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We consider a bounded Rooms and Passages region €2 on which
the negative Neumann laplacian (restricted to the orthogonal
complement of the constant functions) does not have a compact
inverse and hence has an essential spectrum. We try to under-
stand how such spectra may be approximated by results from
a sequence of finite-dimensional problems. Approximations to
this laplacian on finite-dimensional structures have only eigen-
values for spectra. Our strategy is to attempt to discern how
results on increasingly better approximating structures point to
spectral results in the limiting case.

1. INTRODUCTION

The determination and understanding of spectra of
linear differential operators is important in quantum
mechanics as well as in several areas of mathemat-
ics. When an operator on a Hilbert space has a
compact self-adjoint inverse, it is well-known that a
complete set of eigenfunctions exists for which the
corresponding eigenvalues form a simple unbounded
infinite sequence. In case such an operator has a
bounded self-adjoint inverse which is not compact, it
also has an essential spectrum. For example, the set
of eigenvalues may have a nonzero limit point. Now
to obtain numerical approximations to such spectra
one must make finite-dimensional approximations to
both an operator and to a region on which it acts.
Such a finite-dimensional approximation leads only
to eigenvalues since essential spectra are impossible
on a finite-dimensional space. How might eigenvalue
patterns for finite-dimesional approximations point
to continuous spectra? In this note we make a case
study of such a phenomenon. For this case study
we choose a spectral problem for the negative Neu-
mann laplacian on a ‘Rooms and Passages’ region
Q in R?. For this bounded region Q the Sobolev
space H#(Q) is not compactly embedded in L (2)

(© A K Peters, Ltd.

1058-6458/1999 $0.50 per page
Experimental Mathematics 8:3, page 301



302 Experimental Mathematics, Vol. 8 (1999), No. 3

and we will see that the corresponding self-adjoint
inverse negative Neumann laplacian is not compact.

Suppose T is a self-adjoint linear transformation
on a Hilbert space H. The spectrum of 1" consists of
all numbers A so that either 7'— Al does not have an
inverse or else it does but (T'— A\I)~! is not a mem-
ber of L(H,H). From [Edmunds and Evans 1987,
Chapter IX, Theorems 1.3—-1.6], one has a division
of the spectrum into two classes: The first set con-
sists of all eigenvalues of T" with finite multiplicity;
the second set consists of all numbers A for which
there is a singular sequence, i.e., a sequence {z; }‘;’;1
of unit vectors in H which has no convergent subse-
quence and for which

(T — A)zj||g — 0 asj— oo.

This second set is called the essential spectrum of
T.

In [Hempel et al. 1991] it is shown that, given a
closed subset S of [0, 00), one may choose a Rooms
and Passages or Comb region so that the essential
spectrum of the corresponding negative Neumann
laplacian is precisely S. In the present work we
deal with a single example which is of interest in
the theory of Sobolev embeddings. From the results
in [Hempel et al. 1991] we are assured that there
is a great variety of possibilities for essential spec-
tra. Our code, or one similar, might be used to
investigate some of these. In particular it would be
interesting to understand how the spectra of finite-
dimensional approximations behave when the essen-
tial spectrum being approximated is an interval.

2. BACKGROUND ON GENERAL LAPLACIANS

Suppose H is a Hilbert space with norm || - ||z, H' is
a dense linear subspace of H and |- ||z is a second
norm defined on H' such that

|zl < ||z||z for z € H'

and that H' is also a Hilbert space with this second
norm. There are two linear transformations of in-
terest in this setting. The first is Iy g, the identity
transformation considered as a transformation from
H' to H. The second transformation is called M
and is described as follows; see [Beurling 1989, page
209] or [Neuberger 1997, Chapter 5], for example.
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For y € H define f € H* so that
f(z) =(z,y)y forz e H.
Denote by g the restriction of f to H'. Then

9(2)] = Kz, y)ul < lzllallylla < |2llalyla

for x € H'. Hence there is a unique element z € H'
such that

g(x) = (x,2)g for z e H'.

Define
My = z.

From either of the above two references or by an
easy observation one has the following properties of
M:

(i) (Mz,yyy = (&, My)y,z,y € H.

(i) (Mx,yyyr = (v, My)pr,z,y € H'.

(i) | M|,y <1

(iv) R(M), the range of M, is dense in H.
(v) M~! exists.

