between a normal form and a centre manifold computation (concerning
the amount of memory used) appears when realifying the Hamiltonian restricted to the
centre manifold. From the program, it is seen that this only affects to the amount of hard
disk needed. In Table 5 we have summarized those values. As in the normal form case,
we have skipped the size of the ASCII file with the final Hamiltonian, since it is not very
big. We note that this file is written after erasing the temporal file, so if it was room for
this file, there is enough room for the results. However, if one wants precise estimations of
the final amount of used disk, one must take into account the size of that ASCII file. The
concrete runs displayed there have been done for the L; case of the Earth-Sun system.

5.1.3 First integrals

The calculation of a first integral is a little bit simpler than a normal form one. In fact,
the program needs RAM space for the Hamiltonian and the first integral, and disk space
for the results as well as a temporary (binary) file used to realify the first integral. In the
actual version of the program, the output file is an ASCII file, to be able to look directly at
the results using an standard text editor (like vi or emacs). In Table 6 we have included
the time and memory used for several runs of the program. Note that we have been using
a lower degree for the calculations. This is because the huge amount of disk space needed
to store the output in ASCII format. If one is interested in running to higher orders it
should be better to change the program in order to store the first integral in a binary file
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degree time RAM | HD tmp. | HD final
8 0.38 | 0.05 0.02 0.11
12 5.36 | 0.30 0.15 0.67
16 49.98 | 1.16 0.58 2.66
20 337.09 | 3.56 1.78 8.17
24 | 1800.57 | 9.15 4.58 20.99

Table 6: Time (in seconds) and memory (in megabytes) needed for the calculation of a
first integral. The column “HD tmp.” only refers to the temporal (binary) files, while the
column “HD final” only refers to the final (ASCII) file.

(this is, in fact, very easy using the routines provided here). Then, the amount of disk
space is similar to the one used by the centre manifold program (see Table 5).

5.1.4 Changes of variables

Let us discuss the calculations needed to obtain the expansions for the changes of variables
corresponding to the normal form case. We will only focus on the direct changes, since
the inverse ones need (approximately) the same amount of memory and time.

As before, n will denote the degree of the expansion of the transformation. During
the computation of the direct change, we use one expansion up to degree n and three
homogeneous polynomials of degree n. In fact, we need polynomials of the type mp6s
for the transformation corresponding to the four first variables, and of the type mp6p for
the last two. As the polynomials of the type mp6s contain more monomials than the
corresponding ones of the type mp6p, we have done the memory estimations for the type
mp6s. They are summarized in Table 7.

A special case is the computation of the changes of variables corresponding to the
reduction to the centre manifold. In this case, we obtain six series, each one depending
on four variables (see Section 4.4), so the final amount of disk space is smaller than in
the normal form case. To estimate the maximum amount of disk space needed during the
execution, we note that this occurs during the realification of the last couple of variables.
At this moment, we have four real series (of the type mp4s) written in the disk, and we
write a temporal file with a complex series (of the type mp6p) corresponding to the last
couple of variables. From these observations, it is not difficult to derive the figures shown
in Table 7.

5.2 Speed

Finally let us discuss the optimality, according to the speed, of these routines. To start
the discussion, let us focus on the routine that multiplies homogeneous polynomials (see
Section 3): for each couple of monomials that we are multiplying we need to know the
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degree | time cvnf | time cvem | RAM | HD cvanf | HD cvem
8 1.11 1.32 | 0.06 0.07 0.03

12 24 .24 29.36 | 0.29 0.43 0.17

16 272.46 330.22 | 1.05 1.72 0.63

20 1942.21 2340.47 | 3.01 5.30 1.90

24 | 10395.05 | 12644.89 | 7.31 13.64 4.80

Table 7: Time (in seconds) and memory (in megabytes) needed for the computation of
the changes of variables for the normal form (cvnf) and the centre manifold (cvem).

exponents of them and the position to store the result. As every product is an unavoidable
operation (we recall that we are discussing the optimality of the implementation, not of
the algorithm), all the overhead of this implementation is due to the routines that look
for exponents and positions. In fact, if these routines use zero time, the product would
be optimal, since all the time spend by the product would correspond to the unavoidable
operations. This is also true for the other routines (Poisson brackets, power expansions,
etc.). For this reason we say that the optimality of the package is basically given by the
optimality of the routines of the files mp6s.c, mp6p.c, etc. In order to quantify this, we
have done a run of the program nf using the profiling facilities of the compiler. The
results are shown in Table 8. Note that we must eliminate from this table the time used
by routine mcount, since it des not belong to our program (it has been introduced by the
profiler). Then, it is clear that the time taken by routines ex116s and 1lex6s is a little
bit less than 50% of the total time taken by the program. This implies that if we were
able to optimize these routines in order to reduce the time they take to almost zero, the
factor in the total gain in speed would be close to 2 (but not better!). Moreover, Table 8
gives precise information about the routines one must optimize to make the program run
faster.

Tables 5, 6 and 7 contain the time for several runs of the software. We stress that
those are approximate values: time has been taken from a single run of the program,
and the amount of RAM memory needed has been estimated form the size of the several
expansions used (you should increase these figures a little bit to obtain the real amount
of memory used).

6 Error Control

A very important point is to know the numerical errors introduced in the coefficients when
this huge amount of computations is performed. A first (heuristic) indication is given by
the size of the imaginary parts of the real normal forms, centre manifolds or first integrals
that are not zero due to the roundoff errors. It is very natural to take these values as zero
because they must vanish in an exact computation.
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Flat profile:

Each sample counts as 0.01 seconds.

% cumulative  self self total
time seconds seconds calls ms/call ms/call name
40.15 51.96 51.96 269 193.16 347.79 papubs
26.48 86.23 34.27 mcount
26.46 120.47 34.24 84136095 0.00 0.00 exll6s
6.02 128.26 7.79 55490539 0.00 0.00 1lex6s
0.58 129.01 0.75 14 53.57 6737.27 traham
0.24 129.32 0.31 66 4.70 11.02 pphb6s
0.04 129.37 0.05 14 3.57 3.95 cage
0.01 129.38 0.01 14 0.71 1.10 putO
0.01 129.39 0.01 1 10.00 747 .48 exp_15
0.01 129.40 0.01 1 10.00 54.09 reste
0.01 129.41 0.01 1 10.00 15.34 1rnf6s
0.00 129.41 0.00 76062 0.00 0.00 kill_nf
0.00 129.41 0.00 38044 0.00 0.00 check_rlf
0.00 129.41 0.00 38032 0.00 0.00 prxk6s
0.00 129.41 0.00 1474 0.00 0.00 ntph6s
0.00 129.41 0.00 164 0.00 0.00 ex113
0.00 129.41 0.00 164 0.00 0.00 1lex3
0.00 129.41 0.00 156 0.00 0.00 prxk3
0.00 129.41 0.00 26 0.00 0.00 ntph3
0.00 129.41 0.00 14 0.00 0.00 wpbb6s
0.00 129.41 0.00 5 0.00 0.00 uneix
0.00 129.41 0.00 2 0.00 341.69 exrec
0.00 129.41 0.00 1 0.00 0.00 amp3
0.00 129.41 0.00 1 0.00 0.00 amp6s
0.00 129.41 0.00 1 0.00 0.00 ccvlb
0.00 129.41 0.00 1 0.00 0.00 imp3
0.00 129.41 0.00 1 0.00 0.00 imp6s
0.00 129.41 0.00 1 0.00 95140.00 main
0.00 129.41 0.00 1 0.00 94377.18 nf6s
0.00 129.41 0.00 1 0.00 0.00 wctlb
0.00 129.41 0.00 1 0.00 0.00 wcvl
0.00 129.41 0.00 1 0.00 0.00 wea3

Table 8: Output of the profiler for a run (up to degree 16) of the program nf. The first
column contains the percentage of the total running time of the program used by this
function and the fourth column contains the number of times this function is called. The
last column indicates the name of the function. We note that routine mcount do not
belong to our program but to the profiler.
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Note that the testing methods discussed in Section 4.7 provide a rough idea of the
global amount of error we have accumulated in the computations. This should be enough
if we are only interested in numerical results, since this is typically the kind of output
obtained from classical numerical methods (think of the solution of an ode, pde or simply
the solution of a linear system). In fact, we are in a better position compared with other
numerical procedures, since we have a good checking procedure.

