
On Arithmetic Progressions on Elliptic Curves
Andrew Bremner

We study arithmetic progressions in the x-coordinates of rational

points on elliptic curves. An infinite family of elliptic curves is

found, each containing an arithmetic progression of length 8.

1. Questions in number theory that interrelate twogroup structures are easily posed, but often leadto intractable problems. For example, prime num-bers are de�ned by multiplicative structure, and theGoldbach Conjecture that any even positive integeris the sum of two primes, remains unproved. Here,we ask a question about the rational points on anelliptic curve that relates the group structure of theelliptic curve to the addition of rational numbers. Aset of points on a rational elliptic curve given by aWeierstrass equationy2 + a1xy + a3y = x3 + a2x2 + a4x+ a6; (1)with a1; : : : ; a6 2 Q , is said to be an arithmeticprogression on the curve if the x-coordinates of thepoints form an arithmetic progression. For example,the curve y2+y = x3�7x+6 (which happens to bethe curve of rational rank 3 with smallest conductor;see [Buhler et al. 1985]) contains an arithmetic pro-gression of length 8: (�3; 0), (�2; 3), (�1; 3), (0; 2),(1; 0), (2; 0), (3; 3), (4; 6). Can there exist arbitrar-ily large arithmetic progressions on elliptic curves?In this note we show that there are in�nitely manyelliptic curves with length 8 arithmetic progressions.We have been unable to �nd a progression of length9. It seems that points of an arithmetic progressionhave a tendency to be linearly independent in thegroup of rational points, and this was exploited in[Bremner et al. 1999], where careful height compu-tations show that the curves y2 = x(x2 � n2) (withn squarefree) cannot contain any nontrivial arith-metic progressions if the rational rank is 1. Accord-ingly, progressions of length 9 or more, if they exist,should occur on curves of relatively high rank and
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410 Experimental Mathematics, Vol. 8 (1999), No. 4correspondingly large coe�cients. See also [Lee andV�elez 1992], where in�nitely many curves of typey2 = x3 + k are found containing arithmetic pro-gressions of length 4.All symbolic computations in this paper were per-formed with Maple V, and extensive use has beenmade of the APECS program [Connell n.d.].
2. It is in general straightforward to write down acubic in x which takes on square values at the 8 val-ues x1; : : : ; x8, by writing (x� x1) : : : (x� x8) iden-tically equal to q(x)2 � c(x), where q is quartic andc is the required cubic. However, when the 8 valuesx1; : : : ; x8 form an arithmetic progression, this ideafails in view of the identityx(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+7)= (x4+14x3+63x2+98x+28)2 � 16(7+2x)2:Another approach is needed. First, observe that anarithmetic progression on a curve E is independentof the Weierstrass equation chosen for E, since an x-coordinate x0 is related to the original x-coordinateby a transformation of type x0 = u2x + r. With-out loss of generality, therefore, we shall work withWeierstrass equations of the formy2 = x3 +Ax+B: (2)First, consider the case of an arithmetic progres-sion on the curve of length 5. Suppose that a �2d; a � d; a are x-coordinates of �ve points on (2).Thena3 +6a2d+12ad2 +8d3 +A (a+2d) +B= r2a3 +3a2d+ 3ad2 + d3 +A (a+d) +B= s2a3 +A a +B= t2a3� 3a2d+ 3ad2 � d3 +A (a�d) +B= u2a3� 6a2d+12ad2 � 8d3 +A (a�2d) +B= v2.Consequently, �ve points in arithmetic progres-sion correspond to solutions of the systems2 � 2t2 + u2 = 6ad2; (3)r2 � 3s2 + 3t2 � u2 = 6d3; (4)r2 � 4s2 + 6t2 � 4u2 + v2 = 0; (5)withA = (1=d)(s2�t2)� (3a2+3ad+d2); (6)B = (1=d)((a+d)t2�as2) + a(a+d)(2a+d): (7)

Given a solution r; s; t; u; v of (5), scaling by thefactor 36(r2 � 3s2 + 3t2 � u2) results in a solutionR;S; T; U; V of (3){(5) witha = 6(S2 � 2T 2 + U 2); (8)d = 6(R2 � 3S2 + 3T 2 � U 2); (9)where�R2 + 4S2 � 6T 2 + 4U 2 = 2 (= V 2); (10)and, from (6), (7),A=�36(R4�9R2S2+21S4+6R2T 2�39S2T 2+21T 4+R2U 2+6S2U 2�9T 2U 2+U 4) (11)B = 216(R4S2�9R2S4+20S6+4R4T 2�12R2S2T 2�21S4T 2+24R2T 4�21S2T 4+20T 6+R4U 2�8R2S2U 2+24S4U 2�8R2T 2U 2�12S2T 2U 2�9T 4U 2+R2U 4+4S2U 4+T 2U 4): (12)It is further possible to parametrize the quadric (10)in the standard way, by putting(R;S; T; U; V ) = (v+w; v+x; v+y; v+z; v)to giveR : S : T : U : V =w2�8wx+12wy�8wz+4x2�6y2+4z2 :�w2+2wx+12xy�4x2�8xz�6y2+4z2 :�w2+2wy+4x2�8xy+6y2�8yz+4z2 :�w2+2wz+4x2�8xz�6y2+12yz�4z2 :�w2+4x2�6y2+4z2: (13)