One calls M ~! the laplacian associated with the pair

(H,H").

Theorem. Iy is compact if and only if M is com-
pact as a member of L(H,H).

Proof. Suppose Iy g is compact. Denote by {z;}72,
a bounded sequence in H. Then {Mux;}°, is a
bounded sequence in H' and hence it has a conver-
gent subsequence in H. Therefore M is compact.

Now suppose that M is compact as a member of
L(H, H). Denote by

{z}iZo (2-1)

a bounded sequence in H'. We want to show that
this sequence has a convergent subsequence in H.
To this end note that (2-1) is also bounded in H
and hence has a subsequence (also denoted by (2-1))
which converges weakly to an element x € H. De-
note by « a number so that

fork=1,2,....

2kl < o,

Denote by {¢;}2, an orthonormal basis of H con-
sisting of eigenfunctions of M so that its correspond-
ing sequence {\;}2, of eigenvalues is a nonincreas-
ing sequence converging to 0.
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Note that if N is a positive integer then

oo

lz —@llf = D (@ —an,0)5

7j=1
N [e%S)

<D (e—me)i+2 ) (w0
j=1 j=N+1

J=N+1

Now if each of j and k is a positive integer,

(T, 0j = (@, M@j)ur = Nj{xk, 9;) nr

so that
Z <33k790j>?{: Z /\§<$k790j>?-1’
j=N+1 j=N+1
= D Nwe B
j=N+1
where

B =@i/lleilla = /Ajp; forj=1,2,...
since
;7 =1/X; forj=1,2,....

Then
o0 o0
D Nme B < Avi Y (@ By
j=N+1 j=N+1
o0
< ANt Z<$kaﬁj>?{' = Availlzelli < Avpia®.
j=1

Now suppose that € > 0. Pick N such that
2)\N+1C¥2 < 6/3

and

2 S (g <3

Jj=N+1
Pick N’ so that if kK > N’ then
(x—x, p;)5 <e/(BN) forj=1,2,...,N.

Then
|z —xi||3 <e for k>N’

Hence {z}}72, converges in H to z.

3. ROOMS AND PASSAGES REGION

For Q a bounded region in R?, take H = L,(2) and
H' to be the Sobolev space H*(2) (see [Adams
1975; Edmunds and Evans 1987] for background on
Sobolev spaces). Denote by M the transformation
associated with the pair (H, H') as above. We are
interested in a numerical indication of the spectrum
of M in a case where () is chosen so that M is not
compact. We actually present approximations to
the spectrum of M~ — I (which corresponds to the
classical negative Neumann laplacian).

Our region of interest is a Rooms and Passages do-
main taken from [Edmunds and Evans 1987, p. 272].
It is a connected bounded region consisting of a
union of infinitely many squares {R;}>; (rooms)
and infinitely many rectangles {P;};2, (passages)
arranged in an alternating series. The heights of
Ry, P\, Ry, Py, Rs, ... are 1, a, a2, a3, o, ..., the
widths of Ry, Ry, Rs, ... are 1, a?, a*, ..., and the
widths of Py, Py, Ps, ... are o3, o, o5, ..., where
« is chosen to be 271/6. All the sides are parallel to
the axes and all the rectangles are centered about
a horizontal line. Theorem 4.21 in [Edmunds and
Evans 1987, page 273] asserts that for this region 2,
H"“?(Q) is not compactly embedded in Ly(Q), i.e.,
that Iy g is not compact and hence neither is M.

In our discretization of €2, we refer to

Ql = R1 UP1 URZ
as level 1 and
Qn - Qn—l UPn URn+1

as level n for n > 2.

4. RESULTS

Figure 1 displays computed values of the smallest
12 eigenvalues of the negative Neumann laplacian

on each of the first seven levels ,...,Q7;. The
values are depicted as graphs of the k-th smallest
eigenvalue versus level number n for £ = 1,...,12

and n = 1,...,7. Similarly, Figure 2 displays the
smallest six computed eigenvalues on each of the
first eight levels.

For n and k positive integers, denote eigenvalue k
on level n by A, for the negative Neumann lapla-
cian on €2,,. We offer the following hypothesis based
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FIGURE 1. Lowest 12 eigenvalues plotted versus level.

on these graphs and our examination of contour
plots of corresponding eigenfunctions.

Hypothesis 1.