However, if one is interested in these methods to be used in a computer assisted proof,
we need a much better mechanism to control the error. This is the reason to introduce the
interval arithmetic. In what follows, we are going to focus on a normal form computation,
although the same ideas can be extended to the other examples considered here.

6.1 Interval arithmetic

In order to carry exact bounds on the error let us assume that, instead of a floating point
number, we have an interval such that it contains the number. To add two intervals, we
simply add the lower bounds of the interval using rounding toward —oo, and we add the
upper bounds using rounding toward +oo. In this way we ensure that the result of the
addition is contained in the final interval. The same ideas can be used to easily derive
the operations -, * and —+.

The next step is to code efficiently those routines. Fortunately, most of the actual
processors allow to the user to alter the rounding mode, to set a rounding toward +o0 or
to the nearest (this is the default). To do this, many compilers and/or operating systems
have suitable functions in their libraries. Here we have used the corresponding routines
of the Linux operating system (with the compiler gcc from Gnu), running on an Intel
processor. The main disadvantages of this are that the memory requirements are doubled
and the execution time is much bigger. This last inconvenient is due to the architecture
of the processors, since when the rounding mode of the processor is changed, the pipeline
of the processor is re-started with the corresponding loss of performance.

As we have written all the code in C++, it is very easy to use the capacity of over-
loading the arithmetic operators to substitute the standard complex arithmetic by our
interval arithmetic (you can also use [41] if you want to avoid using C++). Then, it is not
difficult to obtain the normal form but, instead of the coefficients, we will obtain intervals
containing the exact values. This is what allows to derive computer assisted proofs. See
[10] and [36] to see concrete applications of these ideas.

6.2 An example with interval arithmetic

Here we have included the computation of the normal form around Lj for the RTBP using
interval artihmetic. The idea is to give a feeling about how these computations are.

In Table 9 we have included the normal form, using double precision interval arith-
metic, around the Ly point of the RTBP, for the mass parameter corresponding to the
Earth-Moon system. We have skipped the imaginary parts because they can be assumed
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to be zero (this is one advantage of interval computations). It is interesting to compare
these results with the ones presented in Table 1.

First of all, note the big size of the intervals, specially for the highest degrees displayed.®
Of course, this does not prove that coefficients in Table 1 contain big numerical errors,
but it suggests that we should check this more carefully. In order to do that, we can use a
higher precision arithmetic. In this case, we have taken the standard quadruple precision
arithmetic that it is contained in the libraries of many compilers (this concrete computa-
tion has been done on a Sun workstation). The results are displayed in Table 10. It is
interesting to compare this last table with Table 1: if we take the coefficients in Table 10
as exact, we note that the error in the ones of Table 1 is of the order of the imaginary
part. This suggests an heuristic criterion to estimate the accuracy of this computation.

Now, it is clear the amplification of errors that we have in this process. There are two
(standard) ways of overcome this phenomenon:

1. Intervalar arithmetic. Note that, although the intervals grow very fast, they are
still providing exact bounds for the coefficients, that can be useful in order to derive
computer assisted proofs (they are going to be a much sharper bound than any
other estimation obtained by analytical methods).

2. Multiple precision arithmetic. This is the “brute force” solution, but it is valid in
several cases. The advantages are obvious, but one should note that, when dealing
with realistic problems, it is not always a feasible option (for instance, the mass
parameter corresponding to the Earth-Moon case is only known up to 10 or 11
digits, so there is no gain in using multiple precision).

Of course, in academic problems it is always possible to use a combination of both, to
derive very accurate coefficients and/or very sharp estimates for them.

Concerning the normal form around Ls of the RTBP, let us add that the amplification
of errors is bigger when the mass ratio yu is smaller.

Finally, let us note that the routines for interval arithmetic and the extension for
quadruple precision are not included in the software.

7 Extensions

In this package we have only considered the case of autonomous Hamiltonians with three
degrees of freedom. It is not difficult to extend the ideas and the routines presented
here to more degrees of freedom. For instance, to work with a four degrees of freedom
Hamiltonian system (without any symmetry) one only needs to write the basic routines of
the corresponding file mp8.c, and to introduce minor modifications in the other routines.

If one is interested in the computation of normal forms around another objects, in
[32] it is explained (from a numerical point of view) the computation of the normal form

5We have not tried to optimize the algorithm to minimize the growing of the intervals. It is possible,
then, to obtain narrower intervals with a different implementation.
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lower bound upper bound
11010 9.5450087346978552e-01 9.5450087346991741e-01
O0|1|0]|-2.9820811951634596e-01 | —-2.9820811951573489e-01
001 1.0000000000000000e+00 1.0000000000000000e+00
21010 1.1568661303889360e-01 1.1568661401345537e-01
11110 -1.7127952451731403e+00 | -1.7127952303486182e+00
02|60 3.3855424323176919e-01 3.3855425662676453e-01
1101 8.9130919836368838e-02 8.9130920112820977e-02
oO|1 |1 2.2531870640182916e-01 2.2531870757604811e-01
0|0 | 2] -2.2354591590257877e-03 | —-2.2354591074729147e-03
3|10 | 0| -2.9479121860441637e-01 | —2.9478447589701773e-01
211]0 8.1656201621290165e+00 8.1657691558011720e+00
112 |0|-5.4586913901624575e+02 | -5.4586860598896601e+02
0|3 |0]|-5.1021371160130911e+01 | -5.1021185629532283e+01
210]|1]|-4.3799836956028315e-01 | —-4.3799552187429924e-01
11111 1.4116969490546651e+01 1.4116998940124972e+01
0|21 2.0186927381142823e+00 2.0187190572228246e+00
1]10| 2| -5.5905224456048508e-02 | -5.5904854484518651e-02
O|1|2]-1.7898271680742539e-01 | —-1.7898147963031263e-01
0|0 | 3] -5.1334316020434586e-05 | -5.1317165340935330e-05
41010 1.2677680341002997e+00 1.2873345241823699e+00
3|11]|0 | -3.5434024811722338e+01 | -3.4703682770952582e+01
22| 0| -5.4877274309542030e+04 | -5.4872743283411488e+04
1130 3.2220252371445298e+04 3.2226686164319515e+04
0/4|0 3.5177942440398037e+03 3.5192072384618223e+03
3|01 2.1707021092443028e+00 2.1811671985342400e+00
21111 1.9986363951466046e+01 2.0216307091992348e+01
1121 1.3647290105217136e+04 1.3647973048501415e+04
0|3]|1 1.4506020027436316e+03 1.4508753202967346e+03
21012 2.1927585054381780e+00 2.1948837131021719e+00
1]1]2|-4.9551211330863225e+01 | -4.9529208559599283e+01
0]12]2|-1.0188391081203008e+01 | -1.0169093839605921e+01
11013 3.5386579632358917e-02 3.5564130055718124e-02
0|13 7.0933774363425073e-02 7.1488715816371950e-02
00| 4 5.1925348264703075e-04 5.2452355219756441e-04