3. For seven points in the arithmetic progression wedemand that a � 3d give x-coordinates of rationalpoints on (2). This becomes4R2 � 6S2 + 4T 2 � U 2 = 2; (14)�4R2 + 15S2 � 20T 2 + 10U 2 = 2; (15)which in virtue of (13) represents the intersection oftwo quartics in �ve-dimensional projective space.A small computer search over the parameters w,x, y, z reveals that solutions of (14), (15) occurwhenever w = x, z = 0. This corresponds toR : S : T : U = �x2 + 4xy � 2y2 :�x2 + 4xy � 2y2 :x2 � 2xy + 2y2 :x2 � 2y2; (16)



Bremner: On Arithmetic Progressions on Elliptic Curves 411with (on removing 22 from a and d, and 24 from A,26 from B)(a; d) = (0; 6xy(x�y)(x�2y)) (17)andA = �252x2y2(x�y)2(x�2y)2;B = 324x2y2(x�y)2(x�2y)2(x2�2xy+2y2)2: (18)For 8 points in the arithmetic progression, one ofthe following equations must also be satis�ed, cor-responding to x = a � 4d giving rational points on(2): 10R2 � 20S2 + 15T 2 � 4U 2 = 2; (19)�10R2 + 36S2 � 45T 2 + 20U 2 = 2: (20)For the parametrization (16) to satisfy (19) and (20)demands, respectively,x4 + 20x3y � 64x2y2 + 40xy3 + 4y4 = 2; (21)x4 � 28x3y + 80x2y2 � 56xy3 + 4y4 = 2: (22)Individually, these equations are both models for theelliptic curve y2 = x3�x2�36x+36 (not surprising,because arithmetic progressions with common dif-ference d are also arithmetic progressions with com-mon di�erence �d). APECS determines the rationalrank of this curve to be 1. Thus (21) for examplehas a generator of in�nite order at (x; y) = (3; 1)with multiples giving the points with�(x; y) = (3; 1); (13; 14); (�290; 11) : : :These in turn lead to in�nitely many arithmetic pro-gressions of length 8. The three points listed abovecorrespond to the following progressions (where wehave \minimized" the coe�cients A;B at (2) in thesense of replacing A;B by A=p4; B=p6 in cases wherethis is possible).
1. (�12; 4), (�8; 28), (�4; 28), (0; 20), (4; 4), (8; 4),(12; 28), (16; 52) on y2 = x3 � 112x + 400 (notethat in minimal model form this is precisely theexample cited in the introduction, of rank 3).
2. x = �5460, �3640, �1820, 0, 1820, 3640, 5460,7280 ony2 = x3�23186800x+128550931600(a curve of rank 6).

3. x = �49929880, �37447410, �24964940,�12482470, 0, 12482470, 24964940, 37447410 ony2 = x3 � 1090684401106300x+ 80150513839787062897225(the eight points of the progression generate asubgroup of rank 6 in the full group of rationalpoints).For nine points in the arithmetic progression, it isnecessary to satisfy (21), (22) simultaneously, andthis corresponds to determining rational points on acurve of genus 5. There are only �nitely many suchpoints, and it seems plausible that they are given by�(x; y) = (1; 0), (0; 1), (1; 1), (2; 1) (each leading todegenerate progressions) but we are unable to verifythis.
4. In order to investigate instances of 7 points inarithmetic progression, other than those correspond-ing to w = x; z = 0, substitute into (14), (15) theparametrizations at (13). There result two quar-tics in w with coe�cients in the ring Z[x; y; z], bothof which must be made square. The discriminantsof the two quartics have a common factor of 6x2 �24xy+21y2+16xz�24yz+6z2, which can be madezero by the parametrizationx : y : z = 9m2 + 6mn� n2 :2(3m2 + 4mn� n2) :3(m2 + 2mn� n2): (23)Then (14) and (15) becomew2�w(36m2�40mn�52n2)+(324m4�720m3n�536m2n2�240mn3+36n4) = 2 (24)andw2+w(36m2+40mn�52n2)+(324m4+720m3n�536m2n2+240mn3+36n4) = 2, (25)which, regarded as the intersection of two quadricswith coe�cients in Q (m=n), is a curve of genus 1over Q (m=n). The point w = 1=0 ensures that thiscurve is an elliptic curve, and a Weierstrass cubicform is given byY 2 = X3 + (81m4�234m2n2+89n4)X� 1600n6(4m2�n2): (26)