1. A = lim,_, Xetm, i €xists for m = 1,2,...,
and {\"™1}>_ is nondecreasing and unbounded.

2. A = lim, oo \g, exists and {\;} is increasing.

3. Ao = lim;_, o \; exists.

4.\ <)\2<...<)\0§)\(1) S)\(Z) <o

The point Ay appears to be a point of essential spec-
trum. Figures 3-8 depict contour plots of the com-
puted eigenfunctions associated with Ajyq1, =~ 5.7
for k =1,...,6. These clearly indicate convergence
as k — oo. Plots of the eigenfunctions associated
with Agi2 &~ 10.1 (not included here) also indicate
convergence, and we assume that this pattern ap-
plies to Ag4,, i for all m. Less compelling, but prob-
ably true, is the proposition that the eigenfunctions
associated with Ay, converge to distinct limits as
n — oo for k = 1,2,.... Our evidence for the case
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FIGURE 2. Lowest 6 eigenvalues plotted versus level.

k = 2 is depicted in Figure 9, which we explain
now. Contour plots for the second eigenfunction at
various levels are similar to those in Figures 3-8 in
that they exhibit symmetry about the centerline,
but they differ greatly in that they show consider-
able variation in the smaller passages at higher lev-
els. This variation is illustrated in Figure 9 which
contains centerline plots for eigenfunction 2 at levels
1 through 7, the leftmost graph being for level 1, the
next for level 2 and so on. The horizontal axis corre-
sponds to distance along the centerline of the region.
It seems like these plots point to a singularity at the
right end of the full Room and Passage region. It is
not clear to us whether A, is an eigenvalue or a point
of essential spectrum. If the sequence of eigenfunc-
tions for the second eigenvalue converge, as the level
increases, to an L, function, then this L, function
is likely to be an eigenfunction for eigenvalue Aq; if
this sequence of eigenfunctions converges, in some
sense, to a function which is not L, or else does not

0.5 1 1.5 2 2.5
I I I I I I
I

FIGURE 3. Eigenfunction 2, level 1.
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FIGURE 4. Eigenfunction 3, level 2.
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FIGURE 5. Eigenfunction 4, level 3.
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FIGURE 6. Eigenfunction 5, level 4.
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FIGURE 7. Eigenfunction 6, level 5.
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FIGURE 8. Eigenfunction 7, level 6.
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FIGURE 9. Eigenfunction 2, Levels 1-7.

converge in any reasonable sense, then A, is almost
certainly a point of essential spectrum. The same
considerations apply to A\r, k = 1,2, ..., but we have
no particular reason to believe that the situation is
similar for all these cases.

We offer the following alternative:

Hypothesis 2.

1. A = limy ., Metm, e €xists for m = 1,2,...,
and {\(™}>_ is nondecreasing and unbounded.

2. A, = limy, 00 A, = 0 for all £.

According to [Hempel et al. 1991], for some regions,
0 is the only point of essential spectrum. FEvidence
from Figure 2 does not, in our judgement, com-
pletely preclude this possibility in the present case.

5. NUMERICAL TECHNIQUES

Our method of finding eigenvalues and eigenvectors
has its roots in the earlier works [Neuberger and
Noid 1987; Lapidus, Neuberger, Renka, and Griffith
1996]. Our computed results are based on an inverse
power method with deflation and a multigrid/SOR
linear system solver. Our code constructs a uni-
form rectangular finite difference grid on any region
which can be represented as a union of rectangles
with sides parallel to the axes. The standard five-
point difference operator is used to approximate the
negative laplacian. The code allows for zero Dirich-
let boundary conditions on an arbitrary portion of
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the boundary. We used this capability to more effi-
ciently compute the odd eigenfunctions (those with
nodal lines on the centerline of ) by approximating
just half of the domain.

The inverse power method is described as follows.
Let T be a symmetric positive definite linear trans-
formation on RY with eigenvalues

0<A <A << Ay,

and denote the corresponding sequence of orthonor-
mal eigenvectors by {uz}fil so that Tu; = \;u; and
ul'u; = 6;; for 1 <4,7 < N. Then T " has eigenval-
ues {)\;l}il with the same eigenvectors. Since the

eigenvectors span R”Y, an arbitrary vector x, may
be written x, = ZZVZI a;u;, and m applications of
T to x, results in
T_mCCO = Zi\il OZZ'T_m’U/Z' = vazl O[Z')\;m’ll/i
= /\;m <a1u1 + Zf\;2 (674 (/\1//\l)m ’U,i> .