Table 9: Coefficients of the normal form, for the Earth-Moon case, obtained using inter-
valar arithmetic. Only the real parts are presented.
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real part

imaginary part

OO P OFRP NOFEFNWOEFEFNWPODOFRLR OFPLNOFFNWOOFOFNOOR
O, ONF O WNRFOPWNRFROOFRPLRONRFEFOWNRFRPLOOFFONEOOHRDO
DWW NNMNNRP, PR PP OOOOO0OWMNNREFRERRPRPL,OOOONRKEREOOOHROO

.9545008734698507e+00
.2982081195160388e+00
.1000000000000000e+01
.1156866135262217e+00
.1712795237759768e+01
.3385542499303071e+00
.8913091997461692e-01
.22563187069890425e+00
.2235459133244455e-02
.2947878472529007e+00
.8165694658984183e+01
.5458688725020474e+03
.5102127839458834e+02
.4379969457189379e+00
.1411698421534677e+02
.2018705897693666e+01
.5590503947042638e-01
.1789820982175625e+00
.5132574067108261e-04
.1277551279966923e+01
.3506885376119049e+02
.5487500879622420e+05
.3222346926821930e+05
.3518500741321633e+04
.2175934654360213e+01
.2010133553242287e+02
.1364763157688629e+05
.1450738661531158e+04
.2193821109377304e+01
.4954020994411146e+02
.1017874245948335e+02
.3547535485371232e-01
.7121124512960337e-01
.5218885184995916e-03

O O OO O OO o

o O

.0000000000000000e+00
.0000000000000000e+00
.0000000000000000e+00
.1927100002836750e-32
.8974646880952045e-32
.4812484744069060e-32
.4814824860968090e-33
.1155557966632342e-32
.0000000000000000e+00
.15621362462732897e-29
.1185016987263866e-28
.1174332188770398e-28
.1863024703269571e-28
.1484998366081301e-30
.3358157455523530e-29
.3811527650397076e-30
.1150165425481089e-30
.55603192785483820e-31
.1954016422742883e-32
.6516229084136752e-27
.1930958293998747e-25
.1108578486500471e-24
.1264834400557989e-24
.2977673781142404e-25
.1498922726564656e-27
.4112326735122740e-26
.4301991684680189e-26
.6827018990166253e-27
.2410685221214210e-28
.1635601948530436e-27
.1986868172512715e-27
.4504667333242595e-30
.9633349924466193e-29
.15627174289047186e-30

Table 10: Coefficients of the normal form, for the Earth-Moon case, obtained using
quadruple precision. The last column contains the imaginary parts of the coefficients,

which should be zero.
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around a periodic orbit of the spatial RTBP. The routines used there are based in the
methodology explained here.

The case in which the Hamiltonian depends on time can also be considered. For in-
stance, let us consider the Hamiltonian of the RTBP with a perturbation that depends
periodically on time. In this case, one can still use the routines here but one has to change
the basic arithmetic: now, the coefficients of the monomials are going to be Fourier se-
ries. We can store Fourier series in complex form as polynomials of one variable, using
an array to put the coeficients and using the place inside the array to know the corre-
sponding exponent (in this case one should say frequency instead of exponent). As the
relation between positions and frequencies is very easy and one does not need to write
any special function for this.5 Then, one needs to write the arithmetic routines (sums and
products) for these Fourier series and to use them instead of the complex arithmetic for
the coefficients. Note that this can be easily done if you are using a C extension allowing
for overload of arithmetic operators, as C++ or SCC (see [41]) do. Finally, you have to
modify the input/output routines accordingly. This is what we have done in [28] or [50],
for the case of a periodically perturbed Hamiltonian system.
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A Basics on Hamiltonian Mechanics

In this appendix we give the basic definitions and properties related to Hamiltonian
systems. The information presented here is biased towards the items needed in this

6This changes drastically when one has to deal with quasiperiodic time-dependent functions, because
the mapping between postions and frequencies is more complex. The main problem comes from the fact
that these series are usually a little bit “sparse” and it is very convenient to store only the meaningful
coefficients, to save memory. This is used and discussed in [15] and [18].

44



paper. A more complete and rigorous presentation can be found in any textbook on this
subject (see, for instance, [2], [38] or, for a more formal approach, [1]).

To simplify the discussion, from now on we will assume (without explicit mention)
that all the functions that will appear here are analytic.

A.1 Basic definitions

A Hamiltonian system is a (continuous) dynamical system whose flow satisfies an ordinary
differential equation of the kind:

OH OH
i=%, 7P (16)

Variable p € R is called momentum and variable ¢ € R is called position. The function
H = H(p,q,t) is called the Hamiltonian of the system (16), and equations (16) are known
as the Hamilton equations. Moreover, £ is known as the number of degrees of freedom of

the Hamiltonian H.
0 I
=(50).

If we define the matrix J as:
where I is the identity matrix ¢ x ¢, then we can write equations (16) as:
2=JVH(z), z=I(qp).
As J satisfies J' = —J, it defines a symplectic form” w° on R?*:
WO(u,v) =u'Jv, wu,veR¥.
A matrix M is said to be symplectic if it satisfies
MTJIM = J.

A function f,
fREXR — R
(p,a) = flp.q)
is said to be a first integral of the Hamiltonian H if its surface levels are invariant by the
flow (16), this is, if f takes a constant value on each orbit of the system. It is immediate
to check that the function H is always a first integral of the Hamiltonian H.
The Poisson bracket of two functions f(p, q) and g(p, q) is defined as:

{f, gy =VflIvVg=+2 - =7

"A symplectic form is a non degenerate bilinear skew symmetric form
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It is not difficult to show that, if f is a first integral of the Hamiltonian H, then it must
satisfy {H, f} = 0.

Two functions f(p,q) and ¢(p,q) are said to be in involution if their Poisson bracket
is zero,

{f,g} =0.

The functions { f;}1<;<, are said to be independent on some open domain D if the vectors
{Vfi}i<j<n, defined on the domain D, are linearly independent on each point of the
domain.

In the next sections we will use the following property of the Poisson bracket: if P,
and @, are homogeneous polynomials of degree r and s respectively, then {P,, Q,} is an
homogeneous plynomial of degree r + s — 2.

In what follows, we will assume that all the Hamiltonians that will appear here are
autonomous (they do not depend on time) and with ¢ degrees of freedom.

A.2 Basic properties

Let us assume that a Hamiltonian system H has ¢ first independent integrals, {f;}i1<j<v,
that are in involution. Let us define M, as

Mo={pq): filp) = £, j=1,....¢}.

Then, the well-known Liouville-Arnol’d theorem (see [2] or [5]) says that:
1. The manifold M, is invariant by the flow.

2. If M, is a compact connected manifold,® then it is diffeomorphic to the ¢ dimensional
torus

TZ = {(¢17 - '7¢£)m0d 271'}

In this last case it is possible to introduce, by means of a change of variables (p,q) =
F(I,$) (I € R’ is the new momentum and ¢ € T* is the new position) the so-called
action-angle variables (I are the actions and ¢ are the angles). In these variables the
Hamiltonian does not depend on the angles, H = H(I), so the equations of motion are of

the form
oH

?= o1

Note that these equations can be easily integrated:

I=0,

w([).