412 Experimental Mathematics, Vol. 8 (1999), No. 4This latter possesses the point of in�nite orderP (X;Y ) = (40n3(2m+n); 40n3(2m+n)(9m2�13n2));
(27)and it seems likely that the Q (m=n)-rank of thecurve is equal to 1, though this has not been ver-i�ed. There are in any event in�nitely many pointsw on (24), (25), given as the ratio of homogeneouspolynomials in m;n. These together with (23) and(13) then give rise via (8), (9), and (11), (12), to anin�nite family of elliptic curves with coe�cients inQ (m=n) each possessing an arithmetic progressionof length 7. For each of these curves, the conditionthat the length 7 progression extend to a length 8progression, is given by the condition on the param-eters m;n resulting from the demand that either(19) or (20) be satis�ed. For example, the point Pat (27) determines a point on (24), (25) given byw = �n(261m4 � 334m2n2 + 169n4)m(9m2 � 13n2) ;pulling back toa = 432m2(9m2�13n2)(9m6�93m4n2+107m2n4�39n6);d = �96mn(m2�n2)(9m2�13n2)(162m4+243m2n2�169n4);withA=�2304m2(9m2�13n2)2�(19683m14+774198m12n2+2142531m10n4�8769546m8n6+8513577m6n8�2315894m4n10�587951m2n12+285610n14);B=331776m2(9m2�13n2)2�(3188646m24+183524292m22n2+2098837656m20n4�6763196898m18n6+4628564613m16n8�11781396216m14n10+68063427684m12n12�146498139396m10n14+163046846764m8n16�105881078940m6n18+40866792460m4n20�8775138762m2n22+815730721n24):The condition for a progression of length 8 is now46656m10 + 73872m9n� 385479m8n2+ 168480m7n3 + 812052m6n4 � 993216m5n5� 572738m4n6 + 1079520m3n7 + 108836m2n8� 316368mn9 + 28561n10 = 2;

representing a curve of genus 4, with accordinglyonly �nitely many points. Inspection �nds pointswith (m;n) = (1;1), (1;�1), (2;3), (13;12), of whichthe latter two have corresponding value of d nonzero.The case (m;n) = (2; 3) leads to the 8-term progres-sion x = �12108, �6888, �1668, 3552, 8772, 13992,19212, 24432 on the curvey2 = x3 � 400817592x + 2877285882276;of rank 7; and the case (m;n) = (13; 12) leads to x =�545293, �236893, 71507, 379907, 688307, 996707,1305107, 1613507 on the curvey2 = x3 � 2635091663547x + 2069796143216734486;of rank 8.The condition for progressions of length 8 rapidlybecomes awesome (and awful): from the point 2P at(27), the condition is represented by a homogeneousirreducible polynomial of degree 30 being a square(geometrically a curve of genus 14); inspection inthis case gives a solution at (m;n) = (2;�3) leadingto (a; d) and (A;B) witha = 4405644857065620;d = 358812799145892;A = �55951394751916151836779771093432;B = 161185990575786318949529833906n199556559553368740(the eight points of the progression generate a sub-group of rank 6 in the full group of rational points).
Remark. After substituting (13) into (14), (15) wemay instead regard the result as two quartics in xwith coe�cients in Z[w; y; z], or indeed as quartics iny and z with coe�cients in Z[w; x; z] and Z[w; x; y]respectively. The common factor of the two discrim-inants now turns out to be 3w2�12wy�12y2+8wz+48yz�32z2, 7w2�8wx�8x2�8wz+32xz�8z2, and3w2+8wx�32x2�12wy+48xy�12y2, respectively.The �rst two cases lead as above to an intersectionof two quadrics that by a local argument possessesno global point; and the third case determines thesame curve as at (26) returning the same arithmeticprogressions as before (but with �d for d).
5. As a �nal problem, one can ask what is the longestpossible arithmetic progression on curves of a givenrank. In the case of rank 1, [Bremner et al. 1999]



Bremner: On Arithmetic Progressions on Elliptic Curves 413displays the curve y2 = x(x2 � 36) with the pro-gression of length 5 given by x = �6, 0, 6, 12, 18.Another example, on a curve with only trivial tor-sion, is given by the rank 1 curvey2 = x3 + x2 � 1920x + 36864with x = �48, �24, 0, 24, 48 corresponding re-spectively to the points 4P , 7P , P , 2P , 5P , whereP = (0; 192) is a generator of the group of rationalpoints.
Appendix. The search over the parameters w; x; y; zdiscovered a number of length 8 arithmetic progres-sions other than those derived from the family at(17) and (18). They are listed in the table below,ordered by increasing d, the progression being givenby x = a� 4d, . . . , a+ 3d. The table also lists the

rank of the corresponding curve (2) as computed byAPECS.
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