If a; # 0 and \; < Ay, the above expression (suit-
ably scaled) converges to a multiple of the dominant
eigenvector u; as m — oo.

The power method applied to T"~! consists of solv-
ing the sequence of linear systems

Tx,,,1 ==z, form=0,1,..., (5-1)

resulting in x,, = T~ "xy. Approximations to the
dominant eigenvalue A" are obtained by computing
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the Rayleigh quotients r,, = (21T 'x,,) / (xL 2.n)
=zl x,,1/x! x,,. Using orthogonality of the eigen-
vectors, we have

n n
T 2y —2m-1 T 2y —2m
T, Tt = E o A and z, T, = E oA,
i=1

i=1

from which it follows that

VTS BTN S NN
Al + 30,02 (A/N)T

Note that this expression converges to A\; ' even in
the case of a multiple eigenvalue.

To prevent x,, from approaching zero (A\; > 1) or
growing in magnitude (\; < 1), &, is normalized to
a unit vector at each step. The choice of Euclidean
norm || - ||, has two advantages over alternatives: it
simplifies the computation of r,,, and it facilitates
the deflation procedure described below.

The computational procedure represented by Eq.
(5-1) may be used to find the k-th eigenvalue by
simply projecting the initial estimate xy, onto the
orthogonal complement of the first k — 1 eigenvec-
tors:

- T
Lo = Lo — E (5130 Uz) U;,
i=1
AT .
so that £yu; = 0 for j < k. Then, for x, =
. h du; = d
Yo, yu,, we have xju; = o; an

n
Lo = E a;u;,
i=k

resulting in

n n
I, = T_miilo = E aiT_mui = E Oéi>\i_m’ll/i
i=k i=k

= /\]:m (akuk + Z;L:k+1 ; ()\k/)\i)m ’U/i) .

Thus, provided oy, # 0, .,/ ||Z.,]|, approaches wy
(or, in the case of a multiple eigenvalue, it converges
to an eigenvector in the same eigenspace). Further,
an expression analogous to (5—2) shows that the
Rayleigh quotients r,, converge to A,' as m — oo.
In practice, due to numerical considerations, orthog-
onality must be maintained by applying the projec-
tions at each step or at least periodically. Refer to
[Wilkinson 1965] for background on this method.
In order to represent the complex geometry of the
regions, especially at the higher levels, our initial

grid was necessarily quite fine. Thus, although the
code allows for an arbitrary number of grid refine-
ments (using bisection), we based our computations
on just two grids. Initial estimates of the eigenvec-
tors on the coarse grid were randomly generated,
and initial estimates on the fine grid were obtained
by piecewise bilinear interpolation from the coarse-
grid solutions. The method of Successive Overrelax-
ation (SOR) [Young and Gregory 1973] was used to
solve the linear systems on the coarse grid, and a
sequence of multigrid V-cycles [Demmel 1997] with
weighted Jacobi smoothing was used on the fine
grid.

6. CONCLUSION

In this note we sought an organized way to get a
qualitative and a quantitative understanding of es-
sential spectra. Our test case was the negative Neu-
mann laplacian on a Rooms and Passage region that
is a member of a multi-purpose family of counterex-
amples in the theory of Sobolev embeddings, a sub-
ject of great importance in the study of partial dif-
ferential equations. Since this laplacian does not
have a compact inverse we were assured of the exis-
tence of at least one point of essential spectrum. We
think we found at least one such point and we have
indicated a sequence {\;}2, any of which might be
an eigenvalue or a point of essential spectra.

The first named author was introduced to phe-
nomena surrounding Rooms and Passages regions
by Desmond Evans, one of the authors of [Edmunds
and Evans 1987]. From a private communication
from Evans (concerning the case study of this note)
we quote the following: *
about the nature of the essential spectrum: does it

...we still have no idea

consist of one point, or some interval or the whole
positive real axis...’. We thank Evans for his fre-
quent help but the present authors take full respon-
sibility for any misleading inferences we may have
made from our calculations. We do not preclude
the possibility of obtaining essential spectra for this
case study (helping to decide, perhaps, between Hy-
potheses 1 and 2) from [Hempel et al. 1991], but we
reiterate that the main purpose of this note is the
establishment of a framework for the computational
determination of essential spectra.
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