It =1, o) =wly)t+ éo.

80f course, there are other possibilities that we will not discuss here, since they will not be necessary
in this presentation.
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If the values w(/y) = wy are linearly independent over the rationals, each solution is a
dense quasiperiodic trajectory on a torus of dimension /. It is very common to use the
frequency vector to identify a concrete torus of the system. If the map

OH
I— o (I) =w(I)
is a diffeomorphism (between suitable domains), it is also possible to identify a torus by
the value of the action variable.

If (k,wp) = 0 for some k € Z¢ then the orbits on this torus are not dense: if there
are /; independent frequencies, the torus I = I contains a (¢ — ¢;)-parametric family of
¢; dimensional tori, being each one densely filled by any trajectory starting on it. These
tori of dimension ¢; are known as lower dimensional tori, while the tori of dimension ¢ are
called maximal dimensional ones.

A.3 Canonical transformations

Now let us consider the effect that the changes of variables have on Hamiltonian systems.
Let H(q,p) be a Hamiltonian function, and let us consider a change of variables (¢, p) =
U(z,y). Note that the Hamilton equations obtained from the Hamiltonian H o ¥ can
be different from the equations obtained applying the transformation ¥ to the Hamilton
equations related to H. When these differential equations coincide, it is said that the
transformation W preserves the Hamiltonian form.

A change of variables is called canonical when it preserves the Hamiltonian form (for
any Hamiltonian function). It is not difficult to show a transformation is canonical if and
only if the differential of the change (on any point) is a symplectic matrix.

Canonical transformations are very useful both from the theoretical and the practical
points of view, since they allow to work on a single function (the Hamiltonian) instead of
a system of 2¢ differential equations.

Note that to produce canonical changes of variables is not an easy problem, since it
is very difficult to impose that the differential be a symplectic matrix. Fortunately, there
exists several techniques to produce such transformations. The one that we will use here
is based on the following properties of the Hamiltonian flows:

1. Let ®;(x,y) be the time ¢ flow of a Hamiltonian system. Then, (¢,p) = ®4(x,y) is
a canonical transformation.

2. Let G(q,p) a Hamiltonian system with ¢ degrees of freedom, and let (qo(t), po(t)) be
a solution of G. Then,

 Fao(t).mo(1)) = (1.} (D). po0). (7

for any smooth function f.
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Now, it is not difficult to see that to transform a Hamiltonian H by means of the time 1
flow of a Hamiltonian GG, we can apply the formula

flzH+{H,G}+%{{H,G},G}+%{{{H,G},G},G}jL---, (18)

where H denotes the transformed Hamiltonian. This formula is deduced applying the
Taylor formula for the transformation and using (17) for the derivatives involved. The
Hamiltonian G is usually called the generating function of the change of variables.

The expression (18) is very suitable for effective computations, since it can be easily
implemented on a computer. Note that all the operations involved are very simple if we
are working with some kind of expansions (power expansions, Fourier expansions, etc.).
One can argue that the problem for this kind of transformation (for a practical point of
view) is that it is defined by an infinite series. This is not a problem since we usually work
with a finite truncation of these series. This will produce a high order approximation to
the results wanted that, in many cases, are good enough for pratical purposes. On the
other hand, it is possible to derive rigorous estimates on the size of this remainder so one
can obtain bounds on the error of the results obtained with the truncated series (see [43],
(28] or [32] for numerical examples of this).

A.4 Normal forms

We are going to restrict ourselves to the normal form around a fixed point of a Hamiltonian
system. For normal forms around more complex objects (like periodic orbits or invariant
tori), see [9], [30] or [31].

Let H be a real analytic Hamiltonian of ¢ degrees of freedom having an elliptic equilib-
rium point that, without loss of generality, we can assume that it is located at the origin.
The case in which the equilibrium is of the type “some centres” times “some saddles” will
be discussed later.

Let us start by expanding H in power series around the origin,

H(q,p) = Hs(q,p) + Hs(q,p) + Hi(q,p) + - - -, (19)

where H,(g,p) is an homogeneous polynomial of degree j in the variables (¢,p). Our
purpose is to perform (canonical) transformations in order to simplify as much as possible
this expansion. Ideally, one would like to remove completely all the H; with j > 3
but we will see that this is, generically, impossible. What we will show here is that,
under some hypotheses, it is possible to remove the necessary terms to produce integrable
approximations to the dynamics.

In order to simplify the subsequent steps, it is very convenient to simplify Hs(q,p).
Let A be the linearization of the Hamiltonian flow of H around the origin (i.e., A =
JVH,(0,0)). As A is an elliptic matrix, we can reduced it to A = C~'AC, being C' a real
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matrix and A of the following form
Ay
A=

~

Ay

where the elements outside the flj are zero, and

Aj:< 0 “BJ) Wi ER  j=1,....L

It is not difficult to check that this change can be selected canonical. If we call (z,y) to
the new variables (x is the position and y the momentum), we want to note that the order
(“permutation”) of these variables to achieve this form for Ais (1, Y1, To, Y2y -« - Lo, Yo)-
In these coordinates, H, takes the form

e
Hy(z,y) =Y % (a2 +12). (20)
7j=1

In order to simplify the computations in the normal form process (basically, the com-
putations of generating functions), we will perform the following (linear and symplectic)

transformation:
g+ V~1p; VvV —1lg; +p;
ARV R R Y, B

where we call (again) (g, p) to the new variables. In these variables, H, takes the form

(21)

/
Hy(q,p) =Y V—1wjq;p;.
7j=1

In what follows, we will denote w = (wy,...,w;), and we will assume that the values w,
1 < j < /{, are linearly independent over the rationals.

Let us assume that the initial expansion (19) has been rewritten in these variables,
and we want to apply a sequence of canonical transformations (based on the scheme (18)).
Let us start by trying to remove Hjs, by means of a generating function G3 that is also a
homogeneous polynomial of degree 3. From (18) it is immediate to see that the monomials
of degree 3 of the transformed Hamiltonian H obtained using a generating function Gy
are given by X

H3 - H3 + {HQ, Gg} .

Let us try to select a G5 such that Hj is zero. To this end, we introduce the following
notation: if z = (21,...,2,) and k = (k1,...,k,) € N*, we define

K=k k| =k 4+ R

n
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Then, we write H3 and G5 as

Hy(g,p)= > hid o™, Gslap)= > grord™p™.
|kq|+|kp|=3 |kq|+|kp|=3

Next step is to solve the equation Hsz = 0. Note that Ly, (-) = {Ha, -} is a linear operator
in diagonal form, because

L, (¢"p'?) = {Ha, ¢"1p'r} = V=1 (ky — kg, w) ¢,

Note that this diagonal form is due to the complex coordinates introduced in (21). Now
it is very easy to find a G3 such that {Hs, G3} = —Hj:

—hiey kg -k
Gs(q,p) = Y, 2 qraphe,
Vgl Hpl=3 V1 (kp = kg, w)

Of course, we need that the denominators (k,w) do not vanish for any k € Z*\ {0}. As
|kq| +|kp| = 3, this condition is automatically satisfied if the components of the frequency
vector w = (wy,...,wy) are linearly independent over the rationals.

We rename the transformed Hamiltonian as H, that now takes the form

H(q,p) = Ha(q,p) + Hilq,p) + Hs(q,p) + - .

The next step is to look for a generating transformation G4 (a homogeneous polynomial
of degree 4), to remove the monomials of degree 4 from H. Note that this is not possible
in general, since Ly, has some zero eigenvalues:

LH2 (qkpk) = {HQaqkpk} =0.

Note that this never happens for monomials of odd degree. The monomials of the type
¢*p* are usually called resonant monomials or unavoidable resonances. Hence, when we
try to solve the equation Ly,(G4) = —H, we only can solve for the monomials of Hy of
the form gFeph», with k, # ky:

— Ny
G , — qsivp kq kp‘
4((] p) Z \/__1<kp _ kq,w>q p
|kq|+]kp|=4
kq#kp

With this change, H takes the form (we call again H to the transformed Hamiltonian)

H(q,p) = Ha2(q,p) + Hilq,p) + Hs(q,p) + - - -, (22)
where

Hy = Z qukpk-

k|=2
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Fortunately, the monomials present in H, do not obstruct integrability: let us skip the
terms in (22) of order bigger than 4 (this is what we call the normal form of the initial
Hamiltonian (19) up to degree 4). Let us apply the canonical transformation

vy = I exp(V=1¢;), y;= V1L exp(—/—1¢;), j=1,...,L (23)
so that the truncated Hamiltonian takes the form

H=H(I)=(w 1)+ Hy(I), Ho(I)=> MIF, I=(L,....1).

k|=2

This is now an integrable Hamiltonian, that gives an approximate description of the
dynamics around the equilibrium point. The equations of motion are

. . O0H(I)

I1=0 = ——=w().
The solutions are I = I (that correspond to invariant tori) and ¢ = w(Iy)t + ¢y, that is
a quasiperiodic flow on the torus.

Of course, the process of reduction to normal form can be done up to any finite order.

Skipping the remainder and using (23) we obtain a Hamiltonian like

A.4.1 On the convergence

Generically, the normal form reduction is a divergent process. The divergence is mainly
due to the effect of the divisors (k,w) that appear in the generating functions (in fact, it
is possible to have divergence even in the absence of small divisors, see [25]). In order to
control the size of these denominators, it is usual to ask for a Diophantine condition like

| (k,w) | > kezZ\ {0}, y>(—1. (24)

c
|k
This allows to derive estimates on the size of the remainder obtained when we stop the
normal form to some order N. Note that the set of w such that condition (24) is not
satisfied has Lebesgue measure O(c).

In fact, one may look at a normal form as a power expansion of a non-analytic C'*®
function at the origin. The power series is divergent but, if we stop the expansion to
some order N, the remainder behaves like O(RY '), where R denotes the distance to the
origin. This last property is what makes these expansions useful.

A.5 Stability

Here we will explain some of the applications of the normal forms. Let us consider the
neighourhood of an elliptic equilibrium point (that we locate at the origin) of a £ > 1
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degrees of freedom autonomous Hamiltonian system H (g, p). Consider an initial condition
close to the origin. We are interested in knowing if the corresponding trajectory will be
close to the origin for all times (stability in the sense of Lyapounov), or if it is going to
escape to a distance O(1) from the equilibrium point.

A.5.1 The Dirichlet theorem

This is a particular case in which the stability problem can be easily solved. Let us call
M to the Hessian matrix of the Hamiltonian at the origin (we recall that M is symmetric
and that V(,,)H(0,0) = 0). Assume that M is a positive definite matrix. Then, the
Dirichlet theorem says that origin is Lyapounov stable.

The proof is based on the fact that, close to the point, the level surfaces of the Hamil-
tonian are “like ellipsoids” having the origin inside (those manifolds are of codimension 1
so they split the phase space). Then, as they are invariant for the dynamics, they act as
a barrier that the trajectories starting near the point can not cross. Note that the same
argument holds if there exists a first integral, defined on a neighbourhood of the origin,
that is positive definite at (0,0).

Unfortunately, there are many interesting cases where the matrix M is not positive
definite and, hence, we need a different kind of results to study the stability.

A.5.2 KAM and Nekhoroshev theory

In the last section we have seen that, using a finite number of steps of a normal form
scheme, we can put the Hamiltonian into the form

2N

H(J“ay) - HZ(x7y) + ZHJ(J“ay) +R2N(xay)'

Jj=3

Now, using condition (24) it is possible to derive estimates on the size of the remainder
Ron that are of the kind ¢; exp(—co(1/R)¥0+Y) (¢; > 0, ¢, > 0). Here R denotes
the radius of the ball centreed at the origin on which we take the norm of Ry, and it
is assumed to be sufficiently small. This has been obtained optimizing the size of the
remainder with respect to the degree up to which the normal form is obtained, for each
value of R.

From this bound on the remainder, it is not diffcult to obtain lower bounds on the
diffusion time (i.e., the time to move away) around the point. For instance, if we call
T(R) to the time to go out from a ball of radius 2R starting in a ball of radius R, we have

T(R) > czexp <C4 <%>%) ;

being c¢3 and ¢4 positive constants. Of course, this is not a proof of stability but a
“bound on the unstability”. This kind of estimates are what is usually called Nekhoroshev
estimates.
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A second approach is to try to remove completely the remainder. This can not be done
using the normal form scheme we have explained in the previous sections, but it can be
done through a Newton method. This is a quadratically convergent iterative scheme, that
only converges on a Cantor set of the phase space. On this Cantor set, the trajectories
take place on invariant tori and, hence, they never go away from a vicinity of the point.
The Lebesgue measure of the complementary of this Cantor set can be bounded by a
quantity like c5 exp(—cg(1/R)¥0*V), ¢5 > 0, ¢s > 0. This kind of results belong to the
so-called KAM theory. To decide about the stability we must take into account the motion
outside the Cantor set of invariant tori. For instance, let us consider first the case ¢ = 2.
The phase space is four dimensional and, fixing the energy level H = h we restrict to a
three dimensional space. The invariant tori are of dimension 2 so they split the phase
space and, hence, this allows to conclude the Lyapounov stability of the elliptic point.
The case ¢ = 3 (or bigger) is much more difficult. The reason is the following: fixing
the energy level produces a five dimensional invariant manifold and the invariant tori are
three dimensional so they do not split phase space and we can not conclude stability. In
fact, the stability of Hamiltonian systems with three or more degrees of freedom is today
an open question. The more accepted conjecture says that they are, generically, unstable
(see [3]). The unstability mechanism is usually known as Arnol’d diffusion.

It is outside the scope of this paper to give detailed explanations of these results. We
refer to books like [4] or [5] for a general explanation, and to [30] for more concrete results
around invariant objects (like elliptic points, periodic orbits or invariant tori).

A.6 Centre manifolds

Let us consider now a Hamiltonian with three degrees of freedom, in a neighbourhood of an
equilibrium point of the type centrexcentrexsaddle, that we will assume to be the origin.
Of course, this is an unstable equilibrium point but we are interested in the existence of
trajectories that remain close to the point for all times. If we consider the linearization
of the vectorfield at this point, and we skip the hyperbolic part, we obtain a couple of
harmonic oscillators. Hence, for the linearized vectorfield, we have a couple of families
of periodic orbits near the point, plus the quasiperiodic solutions obtained as product
of the two families of periodic orbits. These quasiperiodic solutions are sometimes called
Lissajous orbits. Let us consider now the effect of the nonlinear terms of the vectorfield on
these bounded solutions. Under generical conditions the well-known Lyapounov centre
theorem says that, for each linear (periodic) oscillation, there exists a one-parametric
family of periodic orbits of the complete Hamiltonian system that emanates from the
point in a tangent way to the linear family of oscillations. The limit frequency of these
periodic orbits at the fixed point is the frequency of the linear oscillations (for a proof
see, for instance, [42]). A similar result holds for the Lissajous orbits. Under general
hypotheses, it can be shown that these linear oscillations can be extended to the complete
system as a Cantorian family of invariant tori. Moreover, the measure of the gaps between
tori is exponentially small with the distance to the origin (for the proofs, see [30]).

To give a more accurate description of the dynamics around the point, let us apply
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a normal form technique, as it has been done in previous sections. We start expanding
the Hamiltonian in power series around the point (as in (19)). Next we write the second
degree terms H, in real coordinates such that

w w
Hy(z,y) = A\vyy + ?2 (xg + y%) + ?3 (x% + y%) o (N, wy,ws) € R,

The coordinates x, y; are already in diagonal form, so we only need to complexify the
couples (x2,y2) and (x3,ys). Using the change (21) for these two couples we obtain

HZ(Q7p) = Aqip1 + vV —1waqops + vV —1wsgsps.

Now we can start a normal form process as the one described in Section A.4 but, instead of
killing all the possible monomials, we will only kill the monomials such that the exponent
of ¢, is different from the exponent of p; (for a different killing criterion, see [46]). That
is, the generating function used to remove monomials of degree n will be of the form

ik,
kqgé;cpl (kpy — kg )X+ V/=1(kp, — kg )wo + V/=1(kp, — kg )ws

As kg, # kp,, the denominators of the generating function are bounded from below and
this is the reason for which the normal form process diverges very slowly (like an harmonic
series, see [25]).

If we stop this scheme after a finite number of steps, we obtain a Hamiltonian like

H(qap) = HN(Q1p17q27Q37p27p3) + R(qap)

Neglecting the remainder R (it is very small near the origin), we can define I = ¢;p; (this
is a canonical change if we define properly the corresponding angle variable) to obtain a
Hamiltonian Hy (11, ¢z, g3, P2, p3). Note that the equation corresponding to the variable I;
is I = 0 so it is a first integral of the system. Selecting the value I; = 0 we are restricting
the Hamiltonian Hy to an invariant manifold that is tangent at the origin with the linear
central part of the system. This is the so called reduction to the centre manifold.

Once I, has been replaced by 0, we have obtained a two degrees of freedom Hamiltonian
system H, = Hy(0, q2, g3, p2, p3), where the origin is an elliptic equilibrium point. It is
not difficult to produce a qualitative description of the dynamics of H.: the phase space
is four dimensional, so let us fix a energy level H. = h. to reduce to a three dimensional
phase space. Now, Poincaré sections are two dimensional and can be plotted easily.
Doing several plots for several values of h. one gets a description of the trajectories that
remain close to the origin. The dynamics of the initial Hamiltonian near the origin can
be obtained adding the hyperbolic part that we have skipped when reducing to the centre
manifold. See [26] or [27] for examples of this.

Although this reduction is divergent in general, we can apply KAM techniques to
show, under suitable hypotheses, the existence of a Cantorian centre manifold,” completely
filled up by invariant tori. The complementary of the measure of this manifold (in the
parameters space) decreases exponentially with the distance to the origin. See [30] for
more details.

9This manifold is parametrized by two parameters, and each parameter moves on a Cantor set.
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A.7 First integrals

Again, let us consider the dynamics near an equilibrium point of a Hamiltonian system.
Now we are interested in producing first integrals of the motion. Of course, if the Hamil-
tonian is not integrable (this is, in fact, the general case) these integrals are not going to
exist but, as we will see, it is still possible to produce approximate first integrals that can
be useful for some applications.

To simplify the discussion, we will assume that the equilibrium point is at the origin
and that it is of elliptic type. The case in which some directions are hyperbolic can be
done in a very similar way.

As in the previous cases, let us assume that the Hamiltonian is expanded in power
series (as in (19)), with Hy in diagonal form (as in (20)). Let us denote by F the (wanted)
first integral, that we will expand in power series around the origin as F' = 3;-, F};, where
F; denotes a homogeneous polynomial of degree j. From the condition {H, F'} = 0 it is
immediate to obtain the following recurrence:

{Ho, Fr} = =Y {Hj, Foojia} - (25)
j=3
Hence, due to the diagonal form of Hs, it is very easy to solve Fj, in terms of Fy, ..., F, 1,

assuming the standard non resonant conditions on the frequencies of the point.'® Then,
given a F,, we can compute the following terms F3, F and so on.

As usual, the series F' = 37,5, Fj is divergent. However, from its asymptotic character
we can derive quasi-integrals of motion by simply truncating the series to finite order. This
means that, if f,, denotes a quasi-integral and (¢(¢),p(t)) is an orbit of the Hamiltonian
system H then,

fula(t),p(t) = {H, fu} (a(t), p(t))

Bounding the Poisson bracket of this formula in a neighbourhood of the elliptic point one
can derive estimates on the diffusion time near the point. For an application of these
techniques, see [11]. See also [37] for an early construction of quasi-integrals.

B Linear normal form for the equilibrium points of
the RTBP

Let us start with a brief description of the so-called Restricted Three Body Problem
(RTBP). More details can be obtained in (almost) any textbook on Celestial Mechanics,
like [52].

Let us consider two punctual masses (usually called primaries) that attract each other
according to the gravitational Newton’s law. Let us assume that they are moving in

10As it has been mentioned before, the operator Ly, (-) = {Ha,-} is not bijective. Then it is possible
that, if the right hand side of (25) contains resonant monomials, this equation can not be solved. There
are several cases when it can be proved that such monomials never appear. See [11] for a discussion of
this.
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circular orbits around their common centre of masses, and let us consider the motion
of an infinitessimal particle (here, infinitessimal means that its mass is so small that we
neglect the effect it has on the motion of the primaries and we only take into account the
effect of the primaries on the particle) under the attraction of the two primaries. The
study of the motion of the infinitessimal particle is what is known as RTBP.

To simplify the equations of motion, let us take units of mass, length and time such
that the sum of masses of the primaries, the gravitational constant and the period of the
motion of the primaries is 1, 1 and 27 respectively. With these units the distance between
the primaries is also equal to 1. We denote as p the mass of the smallest primary (the
mass of the biggest is then 1 — p), p € (0, %]

The system of reference is defined as follows: the origin is taken at the centre of masses
of the primaries, the X-axis points to the biggest primary (with this orientation), the Z-
axis points to the direction of the vector of angular motion of the primaries with respect
to their common centre of masses (it is perpendicular to the plane of motion) and the
Y-axis is defined such that we obtain an orthogonal, positive-oriented system of reference.
Note that we have defined a rotating system of reference, that is usually called synodic.
In this system, the primary of mass p is at the point (1 — 1,0,0) and the one of mass
1 — pisat (u,0,0).

Defining momenta as Px = X-Y,Py =Y +X and P, = Z, the equations of motion
can be written in Hamiltonian form. The corresponding Hamiltonian function is

H= P2+ p2ep)+vpe—xp - 11 I (26)
2 I D)
being r? = (X —p)? +Y?+ Z? and ri = (X —p+1)2+ Y2+ 72

It is well-known that the system defined by (26) has five equilibrium points. Two of
them can be found as the third vertex of the two equilateral triangles that can be formed
using the two primaries as vertices (usually called L, 5 or Lagrangian points). The other
three lay on the X-axis and are usually called L, 53 or Eulerian points (see Figure 3).

In the next sections we will study the linear behaviour around these five equilibrium
points. We will obtain the linear normal form around them as well as the corresponding
(symplectic) changes of variables. These calculations are summarized in [14] and [15], and
here we give them in detail. They have been included for completeness.

B.1 The equilateral points

The equilibrium points Ly and Ls are located at (u — %, $§, 0), where the upper (“—")

sign is for Ly while the lower (“+”) one is for L;. These points are known to be linearly

stable when the mass parameter p is less than the Routh critical value pr = % (1 — 3—?) ~
0.03852. In what follows we will assume that our mass parameter is less than pp (the
interested reader should not have any problem to complete the opposite case).

The first step is to translate the origin of coordinates to the equilibrium point. This
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Figure 3: The five equilibrium points of the RTBP. The graphic corresponds to the Earth—
Moon case, p ~ 0.01215.

is done applying the (symplectic) change

Y = y¥¥, Py = p,+p—3,

Z = z, P, = 2z,

to the Hamiltonian (26). As before, the upper sign is for the L, case and the lower one for
the L5 case (this rule for the signs will be used along this section). To simplify notation,
we call again H to the Hamiltonian obtained,

1 1 V3 1—p 7
H:— 2 2 2 - (__ > v "
2(px+py+pz)+ypx wpy {5 —n)rF Sy e

where 15 = (x —2g)* + (y —ys)* + 2%, 15, = (@ —2)* + (y —ys)? + 2%, x5 = 1/2,

ys = FV3/2, v; = —1/2 and y; = Fv/3/2. Note that (zg,ys,0) are the coordinates of
the big primary in the new coordinates and that (x;,ys,0) is the position of the small
one.!'!

The next step is to expand H around the origin. Note that, as the origin is an
equilibrium point, the first order terms must vanish (we simply don’t care about the
constant value H(0), since it is irrelevant to the dynamics). The first non-trivial terms

1 The subindices correspond to “Sun” and “Jupiter”. They provide a classical example for the RTBP,
where the small particle can be an asteroid.
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are of second order and they are responsible for the linear dynamics around the point.

They are
H Lo, 2 2 _ 1, 5,5 1,
2—2(px+py+pz)+ypw py + go” = gy —azy + 52

where a = i¥(1 — 2u). Note that the behaviour in the (z,p,) directions is uncoupled
of the behaviour in the (z,y, p;, p,) directions. Moreover, the motion on the z-axis corre-
sponds to an harmonic oscillator with frequency 1 (for all x1), that it is already in (real)
normal form. Hence, we restrict ourselves to the (x,y, p,, p,)-plane:

1 1

5)
H, = §(pi —|—p§) + ypy — Tpy + ga:Q — §y2 — axy. (27)

Let us define the 4 x 4 matrix J as

(0 L
(5 0)

where I denote the 2 x 2 identity matrix. The equations of motion of (27) are given by
the linear system

x x
v | _ _ y
> | = JVH, = JHess(Hs) . (28)
Pz Pz
py py
An easy computation shows that the matrix M = JHess(Hs) is given by
0 1 1 0
10 0 1
M=1_14 0 1 (29)
a % -1 0

The characteristic polynomial is p(A) = A* + A* + 21 — a®. From this expression it is easy
to obtain that system (28) is stable if p < pp = 3 (1 - ,/%) (this is the so-called Routh

mass) and unstable if p, < p < % As we are studying the case p < pg, we assume that
the solutions of p(\) = 0 are all purely imaginary, that is, \; = +w;y/—1, j = 1,2. The
real values w; are the frequencies of the linear oscillations at the equilibrium points Ly,
and it is trivial to show that they always differ when 0 < p < pg. Let us call w; the one
that satisfies w? > % and wy the one such that w3y < % For the moment we do not specify
the sign we take for each frequency. These signs will be determined below.

Now we want to obtain a real (and symplectic) change of variables such that the
Hamiltonian (27) is reduced to its (real) normal form. The first step will be to look for
the eigenvectors of the matrix M given by (29). To simplify the computation, we wil take
advantage of the special form of this matrix. We denote by M, the matrix M — A\I,, and
we define the following splitting in 2 x 2 blocks:

(AN L (=X 1 B —i
M’\_<B AA>’ A*_<—1 —A)’ B_<a

28
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Here, A denotes one of the eigenvalues of the matrix M. The kernel of M, is now easy to

find: to solve
A)\ [2 w1 o 0
B A)\ Wo N 0 ’

we can start by solving (B — A%)w; = 0 and then wy = —Aw; (note that the kernel of
(B — A?) is trivial to find since it is a 2 x 2 matrix). In this way, we find the eigenvector
2A+a, A2 =2 X2+ aX+3, A3+ 2 +a)". Now, as the eigenvalues of M satisfy A = v/—1w,
w € R, we obtain that the frequencies w are determined by the equation
27
4 2 2
_  _d*=0. 30

wt—w’+ T (30)
We also apply A = v/—1w to the expression of the eigenvector and, separating real and
imaginary parts, we obtain that it can be expressed as u 4+ y/—1v, where

-
u(w) = (a,—wQ—%,—wQ—F%,a)

T (31)
v(w) = (Qu), 0, aw, —w> + %w)

We start considering the change of variables given by the matrix C' = (uy, ug, v1, v9), where
u; and v; denote the values of uw and v given by (31) corresponding to the frequencies
wj, j = 1,2. For the moment we do not specify which sign is taken for each frequency.
In order to know whether C is simplectic or not, we check the property C'JC = J: a
tedious but not difficult computation produces

CTJC:<_OD 10)> D:<d(gl) d(SJZ))'

where d(w) = w(2w* 4+ jw? — 2). Of course, to derive this expression you need to use the
properties (30) and wiw} = 2T — a®. Note that the zeros obtained in CTJC and D were
expected, due to the way we have constructed C'. The only question was to know whether

d were 1 or not. As it is not, we need to perform some scaling to the columns of C: let
us define s; = \/d(wj), 7 = 1,2 and let us redefine C' as (%, %2, % 22) This matrix is

517 827 817 s
now symplectic, but we also want C' to be real, that is, we izvarit tlhe 2\/&11168 d(wj) to be
positive. This will determine the signs we must choose for the frequencies w;. As w} < %,
if one wants d(w;) > 0 is necessary to take w; > 0 and, conversely, as wj < I implies that
we must take wy < 0 in order to have d(wy) > 0. Hence, the change we have obtained is

real, symplectic and it brings the Hamiltonian (27) into the real normal form

Wa

w
Hy, = —1(x2—|—pi) + 5

. (42 +9}), (32)

where we recall that w; > 0 and ws < 0.

In the paper we have used a complex normal form for H,, because it allows to solve
the homological equation that determines the generating function (see Section A.4) in a
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very easy way. Now it is not difficult to derive the change that brings (32) into complex
normal form. We compose the complexifying change

r = q1+\\/[7p1 y = Q2+\\/[7p2
_ \/7q1+171 _ \/7112+P2
Pe = — 5 by = —/5

with the above-defined matrix C' to produce the final change used in the paper:

a 2w [ 2wy a [/ a 2wy [ 2wo a /_
7"1+7"213 1 r1 ;_37"1 1 7"2+7"223 1 7"2+7"2 1

_,2_3 23 _2_3 _,2_3
wi—g wi—3g /1 s i /1
r1 r1 2

T2

3 3 2,3
—wity awy /[ aw1 u’1+4 S Jr4 aws  / aws —wyty /T ’
r1 + r 1 + 1 o + -1 o + o 1

2

3.5 3.5
a —wl—l—zwl /1 w —I— wl /— w2+ w2 /1 —w2+zw2 a
1 + ri 1 + 1 7"2 r2 1 r2 + 2 1

3
rj:\/wj <4w§+w]2-—§>, j=1,2.

Note that this matrix has been written assuming that the order of variables is for the
initial variables (x,y, ps, py) and (¢, g2, 1, p2) for the final ones. In the implementation
of the software we have used the orders (z,p,,y,p,) and (qi,p1, ¢2,p2), that implies a
permutation on this matrix.

B.2 The collinear points

Let us define, for j = 1,2, v; as the distance from the smallest primary (the one of mass
() to the point L;, and 5 as the distance from the biggest primary to L. It is well-known
(see, for instance, [52]'?) that ; is the only positive solution of the Euler quintic equation,

% F B =+ B =2u)y) — i £ 2py; —p=0, j=1,2,
VWA C+py + (L +2u)7 —(L—p)yf —2(L—p)y; —(L—p) =0, j=3,

where the upper sign in the first equation is for L; and the lower one for L,. These
equations can be solved numerically by the Newton method, using the starting point
(11/3)'/3 for the first equation (Ly, cases), and 1 — Ty for the second one (L case).
Next step would be to translate the origin to the selected point L;, as it has been done
for the triangular points. In this case, however, to have good numerical properties for the
coefficients of the final expansions it is better to perform some scaling (see [39], [15], [23]).
As the scalings are not symplectic transformations, let us consider the following process:
first we write the differential equations related to (26) and then, on these equations, we

12Note that “our” L; and L. are swapped with respect to that reference. This lack of agreement for
the definition of L, » is rather common in the literature: usually, books on celestial mechanics use the
same notation as [52] but books on astrodynamics use the one we have used.
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perform the following substitution

X = Fyz+p+aj,

Y = Fyv,
Z = Vi%s
where the upper sign corresponds to L 2, the lower one to Ly and oy = —1 + 71, ap =

—1 — v and a3 = 3. Note that the unit of distance is now the distance from the
equilibrium point to the closest primary. Finally, it is not difficult to check that the
differential equations obtained can be rewritten in Hamiltonian form, with Hamiltonian

1 n x
Hp, = ) (pf: +p§+p§) T Yps — TPy — ch(ﬂ)p b, (;) ;
n>2

where p? = 2% 4+ y? + 22, P, is the Legendre polynomial of degree n and the coefficients
cn(p) are given by

1 (1— )yt .
anlp) = = [(&ED)"u+ (1) —0 ) =12
(k) 7?0 ad )(1¢WV“
en(p) = ——|1l—p+—>~—], j=3.
g (14 5)m+t

As usual, in the first equation, the upper sign is for L; and the lower one for L.

The linearization around the equilibrium point is given by the second order terms
(linear terms must vanish) of the Hamiltonian that, after some rearranging, takes the
form, . .

Hy =3 (P2 +D%) + ype — 2py — 22 + %yQ + ipi + %222. (33)
It is not difficult to derive intervals for the values of ¢, when p € [0, 5] (see Figure 4). As
co > 0 (for the three collinear points), the vertical direction is an harmonic oscillator with
frequency wy = \/cy. In what follows, we will focus on the planar directions, i.e.,

1 C2
H, = 3 (pi + pz) + yps — TPy — 2T + EyQ, (34)

where, for simplicity, we keep the name H, for the Hamiltonian.
Now, we will proceed as in Section B.1. Let us define the matrix M as JHess(H),

0 1 1 0
-1 0 0 1

M = 2co 0 0 1 (35)
0 —C9 -1 0

The characteristic polynomial is p(A) = M + (2 — c2)A? + (1 + ¢ — 2¢3). Calling n = \?,
we have that the roots of p(\) = 0 are given by

ey — 2 —1/9¢2 — 8¢y ey — 2+ 1/9¢3 — 8¢y

= 9 ) 2 = 9
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1

Figure 4: Values of cy(11), 1 € [0, 5], for the cases Ly 5 3.

As p > 0, we have that ¢ > 1 that forces 17y < 0 and 7, > 0. This shows that the
equilibrium point is a centrexcentrexsaddle. Thus, let us define w; as /—m and \;
as /1. For the moment, we do not specify the sign taken for each value (this will be
discussed later on).

Now, as we did in the previous section, we want to find a symplectic linear change of
variables casting (34) into its real normal form and, hence, we will look for the eigenvectors
of matrix (35). As usual, we will take advantage of the special form of this matrix: if we
denote by M, the matrix M — A\I,, then

Ay I -2 1 2c 0
w=(5 n) w=(2h) m=(T )

Now, the kernel of M), can be found using the same tricks as in the previous section:
denoting as (w{,w, )" the elements of the kernel, we start solving (B — A?)w; = 0 and
then wy = —Aw;. Thus, the eigenvectors of M are given by (2, A2 — 2¢y — 1, \? + 2¢y +
1, A%+ (1 — 2¢2)A\) T, where A denotes the eigenvalues.

Let us start considering the eigenvectors related to w;. From p(\) = 0, we obtain that
wy verifies

wi — (2 —)wi+ (14cy —2c¢3) =0.

We also apply A = v/ —1w; to the expression of the eigenvector and, separating real and
imaginary parts as u,, + v/ —1v,, we obtain

Uy, = (0,—wi—2c—1,—wi+2c+1,0)7,
le = (20)1, 07 07 _w:l)) + (1 — 2CQ)(,U1)T,
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Now, let us consider the eigenvalues related to Ay,

Upy, = CANA =20 — 1, A%+ 200+ 1,03+ (1 — 2¢)N) 7,
v = (F2AN =20 — LATH+ 20+ 1, -0 — (1= 2¢)0) "

We consider, initially, the change of variables C' = (uy,, Uy, , V2, Uy, ). To know whether
this matrix is symplectic or not, we check C'".JC = J. It is a tedious computation to see

that
T _ 0 D _ d)\l 0
CJC_<_D o ) =10 0 )

This implies that we need to apply some scaling on the columns of C' in order to have a
symplectic change. The scaling is given by the factors

dy, = 201 ((4 4 3¢2) A3 + 4+ 5cy — 6¢3),  dy, = wi((4+ 3cg)w? — 4 — 5ey + 6¢3).

Thus, we define s; = \/dTl and sy = \/a As we want the change to be real, we have
to ask dy, > 0 and d,, > 0. It is not difficult to check that this condition is satisfied for
0<pu< % in all the points L; 23, if Ay > 0 and w; > 0.

To obtain the final change, we have to take into account the vertical direction (z,p,):
to put it into real normal form we use the substitution

Z =

1

This implies that the final change is given by the symplectic matrix

22 —2) 2wy
o i 0 0 - ” 0
A2—2c2—1 —wi—2c—1 A2-2¢p—1
S1 52 (1) S1 0 0
0 0 0 0 0
C= ) ven
A242¢o+1 —wi+2c2+1 0 A24+2¢9+1 0 0
51 82 S1
A3+(1-2¢2)A N (1=2e)A  —wi4+(1—2¢2)wn
AH(1-2e0)r 0 0 0
51 S1 S92
0 0 0 0 0 o

Finally, to produce the change that brings (33) into its complex normal form, we compose
C with the same complexification as in the previous section.

To end this section, let us remark that here we have used the order (z,y, z, ps, Py, P2)
for the variables, while in the programs we have used the order (z,p.,v,py,z,p.). Of
course, this implies a permutation on this matrix.
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